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Feedback Control of Nonlinear Hyperbolic PDE
Systems Inspired by Traffic Flow Models

Iasson Karafyllis , Nikolaos Bekiaris-Liberis , and Markos Papageorgiou , Fellow, IEEE

Abstract—This paper investigates and provides results,
including feedback control, for a nonlinear, hyperbolic, one-
dimensional partial differential equation (PDE) system on
a bounded domain. The considered model consists of two
first-order PDEs with a dynamic boundary condition on the
one end and actuation on the other. It is shown that, for all
positive initial conditions, the system admits a globally de-
fined, unique, classical solution that remains positive and
bounded for all times; these properties are important, for
example for traffic flow models. Moreover, it is shown that
global stabilization can be achieved for arbitrary equilibria
by means of an explicit boundary feedback law. The sta-
bilizing feedback law depends only on collocated bound-
ary measurements. The efficiency of the proposed bound-
ary feedback law is demonstrated by means of a numerical
example of traffic density regulation.

Index Terms—Boundary feedback, hyperbolic partial
differential equations (PDEs), traffic flow.

I. INTRODUCTION

THE study of vehicular traffic flow by means of hyperbolic
partial differential equations (PDEs) started in the 1950s

with the LWR first-order model (see [27] and [32]). In order
to describe more accurately the mean speed dynamics, second-
order models were later studied (see [1], [29], and [39]). Many
one-dimensional (1-D) traffic flow models with no control were
developed for unbounded domains (usually the whole real axis).
Researchers working on second-order models as well as critics
of second-order models (see [12]) have agreed that a valid traffic
flow model must show the following characteristics.
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1) It includes the vehicle conservation equation.
2) It admits bounded solutions which predict positive values

for both density and mean speed.
3) It obeys the so-called anisotropy principle, i.e., the fact

that a vehicle is influenced only by the traffic dynamics
ahead of it.

4) It does not allows waves traveling forward with a speed
greater than the traffic speed.
Recently, researchers have developed two phase models
(see [8] and [25]).

Recent advances in the boundary feedback control of hyper-
bolic systems of PDEs (see for instance [2], [3], [7], [9], [10],
[11], [13], [14], [19], [22], [23], [30], [31], [35], and [36]) as well
as advances in the control of discrete-time, finite-dimensional
traffic flow models (see [17], [18], [20], and [28] and references
therein) have motivated the study of well-posedness and con-
trol of traffic flow models on bounded domains. Both issues
(well-posedness and control) for first-order models in bounded
domains were studied in [4], [5], and [33]. The stabilization
of equilibrium profiles for linearized second-order models in
bounded domains by means of boundary feedback was also
studied in [24], [37], [38], and [40].

This paper considers a specific hyperbolic, nonlinear, second-
order, 1-D PDE system on a bounded domain, which may be
viewed as partial linearization of the Aw-Rascle-Zhang (ARZ)
model [1], [39] around an equilibrium point in a congested road.
It consists of two quasi-linear first-order PDEs with a dynamic
nonlinear boundary condition that involves the time derivative
of the speed, analogously to in-domain relaxation in typical
second-order traffic flow models [1], [39]. The presence of this
dynamic boundary condition renders the model non-standard
(since standard systems of hyperbolic PDEs involve boundary
conditions which do not contain the derivatives of the states),
and thus, the existence and uniqueness of its solutions cannot
be guaranteed by using standard results (see [2], [6], [21], and
[26]). The existence and uniqueness issues are first studied in
this paper. Specifically, it is shown that for all physically mean-
ingful initial conditions, the model admits a globally defined,
unique, classical solution that remains positive and bounded for
all times. As a result, we can guarantee that the proposed model
has all of the four features mentioned in the first paragraph that
are important from a traffic-theoretic point of view. The second
contribution of this paper is the study of the control problem for
the proposed model. Specifically, we design a simple, nonlin-
ear, boundary feedback law, adjusting the inlet flow (via, e.g.,
ramp or mainline metering). The boundary feedback law em-
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ploys only measurements of the inlet speed, and consequently,
the measurement requirements for implementation of the pro-
posed controller are minimal. Moreover, it is shown that the
developed control design achieves global asymptotic stabiliza-
tion of arbitrary equilibria, in the sup-norm of the logarithmic
deviation of the state from its equilibrium point. The efficiency
of the proposed feedback law is demonstrated by means of a
numerical example.

Section II is devoted to the presentation of the model and
the statement of the first main result (Theorem 2.1), which
guarantees, for all physically meaningful initial conditions, the
existence of a globally defined, unique, classical solution that
remains positive and bounded for all times. The control design
and the statement of the second main result, which guarantees
global stabilization of arbitrary equilibria of the model (Theo-
rem 3.1), are given in Section III. A simple illustrative example
is presented in Section IV. The proofs of the main results as well
as auxiliary results are provided in Section V. One of the auxil-
iary results has interest on its own (see Proposition 5.2), because
it covers a case not studied in [2], [6], [21], and [26]: namely
the case of a transport PDE with a nonnegative (possibly zero
at some points) transport speed. A unique, classical solution is
shown to exist, which is differentiable and satisfies the PDE
even on the boundary (something that cannot be guaranteed by
the results in [21]). The concluding remarks are provided in
Section VI. Finally, the Appendix contains the proofs of the two
auxiliary results of Section V.
Notation:

1) �+ := [0,+∞). For a real number x ∈ �, [x] denotes
the integer part of x, i.e., the greatest integer which is
less or equal to x.

2) Let U ⊆ �n be a set with nonempty interior and let
Ω ⊆ � be a set. By C0(U ; Ω), we denote the class of
continuous mappings on U , which take values in Ω. By
Ck (U ; Ω), where k ≥ 1, we denote the class of contin-
uous functions on U , which have continuous derivatives
of order k on U and take values in Ω. When Ω is omitted,
i.e., when we write Ck (U), it is implied that Ω = �.

3) Let T ∈ (0,+∞) and u : [0, T ] × [0, 1] → � be given.
We use the notation u[t] to denote the profile at cer-
tain t ∈ [0, T ], i.e., (u[t])(x) = u(t, x) for all x ∈ [0, 1].
For a bounded w : [0, 1] → � the sup-norm is given by
‖w‖∞ := sup0≤x≤1(|w(x)|).

4) W 2,∞([0, 1]) is the Sobolev space of C1 functions on
[0, 1] with Lipschitz derivative.

5) ByK we denote the class of strictly increasing continuous
functions a : �+ → �+ with a(0) = 0. By K∞ we de-
note the class of functions a ∈ K with lims→+∞ a(s) =
+∞. By KL we denote the set of all functions σ ∈
C0(�+ ×�+;�+) with the properties: for each t ≥ 0,
σ(·, t) is of class K; and for each s ≥ 0, σ(s, ·) is nonin-
creasing with limt→+∞ σ(s, t) = 0.

II. MODEL AND ITS PROPERTIES

In this section, we present the nonlinear model of conservation
laws, which is inspired by traffic flow PDE models. Moreover,

we guarantee properties of the model, which are crucial from a
traffic-theoretic point of view.

A. Description

Second-order traffic flow models involve a system of hyper-
bolic PDEs on the positive semiaxis. The state variables are
the vehicle density ρ(t, x) and the vehicle mean speed v(t, x),
where t ≥ 0 is time and x is the spatial variable. All second-
order traffic flow models involve the conservation equation

∂ρ

∂t
(t, x) + v(t, x)

∂ρ

∂x
(t, x) + ρ(t, x)

∂v

∂x
(t, x) = 0 (1)

and an additional PDE for the speed. In a congested road, the
vehicle speed depends heavily on the speed of downstream ve-
hicles. Therefore, the following equation may be appropriate for
the evolution of the speed profile:

∂v

∂t
(t, x) − c

∂v

∂x
(t, x) = 0 (2)

where c > 0 is a constant related to the drivers’ promptness
in adjusting their speed. Equation (2) may also arise as a lin-
earization of the speed PDE of the ARZ model (see [1] and
[39]) around a “congested equilibrium” without an in-domain
relaxation term. By “congested equilibrium,” we mean a spa-
tially uniform equilibrium profile ρ(x) ≡ ρeq , v(x) ≡ veq for
which veq + κ(ρeq ) < 0, where κ is the function involved in
the speed PDE ∂v

∂ t (t, x) + (v(t, x) + κ(ρ(t, x))) ∂v∂x (t, x) = 0 of
the ARZ model without an in-domain relaxation term. There-
fore, model (1), (2) can be seen as a partial linearization of
the ARZ model. Here, we consider the model (1), (2) on a
bounded domain, i.e., we assume that x ∈ [0, 1]. The full model
requires the specification of two boundary conditions. One
boundary condition describes the inlet conditions, and more
particularly the effect of the inlet demand q(t) > 0 and takes
the form

ρ(t, 0) = h(q(t)/v(t, 0)), for t ≥ 0 (3)

where h ∈ C2(�+) is a nondecreasing function that satisfies

h(s) = s for s ∈ [0, ρmax − ε]

and h(s) = ρmax for s ≥ ρmax (4)

where ρmax > 0 is a constant related to the physical upper bound
of density in the particular road and ε ∈ (0, ρmax) is a suf-
ficiently small constant. Notice that (3) implies that the inlet
demand q(t) > 0 is equal to the vehicle inflow ρ(t, 0)v(t, 0),
provided that q(t) ≤ (ρmax − ε)v(t, 0). The boundary condi-
tion (3), as well as the rest of the model (1), (2), comes together
with the following requirement:

ρ(t, x) > 0 and v(t, x) > 0, for all (t, x) ∈ �+ × [0, 1]. (5)

Condition (5) is an essential requirement for a model of a
physical process, such as traffic flow. In what follows, we show
that the proposed model meets this requirement.

In order to have a well-posed hyperbolic system, we also need
a boundary condition at the outlet x = 1. Assuming that the flow
downstream of the outlet is uncongested (free), it is reason-
able to assume that the relaxation term becomes dominant. So,



KARAFYLLIS et al.: FEEDBACK CONTROL OF NONLINEAR HYPERBOLIC PDE SYSTEMS INSPIRED BY TRAFFIC FLOW MODELS 3649

we get

∂v

∂t
(t, 1) = −μ (v(t, 1) − f(ρ(t, 1))) , for t ≥ 0 (6)

where μ > 0 is a constant and f ∈ C1(�+) is a positive,
bounded, nonincreasing function that, in the case of traffic flow,
expresses the fundamental diagram relation between density and
speed. Condition (6) implies that there is no downstream influ-
ence at the downstream boundary. For traffic flow, this may be
the case if the highway infrastructure downstream of the con-
sidered stretch has a higher capacity, e.g., due to an additional
lane; or end of a tunnel or bridge; or end of a curvature or uphill
stretch; or end of a speed-limited zone.

An important fact should be emphasized at this point: when
v(t, 1) can be manipulated, then (6) can be seen as a dynamic
feedback law at the outlet. Therefore, the boundary condition (6)
can arise either for modeling purposes (to guarantee the relation
v = f(ρ) at equilibrium) or for control purposes (as a feedback
law).

B. Traffic-Theoretic Features of the Model

Equations (1)–(3) and (6) form a nonstandard system of non-
linear hyperbolic PDEs. The reason that system (1)–(3), (6)
cannot be studied by existing results in hyperbolic systems (see
[2], [6], [21], and [26]) is the nonstandard boundary condition
(6). However, in what follows, we show that system (1)–(3), (6)
exhibits unique, positive, globally defined C1 solutions for all
positive initial conditions. Moreover, we show that density and
speed are bounded from above by certain bounds that depend
only on the initial conditions and the physical upper bounds
of the density and speed, i.e., ρmax and vmax = f(0), respec-
tively. Before we show this, it is important to emphasize that
(1)–(3) and (6) may be viewed as a traffic flow model that has
the following characteristics.

1) It can be applied to bounded domains, i.e., x ∈ [0, 1],
without assuming knowledge of density/speed out of the
domain.

2) It is completely anisotropic, i.e., the speed depends only
on the speed of downstream vehicles.

3) It is a hyperbolic model of conservation laws of the form
∂u
∂ t +A(u) ∂u∂x = 0, where u =

[ρ
v

]
, A(u) =

[ v ρ
0 −c

]
.

The matrix A(u) has two eigenvalues v and −c; conse-
quently, information travels forward at exactly the same
speed as traffic.

4) It allows only equilibria which satisfy the fundamen-
tal diagram law v = f(ρ), i.e., when q(t) ≡ qeq > 0
then the equilibrium profiles are given by ρ(x) ≡ ρeq ,
v(x) ≡ f(ρeq ), where ρeq > 0 is a solution of ρeq =
h(qeq /f(ρeq )).

All the above features are important for a traffic flow model.

C. Characteristic Form

Let ρeq ∈ (0, ρmax) be a given constant. The nonlinear trans-
formation of the density variable

ρ(t, x) = ρeq (c+ f(ρeq )) (c+ v(t, x))−1 exp(w(t, x)) (7)

yields the equation

∂w

∂t
(t, x) + v(t, x)

∂w

∂x
(t, x) = 0 (8)

with the boundary conditions

w(t, 0) = ln
(
ρ−1
eq h

(
q(t)
v(t, 0)

)
c+ v(t, 0)
c+ f(ρeq)

)
,

∂v

∂t
(t, 1) = −μ

(
v(t, 1) − f

(
ρeq exp(w(t, 1))

c+ f(ρeq)
c+ v(t, 1)

))
.

(9)

The hyperbolic system (2), (8), (9) is nothing else but the hyper-
bolic system (1)–(3), (6) in Riemann coordinates. Provided that
the initial conditions are positive, i.e., ρ(0, x) > 0, v(0, x) > 0,
for x ∈ [0, 1], we are in a position to construct a unique solution
to (1)–(3) and (6) by constructing a unique solution to (2), (8),
and (9) and employing the nonlinear transformation (7).

D. Well-Posedness and Positivity of the System

The solution of (2), (8), and (9) is constructed by using the
following theorem. Its proof is provided in Section V.

Theorem 2.1: Let a ∈ C2(�+ ×�+) be any given function
and let c > 0, μ ≥ 0 be given constants. Let g ∈ C1(�+ ×�)
be a given function for which there exists a constant vmax > 0
such that the following inequality holds

0 < g(0, w) ≤ g(v, w) ≤ vmax , for allv ∈ �+ , w ∈ � (10)

Let θ, ϕ ∈W 2,∞([0, 1]) be given functions with ϕ(x) > 0 for
all x ∈ [0, 1], for which the equalities

θ(0) = a (0, ϕ(0)) , ϕ′(1) = −μc−1 (ϕ(1) − g (ϕ(1), θ(1)))

∂a

∂t
(0, ϕ(0)) + c

∂a

∂v
(0, ϕ(0))ϕ′(0) = −ϕ(0)θ′(0)

hold. Then, the initial-boundary value problem

∂w

∂t
(t, x) + v(t, x)

∂w

∂x
(t, x) =

∂v

∂t
(t, x) − c

∂v

∂x
(t, x) = 0,

for all (t, x) ∈ �+ × [0, 1] (11)

w(t, 0) − a(t, v(t, 0)) =
∂v

∂t
(t, 1) + μ (v(t, 1)

−g (v(t, 1), w(t, 1))) = 0,

for all t ≥ 0 (12)

w(0, x) − θ(x) = v(0, x) − ϕ(x) = 0, for x ∈ [0, 1] (13)

admits a unique solution w, v ∈ C1(�+ × [0, 1]). Moreover,
the solution w, v ∈ C1(�+ × [0, 1]) has Lipschitz derivatives
on every compact S ⊂ �+ × [0, 1] and satisfies the following
inequalities for all (t, x) ∈ �+ × [0, 1]

‖w[t]‖∞ ≤ max (Bt, ‖θ‖∞) (14)

min
(

min
0≤x≤1

(ϕ(x)),min{g(0, w) : |w| ≤ max(Bt, ‖θ‖∞)}
)

≤ v(t, x) ≤ max
(

max
0≤x≤1

(ϕ(x)), vmax

)
(15)
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where

Bt := max
{
|a(s, v)| : s ∈ [0, t], 0 ≤ v

≤ max
(

max
0≤x≤1

(ϕ(x)), vmax

)}
.

Notice that Theorem 2.1 holds for any (arbitrary) function a ∈
C2(�+ ×�+). It should be noted that the solution provided by
Theorem 2.1 is a classical solution of the nonlinear system of
conservation laws (11) with boundary conditions given by (12).
The fact that systems of nonlinear conservation laws may admit
classical solutions is well-known (see [2], [6], [21], and [26]).
However, an existence/uniqueness result for the case (11) and
(12) is not available in the literature and Theorem 2.1 is a novel
result.

Remark 2.2: Theorem 2.1 shows that the appropriate (state)
space for studying the hyperbolic system (1)–(3), (6) is the space
X that contains all functions (ρ, v) ∈ (W 2,∞([0, 1]))2 for which
there exist numbers a1 > 0, a2 ∈ � such that

min(ρ(x), v(x)) > 0 for all x ∈ [0, 1]

cv′(1) = −μ (v(1) − f(ρ(1))) , ρ(0) = h(a1)

v(0)ρ′(0) + ρ(0)v′(0) = a2h
′(a1). (16)

In order to construct a solution (ρ[t], v[t]) ∈ X of (1)–(3) and
(6) with initial conditions in (ρ0 , v0) ∈ X , we apply Theorem
2.1 with

a(t, v) : =

⎧
⎨

⎩

ln
(
ρ−1
eq h

(
q(t)
v

)
c+v

c+f (ρe q )

)
, if v > 0

ln
(
ρ−1
eq ρmax

c+v
c+f (ρe q )

)
, if v = 0

g(v, w) : = f

(
ρeq exp(w)

c+ f(ρeq )
c+ v

)
, vmax := f(0)

θ(x) = ln
(
ρ0(x) (c+ v0(x)))
(c+ f(ρeq )) ρeq

)
,

ϕ(x) = v0(x) for x ∈ [0, 1]

and we consider q ∈ C2(�+; (0,+∞)) to be the input of the
model. The set of admissible inputs consists of all functions
q ∈ C2(�+; (0,+∞)) that satisfy the conditions

v0(0)ρ′0(0) + ρ0(0)v′0(0) + h′
(
q(0)
v0(0)

)
q̇(0)
v0(0)

= ch′
(
q(0)
v0(0)

)
q(0)
v2

0 (0)
v′0(0)

and ρ0(0) = h (q(0)/v0(0)) .

The solution (ρ[t], v[t]) ∈ X of (1)–(3) and (6) is found by us-
ing the solution (w[t], v[t]) of (11)–(13) in conjunction with
formula (7). Notice that if v0(x) ≤ vmax for all x ∈ [0, 1], then
estimate (15) implies that 0 < v(t, x) ≤ vmax for all (t, x) ∈
�+ × [0, 1] and for all admissible q ∈ C2(�+; (0,+∞)). Sim-
ilarly, by performing more detailed calculations than those in
the proof of Theorem 2.1, we are in a position to verify that if
ρ0(x) ≤ ρmax(c+ vmax)/c for x ∈ [0, 1], then the estimate 0 <
ρ(t, x) ≤ ρmax(c+ vmax)/c holds for all (t, x) ∈ �+ × [0, 1]
and for all admissible q ∈ C2(�+; (0,+∞)).

III. COLLOCATED BOUNDARY CONTROL DESIGN

The main result of the present section shows that stabiliza-
tion of the equilibrium profile for a given desired equilibrium
density ρeq > 0 can be achieved by controlling the inlet flow. It
is important to notice that the stabilizing feedback law depends
only on the inlet speed.

We next describe the basic ideas behind the construction of the
feedback law. In order to derive a globally stabilizing boundary
feedback law for the traffic flow model (1)–(3), (6), we employ
the characteristic form given by (2), (3), and (7)–(9). In order
to drive the transformed state w to zero, we use the boundary
condition w(t, 0) = 0, which can be expressed in terms of the
density and speed by the collocated boundary feedback law, as
follows:

q(t) = ρeq v(t, 0)(c+ v(t, 0))−1 (c+ f(ρeq )) . (17)

The feedback law (17) will not necessarily drive v to its
equilibrium value f(ρeq ). To this purpose, we need to employ
an assumption that deals with the outlet boundary condition,
namely the assumption that the following inequality holds:

(
v − f

(
ρeq

c+ f(ρeq )
c+ v

))
(v − f (ρeq )) > 0

for all v ≥ 0, v = f(ρeq ). (18)

In this way, existence and uniqueness of classical solutions
for the closed-loop system may be guaranteed by means of
Theorem 2.1 with

a(t, v) : = 0, g(v, w) := f

(
ρeq exp(w)

c+ f(ρeq )
c+ v

)
,

vmax : = f(0).

Our main result is stated next.
Theorem 3.1: Consider the traffic flow model (1)–(3), (6)

and let ρeq > 0 be the desired equilibrium density. Suppose
that ρeq ≤ c(c+ f(ρeq ))−1(ρmax − ε) and that (18) holds.
Then there exists Q ∈ KL such that for every (ρ0 , v0) ∈
X for which the equalities ρ0(0) = ρeq

c+f (ρe q )
c+v0 (0) , ρ′0(0) =

ρ0(0)(c+ v0(0))−1v′0(0) hold, the initial-boundary value prob-
lem (1)–(3) and (6) with (17) and

ρ(0, x) − ρ0(x) = v(0, x) − v0(x) = 0, for x ∈ [0, 1] (19)

admits a unique solution ρ, v ∈ C1(�+ × [0, 1]), with
(ρ[t], v[t]) ∈ X for all t ≥ 0 satisfying the following estimate
for all t ≥ 0:

max
0≤x≤1

(∣
∣
∣
∣ln

(
ρ(t, x)
ρeq

)∣
∣
∣
∣

)
+ max

0≤x≤1

(∣
∣
∣
∣ln

(
v(t, x)
f(ρeq )

)∣
∣
∣
∣

)

≤Q
(

max
0≤x≤1

(∣
∣
∣
∣ln

(
ρ0(x)
ρeq

)∣
∣
∣
∣

)
+ max

0≤x≤1

(∣
∣
∣
∣ln

(
v0(x)
f(ρeq )

)∣
∣
∣
∣

)
, t

)
.

(20)

Remark 3.2: A sufficient condition for (18) is the assump-
tion that the function F (ρ) := ρ(c+ f(ρ)) is increasing on the
interval (ρeq (c+ f(0))−1(c+ f(ρeq )), ρeq (1 + c−1f(ρeq ))).
Consequently, (18) holds automatically when
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c+ f(ρ) + ρf ′(ρ) > 0 for all ρ ∈ (ρeq (c+ f(0))−1(c+
f(ρeq )), ρeq (1 + c−1f(ρeq ))). For example, when f(ρ)
= A exp(−bρ), where A, b > 0 are constants (Underwood
model), we guarantee that (18) holds when the inequal-
ity c exp(bρ) +A > Abρ holds for ρ ∈ (ρeq (c+A)−1

(c+A exp(−bρeq )), ρeq(1+ c−1A exp(−bρeq ))). It should be
noticed that, in this case (18) holds automatically when the
speed ratio A/c is sufficiently small no matter what ρeq is:
when c exp(2) ≥ A the function F (ρ) := ρ(c+A exp(−bρ))
is increasing on �+ .

Remark 3.3: Estimate (20) is a stability estimate in the sup-
norm of the logarithmic deviation of the state from its equi-
librium values. The use of logarithmic deviation variables is
customary for systems with positive state values (e.g., biologi-
cal systems, see [19]).

Remark 3.4: Another thing that should be noted at this point
is that if the objective were local stabilization instead of global,
then we would need to assume inequality (18) only in a neigh-
borhood of f(ρeq ).

IV. ILLUSTRATIVE EXAMPLE

We consider model (1)–(3), (6) with f(ρ) = 0.4 exp(1 − ρ)
(Underwood model; see for instance [34]), c = 5, μ = 10,
ρmax = 2.7, ε = 10−6 ,h(s) = s(1 − g(s)) + ρmaxg(s) for s ≥
0, where

g(s) = 0, for s ∈ [0, ρmax − ε],

g(s) = 1, for s ≥ ρmax and

g(s) =
exp

(
−(s+ ε− ρmax)

−1
)

exp
(
−(s+ ε− ρmax)

−1
)

+ exp
(
−(ρmax − s)−1

) ,

for s ∈ (ρmax − ε, ρmax).

The objective is to stabilize the equilibrium point that maxi-
mizes the vehicle flow ρ(x) ≡ ρeq = 1, v(x) ≡ f(ρeq ) = 2/5.
It should be noticed that the open-loop system (1)–(3), (6)
with q(t) ≡ qeq = 2/5 has two equilibria: one is the desired
equilibrium, and the other one is the fully congested equilib-
rium ρ(x) ≡ ρmax = 2.7, v(x) ≡ f(ρmax) = 0.4 exp(−1.7).
Numerical experiments show that the fully congested equilib-
rium attracts the solution of the open-loop system (1)–(3), (6)
with q(t) ≡ qeq = 2/5 for many initial conditions. We chose
the initial conditions

ρ0(x) = 1 for x ∈ [0, 9/20], ρ0(x) = 2, for x ∈ [1/2, 1],

ρ0(x) = 1 +
exp

(
−(x− 9/20)−1

)

exp
(
−(x− 9/20)−1

)
+ exp

(
(x− 1/2)−1

) ,

for x ∈ (0.45, 0.5) , and

v0(x) = f(ρ0(x)), for x ∈ [0, 1].

For this particular initial condition (but also for many
others) the solution of the open-loop system (1)–(3), (6)
with q(t) ≡ qeq = 2/5 converges to the fully congested
equilibrium ρ(x) ≡ ρmax = 2.7, v(x) ≡ f(ρmax) = 0.4

Fig. 1. Sup-norm of the logarithmic deviation from the desired equilib-
rium for the open-loop system (1)–(3), (6) with q(t) ≡ qeq = 2/5.

Fig. 2. Sup-norm of the logarithmic deviation from the desired equilib-
rium for the closed-loop system (1)–(3), (6) with (17).

exp(−1.7). The deviation of the solution from the desired
equilibrium is shown in Fig. 1, where the evolution of
the sup-norm of the logarithmic deviation from the de-
sired equilibrium X(t) := max0≤x≤1(|ln(ρ(t, x)/ρeq )|) +
max0≤x≤1(|ln(v(t, x)/f(ρeq ))|) is shown for system (1)–(3),
(6) with q(t) ≡ 0.4.

In this case we can apply Theorem 3.1, since the con-
dition ρeq ≤ c(c+ f(ρeq ))−1(ρmax − ε) as well as condi-
tion (18) hold (recall Remark 3.2). Fig. 2 shows the evolu-
tion of the sup-norm of the logarithmic deviation from the
desired equilibrium X(t) := max0≤x≤1(|ln(ρ(t, x)/ρeq )|) +
max0≤x≤1(|ln(v(t, x)/f(ρeq ))|) for the closed-loop system
(1)–(3), (6) with (17). It should be noted that at time t = 6.58,
the solution has become identical to the desired equilibrium.
Fig. 3 shows the time evolution of the control input q(t). The
control input tries to keep the inlet density close to 1, while
the heavy congestion belt is “washed out” slowly. Finally, the
evolution of the density profile is shown in Fig. 4.

V. PROOFS

In this section, we provide the proofs of all main results.

A. Technical Results

The proof of Theorem 2.1 requires two technical results. The
first technical result is stated next and due to its simplicity, its
proof is omitted.
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Fig. 3. Control input q(t) for the closed-loop system (1)–(3), (6) with
(17).

Fig. 4. Density profile for the closed-loop system (1)–(3), (6) with (17).
The dashed line is the initial condition, the dotted line is for t = 1.23, the
dotdash line is for t = 3.11, and the solid line is for t = 7.04.

Lemma 5.1: Suppose that there exist constants a, b, p ≥ 0,
c > 0 such that the sequence {x(k) ≥ 0}∞k=0 satisfies the fol-
lowing inequality for all k = 0, 1, . . . ,m− 1:

x(k + 1) ≤ max((1 + a)x(k) + b, (1 − c)x(k) + p). (21)

Then the following estimate holds:

x(k) ≤ exp(ka)(x(0) +
p

a+ c
+ bk), for all k = 0, 1, . . . ,m.

(22)

The following auxiliary result has interest on its own, because
it covers a case not studied in [2], [6], [21], and [26]: the case
of a transport PDE with a nonnegative (possibly zero at some
points) transport speed. A unique, classical solution is shown to
exist, which is differentiable and satisfies the PDE even on the
boundary (something that cannot be guaranteed by the results
in [21]): this is important for the proof of Theorem 2.1, because
Lipschitz continuity of the derivatives of the solution is used in
an instrumental way. The proof of Proposition 5.2 is given in
the Appendix.

Proposition 5.2: Consider the problem

∂w

∂t
(t, x) + v(t, x)

∂w

∂x
(t, x) = 0, for t ≥ 0, x ∈ [0, 1] (23)

w(0, x) = ϕ(x), for x ∈ [0, 1] (24)

w(t, 0) = a(t), for t ≥ 0 (25)

where φ ∈W 2,∞([0, 1]), a ∈W 2,∞([0, T ]) for every T >
0 with a(0) = ϕ(0), ȧ(0) + v(0, 0)ϕ′(0) = 0 and v ∈
C1(�+ × [0, 1]) is a nonnegative function which has Lips-
chitz derivatives on [0, T ] × [0, 1] for every T > 0. Assume
that v(t, 0) > 0 for all t ≥ 0. Then (23)–(25) has a unique solu-
tion w ∈ C1(�+ × [0, 1]), which has Lipschitz derivatives on
[0, T ] × [0, 1] for every T > 0 and satisfies

‖w[t]‖∞ ≤ max
(

max
0≤s≤t

(|a(s)|), ‖ϕ‖∞
)
, for all t ≥ 0. (26)

Moreover, if there exists a constant vmin > 0 such that v(t, x) ≥
vmin for all t ≥ 0, x ∈ [0, 1] and if a ≡ 0 then w(t, x) = 0 for
all x ∈ [0, 1] and t ≥ v−1

min .

B. Proof of Main Results

Proof of Theorem 2.1: Let arbitrary T > 0 be given. We will
apply the method of finite differences (used in [15]).

Let N > c−1μ be an integer and consider the parameterized
(with parameter N ) discrete-time system

wi((k + 1)δ) = (1 − λvi(kδ))wi(kδ) + λvi(kδ)wi−1(kδ)

for i = 1 , . . . ,N

vi((k + 1)δ) = (1 − λc) vi(kδ) + λcvi+1(kδ)

for i = 0 , . . . ,N − 1

vN ((k + 1)δ) = (1 − μδ) vN (kδ) + μδg (vN (kδ), wN (kδ))
(27)

where k = 0, . . . ,m− 1 is an integer
(time of the discrete-time system), λ :=(
1 +

[
T max

(
max0≤x≤1(ϕ(x)), vmax , c

)])−1
T ,

m := N
(
1 +

[
T max

(
max0≤x≤1(ϕ(x)), vmax , c

)])
,

w0(kδ) = a(kδ, v0(kδ)), for k = 1, . . . ,m (28)

h : = 1/N, δ := λh (29)

and initial condition

wi(0) − θ(ih) = vi(0) − ϕ(ih) = 0, i = 0, . . . , N. (30)

Notice that the definition of λ guarantees that

λ max
(

max
0≤x≤1

(ϕ(x)) , vmax , c

)
≤ 1. (31)

Moreover, definitions (29) together with the definitions of λ and
m guarantee that T = mδ. We next prove that

0 ≤ vi(kδ) ≤ max
(

max
0≤x≤1

(ϕ(x)), vmax

)

for all i = 0, . . . , N and k = 0, . . . ,m. (32)
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Indeed, by virtue of (30) it follows that (32) holds for k =
0. Using (27) and (31) we guarantee that 0 ≤ vi((k + 1)δ) ≤
max (max0≤x≤1(ϕ(x)), vmax), for i = 0, . . . , N − 1, provided
that (32) holds for certain k = 0, . . . ,m− 1. The fact thatN >
c−1μ, together with (31) and (29) implies that

μ δ ≤ 1. (33)

Moreover, using (10), (27), and (33), we can guarantee that
0 ≤ vN ((k + 1)δ) ≤ max (max0≤x≤1(ϕ(x)), vmax), provided
that (32) holds for certain k = 0, . . . ,m− 1. Consequently, we
get 0 ≤ vi((k + 1)δ) ≤ max (max0≤x≤1(ϕ(x)), vmax), for i =
0, . . . , N , provided that (32) holds for certaink = 0, . . . ,m− 1.

Define

BT : = max
{
|a(t, v)| : t ∈ [0, T ],

0 ≤ v ≤ max
(

max
0≤x≤1

(ϕ(x)), vmax

)}
. (34)

We next prove that for all i = 0, . . . , N and k = 0, . . . ,m

|wi(kδ)| ≤ max (‖θ‖∞, BT ) . (35)

Indeed, by virtue of (30) it follows that (35) holds for k = 0.
Suppose that (35) holds for all i = 0, . . . , N and for certain k =
0, . . . ,m− 1. Using (27), (28), (31), (32), and the triangle in-
equality we guarantee that |wi((k + 1)δ)| ≤ max(‖θ‖∞, BT ),
for i = 1, . . . , N . Using (27), (32), and (34) and the triangle in-
equality, we guarantee that |w0((k + 1)δ)| ≤ max(‖θ‖∞, BT ).
Thus, (35) holds.

We next prove that

vi(kδ)

≥min
(

min
0≤x≤1

(ϕ(x)),min{g(0, w) : |w| ≤ max(BT , ‖θ‖∞)}
)

for all i = 0, . . . , N and k = 0, . . . ,m. (36)

Indeed, by virtue of (30) it follows that (36) holds for k = 0.
Suppose that (36) holds for all i = 0, . . . , N and for certain
k = 0, . . . ,m− 1. Using (27) and (31) we are in a position to
guarantee that

vi((k + 1)δ)

≥ min
(

min
0≤x≤1

(ϕ(x)),min{g(0, w) : |w|≤max(BT , ‖θ‖∞)}
)

for all i = 0, . . . , N − 1. Moreover, using (10), (27), (35),
and (33), we can guarantee that vN ((k + 1)δ) ≥ min
(min0≤x≤1(ϕ(x)), min{g(0, w) : |w| ≤ max (BT , ‖θ‖∞)}).
Thus, (36) holds.

We define for (t, x) ∈ [0, T ] × [0, 1] and for every integer
N > c−1μ (recall that h = N−1 , δ = λh, mδ = T )

w(kδ, x;N) = (i+ 1 − xN)wi(kδ) + (xN − i)wi+1(kδ)

v(kδ, x;N) = (i+ 1 − xN)vi(kδ) + (xN − i)vi+1(kδ)

with i = [xN ], for x ∈ [0, 1), k = 0, . . . ,m, (37)

w(kδ, 1;N) = wN (kδ) and v(kδ, 1;N) = vN (kδ),

for k = 0, . . . ,m, (38)

w(t, x;N) = (k + 1 − λ−1tN)w(kδ, x;N)

+ (λ−1tN − k)w((k + 1)δ, x;N)

v(t, x;N) = (k + 1 − λ−1tN)v(kδ, x;N)

+ (λ−1tN − k)v((k + 1)δ, x;N)

with k = [λ−1tN ] for x ∈ [0, 1], t ∈ [0, T ). (39)

It follows from (32), (35), and (36) and definitions (37)–(39)
that the following inequalities hold for all (t, x) ∈ [0, T ] × [0, 1]
and for every integer N > c−1μ:

min
(

min
0≤x≤1

(ϕ(x)),min {g(0, w) : |w| ≤ max(BT , ‖θ‖∞)}
)

≤ v(t, x;N) ≤ max
(

max
0≤x≤1

(ϕ(x)), vmax

)
(40)

|w(t, x;N)| ≤ max (‖θ‖∞, BT ) . (41)

We next describe the major steps in the proof. We also use
the notation Ω := [0, T ] × [0, 1].

Step 1: We show that there exists a constant L :=
L(T, θ, φ, a) > 0 such that for every N > c−1μ the func-
tions w(·;N), v(·;N) are Lipschitz on Ω with Lipschitz
constant L. This step is very important because it allows
the application of Arzela–Ascoli theorem. More specifically,
it follows from (40) and (41) that the sequences of func-
tions {w(·;N)}∞N=N ∗ , {v(·;N)}∞N=N ∗ with N ∗ = [c−1μ] + 1,
are uniformly bounded and equicontinuous. Therefore, com-
pactness of Ω and the Arzela–Ascoli theorem implies that
there exist Lipschitz functions w, v : Ω → � and subsequences
{w(·;Nq )}∞q=1 , {v(·;Nq )}∞q=1 for an increasing index sequence
{Nq}∞q=1 , which converge uniformly on Ω to w and v, respec-
tively. Moreover,w and v are Lipschitz on Ω with Lipschitz con-
stant L and satisfy the same bounds with w(·;N) and v(·;N),
i.e., for (t, x) ∈ Ω it holds that

min
(

min
0≤x≤1

(ϕ(x)),min {g(0, w) : |w| ≤ max(BT , ‖θ‖∞)}
)

≤ v(t, x) ≤ max
(

max
0≤x≤1

(ϕ(x)), vmax

)
(42)

|w(t, x)| ≤ max(‖θ‖∞, BT ). (43)

Using the fact thatw, v are Lipschitz on Ω, (28), and (30), and
the fact that {w(·;Nq )}∞q=1 , {v(·;Nq )}∞q=1 converge uniformly
on Ω to w and v, we conclude that (13) holds and w(t, 0) =
a(t, v(t, 0)) for t ∈ [0, T ].

Step 2: We define ξ : [0, T ] → � by means of the equations

ξ̇(t) = −μ(ξ(t) − g(ξ(t), w(t, 1))) = 0, for t ∈ [0, T ] (44)

ξ(0) = φ(1) (45)

and we show that ξ(t) = v(t, 1) for t ∈ [0, T ]. Notice that ξ ∈
W 2,∞([0, T ]).

Step 3: We define the function ṽ : [0, T ] × [0, 1] → �

ṽ(t, x) =

{
ϕ(x+ ct) if x+ ct ≤ 1
ξ
(
t− c−1(1 − x)

)
if x+ ct > 1

. (46)
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Due to the facts that ξ ∈W 2,∞([0, T ]), ϕ ∈W 2,∞([0, 1])
and since the compatibility conditions (45), ϕ′(1) =
−c−1μ(ϕ(1) − g(ϕ(1), θ(1))) hold, it follows that ṽ ∈ C1(Ω)
has Lipschitz derivatives satisfying ∂ ṽ

∂ t (t, x) = c ∂ ṽ∂x (t, x) for
(t, x) ∈ Ω, ṽ(0, x) = ϕ(x) for x ∈ [0, 1], and ṽ(t, 1) = ξ(t) =
v(t, 1) for t ∈ [0, T ]. We show that ṽ(t, x) = v(t, x) for
(t, x) ∈ Ω. Thus, it follows from (44) and (46) that the
function v is of class C1(Ω) with Lipschitz derivatives
and satisfies ∂v

∂ t (t, x) = c ∂v∂x (t, x) for (t, x) ∈ Ω, ∂v
∂ t (t, 1) =

−μ(v(t, 1) − g(v(t, 1), w(t, 1))) for t ∈ [0, T ] and v(0, x) =
ϕ(x) for x ∈ [0, 1].

Step 4: Proposition 5.2 implies that there exists a unique C1

solution w̃ : Ω → � of the problem

∂w̃

∂t
(t, x) + v(t, x)

∂w̃

∂x
(t, x) = 0, for all (t, x) ∈ Ω (47)

w̃(t, 0) = a(t, v(t, 0)), for all t ∈ [0, T ] (48)

w̃(0, x) = θ(x), for allx ∈ [0, 1]. (49)

Moreover, w̃ has Lipschitz derivatives. We show that
w̃(t, x) = w(t, x) for (t, x) ∈ Ω. It follows that the functions
w, v are of class C1(Ω) with Lipschitz derivatives and satisfy
(11)–(13) on Ω.

Step 5: Finally, we prove that the solution is unique.
Step 1: Lipschitz Regularity
Define for every i = 0, . . . , N − 1 and k = 0, . . . ,m

yi(kδ) = h−1 (wi+1(kδ) − wi(kδ))

pi(kδ) = h−1 (vi+1(kδ) − vi(kδ)) .
(50)

Using (27)–(30), the fact that f(0) = a(0, ϕ(0)), we are in
a position to verify that the following equations hold for all
k = 0, . . . ,m− 1:

yi((k + 1)δ) = (1 − λvi+1(kδ)) yi(kδ)

+ λvi+1(kδ)yi−1(kδ) − δpi(kδ)yi−1(kδ)

for i = 1, . . . , N − 1, (51)

y0((k + 1)δ) = (1 − λv1(kδ)) y0(kδ)

− λδ−1 (a((k + 1)δ, v0(kδ)) − a(kδ, v0(kδ)))

− h−1 (a ((k + 1)δ, (1 − λc) v0(kδ) + λcv1(kδ))

−a ((k + 1)δ, v0(kδ))) (52)

pi((k + 1)δ) = (1 − λc) pi(kδ) + λcpi+1(kδ)

for i = 0, 1, . . . , N − 2, (53)

pN−1((k + 1)δ) = (1 − λc) pN−1(kδ)

+ μλ (g (vN (kδ), wN (kδ)) − vN (kδ)) (54)

Using (10), (31), (32), (36), and (53), (54), we get for all
k = 0, . . . ,m− 1

max
i=0,...,N−1

(|pi((k + 1)δ)|) ≤ max

(
max

i=0,...,N−1
(|pi(kδ)|), (1−λc) max

i=0,...,N−1
(|pi(kδ)|)+μλv̄max

)

(55)

where v̄max := max (max0≤x≤1(ϕ(x)), vmax). Therefore, we
obtain from (55) and Lemma 5.1 the estimate for k = 0, . . . ,m

max
i=0,...,N−1

(|pi(kδ)|) ≤ max
i=0,...,N−1

(|pi(0)|) + c−1μv̄max . (56)

Definition (50) and (30) imply |pi(0)| ≤ ‖ϕ′‖∞ for i =
0, . . . , N − 1. Consequently, we get from (56) that

max
i=0,...,N−1

(|pi(kδ)|) ≤ P := ‖ϕ′‖∞ + c−1μv̄max (57)

for k = 0, . . . ,m. Using (31), (32), (36), (51), (52), and (57),
we get for all k = 0, . . . ,m− 1

H(k + 1) ≤ max((1 + δP )H(k),

(1 − λvmin)H(k) + λR(1 + cP )) (58)

where vmin : = min (min0≤x≤1(ϕ(x)), min{g(0, w) : |w| ≤
max(BT , ‖θ‖∞)}), R := max{| ∂a∂ t (t, v)| + | ∂a∂v (t, v)| : 0 ≤ v
≤ v̄max , t ∈ [0, T ]}, and H(k) := maxi=0,...,N−1(|yi(kδ)|).
Using (58), Lemma 5.1 and the fact that mδ = T , we get for all
k = 0, . . . ,m

max
i=0,...,N−1

(|yi(kδ)|)

≤ exp(PT )
(

max
i=0,...,N−1

(|yi(0)|) +R
1 + cP

vmin

)
. (59)

Definition (50) in conjunction with (30) implies that |yi(0)| ≤
‖θ′‖∞ for all i = 0, . . . , N − 1. Consequently, we get from (56)
for all k = 0, . . . ,m

max
i=0,...,N−1

(|yi(kδ)|)

≤ Y := exp(PT )(‖θ′‖∞ +Rv−1
min(1 + cP )). (60)

It follows from (50), (57), and (60) that the following inequal-
ities hold for all i, j ∈ {0, . . . , N} and k = 0, . . . ,m:

|wi(kδ) − wj (kδ)| ≤ h |i− j|Y,
|vi(kδ) − vj (kδ)| ≤ h |i− j|P. (61)

Notice that P, Y , defined in (57) and (60), respectively, de-
pend only on T, θ, ϕ, and a.

Next define for every i = 0, . . . , N and k = 0, . . . ,m− 1

ζi(kδ) = δ−1 (wi((k + 1)δ) − wi(kδ))

ηi(kδ) = δ−1 (vi((k + 1)δ) − vi(kδ))
(62)

It follows from (27) and definitions (29), (50), and (62) that
the following equalities hold for k = 0, . . . ,m− 1:

ζi(kδ) = −vi(kδ)yi−1(kδ) i = 1, . . . , N

ηi(kδ) = cpi(kδ) i = 0, . . . , N − 1

ηN (kδ) = μ (g (vN (kδ), wN (kδ)) − vN (kδ))

(63)

Using (63), (10), (22), and (57), we get for k = 0, . . . ,m− 1

max
i=0,...,N

(|ηi(kδ)|) ≤ cP + μv̄max . (64)



KARAFYLLIS et al.: FEEDBACK CONTROL OF NONLINEAR HYPERBOLIC PDE SYSTEMS INSPIRED BY TRAFFIC FLOW MODELS 3655

It follows from (62), (27), (28), and (30) and the fact that
f(0) = a(0, ϕ(0)) that the following equalities hold:

δζ0(kδ) = a((k + 1)δ, v0(kδ)) − a(kδ, v0(kδ)) + a ((k + 1)δ

(1 − λc)v0(kδ) + λ cv1(kδ)) − a ((k + 1)δ, v0(kδ))
(65)

for k = 0, . . . ,m− 1. Equalities (63) and (65) in conjunction
with (32),(57), (60), (29), and (50) imply for k = 0, . . . ,m− 1

max
i=0,...,N

(|ζi(kδ)|) ≤ R(1 + cP ) + v̄maxY. (66)

It follows from (62), (64), and (66) that the following inequal-
ities hold for i = 0, . . . , N and k, l ∈ {0, . . . ,m}:

|wi(kδ) − wi(lδ)| ≤ δ |k − l| (R(1 + cP ) + v̄maxY )

|vi(kδ) − vi(lδ)| ≤ δ |k − l| (cP + μv̄max) .
(67)

It follows from (37)–(39), (61), and (67) that there exists
L := L(T, θ, ϕ, a) such that for every N > c−1μ the following
inequalities hold for all x, z ∈ [0, 1], t, τ ∈ [0, T ]:

|w(t, x;N) − w(τ, z;N)| + |v(t, x;N) − v(τ, z;N)|
≤ L (|x− z| + |t− τ |) . (68)

Step 2: Solution of the ODE (44)
We define ξ by means of (44) and (45). The fact that ξ can

be defined on [0, T ] is a consequence of the formula ξ(t) =
exp(−μt)ϕ(1) + μ

∫ t

0 exp(−μ(t − s))g(ξ(s), w(s, 1))ds,
which together with (10) and (5.23) imply the inequality
min(ϕ(1),min{g(0, w) : |w| ≤ max(BT , ‖θ‖∞)}) ≤ ξ(t) ≤
max(ϕ(1), vmax) for t ∈ [0, T ]. Pick any N > c−1μ. It follows
from (14) and (44) that the following inequality holds for
k = 0, . . . ,m− 1:

|ξ((k + 1)δ) − (1 − μδ)ξ(kδ) − μδg (ξ(kδ), w(kδ, 1))|

≤ μδ2
(∥
∥
∥ξ̇

∥
∥
∥ (1 +G) +GL

) /
2 (69)

where m := N(1 + [T max (max0≤x≤1(ϕ(x)), vmax , c)]), δ =
λ/N , λ := (1 + [T max (max0≤x≤1(ϕ(x)), vmax , c)])−1T ,L is
the Lipschitz constant of w, S := {(v, w) ∈ �+ ×� :
v ≤ max (ϕ(1), vmax), |w| ≤ max (BT , ‖f‖∞)}, G :=
max{| ∂g∂v (v, w)| + | ∂g∂w (v, w)| : (v, w) ∈ S}, and ‖ξ̇‖ =
max0≤t≤T (|ξ̇(t)|). Using (27), (69), and defining
eN (kδ) := ξ(kδ) − vN (kδ) we get for k = 0, . . . ,m− 1

|eN ((k + 1)δ)| ≤ (1 + μδG)|eN (kδ)| + μδG|w(kδ, 1).

− w(kδ, 1;N)| + μδ2(‖ξ̇‖(1 +G) + LG)/2. (70)

Inequality (70) in conjunction with Lemma 5.1 and the facts
that T = mδ, eN (0) = 0 [a consequence of (45) and (13)] im-
plies the following estimate for k = 0, . . . ,m:

|eN (kδ)| ≤ μcT exp (μcTG)(
max

0≤t≤T
(|w(t, 1) − w(t, 1;N)|)+ δ

2

(∥
∥
∥ξ̇

∥
∥
∥ (1 +G) + LG

))
.

(71)

Pick any t ∈ [0, T ] and set k = [tδ−1 ]. Then we get

|ξ(t) − v(t, 1)| ≤ |ξ(t) − v(t, 1) − ξ(kδ)+ v(kδ, 1)| + |ξ(kδ)

−v(kδ, 1)| ≤
(
L+

∥
∥
∥ξ̇

∥
∥
∥
)
δ +|eN (kδ)| + max

0≤s≤T
|v(s, 1)

−v(s, 1;N)|
where L is the Lipschitz constant of v. Since {w(·;Nq )}∞q=1 ,
{v(·;Nq )}∞q=1 converge uniformly to w and v as q → +∞, the
above inequality in conjunction with (71) shows that ξ(t) =
v(t, 1) for all t ∈ [0, T ].

Step 3: Solving the PDE for v
Pick any integer N > c−1μ. Define h = 1/N , m :=

N(1 + [T max(max0≤x≤1(ϕ(x)), vmax , c)]), δ = λ/N , λ :=
(1 + [T max(max0≤x≤1(ϕ(x)), vmax , c)])−1T and notice that
since ṽ satisfies ∂ ṽ

∂ t (t, x) = c ∂ ṽ∂x (t, x) for (t, x) ∈ Ω, ṽ(0, x) =
ϕ(x) for x ∈ [0, 1] and ṽ(t, 1) = ξ(t) = v(t, 1) for t ∈ [0, T ]
then we get for k = 0, . . . ,m− 1, i = 0, . . . , N − 1:

ṽ((k + 1)δ, ih) = (1 − λc) ṽ(kδ, ih)

+ cλṽ(kδ, (i+ 1)h) + cErr(k, i) (72)

where

Err(k, i) =
∫ (k+1)δ

kδ

(
∂ṽ

∂x
(t, ih) − ∂ṽ

∂x
(kδ, ih)

)
dt

− λ

∫ (i+1)h

ih

(
∂ṽ

∂x
(kδ, x) − ∂ṽ

∂x
(kδ, ih)

)
dx.

(73)

Defining evi (kδ) := ṽ(kδ, ih) − v(kδ, ih;N) for k = 0,
. . . ,m and i = 0, . . . , N , we get from (27), (30), (37), (38),
and (72) and the facts that ṽ(0, x) = ϕ(x) for x ∈ [0, 1] and
ṽ(t, 1) = ξ(t) = v(t, 1) for t ∈ [0, T ], k = 0, . . . ,m− 1, i =
0, . . . , N − 1

evi ((k + 1)δ) = (1 − λc) evi (kδ, ih) + cλevi+1(kδ, (i+ 1)h)

+ cErr(k, i) (74)

evi (0) = 0, (75)

evN (kδ) = 0. (76)

Using (29),(31),(73),(74), and (76), we get

max
i=0,...,N

(|evi ((k + 1)δ)|) ≤ max
i=0,...,N

(|evi (kδ)|) + 2cδG(N)

(77)
for k = 0, . . . ,m− 1, where

G(N) := max

{∣
∣ ∂ ṽ
∂x (t, x)− ∂ ṽ

∂x (τ, z)
∣
∣ : (t, x), (τ, z) ∈ Ω,

|t− τ | +|x− z| ≤ (1 + λ)N−1

}

.

(78)
Using Lemma 5.1, (75), (77), and T = mδ, we get

maxi=0,...,N (|evi (kδ)|) ≤ 2cTG(N). Thus, we obtain

|ṽ(t, x) − v(t, x)| ≤ 2L(1 + λ)N−1 + 2cTG(N)

+ max
(τ ,z )∈Ω

(|v(τ, z;N) − v(τ, z)|) (79)

for (t, x) ∈ Ω, whereL is the Lipschitz constant of v and ṽ. Def-
inition (78), the fact that ṽ has Lipschitz derivatives on Ω implies
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that limN→+∞(G(N)) = 0. Moreover, since {v(·;Nq )}∞q=1
converges uniformly to v as q → +∞, we get from (79) that
ṽ(t, x) = v(t, x) for all (t, x) ∈ Ω.

Step 4: Solving the PDE for w
Pick any integer N > c−1μ. Define h = 1/N , m :=

N
(
1 +

[
T max

(
max0≤x≤1(ϕ(x)), vmax , c

)])
, δ = λ/N ,

λ := (1 + [T max(max0≤x≤1(ϕ(x)), vmax , c)])−1T and notice
that since w̃ satisfies (47) for (t, x) ∈ Ω, we get

w̃((k + 1)δ, ih) = (1 − λv(kδ, ih)) w̃(kδ, ih)

+ λv(kδ, ih)w̃(kδ, (i− 1)h) + Err(k, i) (80)

for k = 0, . . . ,m− 1, i = 1, . . . , N , where

Err(k, i) = λv(kδ, ih)
∫ ih

(i−1)h

(
∂w̃

∂x
(kδ, x) − ∂w̃

∂x
(kδ, ih)

)
dx

−
∫ (k+1)δ

kδ

(
v(t, ih)

∂w̃

∂x
(t, ih) − v(kδ, ih)

∂w̃

∂x
(kδ, ih)

)
dt.

(81)

Defining ewi (kδ) := w̃(kδ, ih) − w(kδ, ih;N) for k =
0, . . . ,m and i = 0, . . . , N , we get from (27), (29), (30), (37),
(38), (48)–(50), (80)

ewi ((k + 1)δ) = (1 − λv(kδ, ih)) ewi (kδ) − δ (v(kδ, ih)

−v(kδ, ih;N)) yi−1(kδ) + λv(kδ, ih)ewi−1(kδ) + Err(k, i),

for k = 0, . . . ,m− 1, i = 1, . . . , N (82)

ewi (0) = 0, for i = 0, . . . , N (83)

ew0 (kδ) = 0, for k = 0, . . . ,m (84)

Using (15),(29),(31),(60),(81),(82), and (84), we get

max
i=0,...,N

(|ewi ((k + 1)δ)|) ≤ max
i=0,...,N

(|ewi (kδ)|) + δG̃(N),

(85)
for k = 0, . . . ,m− 1, where

G̃(N) := v̄max max

⎧
⎪⎨

⎪⎩

| ∂ w̃∂x (t, x) − ∂ w̃
∂x (τ, z)| : (t, x),

(τ, z) ∈ Ω, |t− τ |
+|x− z| ≤ (1 + λ)N−1

⎫
⎪⎬

⎪⎭

+ λN−1Lmax
{∣

∣
∣
∂w̃

∂x
(t, x)

∣
∣
∣ : (t, x) ∈ Ω

}
+ Y

max
(t,x)∈Ω

(|v(t, x) − v(t, x;N)|) (86)

and v̄max = max
(
max0≤x≤1(ϕ(x)), vmax

)
. Using Lemma

5.1, (83), (85), and the fact that T = mδ, we get
maxi=0,...,N (|ewi (kδ)|) ≤ TG̃(N). Thus, the following in-
equality holds;

|w̃(t, x) − w(t, x)| ≤ 2L(1 + λ)N−1 + TG̃(N)

+ max
(τ ,z )∈Ω

(|w(τ, z;N) − w(τ, z)|) (87)

for (t, x) ∈ Ω, where L is the Lipschitz constant of w and w̃.
Definition (86), the fact that w̃ has Lipschitz derivatives on Ω
and the fact that {v(·;Nq )}∞q=1 converges uniformly to v as

q → +∞ imply that limq→+∞(G̃(Nq )) = 0. Moreover, since
{w(·;Nq )}∞q=1 converges uniformly to w as q → +∞, we get
from (87) that w̃(t, x) ≡ w(t, x).

Step 5: Uniqueness of solutions
Consider two solutions (w, v), (w̄, v̄) ∈ (C1(�+ × [0, 1]))2

of (10)–(12). It then follows that the functions ew = w̄ − w,
ev = v̄ − v satisfy for (t, x) ∈ �+ × [0, 1]:

∂ew
∂t

(t, x) + v(t, x)
∂ew
∂x

(t, x) + ev (t, x)
∂w̄

∂x
(t, x)

=
∂ev
∂t

(t, x) − c
∂ev
∂x

(t, x) = 0 (88)

ew (t, 0) = a(t, v(t, 0) + ev (t, 0)) − a(t, v(t, 0)) (89)

μ−1 ∂ev
∂t

(t, 1) = g (v(t, 1) + ev (t, 1), w(t, 1) + ew (t, 1))

− ev (t, 1) − g (v(t, 1), w(t, 1)) (90)

ew (0, x) = ev (0, x) = 0. (91)

Let T > 0 and let S ⊆ �+ ×� be a compact set that con-
tains both solutions on [0, T ], i.e., (v(t, x), w(t, x)) ∈ S and
(v̄(t, x), w̄(t, x)) ∈ S for all (t, x) ∈ Ω := [0, T ] × [0, 1]. Let
M ≥ 1 be a constant that satisfies Mc ≥ Q2 v̄max , where

Q := max
{∣

∣
∣
∣
∂g

∂v
(v, w)

∣
∣
∣
∣ +

∣
∣
∣
∣
∂g

∂w
(v, w)

∣
∣
∣
∣ : (v, w) ∈ S

}

+ max
{∣

∣
∣
∣
∂a

∂v
(t, v)

∣
∣
∣
∣ : t ∈ [0, T ], (v, w) ∈ S

}

and v̄max = max
(

max
0≤x≤1

(ϕ(x)), vmax

)
. Define the functional

V (t) =
1
2

∫ 1

0
e2
w (t, x)dx+

M

2

∫ 1

0
e2
v (t, x)dx+

1
2
e2
v (t, 1)

(92)
Using (88)–(91) and the fact Mc ≥ Q2 v̄max , it follows that

V̇ (t)≤ 1
2
(‖w̄x‖ + ‖vx‖)

(∫ 1

0
e2
w (t, x)dx+M

∫ 1

0
e2
v (t, x)dx

)

+
(
Mc

2
+Q+

Q2μ2

2vmin

)
e2
v (t, 1)

for t ∈ [0, T ], where ‖w̄x‖ := max{| ∂ w̄∂x (t, x)| : (t, x) ∈ Ω},
‖vx‖ := max{| ∂v∂x (t, x)| : (t, x) ∈ Ω}. The above inequality in
conjunction with (92) shows that there exists a constant K > 0
such that V̇ (t) ≤ KV (t) for t ∈ [0, T ]. Gronwall’s lemma in
conjunction with (91) and (92) implies V (t) ≡ 0 on [0, T ].
Since T > 0 is arbitrary, we conclude that w̄(t, x) − w(t, x) =
v̄(t, x) − v(t, x) ≡ 0. �

Proof of Theorem 3.1: Let arbitrary (ρ0 , v0) ∈ X be given,
for which the equalities ρ0(0) = ρeq

c+f (ρe q )
c+v0 (0) , ρ′0(0) =

ρ0(0)(c+ v0(0))−1v′0(0) hold. The solution of (1)–(3) and
(6) with (17) and (19) is constructed by applying the
transformation (7), using (4) and the condition ρeq ≤
(1 + c−1f(ρeq ))−1(ρmax − ε). More specifically, we get the
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initial-boundary value problem (11) with

w(t, 0) =
∂v

∂t
(t, 1) + μ (v(t, 1) − f

×
(

(c+ f(ρeq ))ρeq exp(w(t, 1))
c+ v(t, 1)

))
= 0, for all t ≥ 0

(93)

w(0, x) − w0(x) = v(0, x) − v0(x) = 0, for x ∈ [0, 1] (94)

w0(x) = ln((c+ f(ρeq ))
−1ρ−1

eq ρ0(x) (c+ v0(x)))),

for x ∈ [0, 1] (95)

and ρ(t, x) may be obtained by (7). Exploiting the fact that f is
nonincreasing and Theorem 2.1, we conclude that (11), (93), and
(94) admits a unique solution w, v ∈ C1(�+ × [0, 1]), which
has Lipschitz derivatives on every compact S ⊂ �+ × [0, 1]
and satisfies

‖w[t]‖∞ ≤ ‖w0‖∞ (96)

min
(

min
0≤x≤1

(v0(x)) ,f
(
ρeq exp (‖w0‖∞)

(
1 + c−1f(ρeq )

))
)

≤ v(t, x) ≤ max
(

max
0≤x≤1

(v0(x)) , f(0)
)

(97)

b(t, x) := ln (v(t, x)/f(ρeq )) , b0(x) := ln (v0(x)/f(ρeq )) .
(98)

Notice that (97) in conjunction with (98) gives

vmin := min(f(ρeq ) exp(−‖b0‖∞), f(ρeq (1 + c−1f(ρeq ))

exp(‖w0‖∞))) ≤ v(t, x) ≤ max(f(ρeq ) exp(‖b0‖∞), f(0))
(99)

Moreover, Proposition 5.2 implies that

w(t, x) = 0 for all x ∈ [0, 1] and t ≥ v−1
min . (100)

Equations (11) and (93) imply that the following equation
holds for all (t, x) ∈ �+ × [0, 1]:

v(t, x) =

{
v0(x+ ct), if x+ ct ≤ 1
ξ(t− c−1(1 − x)), if x+ ct > 1

(101)

where ξ : �+ → � is the solution of the problem

ξ̇(t) = −μ
(
ξ(t) − f

(
ρeq exp(w(t, 1))

c+ f(ρeq )
c+ ξ(t)

))
(102)

ξ(0) = v0(1). (103)

Formula (101) implies for every σ > 0, t ≥ 0

‖b[t]‖∞ ≤ exp (−σ(ct− 1)) ‖b0‖∞

+ max
max(0,t−c−1 )≤s≤t

(∣
∣
∣
∣ln

(
ξ(s)
f(ρeq )

)∣
∣
∣
∣

)
. (104)

Using the transformation

ζ(t) = ln (ξ(t)/f(ρeq )) (105)

we get from (102)

ζ̇(t) =

− μ

(
1 − exp(−ζ(t))

f(ρeq )
f

(
ρeq exp(w(t, 1))(c+ f(ρeq ))

c+ f(ρeq ) exp(ζ(t))

))

(106)

Inequality (18) implies that 0 ∈ � is a globally asymptotically
stable equilibrium point for system (102) withw(t, 1) ≡ 0. Con-
sequently, it follows from (100) and Theorem 2.2 in [16] that
there exists a function P ∈ KL such that the following estimate
holds for all t ≥ v−1

min :

|ln (ξ(t)/f(ρeq ))| ≤ P
(∣∣ln

(
ξ
(
v−1

min

)
/f(ρeq )

)∣∣ , t− v−1
min

)
.

(107)
Since (ζ(t), w(t, 1)) ∈ �2 takes values in a com-

pact set S(w0 , v0) ⊂ �2 for all t ≥ 0 [recall defini-
tion (105), (96), (99), and (101)] and since F (ζ, w) :=
−μ(1 − exp(−ζ )

f (ρe q ) f( ρe q exp(w )(c+f (ρe q ))
c+f (ρe q ) exp(ζ ) )) is aC1 mapping, there

exists a nondecreasing function L : �+ → �+ such that
|ζ̇(t)| ≤ (|ζ(t)| + |w(t, 1)|)L(‖w0‖∞ + ‖b0‖∞). Using Gron-
wall’s Lemma in conjunction with (96) and the previous in-
equality, we get |ζ(t)| ≤ exp(Lv−1

min)(|ζ(0)| + Lv−1
min‖w0‖∞),

for t ∈ [0, v−1
min ], where L := L(‖w0‖∞ + ‖b0‖∞). Combining

(107) with the previous estimate (98), (105), and (103), we get
for t ≥ 0

|ln (ξ(t)/f(ρeq ))| ≤P
(
exp

(
Lv−1

min

)(‖b0‖∞+Lv−1
min‖w0‖∞

)
,

max(0, t− v−1
min)

)
+ exp

(
(L+ 1)(2v−1

min − t)
)

(‖b0‖∞ + Lv−1
min‖w0‖∞

)
. (108)

Using (96), (104), (108), and (100), we get for σ > 0, t ≥ 0

‖b[t]‖∞+‖w[t]‖∞≤ P
(
exp

(
Lv−1

min

)(‖b0‖∞+Lv−1
min‖w0‖∞

)
,

max(0, t− c−1 − v−1
min)

)
+exp

(
(L+ 1)(2v−1

min + c−1 − t)
)

(‖b0‖∞ + Lv−1
min‖w0‖∞

)
+ exp (−σ(ct− 1)) ‖b0‖∞

+ exp
(−σ(t− v−1

min)
) ‖w0‖∞. (109)

Estimate (109) in conjunction with the fact that L :=
L(‖w0‖∞ + ‖b0‖∞), where L is a nondecreasing function and
definition (99) of vmin implies that there exists G ∈ KL such
that the following estimate holds for t ≥ 0:

‖b[t]‖∞ + ‖w[t]‖∞ ≤ G (‖b0‖∞ + ‖w0‖∞, t) . (110)

Estimate (20) for certainQ ∈ KL follows from (110) and (7),
which imply the following inequalities for (t, x) ∈ �+ × [0, 1]:
∣
∣
∣
∣ln

(
ρ(t, x)
ρeq

)∣
∣
∣
∣ ≤ |w(t, x)|+f(ρeq )

∣
∣
∣
∣

1 − exp(b(t, x))
c+ f(ρeq ) exp(b(t, x))

∣
∣
∣
∣

≤ |w(t, x)| + c−1f(ρeq ) exp (|b(t, x)|) |b(t, x)| |w(t, x)| ≤
∣
∣
∣
∣ln

(
ρ(t, x)
ρeq

)∣
∣
∣
∣ + f(ρeq )

∣
∣
∣
∣

1 − exp(b(t, x))
c+ f(ρeq ) exp(b(t, x))

∣
∣
∣
∣

≤ |ln (ρ(t, x)/ρeq )| + c−1f(ρeq ) exp (|b(t, x)|) |b(t, x)| .
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Indeed, the two above inequalities imply the existence of a
function ϕ ∈ K∞ such that the estimates

max
0≤x≤1

(|ln (ρ(t, x)/ρeq )|) ≤ φ (‖b[t]‖∞ + ‖w[t]‖∞) ,

‖w[t]‖∞ ≤ φ

(
‖b[t]‖∞ + max

0≤x≤1
(|ln (ρ(t, x)/ρeq )|)

)

hold for t ≥ 0. The proof is complete. �

VI. CONCLUDING REMARKS

This paper provides results for a hyperbolic traffic flow model
on a bounded domain. It has been shown that for all physically
meaningful initial conditions, the model admits a unique, clas-
sical solution that remains positive and bounded for all times.
Moreover, it has been shown that global stabilization in the
sup-norm of the logarithmic deviation of the state from its
equilibrium point can be achieved by means of a boundary
feedback law. It is important to notice that the feedback law
depends only on the inlet speed. Future work may involve the
development of more complicated models, retaining the char-
acteristics of the proposed model, to capture secondary fea-
tures of traffic dynamics. More complicated models can also
expand the validity of the model to uncongested roads with
free flow.

APPENDIX

Proof of Proposition 5.2: Let T > 0 be given. We follow the
methodology of finite-differences presented in [15].

Since v(t, 0) > 0 for all t ≥ 0, by continuity there exists
ε(T ) > 0 such that v(t, x) > 0 for t ∈ [0, T ], x ∈ [0, ε(T )]. Let
N ∗ > 1 be an integer for which the inequalities

2max
{∣

∣
∣
∣
∂v

∂t
(t, x)

∣
∣
∣
∣ : (t, x) ∈ [0, T ] × [0, 1]

}
≤ N ∗v2

min

and 2 ≤ N ∗ε(T ) (A.1)

hold, where vmin := min{v(t, x) : (t, x) ∈ [0, T ] × [0, ε(T )]}.
Let N ≥ N ∗ and consider the discrete-time system

wi((k + 1)δ) = (1 − λvi(kδ))wi(kδ) + λvi(kδ)wi−1(kδ),

for i = 1, . . . , N, k = 0, 1, . . . ,m− 1 (A.2)

w0(kδ) = a(kδ), for k = 0, 1, . . . ,m (A.3)

wi(0) = ϕ(ih), for i = 1, . . . , N (A.4)

h := 1/N, δ := λh (A.5)

vi(kδ) := v(kδ, ih), for i = 0, 1, . . . , N, k = 0, 1, . . . ,m
(A.6)

wλ := T/([Tvmax] + 1) (A.7)

m := N([Tvmax] + 1) (A.8)

vmax := max{v(t, x) : (t, x) ∈ [0, T ] × [0, 1]}. (A.9)

Notice that the above definitions guarantee that

T = mδ, (A.10)

λvmax ≤ 1. (A.11)

Using (A.2), (A.3), (A.6), and (A.9) in conjunction with
(A.11), we obtain the estimate for k = 0, 1, . . . ,m− 1

max
i=0,...,N

(|wi((k + 1)δ)|)≤ max
(
‖a‖ , max

i=0,...,N
(|wi(kδ)|)

)

(A.12)
where ‖a‖ := max0≤s≤T (|a(s)|). It follows from (A.3), (A.4),
and (A.12) that the following estimate holds:

max
i=0,...,N

(|wi(kδ)|) ≤max (‖a‖ , ‖ϕ‖∞) , for k = 0, 1, . . . ,m.

(A.13)
We define w(t, x;N) for (t, x) ∈ [0, T ] × [0, 1] and N ≥

N ∗ : w(kδ, x;N)=(i+ 1 − xN)wi(kδ)+(xN − i)wi+1 (kδ)

with i = [xN ], for x ∈ [0, 1), k = 0, . . . ,m, (A.14)

w(kδ, 1;N) = wN (kδ), for k = 0, . . . ,m, (A.15)

w(t, x;N) =
(
k + 1 − λ−1tN

)
w(kδ, x;N) +

(
λ−1tN − k

)

w((k + 1)δ, x;N) with k = [λ−1tN ] for x ∈ [0, 1], t ∈ [0, T ).
(A.16)

It follows from (A.13) and definitions (A.14)–(A.16) that the
following estimate holds for every N ≥ N ∗:

max
0≤x≤1

(|w(t, x;N)|) ≤ max (‖a‖ , ‖ϕ‖∞) , for t ∈ [0, T ].

(A.17)
Next define for i = 0, 1, . . . , N − 1, k = 0, 1, . . . ,m

yi(kδ) : = h−1 (wi+1(kδ) − wi(kδ)) (A.18)

yN (kδ) : = yN−1(kδ). (A.19)

Equations (A.2) and (A.3) in conjunction with definitions
(A.18) and (A.19) imply that the following equalities hold:

yi((k + 1)δ) = (1 − λvi+1(kδ))yi(kδ) + λvi+1(kδ)yi−1(kδ)

− λ(vi+1(kδ) − vi(kδ))yi−1(kδ), for i = 1, . . . , N − 1,

k = 0, 1, . . . ,m− 1 (A.20)

y0((k + 1)δ) = (1 − λv1(kδ))y0(kδ)

− λδ−1(a((k + 1)δ) − a(kδ)), for k = 0, 1, . . . ,m− 1.
(A.21)

Using the fact that |vi+1(kδ) − vi(kδ)| ≤ h‖vx‖
for all i = 0, . . . , N − 1, k = 0, 1, . . . ,m, where
‖vx‖ := max{| ∂v∂x (t, x)| : (t, x) ∈ [0, T ] × [0, 1]}, the fact
|a((k + 1)δ) − a(kδ)| ≤ δ‖ȧ‖ for all k = 0, 1, . . . ,m− 1,
where ‖ȧ‖ := max{|ȧ(t)| : t ∈ [0, T ]} and the fact
that v1(kδ) ≥ vmin > 0 for all k = 0, 1, . . . ,m, where
vmin := min{v(t, x) : (t, x) ∈ [0, T ] × [0, ε(T )]} (a conse-
quence of (A.1), (A.5), and (A.6) which imply that 2h ≤ ε(T )),
in conjunction with (A.19)–(A.21), (A.5), (A.6), (A.9), and
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(A.11), we get for k = 0, 1, . . . ,m− 1

max
i=0,...,N

(|yi((k + 1)δ)|) ≤ max
(

(1 + δ ‖vx‖) max
i=0,...,N

(|yi(kδ)|) , (1 − λvmin) max
i=0,...,N

(|yi(kδ)|) + λ ‖ȧ‖
)
.

(A.22)
Using (A.22) in conjunction with (A.10), the fact that

|yi(0)| ≤ ‖ϕ′‖∞ for i = 0, . . . , N (a consequence of definitions
(A.3), (A.4), (A.18), (A.19), and the fact that a(0) = ϕ(0)) and
Lemma 5.1, we obtain the estimate for k = 0, 1, . . . ,m

max
i=0,...,N

(|yi(kδ)|) ≤ Y := exp (T ‖vx‖)
(‖ϕ′‖∞ + v−1

min ‖ȧ‖
)
.

(A.23)
Next define for i = 0, 1, . . . , N , k = 0, 1, . . . ,m− 1

pi(kδ) : = δ−1 (wi((k + 1)δ) − wi(kδ)) (A.24)

pi(mδ) : = pi((m− 1)δ). (A.25)

Using (A.2), (A.3), (A.5), (A.9), (A.18), (A.24), and
(A.25) (which imply that pi(kδ) = −vi(kδ)yi−1(kδ),
for i = 1, . . . , N , k = 0, 1, . . . ,m− 1, and p0(kδ) =
δ−1(a((k + 1)δ) − a(kδ)), for k = 0, 1, . . . ,m− 1), the fact
|a((k + 1)δ) − a(kδ)| ≤ δ‖ȧ‖ for k = 0, 1, . . . ,m− 1, and
estimate (A.23), we obtain for k = 0, 1, . . . ,m

max
i=0,...,N

(|pi(kδ)|) ≤ max (vmaxY, ‖ȧ‖) . (A.26)

Definitions (A.18) and (A.24) in conjunction with esti-
mates (A.23) and (A.26) imply for i, j = 0, 1, . . . , N , k, l =
0, 1, . . . ,m

|wi(kδ) − wj (lδ)| ≤ h |i− j|Y + δ |k − l|
max (vmaxY, ‖ȧ‖) . (A.27)

Estimate (A.27) in conjunction with (A.14)–(A.16) imply
that there exists L1 = L1(T, a, v, ϕ) such that the following
inequality holds for N ≥ N ∗, t, τ ∈ [0, T ], x, z ∈ [0, 1]:

|w(t, x;N) − w(τ, z;N)| ≤ L1 (|x− z| + |t− τ |) . (A.28)

Next define for k = 0, 1, . . . ,m− 1

ψ(kδ) := h−1 (
δ−1 (a((k + 1)δ) − a(kδ)) + v1(kδ)y0(kδ)

)
.

(A.29)
It follows from (A.29) and (A.21) that

ψ((k + 1)δ) =
v1((k + 1)δ)
v1(kδ)

(1 − λv1(kδ))ψ(kδ)

+ λδ−2(a((k + 2)δ) − 2a((k + 1)δ) + a(kδ))

− λv−1
1 (kδ)δ−2(a((k + 1)δ)−a(kδ))(v1((k+1)δ) − v1(kδ))

(A.30)

for k = 0, 1, . . . ,m− 2. Inequalities (A.1) in conjunc-
tion with (A.5) and (A.6) and definition vmin :=
min{v(t, x) : (t, x) ∈ [0, T ] × [0, ε(T )]} imply that

v1((k + 1)δ) (1 − λv1(kδ)) /v1(kδ) ≤ 1 − λvmin/2. (A.31)

for k = 0, 1, . . . ,m− 1. It follows from (A.30) and
(A.31) in conjunction with the fact that |a((k + 1)δ)

−a(kδ)| ≤ δ‖ȧ‖ for k = 0, 1, . . . ,m− 1, where ‖vt‖ :=
max{| ∂v∂ t (t, x)| : (t, x) ∈ [0, T ] × [0, 1]} [recall definition
(A.6)], the fact that v1(kδ) ≥ vmin > 0 for all k = 0, 1, . . . ,m,
the fact that |a((k + 2)δ) − 2a((k + 1)δ) + a(kδ)| ≤ δ2‖ä‖
for k = 0, 1, . . . ,m− 2, where ‖ä‖ := ess sup{|ä(t)| : t ∈
[0, T ]}, that the following inequality holds for k = 0, 1, . . . ,
m− 2:

|ψ((k + 1)δ)| ≤ (1 − λvmin/2) |ψ(kδ)| + λ ‖ä‖
+ λv−1

min ‖ȧ‖ ‖vt‖ . (A.32)

Consequently, we obtain (by induction) the following esti-
mate for k = 0, 1, . . . ,m− 1:

|ψ(kδ)| ≤ |ψ(0)| + 2v−2
min (‖ȧ‖ ‖vt‖ + vmin ‖ä‖) . (A.33)

Definitions (A.3), (A.4), (A.6), (A.9), (A.18), and (A.29) in
conjunction with ȧ(0) + v(0, 0)ϕ′(0) = 0, a(0) = ϕ(0), defini-
tion ‖ϕ′′‖∞ := ess sup{|ϕ′′(x)| : x ∈ [0, 1]} and (A.11) imply
that

|ψ(0)| ≤ ‖ä‖/(2vmax) + |ϕ′(0)|‖vx‖ + vmax‖ϕ′′‖∞/2.
(A.34)

Thus, we get from (A.33) and (A.34) for k = 0, 1, . . . ,m− 1

|ψ(kδ)| ≤M := ‖ä‖/(2vmax) + |ϕ′(0)|‖vx‖
+ vmax‖ϕ′′‖∞/2 + 2v−2

min(‖ȧ‖‖vt‖ + vmin‖ä‖). (A.35)

We define the function y(t, x;N) for (t, x) ∈ [0, T ] × [0, 1]
and for every integer N ≥ N ∗

y(kδ, x;N) = (i+ 1 − xN)yi(kδ) + (xN − i)yi+1(kδ)

with i = [xN ], for x ∈ [0, 1), k = 0, . . . ,m (A.36)

y(kδ, 1;N) = yN (kδ), for k = 0, . . . ,m (A.37)

y(t, x;N) = (k + 1 − λ−1tN)y(kδ, x;N) + (λ−1tN − k)

y((k + 1)δ, x;N) with k = [λ−1tN ] for x ∈ [0, 1], t ∈ [0, T ).
(A.38)

It follows from (A.23) and (A.36)–(A.38) that the following
estimate holds for every N ≥ N ∗ and t ∈ [0, T ]:

max
0≤x≤1

(|y(t, x;N)|) ≤ Y := exp(T‖vx‖)(‖ϕ′‖∞ + v−1
min‖ȧ‖).

(A.39)
We also define the function p(t, x;N) for (t, x) ∈ [0, T ] ×

[0, 1] and for every integer N ≥ N ∗

p(kδ, x;N) = (i+ 1 − xN)pi(kδ) + (xN − i)pi+1(kδ)

with i = [xN ], for x ∈ [0, 1), k = 0, . . . ,m (A.40)

p(kδ, 1;N) = pN (kδ), for k = 0, . . . ,m (A.41)

p(t, x;N) = (k + 1 − λ−1tN)p(kδ, x;N) + (λ−1tN − k)

p((k + 1)δ, x;N) with k = [λ−1tN ] for x ∈ [0, 1], t ∈ [0, T ).
(A.42)
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It follows from (A.26) and definitions (A.40)–(A.42) that the
following estimate holds for every N ≥ N ∗:

max
0≤x≤1

(|p(t, x;N)|) ≤ max(vmaxY, ‖ȧ‖), for t ∈ [0, T ].

(A.43)
Next define for i = 0, 1, . . . , N − 1, k = 0, 1, . . . ,m

ωi(kδ) := h−1(yi+1(kδ) − yi(kδ)). (A.44)

Definitions (A.19), (A.29), and (A.44) in conjunction with
(A.20) and (A.21) imply that the following equalities hold:

ωi((k + 1)δ) = (1 − λvi+2(kδ))ωi(kδ) + λvi+2(kδ)ωi−1(kδ)

− 2λ(vi+2(kδ) − vi+1(kδ))ωi−1(kδ) − λh−1(vi+2(kδ)

− 2vi+1(kδ) + vi(kδ))yi−1(kδ) for i = 1, . . . , N − 2,

k = 0, 1, . . . ,m− 1 (A.45)

ωN−1(kδ) = 0, for k = 0, 1, . . . ,m. (A.46)

ω0((k + 1)δ) = (1 − λv2(kδ))ω0(kδ) − λh−1(v2(kδ)

− v1(kδ))y0(kδ) + λψ(kδ), for k = 0, 1, . . . ,m− 1.
(A.47)

Using the facts that |vi+2(kδ) − 2vi+1(kδ) + vi(kδ)| ≤
h2‖vxx‖, |vi+2(kδ) − vi+1(kδ)| ≤ h‖vx‖ for i = 0, . . . , N −
2, k = 0, 1, . . . ,m, where ‖vxx‖ := sup

{ | ∂ v∂ x (t,x)− ∂ v
∂ x (t,z )|

|x−z | :

(t, x, z) ∈ [0, T ] × [0, 1]2 , x = z
}

and the fact that v2(kδ)
≥ vmin > 0 for all k = 0, 1, . . . ,m, where vmin :=
min{v(t, x) : (t, x) ∈ [0, T ] × [0, ε(T )]} (a consequence of
(A.1), (A.5), and (A.6) which imply that 2h ≤ ε(T )), in con-
junction with (A.23), (A.35), (A.6), (A.9), and (A.11), we get for
k = 0, 1, . . . ,m− 1 and H(k) = maxi=0,...,N−1(|ωi((kδ)|)

H(k + 1) ≤ max((1 + 2δ‖vx‖)H(k) + δ‖vxx‖Y,
(1 − λvmin)H(k) + λ(‖vx‖Y +M)). (A.48)

It follows from (A.10) and Lemma 5.1 for k = 0, 1, . . . ,m

max
i=0,...,N−1

(|ωi((kδ)|) ≤ exp(2T‖vx‖)
(

max
i=0,...,N−1

(|ωi(0)|) +
‖vx‖Y +M

vmin
+ T‖vxx‖Y

)
. (A.49)

Definitions (A.3), (A.4), (A.44), (A.18), and (A.19) with
a(0) = ϕ(0) imply |ωi(0)| ≤ ‖ϕ′′‖∞ for i = 0, . . . , N − 1,
where ‖ϕ′′‖∞ := ess sup{|ϕ′′(x)| : x ∈ [0, 1]}. It follows from
(A.49) that the following estimate holds for k = 0, 1, . . . ,m:

max
i=0,...,N−1

(|ωi((kδ)|) ≤ Ω := exp(2T‖vx‖)
(
‖ϕ′′‖∞ +

‖vx‖Y +M

vmin
+ T‖vxx‖Y

)
. (A.50)

Next define for i = 0, 1, . . . , N , k = 0, 1, . . . ,m− 1

ηi(kδ) := δ−1 (yi((k + 1)δ) − yi(kδ)) . (A.51)

Equations (A.20), (A.21), (A.29), (A.44), and (A.51),
imply that

ηi(kδ) = −vi+1(kδ)ωi−1(kδ) − h−1

(vi+1(kδ) − vi(kδ)) yi−1(kδ), for i = 1, . . . , N − 1,

k = 0, 1, . . . ,m− 1 (A.52)

η0(kδ) = −ψ(kδ), for k = 0, 1, . . . ,m− 1 (A.53)

which combined with (A.9), (A.19), (A.50), and (A.35) and the
fact that |vi+1(kδ) − vi(kδ)| ≤ h‖vx‖ for all i = 0, . . . , N − 1,
k = 0, 1, . . . ,m, give for k = 0, 1, . . . ,m− 1

max
i=0,...,N

(|ηi((kδ)|) ≤ vmaxΩ + ‖vx‖Y +M. (A.54)

Definitions (A.44) and (A.51) with (A.50) and (A.54)
imply the following estimate for i, j = 0, 1, . . . , N , k, l =
0, 1, . . . ,m:

|yi(kδ) − yj (lδ)| ≤ h|i− j|Ω
+ δ|k − l|(vmaxΩ +M + Y ‖vx‖). (A.55)

Estimate (A.55) in conjunction with (A.36)–(A.38) imply
that there exists L2 = L2(T, a, v, ϕ) such that the following
inequality holds for N ≥ N ∗, t, τ ∈ [0, T ] and x, z ∈ [0, 1]:

|y(t, x;N) − y(τ, z;N)| ≤ L2 (|x− z| + |t− τ |) . (A.56)

Following a similar procedure, it is shown that there exists
L3 = L3(T, a, v, ϕ) such that the following inequality holds for
N ≥ N ∗, t, τ ∈ [0, T ], x, z ∈ [0, 1]:

|p(t, x;N) − p(τ, z;N)| ≤ L3 (|x− z| + |t− τ |) . (A.57)

It follows from (A.17), (A.28), (A.39), (A.56), (A.43), and
(A.57) that the sequences {w(·;N)}∞N=N ∗ , {y(·;N)}∞N=N ∗ ,
{w(·;N)}∞N=N ∗ are uniformly bounded and equicontinuous.
Compactness of [0, T ] × [0, 1] and the Arzela–Ascoli theorem
implies that there exist Lipschitz functions w, y, p : [0, T ] ×
[0, 1] → � and subsequences {w(·;Nq )}∞q=1 , {y(·;Nq )}∞q=1 ,
{p(·;Nq )}∞q=1 for an increasing sequence {Nq}∞q=1 , which con-
verge uniformly on [0, T ] × [0, 1] to w, y, p.

It is shown next that since {y(·;Nq )}∞q=1 , {w(·;Nq )}∞q=1 con-
verge uniformly to y, w, as q → +∞, it follows that y(t, x) =
∂w
∂x (t, x), p(t, x) = ∂w

∂ t (t, x), and p(t, x) + v(t, x)y(t, x) = 0,
for (t, x) ∈ [0, T ] × [0, 1]. Uniqueness follows use of Gron-
wall’s lemma for the functional V (t) =

∫ 1
0 e

2(t, x)dx, where
e = w − w̃ and w, w̃ are solutions of (23)–(25).

Finally, we assume that there exists a constant vmin > 0 such
that v(t, x) ≥ vmin for all t ≥ 0, x ∈ [0, 1] and that a ≡ 0. Let
T > v−1

min be given (arbitrary). Consider the functionalsVσ (t) =∫ 1
0 exp(−σx)w2(t, x)dx on [0, T ] with parameter σ > 0. Using

(23), (25), and the fact that v(t, x) ≥ vmin , we get

V̇σ (t) = −v(t, 1) exp(−σ)w2(t, 1) +
∫ 1

0
exp(−σx)w2(t, x)

∂v

∂x
(t, x)dx− σ

∫ 1

0
exp(−σx)w2(t, x)v(t, x)dx

≤ − (σvmin − ‖vx‖)Vσ (t)
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It follows that Vσ (t) ≤ exp(−(σvmin − ‖vx‖)t)Vσ (0), for
t ∈ [0, T ]. The previous inequality implies the estimate
‖w[t]‖2

2 ≤ exp(−σ((vmin − σ−1‖vx‖)t− 1))‖φ‖2
2 , for t ∈

[0, T ]. Since limσ→+∞(−σ((vmin − σ−1‖vx‖)t− 1)) = −∞
for each t ∈ (v−1

min , T ], we get ‖w[t]‖2 = 0, for t ∈ (v−1
min , T ].

Therefore, by continuity of w and since T > v−1
min is arbitrary,

we conclude that w(t, x) = 0 for x ∈ [0, 1] and t ≥ v−1
min . �
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Approximations (Birkhäuser, 2017), and Input-to-State Stability for PDEs
(Springer-Verlag, 2019). His research interests include mathematical
control theory and nonlinear systems theory.

Dr. Karafyllis is been an Associate Editor for the International Journal
of Control and for the IMA Journal of Mathematical Control and Informa-
tion since 2013.



3662 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 9, SEPTEMBER 2019

Nikolaos Bekiaris-Liberis received the Ph.D.
degree in aerospace engineering from the Uni-
versity of California, San Diego, CA, USA, in
2013.

He is currently an Assistant Professor with
the Department of Electrical and Computer En-
gineering and Marie Sklodowska-Curie Fellow
with the Department of Production Engineering
and Management, Technical University of Crete,
Chania, Greece. From 2013 to 2014, he was a
Postdoctoral Researcher with the University of

California, Berkeley, CA, USA, and from 2014 to 2017, he was a Re-
search Associate and Adjunct Professor with the Technical University
of Crete, Chania, Greece. He has coauthored the SIAM book Nonlinear
Control under Nonconstant Delays. His interests include delay systems,
distributed parameter systems, nonlinear control, and their applications.

Dr. Bekiaris-Liberis was the recipient of the Chancellor’s Dissertation
Medal in Engineering from UC San Diego, in 2014, and the 2016 Marie
Sklodowska-Curie Individual Fellowship Grant.

Markos Papageorgiou (F’99) received the
Diplom-Ingenieur and Doktor-Ingenieur degrees
in electrical engineering from the Technical Uni-
versity of Munich, Munich, Germany, in 1976 and
1981, respectively.

He was a Free Associate with Dorsch Con-
sult, Munich, from 1982 to 1988, and with Insti-
tute National de Recherche sur les Transports
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