Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems^{*}

^a Department of Electronic and Communications Engineering, Zhejiang Normal University, Jinhua, 321004, China

^b Department of Electrical and Computer Engineering, Technical University of Crete, Chania, 73100, Greece

^c Department of Production Engineering and Management, Technical University of Crete, Chania, 73100, Greece

^d Department of Mechanical Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA

ARTICLE INFO

Article history: Received 11 May 2018 Received in revised form 15 October 2018 Accepted 24 January 2019 Available online xxxx

Keywords: Delay compensation Predictor feedback Multi-input systems Input-to-state stabilization Inverse optimality Robustness

1. Introduction

Although for multi-input linear systems with distinct input delays predictor-based control designs have been developed since the late 1970s and early 1980s, (see, for example, Artstein, 1982; Manitius & Olbrot, 1979; Tsubakino, Krstic, & Oliveira, 2016). It was not until the result in Tsubakino et al. (2016) that an "exact" predictor-feedback control design has appeared. This predictor-feedback control input signals employs, in the nominal (for the delay-free system) feedback law, the predictor of the state as many time units in the future as the corresponding input delay. This key idea has enabled the development of extensions to non-linear systems (Bekiaris-Liberis & Krstic, 2017), to systems with simultaneous input and state delays (Bresch-Pietri & Di Meglio, 2017; Kharitonov, 2017), and to extremum seeking control for static maps with delays (Oliveira, Krstic, & Tsubakino, 2017).

In the single-delay linear case, the inverse optimality and disturbance attenuation properties of the basic predictor feedback as well as its low-pass-filtered modification are studied in Cai,

^k Corresponding author.

https://doi.org/10.1016/j.automatica.2019.02.038 0005-1098/© 2019 Elsevier Ltd. All rights reserved.

ABSTRACT

For the "exact" predictor-feedback control design, recently introduced by Tsubakino, Krstic, and Oliveira for multi-input linear systems with distinct input delays, we establish input-to-state stability, with respect to additive plant disturbances, as well as robustness to constant multiplicative uncertainties affecting the inputs. We also show that the exact predictor-feedback controller is inverse optimal with respect to a meaningful differential game problem. Our proofs capitalize on the availability of a backstepping transformation, which is formulated appropriately in a recursive manner. An example, computed numerically, is provided to illustrate the validity of the developed results.

© 2019 Elsevier Ltd. All rights reserved.

Bekiaris-Liberis, and Krstic (2018) and Krstic (2008), whereas for nonlinear systems respective developments can be found, for instance, in Cai, Lin, and Liu (2015) and Karafyllis and Krstic (2017). Robustness of predictor feedback to delay mismatches, for both linear and nonlinear systems with a single input delay, is studied in Bekiaris-Liberis and Krstic (2013), Karafyllis and Krstic (2013) and Krstic (2008). When uncertainties in the plant parameters or the delay are large, adaptive prediction-based schemes may be employed, which are recently developed for systems with a single (Basturk & Krstic, 2015; Bresch-Pietri, Chauvin, & Petit, 2012; Bresch-Pietri & Krstic, 2014; Zhu, Krstic, & Su, 2017) or multiple (Zhu, Krstic, & Su, 2018) delays. Prediction-based control designs for single-delay systems under sampling also exist (Karafyllis & Krstic, 2013; Mazenc & Normand-Cyrot, 2013).

Besides highlighting some of the benefits of the exact predictor-feedback scheme and the accompanying backstepping transformation, the problem we tackle in the present paper is inspired by highway traffic control problems. In particular, in scenarios where the goal is to regulate the flow (ODE state) at a potential bottleneck area, far downstream from the locations of actuated on-ramps whose flows (control inputs) may be manipulated (via, for example, ramp metering) and where the mainstream inflow (plant disturbance) to the highway is unmeasured, see, for instance (Wang, Kosmatopoulos, Papageorgiou, & Papamichail, 2014). Other applications in which multi-input systems with several delays may appear include network congestion control (Quet et al., 2002; Tregouet, Seuret, & Di Loreto,

Brief paper

Check for updates

 $[\]stackrel{\circ}{\sim}$ The material in this paper was not presented at any conference. This paper was recommended for publication in revised form by Associate Editor Tong Zhou under the direction of Editor Richard Middleton.

E-mail addresses: xiushancai@163.com (X. Cai), nikos.bekiaris@dssl.tuc.gr (N. Bekiaris-Liberis), mkrstic@eng.ucsd.edu (M. Krstic).

2016), robotic manipulators (Ailon, 2004), multi-agent systems (Abdessameud & Tayebi, 2011) and autonomous ground vehicles (Malisoff & Zhang, 2013), to name only a few (Donkers, Daafouz, & Heemels, 2014; Fridman, 2014; Mahjoub, Van Assche, Giri, & Chaoui, 2015).

Motivated by these specific applications, for the exact predictor-feedback controller in the present work we establish (1) input-to-state stability with respect to additive plant disturbances, (2) robustness to constant multiplicative uncertainties affecting the inputs, and (3) inverse optimality with respect to a meaningful differential game problem. All of these results for multi-input linear systems with distinct input delays under predictor feedback are novel. Our proofs are based on a recursive formulation of the infinite-dimensional backstepping transformation and the construction of a Lyapunov functional. A simulation example of an unstable third-order system with two delays is also provided to illustrate the validity of the presented analysis.

Notation. For an *n*-vector, $|\cdot|$ denotes the Euclidean norm. For a matrix $A = (a_{ij})_{n \times m}$, |A| denotes the induced matrix norm. For functions $u_i : [0, D_i] \times \mathbb{R} \to \mathbb{R}$ and $U_i : \mathbb{R} \to \mathbb{R}$, $i = 1, \ldots, m$, we denote $||u_i(t)|| = \left(\int_0^{D_i} u_i(x, t)^2 dx\right)^{1/2}$ and $||U_i(t)|| = \left(\int_{t-D_i}^t U_i(\theta)^2 d\theta\right)^{1/2}$, respectively.

2. System description and control law design

Consider the following system:

$$\dot{X}(t) = AX(t) + \sum_{i=1}^{m} b_i U_i(t - D_i) + B\delta(t),$$
(1)

where $X \in \mathbb{R}^n$ is the state, $U_1, \ldots, U_m \in \mathbb{R}$ are control inputs, D_1, \ldots, D_m are input delays satisfying (without loss of generality) $0 < D_1 \le \cdots \le D_m$, A is an $n \times n$ matrix, b_i , $i = 1, \ldots, m$ are ndimensional vectors, B is an $n \times l$ matrix, and $\delta \in \mathbb{R}^l$ is disturbance. We assume that the pair ($[A, b_1, \ldots, b_m]$) is stabilizable. In the delay-free case of system (1), we choose the following linear feedback control law:

$$\overline{U}_i(t) = k_i^T X(t), \tag{2}$$

where each vector $k_i \in \mathbb{R}^n$, i = 1, 2, ..., m, is selected so that $A + \sum_{i=1}^{m} b_i k_i^T$ is Hurwitz.

We consider the following basic predictor-feedback control law:

$$U_i(t) = \frac{c_i}{c_i + 1} \overline{U}_i(t) = U_i^*(t), \tag{3}$$

where $c_i > 0$, i = 1, 2, ..., m, are sufficiently large constants and $\overline{U}_i(t)$ are given in Tsubakino et al. (2016) as

$$U_i(t) = k_i^T P_i(t), \ i = 1, 2, \dots, m,$$
(4)

where the predictors are given by

$$P_{1}(t) = e^{AD_{1}}X(t) + \int_{t-D_{1}}^{t} e^{A(t-s)} \sum_{i=1}^{m} b_{i}U_{i}(s-D_{i,1})ds,$$

$$P_{2}(t) = e^{A_{1}D_{2,1}}P_{1}(t)$$
(5)

$$f(t) = e^{A_{1}(t)} + \int_{t-D_{2,1}}^{t} e^{A_{1}(t-s)} \sum_{i=2}^{m} b_{i} U_{i}(s-D_{i,2}) ds,$$
(6)

:

$$P_{m}(t) = e^{A_{m-1}D_{m,m-1}}P_{m-1}(t) + \int_{t-D_{m,m-1}}^{t} e^{A_{m-1}(t-s)}b_{m}U_{m}(s)ds,$$
(7)

the matrices A_i , $i = 1, \ldots, m$, are

$$A_{i} = A + \sum_{j=1}^{l} b_{j} k_{j}^{T},$$
and $D_{i, j} = D_{i} - D_{i}$, for all $i < j < m$, with $D_{0} = 0$.
(8)

3. Gain-robustness and inverse optimality of the basic predictor feedback controller

We first prove that the closed-loop system (1), (3)–(7) is inputto-state stable (ISS) and we then show the inverse optimality of (3)–(7), when the c_i 's are sufficiently large.¹

3.1. ISS of the basic predictor-feedback controller

Theorem 1. Consider the closed-loop system consisting of (1) with the control laws (3)–(7). There exists $c^* > 0$ such that the closed-loop system is ISS provided that $\underline{c} = \min_{i=1,2,...,m} c_i > c^*$, that is, there exist positive constants ψ , $\overline{\lambda}$, and $\zeta > 0$, such that for all $\underline{c} > c^*$,

$$\Omega(t) \le \psi \Omega(0) e^{-\overline{\lambda}t} + \zeta \left(\sup_{0 \le \tau \le t} |\delta(\tau)| \right)^2, \quad \text{for all } t \ge 0, \tag{9}$$

with

$$\Omega(t) = |X(t)|^2 + \sum_{i=1}^{m} ||U_i(t)||^2.$$
(10)

Remark 1. Theorem 1 shows that the basic predictor-feedback controller (3)–(7), besides being input-to-state stabilizing with respect to additive plant disturbances, is robust to constant multiplicative uncertainty affecting the system's inputs. Moreover, if the control law (3) is modified to

$$U_i(t) = \frac{c_i + 1}{c_i} \overline{U}_i(t), \quad i = 1, 2, \dots, m,$$
 (11)

then the result of Theorem 1 still holds. In other words, the basic predictor-feedback controller is robust to uncertainties that are both larger and smaller than unity. Since such a result could be established employing identical arguments to the proof of Theorem 1, its proof is omitted as the superfluous technical details would only distract the reader from the substance of the result, which is robustness of predictor feedback.

Remark 2. When the control gains $k_i \frac{c_i}{c_i+1}$ in (3) are replaced by $k_i + \Delta_i$ where $|\Delta_i|, i = 1, 2, ..., m$, are sufficiently small, the result of Theorem 1 still holds. The proof of such a result would be almost identical to that of Theorem 1.

Remark 3. The closed-loop system in Tsubakino et al. (2016) is not the same with the closed-loop system (1) under (3)–(7), with $\delta \equiv 0$, and thus, the result in Theorem 1 cannot follow combining the exponential stability result in Tsubakino et al. (2016) with the results in, for example, Dashkovskiy and Mironchenko (2013). It should be also noted that another advantage of performing the stability analysis adopting the constructive strategy of the proof of Theorem 1 is that one obtains explicit input-to-state stability

¹ Considering the system of retarded functional differential equations derived by differentiating (3)-(7) and assuming that the initial conditions $U_i(s)$, $-D_i \le s \le 0$, i = 1, ..., m, are absolutely continuous and compatible with the feedback laws (3)-(7), existence and uniqueness of an absolutely continuous solution $(X(t), U_1(t), ..., U_m(t)), t \ge 0, i = 1, ..., m$ to the closed-loop system (1), (3)-(7), may follow, e.g., from Theorem 5.2 in Kolmanovskii and Myshkis (1999) (for a measurable and bounded disturbance δ).

estimates, as estimate (9) with the specific constants ψ , $\overline{\lambda}$, and ζ , which is a result of the explicit construction of a Lyapunov functional.

The proof of Theorem 1 is based on a series of technical lemmas, which are presented next, together with transport PDE representation for the actuator state, which allows us to re-write system (1) as

$$\dot{X}(t) = AX(t) + \sum_{i=1}^{m} b_i u_i(0, t) + B\delta(t)$$
(12)

$$\partial_t u_i(x, t) = \partial_x u_i(x, t), \ x \in (0, D_i), \quad i = 1, 2, \dots, m$$
 (13)

$$u_i(D_i, t) = U_i(t), \quad i = 1, 2, \dots, m,$$
 (14)

where

$$u_i(x,t) = U_i(x+t-D_i), \quad i = 1, 2, \dots, m.$$
 (15)

In this notation, we define

$$p_{1}(x,t) = e^{Ax}X(t) + \int_{0}^{x} e^{A(x-\alpha)} \sum_{i=1}^{m} b_{i}u_{i}(\alpha,t)d\alpha, \ 0 \le x \le D_{1},$$
(16)

$$p_{2}(x,t) = e^{A_{1}(x-D_{1})}p_{1}(D_{1},t) + \int_{D_{1}}^{x} e^{A_{1}(x-\alpha)} \sum_{i=2}^{m} b_{i}u_{i}(\alpha,t)d\alpha, \ D_{1} \le x \le D_{2},$$
(17)
:

$$p_{m}(x,t) = e^{A_{m-1}(x-D_{m-1})}p_{m-1}(D_{m-1},t) + \int_{D_{m-1}}^{x} e^{A_{m-1}(x-\alpha)}$$
$$\times b_{m}u_{m}(\alpha,t)d\alpha, \quad D_{m-1} \le x \le D_{m},$$
(18)

and thus, with this representation, (4) becomes

$$\overline{U}_i(t) = k_i^T p_i(D_i, t), \quad i = 1, 2, \dots, m.$$
(19)

From (16)-(18), it is also easy to see that

$$p_1(0,t) = X(t),$$
 (20)

$$p_2(D_1, t) = p_1(D_1, t),$$
 (21)
:

$$p_m(D_{m-1}, t) = p_{m-1}(D_{m-1}, t).$$
 (22)

Lemma 1. The backstepping transformations of $u_i(x, t)$, i = 1, ..., m, defined as

$$\omega_1(x,t) = u_1(x,t) - k_1^T p_1(x,t), \ x \in [0,D_1]$$
(23)

$$\omega_2(x,t) = u_2(x,t) - \begin{cases} k_2^T p_1(x,t), & x \in [0,D_1] \\ k_2^T p_2(x,t), & x \in [D_1,D_2] \end{cases}$$
(24)

$$\omega_{m}(x,t) = u_{m}(x,t) - \begin{cases} k_{m}^{T}p_{1}(x,t), & x \in [0,D_{1}] \\ k_{m}^{T}p_{2}(x,t), & x \in [D_{1},D_{2}] \\ \vdots \\ k_{m}^{T}p_{m}(x,t), & x \in [D_{m-1},D_{m}], \end{cases}$$
(25)

where $p_i(x, t)$, i = 1, 2, ..., m, are given by (16)–(18), together with the control laws (3), (19), (16)–(18) transform system (12)–(14) to the following "target system":

$$\dot{X}(t) = \left(A + \sum_{i=1}^{m} b_i k_i^T\right) X(t) + \sum_{i=1}^{m} b_i \omega_i(0, t) + B\delta(t)$$
(26)

$$\partial_t \omega_1(x,t) = \partial_x \omega_1(x,t) - k_1^T e^{Ax} B\delta(t), \quad x \in (0,D_1)$$
(27)

$$\partial_{t}\omega_{2}(x,t) = \partial_{x}\omega_{2}(x,t) - \begin{cases} k_{2}^{T}e^{Ax}B\delta(t), & x \in (0, D_{1}), \\ k_{2}^{T}e^{A_{1}(x-D_{1})}e^{AD_{1}}B\delta(t) \\ -\frac{k_{2}^{T}}{c_{1}+1}e^{A_{1}(x-D_{1})}b_{1}k_{1}^{T}p_{1}(D_{1},t), \\ & x \in (D_{1}, D_{2}) \end{cases}$$
(28)

$$\partial_{t}\omega_{m}(x,t) = \partial_{x}\omega_{m}(x,t) \\ \begin{cases} k_{m}^{T}e^{Ax}B\delta(t), \quad x \in (0,D_{1}), \\ k_{m}^{T}e^{A_{1}(x-D_{1})}e^{AD_{1}}B\delta(t) \\ -\frac{k_{m}^{T}}{c_{1}+1}e^{A_{1}(x-D_{1})}b_{1}k_{1}^{T}p_{1}(D_{1},t), \quad x \in (D_{1},D_{2}) \\ \vdots \\ k_{m}^{T}e^{A_{m-1}(x-D_{m-1})}e^{A_{m-2}D_{m-1,m-2}} \\ \times e^{A_{m-3}D_{m-2,m-3}} \cdots e^{A_{1}D_{2},1}e^{AD_{1}}B\delta(t) \\ -\sum_{j=1}^{m-2} \left\{ k_{m}^{T}e^{A_{m-1}(x-D_{m-1})}e^{A_{m-2}D_{m-1,m-2}} \\ \times e^{A_{m-3}D_{m-2,m-3}} \cdots e^{A_{j}D_{j+1,j}}\frac{b_{j}k_{j}^{T}}{c_{j+1}}p_{j}(D_{j},t) \right\} \\ -k_{m}^{T}e^{A_{m-1}(x-D_{m-1})}\frac{b_{m-1}k_{m-1}^{T}}{c_{m-1}+1}p_{m-1}(D_{m-1},t), \\ x \in (D_{m-1},D_{m}) \end{cases} \\ \omega_{i}(D_{i},t) = -\frac{1}{c_{i}+1}k_{i}^{T}p_{i}(D_{i},t), \quad i = 1, 2, \dots, m.$$
 (30)

Proof. The space is limited, the proof is omitted.

Lemma 2. The inverse backstepping transformations of (23)–(25) are defined by

$$u_1(x,t) = \omega_1(x,t) + k_1^T q_1(x,t), \quad x \in [0,D_1]$$
(31)

$$u_2(x,t) = \omega_2(x,t) + \begin{cases} k_2^T q_1(x,t), & x \in [0,D_1] \\ k_2^T q_2(x,t), & x \in [D_1,D_2] \end{cases}$$
(32)

$$\begin{array}{l}
\vdots\\
u_{m}(x,t) = \omega_{m}(x,t) + \begin{cases}
k_{m}^{T}q_{1}(x,t), & x \in [0, D_{1}]\\
k_{m}^{T}q_{2}(x,t), & x \in [D_{1}, D_{2}]\\
\vdots\\
k_{m}^{T}q_{m}(x,t), & x \in [D_{m-1}, D_{m}],
\end{array}$$
(33)

where

$$q_{1}(x,t) = e^{A_{m}x}X(t) + \int_{0}^{x} e^{A_{m}(x-\alpha)}$$
$$\times \sum_{i=1}^{m} b_{i}\omega_{i}(\alpha,t)d\alpha, \quad 0 \le x \le D_{1},$$
(34)

$$q_{2}(x,t) = e^{A_{m}(x-D_{1})}q_{1}(D_{1},t) + \int_{D_{1}} e^{A_{m}(x-\alpha)}$$
$$\times \sum_{i=2}^{m} b_{i}\omega_{i}(\alpha,t)d\alpha, \quad D_{1} \leq x \leq D_{2},$$
(35)

$$q_{m}(x,t) = e^{A_{m}(x-D_{m-1})}q_{m-1}(D_{m-1},t) + \int_{D_{m-1}}^{x} e^{A_{m}(x-\alpha)}$$
$$\times b_{m}\omega_{m}(\alpha,t)d\alpha, \quad D_{m-1} \le x \le D_{m}.$$
 (36)

Proof. It can be deduced using similar arguments to the corresponding proof in Tsubakino et al. (2016) (Appendix B).

Lemma 3. There exist positive scalars γ_j and ι_j (independent of the c_j 's), j = 1, 2, ..., m, such that

$$\sup_{x \in [D_{j-1}, D_j]} |p_j(x, t)|^2 \le \gamma_j \left(|X(t)|^2 + \sum_{i=1}^m \|u_i(t)\|^2 \right), \tag{37}$$

$$\sup_{x \in [D_{j-1}, D_j]} |q_j(x, t)|^2 \le \iota_j \left(|X(t)|^2 + \sum_{i=1}^m \|\omega_i(t)\|^2 \right),$$
(38)

for all j = 1, 2, ..., m.

Proof. Noting that $0 < D_1 \le \cdots \le D_m$ and using Cauchy–Schwarz inequality, from (16)–(18) and (34)–(36), we can derive (37) and (38), respectively, with

$$\gamma_{j} = 2^{j+1} e^{2|A_{j-1}|D_{j}} \cdots e^{2|A|D_{1}} \\ \times \max\left\{1, (m-j+1)D_{j,j-1} \max_{i=j,\dots,m} \{|b_{i}|^{2}\}\right\} \cdots \\ \times \max\left\{1, mD_{1} \max_{i=1,\dots,m} \{|b_{i}|^{2}\}\right\},$$
(39)

with $j = 1, 2, ..., m, A_0 = A$, and

$$\iota_{j} = 2^{j+1} e^{2|A_{m}|(D_{1}+D_{2}+\dots+D_{j})} \\ \times \max\left\{1, (m-j+1)D_{j,j-1} \max_{i=j,\dots,m} \{|b_{i}|^{2}\}\right\} \cdots \\ \times \max\{1, mD_{1} \max_{i=1,\dots,m} \{|b_{i}|^{2}\}\}, \quad j = 1, 2, \dots, m.$$
(40)

Lemma 4. There exist positive constants α_1 and α_2 (independent of the c_i 's) such that

$$|X(t)|^{2} + \sum_{i=1}^{m} \|\omega_{i}(t)\|^{2} \le \alpha_{1} \left(|X(t)|^{2} + \sum_{i=1}^{m} \|u_{i}(t)\|^{2} \right),$$
(41)

$$|X(t)|^{2} + \sum_{i=1}^{m} \|u_{i}(t)\|^{2} \leq \alpha_{2} \left(|X(t)|^{2} + \sum_{i=1}^{m} \|\omega_{i}(t)\|^{2} \right).$$
(42)

Proof. With Lemma 3 and relations (23)–(25), (31)–(33), we get (41), (42) with $\alpha_1 = 2(1 + \sum_{j=1}^m D_j |k_j|^2 \gamma_j)$ and $\alpha_2 = 2(1 + \sum_{j=1}^m D_j |k_j|^2 \iota_j)$, respectively.

Proof of Theorem 1. Since $A + \sum_{i=1}^{m} b_i k_i^T$ is Hurwitz, for any positive definite matrix *S*, there exists a unique positive definite matrix *M* such that

$$M\left(A+\sum_{i=1}^{m}b_{i}k_{i}^{T}\right)+\left(A+\sum_{i=1}^{m}b_{i}k_{i}^{T}\right)^{T}M=-S.$$
(43)

Consider a Lyapunov functional

$$V(t) = X(t)^{T} M X(t) + \frac{a_{1}}{2} \sum_{i=1}^{m} \int_{0}^{D_{i}} e^{x} \omega_{i}(x, t)^{2} dx, \qquad (44)$$

where the constant $a_1 > 0$ is determined later on. The derivative of V(t) along the solutions of system (26)–(30) satisfies the following equality:

$$\dot{V}(t) = -X^{T}(t)SX(t) + 2X^{T}(t)M\sum_{i=1}^{m} b_{i}\omega_{i}(0, t)$$
$$+2X^{T}(t)MB\delta(t)$$
$$+a_{1}\sum_{i=1}^{m}\int_{0}^{D_{i}}e^{x}\omega_{i}(x, t)\partial_{t}\omega_{i}(x, t)dx.$$
(45)

With (26)–(30), we compute the following integral for each *i*:

$$\int_{0}^{D_{i}} e^{x} \omega_{i}(x, t) \partial_{t} \omega_{i}(x, t) dx$$

$$= \int_{0}^{D_{1}} e^{x} \omega_{i}(x, t) \left(\partial_{x} \omega_{i}(x, t) - k_{i}^{T} e^{Ax} B\delta(t) \right) dx$$

$$+ \int_{D_{1}}^{D_{2}} e^{x} \omega_{i}(x, t) \left(\partial_{x} \omega_{i}(x, t) - k_{i}^{T} e^{A_{1}(x-D_{1})} e^{AD_{1}} B\delta(t) \right)$$

$$+ \frac{k_{i}^{T}}{c_{1}+1} e^{A_{1}(x-D_{1})} b_{1} k_{1}^{T} p_{1}(D_{1}, t) dx$$

$$\vdots$$

$$+ \int_{D_{i-1}}^{D_{i}} e^{x} \omega_{i}(x, t) \left(\partial_{x} \omega_{i}(x, t) - k_{i}^{T} e^{A_{i-1}(x-D_{i-1})} \right. \\ \times e^{A_{i-2}D_{i-1,i-2}} e^{A_{i-3}D_{i-2,i-3}} \cdots e^{A_{1}D_{2,1}} e^{AD_{1}} B\delta(t) dx \\ + \sum_{j=1}^{i-2} \int_{D_{i-1}}^{D_{i}} \left(e^{x} \omega_{i}(x, t) k_{i}^{T} e^{A_{i-1}(x-D_{i-1})} e^{A_{i-2}D_{i-1,i-2}} \right. \\ e^{A_{i-3}D_{i-2,i-3}} \cdots e^{A_{j}D_{j+1,j}} \frac{b_{j}k_{j}^{T}}{c_{j}+1} p_{j}(D_{j}, t) dx \\ + \int_{D_{i-1}}^{D_{i}} \left(e^{x} \omega_{i}(x, t) k_{i}^{T} e^{A_{i-1}(x-D_{i-1})} \right. \\ \times \frac{b_{i-1}k_{i-1}^{T}}{c_{i-1}+1} p_{i-1}(D_{i-1}, t) dx.$$

$$(46)$$

We estimate the first term of the right-hand side of (46) as

$$\int_{0}^{D_{1}} e^{x} \omega_{i}(x,t) (\partial_{x} \omega_{i}(x,t) - k_{i}^{T} e^{Ax} B\delta(t)) dx$$

$$\leq \frac{1}{2} e^{D_{1}} \omega_{i}(D_{1},t)^{2} - \frac{1}{2} \omega_{i}(0,t)^{2} - \frac{1}{4} \int_{0}^{D_{1}} e^{x} \omega_{i}(x,t)^{2} dx$$

$$+ D_{1} e^{D_{1}} |k_{i}|^{2} e^{2|A|D_{1}} |B|^{2} |\delta(t)|^{2}.$$
(47)

Similarly, for the second term of the right-hand side of (46), we have

$$\int_{D_{1}}^{D_{2}} e^{x} \omega_{i}(x,t) \left(\partial_{x} \omega_{i}(x,t) - k_{i}^{T} e^{A_{1}(x-D_{1})} e^{AD_{1}} B\delta(t) + \frac{k_{i}^{T}}{c_{1}+1} e^{A_{1}(x-D_{1})} b_{1} k_{1}^{T} p_{1}(D_{1},t) \right) dx$$

$$\leq \frac{1}{2} e^{D_{2}} \omega_{i}(D_{2},t)^{2} - \frac{1}{2} e^{D_{1}} \omega_{i}(D_{1},t)^{2} - \frac{1}{4} \int_{D_{1}}^{D_{2}} e^{x} \omega_{i}(x,t)^{2} dx$$

$$+ 2D_{2,1} e^{D_{2}} |k_{i}|^{2} e^{2|A||D_{2}} e^{2|A||D_{1}} |B|^{2} |\delta(t)|^{2}$$

$$+ 2D_{2,1} e^{D_{2}} \frac{|k_{i}|^{2}}{(c_{1}+1)^{2}} e^{2|A_{1}|D_{2}} |b_{1}|^{2} |k_{1}|^{2} |p_{1}(D_{1},t)|^{2}. \tag{48}$$

For the general *l*th term of (46), we get

$$\begin{split} \Gamma_{l} &= \int_{D_{l-1}}^{D_{l}} e^{x} \omega_{i}(x,t) \left(\partial_{x} \omega_{i}(x,t) - k_{i}^{T} e^{A_{l-1}(x-D_{l-1})} \right. \\ &\times e^{A_{l-2}D_{l-1,l-2}} e^{A_{l-3}D_{l-2,l-3}} \cdots e^{A_{1}D_{2,1}} e^{AD_{1}} B\delta(t) \right) dx \\ &+ \sum_{j=1}^{l-2} \int_{D_{l-1}}^{D_{l}} \left(e^{x} \omega_{i}(x,t) k_{i}^{T} e^{A_{l-1}(x-D_{l-1})} e^{A_{l-2}D_{l-1,l-2}} \right. \\ &\times e^{A_{l-3}D_{l-2,l-3}} \cdots e^{A_{j}D_{j+1,j}} \frac{b_{j}k_{j}^{T}}{c_{j}+1} p_{j}(D_{j},t) \right) dx + \end{split}$$

$$\int_{D_{l-1}}^{D_l} e^x \omega_i(x,t) k_i^T e^{A_{l-1}(x-D_{l-1})} \frac{b_{l-1}k_{l-1}^T}{c_{l-1}+1} p_{l-1}(D_{l-1},t) dx$$

$$\leq \frac{1}{2} e^{D_{l}} \omega_{i}(D_{l}, t)^{2} - \frac{1}{2} e^{D_{l-1}} \omega_{i}(D_{l-1}, t)^{2} - \frac{1}{4} \int_{D_{l-1}}^{D_{l}} e^{x} \omega_{i}(x, t)^{2} dx + lD_{l,l-1} e^{D_{l}} |k_{i}|^{2} e^{2|A_{l-1}|D_{l,l-1}} \times e^{2|A_{l-2}|D_{l-1,l-2}} \cdots e^{2|A|D_{1}} |B|^{2} |\delta(t)|^{2} + \sum_{j=1}^{l-2} \left(lD_{l,l-1} e^{D_{l}} |k_{i}|^{2} e^{2|A_{l-1}|D_{l,l-1}} e^{2|A_{l-2}|D_{l-1,l-2}} \cdots \right) \times e^{2|A_{j}|D_{j+1,j}} \frac{|b_{j}|^{2} |k_{j}|^{2}}{(c_{j}+1)^{2}} |p_{j}(D_{j}, t)|^{2} + lD_{l,l-1} e^{D_{l}} |k_{i}|^{2} \times e^{2|A_{l-1}|D_{l,l-1}} \frac{|b_{l-1}|^{2} |k_{l-1}|^{2}}{(c_{l-1}+1)^{2}} |p_{l-1}(D_{l-1}, t)|^{2},$$
(49)

for all l = 3, ..., i. Recalling (30), from (47), (48), (49), we have

$$\begin{split} &\int_{0}^{D_{i}} e^{x} \omega_{i}(x,t) \partial_{t} \omega_{i}(x,t) dx \\ &\leq \frac{1}{2} e^{D_{i}} \frac{1}{(c_{i}+1)^{2}} |k_{i}|^{2} |p_{i}(D_{i},t)|^{2} - \frac{1}{2} \omega_{i}(0,t)^{2} \\ &- \frac{1}{4} \int_{0}^{D_{i}} e^{x} \omega_{i}(x,t)^{2} dx + \varsigma_{i} |\delta(t)|^{2} \\ &+ 2D_{2,1} e^{D_{2}} \frac{|k_{i}|^{2}}{(c_{1}+1)^{2}} e^{2|A_{1}|D_{2}} |b_{1}|^{2} |k_{1}|^{2} |p_{1}(D_{1},t)|^{2} + \cdots \\ &+ lD_{l,l-1} e^{D_{l}} |k_{i}|^{2} \sum_{j=1}^{l-1} \left(e^{2|A_{l-1}|D_{l,l-1}} e^{2|A_{l-2}|D_{l-1,l-2}} \cdots \right) \\ &\times e^{2|A_{j}|D_{j+1,j}} \frac{|b_{j}|^{2} |k_{j}|^{2}}{(c_{j}+1)^{2}} |p_{j}(D_{j},t)|^{2} + \cdots \\ &+ iD_{i,i-1} e^{D_{i}} |k_{i}|^{2} \sum_{j=1}^{i-1} \left(e^{2|A_{i-1}|D_{l,i-1}} e^{2|A_{i-2}|D_{l-1,i-2}} \cdots \right) \\ &\times e^{2|A_{j}|D_{j+1,j}} \frac{|b_{j}|^{2} |k_{j}|^{2}}{(c_{j}+1)^{2}} |p_{j}(D_{j},t)|^{2} \end{split}$$
(50)

where

$$\varsigma_{i} = D_{1}e^{D_{1}}|k_{i}|^{2}e^{2|A|D_{1}}|B|^{2} + 2D_{2,1}e^{D_{2}}|k_{i}|^{2}e^{2|A|D_{2}}e^{2|A|D_{1}}|B|^{2}
+ \dots + iD_{i,i-1}e^{D_{i}}|k_{i}|^{2}e^{2|A_{i-1}|D_{i,i-1}}
\times e^{2|A_{i-2}|D_{i-1,i-2}}\dots e^{2|A|D_{1}}|B|^{2}.$$
(51)

Denoting

$$\begin{split} \underline{c} &= \min_{i=1,2,\dots,m} \{c_i\}. \end{split}$$
(52)

$$\rho_i &= \frac{1}{2} e^{D_i} |k_i|^2 \gamma_i + 2D_{2,1} e^{D_2} |k_i|^2 e^{2|A_1|D_2|} |b_1|^2 |k_1|^2 |\gamma_1 \\ &+ lD_{l,l-1} e^{D_l} |k_i|^2 \sum_{j=1}^{l-1} e^{2|A_{l-1}|D_{l,l-1}} e^{2|A_{l-2}|D_{l-1,l-2}} \cdots \\ &\times e^{2|A_j|D_{j+1,j}|} |b_j|^2 |k_j|^2 \gamma_j + \cdots \\ &+ iD_{i,i-1} e^{D_i} |k_i|^2 \sum_{j=1}^{i-1} e^{2|A_{i-1}|D_{l,i-1}} e^{2|A_{i-2}|D_{i-1,i-2}} \cdots \\ &\times e^{2|A_j|D_{j+1,j}|} |b_j|^2 |k_j|^2 |\gamma_j, \end{split}$$
(53)

with the help of (37), (42), (50), we finally get

$$\int_{0}^{D_{i}} e^{x} \omega_{i}(x, t) \partial_{t} \omega_{i}(x, t) dx$$

$$\leq \frac{\alpha_{2}}{(\underline{c}+1)^{2}} \rho_{i} \left(|X(t)|^{2} + \sum_{i=1}^{m} \|\omega_{i}(t)\|^{2} \right) - \frac{1}{2} \omega_{i}(0, t)^{2}$$

$$- \frac{1}{4} \int_{0}^{D_{i}} e^{x} \omega_{i}(x, t)^{2} dx + \varsigma_{i} |\delta(t)|^{2}, \qquad (54)$$

for all i = 1, 2, ..., m. With (54), it can be deduced from (45) that

$$\begin{split} \dot{V}(t) &\leq -\frac{\lambda_{\min}(S)}{2} X^{T}(t) X(t) \\ &+ \frac{4m\lambda_{\max}(M^{2})}{\lambda_{\min}(S)} \max_{i=1,2,\dots,m} \left\{ |b_{i}|^{2} \right\} \sum_{i=1}^{m} \omega_{i}(0,t)^{2} \\ &+ \frac{4\lambda_{\max}(MBB^{T}M)}{\lambda_{\min}(S)} |\delta(t)|^{2} \\ &+ \frac{\alpha_{2}a_{1}}{(\underline{c}+1)^{2}} \left(|X(t)|^{2} + \sum_{i=1}^{m} ||\omega_{i}(t)||^{2} \right) \sum_{i=1}^{m} \rho_{i} \\ &- \frac{1}{2}a_{1} \sum_{i=1}^{m} \omega_{i}(0,t)^{2} - \frac{a_{1}}{4} \sum_{i=1}^{m} \int_{0}^{D_{i}} e^{x} \omega_{i}(x,t)^{2} dx \\ &+ a_{1} |\delta(t)|^{2} \sum_{i=1}^{m} \varsigma_{i}. \end{split}$$
(55)

Let

$$a_{1} = \frac{8m\lambda_{\max}(M^{2})}{\lambda_{\min}(S)} \max_{i=1,2,\dots,m} \left\{ |b_{i}|^{2} \right\} + 1.$$
(56)

With (55), we get

$$\dot{V}(t) \leq -\left(\frac{\lambda_{\min}(S)}{2} - \frac{\alpha_2 a_1}{(\underline{c}+1)^2} \sum_{i=1}^m \rho_i\right) |X(t)|^2 - \left(\frac{a_1}{4} - \frac{\alpha_2 a_1}{(\underline{c}+1)^2} \sum_{i=1}^m \rho_i\right) \sum_{i=1}^m \|\omega_i(t)\|^2 + \left(\frac{4\lambda_{\max}(MBB^TM)}{\lambda_{\min}(S)} + a_1 \sum_{i=1}^m \varsigma_i\right) |\delta(t)|^2.$$
(57)

For $\underline{c} > c^*$, where

$$c^* = \frac{\sqrt{2\alpha_2 \sum_{i=1}^m \rho_i \max\left\{\frac{a_1}{\lambda_{\min}(S)}, 2\right\}}}{\sqrt{1 - \overline{\mu}}},$$
(58)

for some $0 < \overline{\mu} < 1$, we get

$$\dot{V}(t) \leq -\overline{\mu} \min\left\{\frac{\lambda_{\min}(S)}{2}, \frac{a_1}{4}\right\} \left(|X(t)|^2 + \sum_{i=1}^m \|\omega_i(t)\|^2\right) \\ + \left(\frac{4\lambda_{\max}(MBB^TM)}{\lambda_{\min}(S)} + a_1 \sum_{i=1}^m \varsigma_i\right) |\delta(t)|^2.$$
(59)

Moreover, from (44), we have

$$\min \left\{ \lambda_{\min}(M), \frac{a_1}{2} \right\} \left(|X(t)|^2 + \sum_{i=1}^m \|\omega_i(t)\|^2 \right)$$

$$\leq V(t)$$

$$\leq \max \left\{ \lambda_{\max}(M), \frac{a_1 e^{D_m}}{2} \right\} \left(|X(t)|^2 + \sum_{i=1}^m \|\omega_i(t)\|^2 \right), \quad (60)$$

foring

and thus, from (59), (60), it holds that

$$\dot{V}(t) \le -\overline{\lambda}V(t) + \overline{\nu}|\delta(t)|^2, \tag{61}$$

with

$$\overline{\lambda} = \frac{\overline{\mu} \min\left\{\frac{\lambda_{\min}(S)}{2}, \frac{a_1}{2}\right\}}{\max\left\{\lambda_{\max}(M), \frac{a_1e^{Dm}}{2}\right\}},\tag{62}$$

$$\overline{\nu} = \frac{4\lambda_{\max}(MBB^TM)}{\lambda_{\min}(S)} + a_1 \sum_{i=1}^m \varsigma_i.$$
(63)

Combining (15), (41), (42), (60), and (61), we get (9) with $\zeta = \frac{\alpha_2 \overline{\nu}}{\frac{1}{2} + \left\{ -\alpha_2 \overline{\nu} - \alpha_1 \right\}}, \psi = \frac{\alpha_1 \alpha_2 \max\left\{ \lambda_{\max}(M), \frac{\alpha_1 e^{D_m}}{2} \right\}}{\left\{ -\alpha_2 \overline{\nu} - \alpha_1 \right\}}.$

$$\zeta = \frac{\alpha_2 \overline{\nu}}{\overline{\lambda} \min\{\lambda_{\min}(M), \frac{a_1}{2}\}}, \ \psi = \frac{\alpha_1 \alpha_2 \min\{\lambda_{\min}(M), \frac{a_1}{2}\}}{\min\{\lambda_{\min}(M), \frac{a_1}{2}\}}$$

3.2. Inverse optimality of the basic predictor-feedback controller

Theorem 2. Consider system (1) together with the control laws (3)–(7). There exist $c^{**} \ge c^*$ and $d^{**} > 0$, such that for all $\underline{c} > c^{**}$ and $\underline{d} > d^{**}$, the control laws (3)–(7) minimize the cost functional

$$J = \sup_{\delta \in \Xi} \lim_{t \to \infty} \left(2\beta V(t) + \int_0^t \left(L(\tau) + a_1 \beta \sum_{i=1}^m \frac{e^{D_i} U_i(\tau)^2}{c_i} - \underline{d}\beta |\delta(\tau)|^2 \right) d\tau \right),$$
(64)

where L is a functional of $(X(t), U_1(\theta_1), \ldots, U_m(\theta_m))$, $t - D_i \le \theta_i \le t$, $i = 1, \ldots, m$, such that

$$L(t) \ge \beta \chi \Omega(t), \tag{65}$$

for an arbitrary $\beta > 0$ and some $\chi > 0$, and where a_1 , V, Ω are given by (56), (44), (10), respectively, with Ξ being the set of *l*-dimensional vector-valued linear bounded functionals of $(X(t), U_1(\theta_1), \ldots, U_m(\theta_m)), t - D_i \leq \theta_i \leq t, i = 1, \ldots, m$.

Remark 4. Although cost functional (64) is not as general as a respective cost functional that would be employed in a direct optimal control approach, it is a meaningful cost since it puts quadratic penalties both on the control efforts and the disturbances, as well as on the overall infinite-dimensional state of the system (via the term *L*, which is lower bounded by Ω), and it also incorporates a terminal penalty. Moreover, the (inverse) optimality result in Theorem 2, is derived without needing to solve complicated operator Riccati equations and it provides an optimal value function that is actually a Lyapunov functional for the closed-loop system. Finally, note that inverse optimality also implies certain gain margin guarantees as it is evident in the present case from relation (3), which may be seen as a perturbed version of the nominal controller (4).

Proof of Theorem 2. Denote

$$\begin{aligned} \Theta_{i}(t) &= \int_{D_{1}}^{D_{2}} e^{x} \omega_{i}(x,t) \frac{k_{i}^{T}}{c_{1}+1} e^{A_{1}(x-D_{1})} b_{1} k_{1}^{T} p_{1}(D_{1},t) dx \\ &+ \cdots \\ &+ \int_{D_{i-1}}^{D_{i}} \sum_{j=1}^{i-2} \left(e^{x} \omega_{i}(x,t) k_{i}^{T} e^{A_{i-1}(x-D_{i-1})} e^{A_{i-2}D_{i-1,i-2}} \right. \\ &\times e^{A_{i-3}D_{i-2,i-3}} \cdots e^{A_{j}D_{j+1,j}} \frac{b_{j}k_{j}^{T}}{c_{j}+1} p_{j}(D_{j},t) \right) dx \\ &+ \int_{D_{i-1}}^{D_{i}} e^{x} \omega_{i}(x,t) k_{i}^{T} e^{A_{i-1}(x-D_{i-1})} \\ &\times \frac{b_{i-1}k_{i-1}^{T}}{c_{i-1}+1} p_{i-1}(D_{i-1},t) dx, \end{aligned}$$
(66)

$$\eta_{i}(t) = -\int_{0}^{D_{1}} e^{x} \omega_{i}(x, t) k_{i}^{T} e^{Ax} dx$$

$$-\int_{D_{1}}^{D_{2}} e^{x} \omega_{i}(x, t) k_{i}^{T} e^{A_{1}(x-D_{1})} e^{AD_{1}} dx - \cdots$$

$$-\int_{D_{i-1}}^{D_{i}} e^{x} \omega_{i}(x, t) k_{i}^{T} e^{A_{i-1}(x-D_{i-1})} e^{A_{i-2}D_{i-1,i-2}}$$

$$\times e^{A_{i-3}D_{i-2,i-3}} \cdots e^{A_{1}D_{2,1}} e^{AD_{1}} dx, \qquad (67)$$

for i = 1, 2, ..., m. Choose

m and

$$L(t) = -a_{1}\beta \sum_{i=1}^{m} \frac{e^{D_{i}}}{c_{i}+1} \overline{U}_{i}(t)^{2} + a_{1}\beta \sum_{i=1}^{m} \omega_{i}(0, t)^{2} +a_{1}\beta \sum_{i=1}^{m} \int_{0}^{D_{i}} e^{x} \omega_{i}(x, t)^{2} dx + 2\beta X^{T}(t) SX(t) -4\beta X^{T}(t) M \sum_{i=1}^{m} b_{i} \omega_{i}(0, t) - 2a_{1}\beta \sum_{i=1}^{m} \Theta_{i}(t) -\frac{\beta}{\underline{d}} \left| 2X^{T}(t) MB + a_{1} \sum_{i=1}^{m} \eta_{i}(t)B \right|^{2},$$
(68)

where a_1 , \overline{U}_i , *S* are given by (56), (4), (43), respectively, and $\underline{d} > 0$, and β is an arbitrary positive scalar. From (66), (67), using Cauchy–Schwarz inequality, after some calculations, we have

$$\Theta_{i}(t) \leq \frac{1}{8} \int_{0}^{D_{i}} e^{x} \omega_{i}(x, t)^{2} dx + \frac{\alpha_{2}}{(\underline{c}+1)^{2}} \rho_{i} \left(|X(t)|^{2} + \sum_{i=1}^{m} \|\omega_{i}(t)\|^{2} \right),$$
(69)

for i = 1, 2, ..., m, where \underline{c} , ρ_i , α_2 are given by (52), (53), (42), respectively, and

$$\begin{aligned} |\eta_{i}(t)|^{2} &\leq ie^{2D_{1}} \int_{0}^{D_{1}} \omega_{i}(x,t)^{2} dx \int_{0}^{D_{1}} \left|k_{i}^{T} e^{Ax}\right|^{2} dx \\ &+ ie^{2D_{2,1}} \int_{D_{1}}^{D_{2}} \omega_{i}(x,t)^{2} dx \int_{D_{1}}^{D_{2}} \left|k_{i}^{T} e^{A_{1}(x-D_{1})} e^{AD_{1}}\right|^{2} dx \\ &+ \cdots \\ &+ ie^{2D_{i,i-1}} \int_{D_{i-1}}^{D_{i}} \omega_{i}(x,t)^{2} dx \int_{D_{i-1}}^{D_{i}} \left|k_{i}^{T} e^{A_{i-1}(x-D_{i-1})} \right|^{2} dx \\ &\leq A_{i} \int_{0}^{D_{i}} \omega_{i}(x,t)^{2} dx, \end{aligned}$$
(70)

where

$$\Lambda_{i} = \max\{D_{1}e^{2D_{1}}, D_{2,1}e^{2D_{2,1}}, \dots, D_{i,i-1}e^{2D_{i,i-1}}\}$$
$$\times i|k_{i}|^{2}e^{2\sum_{j=0}^{i-1}|A_{j}|D_{j+1,j}},$$
(71)

for i = 1, 2, ..., m.

Noting from (56) that $a_1 > \frac{8m\lambda_{max}(M^2)}{\lambda_{min}(S)} \max_{i=1,2,...,m} |b_i|^2$, by (4), (37), (42), (67)–(71), after some tedious calculations, we get

$$L(t) \geq \beta \left(\frac{3\lambda_{\min}(S)}{2} - \frac{2a_1\alpha_2}{(\underline{c}+1)^2} \sum_{i=1}^m \rho_i -a_1\alpha_2 \sum_{i=1}^m \frac{\gamma_i e^{D_i}}{c_i+1} - \frac{8}{\underline{d}} \lambda_{\max}(MBB^T M) \right) |X(t)|^2$$

$$+\beta \left(\frac{3a_{1}}{4} - \frac{2a_{1}\alpha_{2}}{(\underline{c}+1)^{2}} \sum_{i=1}^{m} \rho_{i} -a_{1}\alpha_{2} \sum_{i=1}^{m} \frac{\gamma_{i}e^{D_{i}}}{c_{i}+1} - \frac{2a_{1}^{2}|B|^{2}m\xi}{\underline{d}}\right) \sum_{i=1}^{m} \|\omega_{i}(t)\|^{2},$$
(72)

with $\xi = \max{\{\Lambda_1, \ldots, \Lambda_m\}}$. Choose c^{**} and d^{**} such that

$$c^{**} \ge \max\left\{a_1\alpha_2 \max\left\{\frac{2}{\lambda_{\min}(S)}, \frac{4}{a_1}\right\}\right\} \times \left(2\sum_{i=1}^m \rho_i + \sum_{i=1}^m \gamma_i e^{Di}\right), c^*\right\},$$
(73)

where c^* is defined in (58), and

$$d^{**} \ge \max\left\{\frac{16\lambda_{\max}(MBB^TM)}{\lambda_{\min}(S)}, 8a_1|B|^2m\xi\right\}.$$
(74)

By (15), (42), (73) and (74), we get from (72) that

$$L(t) \ge \frac{\beta \min\left\{\frac{\lambda \min(S)}{2}, \frac{a_1}{4}\right\} \left(|X(t)|^2 + \sum_{i=1}^m \|U_i(t)\|^2\right)}{\alpha_2},$$
(75)

and hence, (65) is achieved with $\chi = \frac{\min\left\{\frac{\lambda \min(5)}{2}, \frac{\alpha_1}{4}\right\}}{\alpha_2}$. With the help of (45), (46) and using (66), (67), from (68), we have

$$L(t) = -a_{1}\beta \sum_{i=1}^{m} \frac{e^{D_{i}}}{c_{i}+1} \overline{U}_{i}(t)^{2} + a_{1}\beta \sum_{i=1}^{m} e^{D_{i}}\omega_{i}(D_{i}, t)^{2}$$

$$-2\beta \dot{V}(t) + 4\beta X^{T}(t)MB\delta(t) + 2a_{1}\beta \sum_{i=1}^{m} \eta_{i}(t)B\delta(t)$$

$$-\frac{\beta}{\underline{d}} \left| 2X^{T}(t)MB + a_{1} \sum_{i=1}^{m} \eta_{i}(t)B \right|^{2}.$$
 (76)

Furthermore, using the fact that $\omega_i(D_i, t) = U_i(t) - \overline{U}_i(t)$, for all i = 1, 2, ..., m, and relation (3) we get

$$L(t) = a_{1}\beta \sum_{i=1}^{m} e^{D_{i}} \left(U_{i}(t) - U_{i}^{*}(t) \right)^{2}$$

$$-a_{1}\beta \sum_{i=1}^{m} e^{D_{i}} \frac{2U_{i}(t)U_{i}^{*}(t)}{c_{i}} + a_{1}\beta \sum_{i=1}^{m} e^{D_{i}} \frac{U_{i}^{*}(t)^{2}}{c_{i}}$$

$$-2\beta \dot{V}(t) + 4\beta X^{T}(t)MB\delta(t) + 2a_{1}\beta \sum_{i=1}^{m} \eta_{i}(t)B\delta(t)$$

$$-\frac{\beta}{\underline{d}} \left| 2X^{T}(t)MB + a_{1} \sum_{i=1}^{m} \eta_{i}(t)B \right|^{2}.$$
(77)

Denoting

$$\Pi(\delta(\tau)) = 4\beta X^{T}(\tau) MB\delta(\tau) + 2a_{1}\beta \sum_{i=1}^{m} \eta_{i}(\tau) B\delta(\tau)$$
$$-\frac{\beta}{\underline{d}} \left| 2X^{T}(\tau) MB + a_{1} \sum_{i=1}^{m} \eta_{i}(\tau) B \right|^{2}$$
$$-\underline{d}\beta |\delta(\tau)|^{2}, \tag{78}$$

by (77), (78), completing the squares, it can be deduced that

$$\int_0^t \left(L(\tau) + a_1 \beta \sum_{i=1}^m \frac{e^{D_i} U_i(\tau)^2}{c_i} - \underline{d}\beta |\delta(\tau)|^2 \right) d\tau$$
$$= -2\beta V(t) + 2\beta V(0)$$

$$+a_{1}\beta \int_{0}^{t} \sum_{i=1}^{m} e^{D_{i}} \left(1 + \frac{1}{c_{i}}\right) (U_{i}(\tau) - U_{i}^{*}(\tau))^{2} d\tau + \int_{0}^{t} \Pi(\delta(\tau)) d\tau.$$
(79)

With the help of (79), we get from (64) that

$$J = 2\beta V(0) + a_1 \beta \int_0^\infty \sum_{i=1}^m e^{D_i} \left(1 + \frac{1}{c_i}\right) (U_i(\tau) - U_i^*(\tau))^2 d\tau$$
$$+ \sup_{\delta \in \mathcal{Z}} \int_0^\infty \Pi(\delta(\tau)) d\tau.$$
(80)

With (78), it can then be deduced that

$$\Pi(\delta(\tau)) = -\beta \left| \frac{1}{\sqrt{\underline{d}}} \left(2X^{T}(\tau)M + a_{1} \sum_{i=1}^{m} \eta_{i}(\tau) \right) B - \sqrt{\underline{d}} \delta^{T}(\tau) \right|^{2} \le 0,$$
(81)

with $\Pi(\delta) = 0$, if and only if $\delta = \delta^*$, where

$$\delta^* = \frac{1}{\underline{d}} B^T \left(2M^T X + a_1 \sum_{i=1}^m \eta_i^T \right).$$
(82)

Thus,

$$\sup_{\delta \in \mathcal{Z}} \int_0^\infty \Pi(\delta(\tau)) d\tau = 0, \tag{83}$$

and the 'worst case' disturbance is given by (82). With (80) and (83), we get

$$J = 2\beta V(0) + a_1 \beta \int_0^\infty \sum_{i=1}^m e^{D_i} \left(1 + \frac{1}{c_i}\right) (U_i(\tau) - U_i^*(\tau))^2 d\tau.$$
(84)

So the minimum of (84) is reached with

$$U_i(t) = U_i^*(t),$$
 (85)

for $i = 1, 2, \ldots, m$, and is such that

$$J = 2\beta V(0). \tag{86}$$

4. Example

Consider system (1) with the matrices A, b_1 , b_2 , and B given by

$$A = \begin{pmatrix} 0 & 1 & 0 \\ -3 & 4 & 0 \\ -6 & 2 & 3 \end{pmatrix}, \ b_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \ B = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}.$$
(87)

It is easy to see that (A, b_1, b_2) is controllable, but neither (A, b_1) nor (A, b_2) alone are controllable. The nominal gains k_1, k_2 are (see (Tsubakino et al., 2016)

$$k_1 = \begin{pmatrix} 4 & -10 & 0 \end{pmatrix}^T, \ k_2 = \begin{pmatrix} 6 & -2 & -6 \end{pmatrix}^T,$$
 (88)

which render $A + b_1k_1^T + b_2k_2^T$ Hurwitz. Assume that there are delays $D_1 = 0.2$ and $D_2 = 0.5$ in the control inputs U_1 and U_2 , respectively. The proposed control laws are

$$U_{1}(t) = \frac{c_{1}}{c_{1}+1} \begin{pmatrix} 4 & -10 & 0 \end{pmatrix} P_{1}(t),$$
(89)
$$U_{2}(t) = \frac{c_{2}}{c_{2}+1} \begin{pmatrix} 6 & -2 & -6 \end{pmatrix} P_{2}(t),$$
(90)

Fig. 1. Response of the states X_1, X_2, X_3 with the control laws (89)–(92) for initial conditions as $X_1(0) = 0, X_2(0) = 1, X_3(0) = 0.5$, and $U_1(\theta) = 0$, for $\theta \in [-0.2, 0], U_2(\theta) = 0$, for $\theta \in [-0.5, 0]$.

where $c_i > 0$, i = 1, 2, are sufficiently large, and $P_i(t)$, i = 1, 2, are given as

$$P_{1}(t) = e^{AD_{1}}X(t)$$
(91)
+ $\int_{t-D_{1}}^{t} e^{A(t-s)}(b_{1}U_{1}(s) + b_{2}U_{2}(s-D_{2}+D_{1}))ds,$
$$P_{2}(t) = e^{A_{1}(D_{2}-D_{1})}P_{1}(t) + \int_{t-D_{2}+D_{1}}^{t} e^{A_{1}(t-s)}b_{2}U_{2}(s)ds,$$
(92)

with $A_1 = A + b_1 k_1^T$. The obtained allowable lower bound for c_1 , c_2 , within Theorem 1, may be somewhat conservative, yet, it may be computed explicitly using (58) as $c^* = 904.6266$, with $\overline{\mu} = 0.1$ and S = 10I.

Responses of the states under the control laws (89)–(92) are shown for $c_1 = c_2 = 1000$ in Fig. 1, whereas the control efforts are shown in Fig. 2. Disturbance $\delta(t)$ in Fig. 1 comprised randomly generated numbers from a uniform distribution in [-1, 1]. The closed-loop system is ISS.

Fig. 2. Control laws (89)–(92) for $c_1 = c_2 = 1000$.

5. Conclusions

We consider multi-input linear systems, with distinct input delays in each individual input channel, under the predictor-feedback controller from Tsubakino et al. (2016). We established (1) ISS with respect to additive plant disturbances, (2) robustness to constant multiplicative perturbations appearing at the system inputs, and (3) inverse optimality with respect to a meaningful differential game problem. Our analyses are based on the availability of a backstepping transformation. Future research includes extensions to nonlinear systems as well as extensions to systems with more complex actuator dynamics than pure transport PDEs, with the results in Bekiaris-Liberis and Krstic (2011, 2014), Cai and Krstic (2015, 2016), as potential starting points.

Acknowledgments

Xiushan Cai was supported by the funding from National Natural Science Foundation of China under granted agreement nos. 61773350 and 61471163 and Natural Science Foundation of Zhejiang Province of China under granted agreement no. LY17F030001.

Nikolaos Bekiaris-Liberis was supported by the funding from the European Commission's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 747898, project PADECOT.

References

Abdessameud, A., & Tayebi, A. (2011). Formation control of vtol unmanned aerial vehicles with communication delays. *Automatica*, 47, 2383–2394.

- Ailon, A. (2004). Asymptotic stability in a flexible-joint robot with model uncertainty and multiple time delays in feedback. *Journal of the Franklin Institute*, 341, 519–531.
- Artstein, Z. (1982). Linear systems with delayed controls: a reduction. IEEE Transactions on Automatic Control, 27, 869–879.
- Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown lti systems despite input delay. *Automatica*, 58, 131–138.
- Bekiaris-Liberis, N., & Krstic, M. (2011). Compensating the distributed effect of diffusion and counter-convection in multi-input and multi-output lti systems. IEEE Transactions on Automatic Control, 56, 637–642.

- Bekiaris-Liberis, N., & Krstic, M. (2013). Robustness of nonlinear predictor feedback laws to time-and state-dependent delay perturbations. *Automatica*, 49, 1576–1590.
- Bekiaris-Liberis, N., & Krstic, M. (2014). Compensation of wave actuator dynamics for nonlinear systems. *IEEE Transactions on Automatic Control*, 59, 1555–1570.
- Bekiaris-Liberis, N., & Krstic, M. (2017). Predictor-feedback stabilization of multi-input nonlinear systems. *IEEE Transactions on Automatic Control*, 62, 143–150.
- Bresch-Pietri, D., Chauvin, J., & Petit, N. (2012). Adaptive control scheme for uncertain time-delay systems. *Automatica*, 48, 1536–1552.
- Bresch-Pietri, D., & Di Meglio, F. (2017). Prediction-based control of linear systems subject to state-dependent state delay and multiple input-delays. In *IEEE conference and decision and control*, Melbourne, Australia.
- Bresch-Pietri, D., & Krstic, M. (2014). Delay-adaptive control for nonlinear systems. IEEE Transactions on Automatic Control, 59, 1203–1218.
- Cai, X., Bekiaris-Liberis, N., & Krstic, M. (2018). Input-to-state stability and inverse optimality of linear time-varying-delay predictor feedbacks. *IEEE Transactions on Automatic Control*, 63(11), 233–240.
- Cai, X., & Krstic, M. (2015). Nonlinear control under wave actuator dynamics with time-and state-dependent moving boundary. *International Journal of Robust* and Nonlinear Control, 25, 222–253.
- Cai, X., & Krstic, M. (2016). Nonlinear stabilization through wave pde dynamics with a moving uncontrolled boundary. *Automatica*, 68, 27–38.
- Cai, X., Lin, Y., & Liu, L. (2015). Universal stabilisation design for a class of nonlinear systems with time-varying input delays. *IET Control Theory & Applications*, 9, 1481–1490.
- Dashkovskiy, S., & Mironchenko, A. (2013). Input-to-state stability of infinitedimensional control systems. Mathematics of Control, Signals, and Systems, 25, 1–35.
- Donkers, M. C. F., Daafouz, J., & Heemels, W. P. M. H. (2014). Output-based controller synthesis for networked control systems with periodic protocols and time-varying transmission intervals and delays. In *IFAC world congress*, Cape Town, South Africa.
- Fridman, E. (2014). Introduction to time-delay systems. Birkhauser.
- Karafyllis, I., & Krstic, M. (2013). Delay-robustness of linear predictor feedback without restriction on delay rate. Automatica, 49, 1761–1767.
- Karafyllis, I., & Krstic, M. (2017). Predictor feedback for delay systems: implementations and approximations. Birkhauser.
- Kharitonov, V. (2017). Prediction-based control for systems with state and several input delays. Automatica, 79, 11–16.
- Kolmanovskii, V., & Myshkis, A. (1999). Introduction to the theory and applications of functional differential equations. Dordrecht: Kluwer.
- Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: inverse optimality and robustness to delay mismatch. *Automatica*, 44, 2930–2935.
- Mahjoub, A., Van Assche, V., Giri, F., & Chaoui, F. Z. (2015). Tracking performance achievement for continuous-time delayed linear systems subject to actuator saturation and output disturbances. Asian Journal of Control, 17, 2019–2024.
- Malisoff, M., & Zhang, F. (2013). Robustness of a class of three-dimensional curve tracking control laws under time delays and polygonal state constraints. In American control conference, Washington, DC.
- Manitius, A. Z., & Olbrot, A. W. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24, 541–552.
- Mazenc, F., & Normand-Cyrot, D. (2013). Reduction model approach for linear systems with sampled delayed inputs. *IEEE Transactions on Automatic Control*, 58, 1263–1268.
- Oliveira, T. R., Krstic, M., & Tsubakino, D. (2017). Extremum seeking for static maps with delays. *IEEE Transactions on Automatic Control*, 62, 1911–1926.
- Quet, P. F., Ataslar, B., Iftar, A., Ozbay, H., Kalyanaraman, S., & Kang, T. (2002). Rate-based flow controllers for communication networks in the presence of uncertain time-varying multiple time-delays. *Automatica*, 38, 917–928.
- Tregouet, J. F., Seuret, A., & Di Loreto, M. (2016). A periodic approach for input-delay problems: application to network controlled systems affected by polytopic uncertainties. *International Journal of Robust and Nonlinear Control*, 26, 385–400.
- Tsubakino, D., Krstic, M., & Oliveira, T. R. (2016). Exact predictor feedbacks for multi-input lti systems with distinct input delays. *Automatica*, 71, 143–150.

- Wang, Y., Kosmatopoulos, E., Papageorgiou, M., & Papamichail, I. (2014). Local ramp metering in the presence of a distant downstream bottleneck: theoretical analysis and simulation study. *IEEE Transactions on Intelligent Transportation Systems*, 15, 2024–2039.
- Zhu, Y., Krstic, M., & Su, H. (2017). Adaptive output feedback control for uncertain linear time-delay systems. *IEEE Transactions on Automatic Control*, 62, 545–560.
- Zhu, Y., Krstic, M., & Su, H. (2018). PDE Boundary control of multi-input LTI systems with distinct and uncertain input delays. *IEEE Transactions on Automatic Control*, 63, 4270–4277.

Xiushan Cai received her Ph.D. degree in control theory and control engineering from Shanghai Jiao Tong University, China, in 2005. She was a visiting scholar in the department of Mechanical & Aerospace Engineering, University of California, San Diego from September 2012 to September 2013. She is currently a professor in Zhejiang Normal University. Her research interests include nonlinear systems theory, control of PDE systems and delay systems.

thored/coauthored 1 book and about 100 papers. He serves as Associate Editor for Automatica. His interests are in delay systems, distributed parameter systems, nonlinear control, and their applications. He received the Chancellor's Dissertation Medal in Engineering from UC San Diego, in 2014 and is the recipient of a 2016 Marie Sklodowska-Curie Individual Fellowship Grant.

Miroslav Krstic is Distinguished Professor of Mechanical and Aerospace Engineering, holds the Alspach endowed chair, and is the founding director of the Cymer Center for Control Systems and Dynamics at UC San Diego. He also serves as Senior Associate Vice Chancellor for Research at UCSD. As a graduate student, he won the UC Santa Barbara best dissertation award and student best paper awards at CDC and ACC. He has been elected Fellow of seven scientific societies – IEEE, IFAC, ASME, SIAM, AAAS, IET (UK), and AIAA (Assoc Fellow) – and as a foreign member of the

Serbian Academy of Sciences and Arts and of the Academy of Engineering of Serbia. He has received the SIAM Reid Prize, ASME Oldenburger Medal, Nyquist Lecture Prize, Paynter Outstanding Investigator Award, Ragazzini Education Award, Chestnut textbook prize, Control Systems Society Distinguished Member Award, the PECASE, NSF Career, and ONR Young Investigator awards, the Axelby and Schuck paper prizes, and the first UCSD Research Award given to an engineer. He has also been awarded the Springer Visiting Professorship at UC Berkeley, the Distinguished Visiting Fellowship of the Royal Academy of Engineering, and the Invitation Fellowship of the Japan Society for the Promotion of Science. He serves as Editor-in-Chief of Systems& Control Letters and has been serving as Senior Editor in Automatica and IEEE Transactions on Automatic Control, as editor of two Springer book series, and has served as Vice President for Technical Activities of the IEEE Control Systems Society and as chair of the IEEE CSS Fellow Committee. He has coauthored thirteen books on adaptive, nonlinear, and stochastic control, extremum seeking, control of PDE systems including turbulent flows, and control of delay systems.