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a b s t r a c t

For the ‘‘exact’’ predictor-feedback control design, recently introduced by Tsubakino, Krstic, and
Oliveira for multi-input linear systems with distinct input delays, we establish input-to-state stability,
with respect to additive plant disturbances, as well as robustness to constant multiplicative uncertain-
ties affecting the inputs. We also show that the exact predictor-feedback controller is inverse optimal
with respect to a meaningful differential game problem. Our proofs capitalize on the availability of a
backstepping transformation, which is formulated appropriately in a recursive manner. An example,
computed numerically, is provided to illustrate the validity of the developed results.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Although for multi-input linear systems with distinct input
delays predictor-based control designs have been developed since
the late 1970s and early 1980s, (see, for example, Artstein, 1982;
Manitius & Olbrot, 1979; Tsubakino, Krstic, & Oliveira, 2016). It
was not until the result in Tsubakino et al. (2016) that an ‘‘exact’’
predictor-feedback control design has appeared. This predictor-
feedback controller is referred to as exact, to highlight the fact
that each of the control input signals employs, in the nominal (for
the delay-free system) feedback law, the predictor of the state as
many time units in the future as the corresponding input delay.
This key idea has enabled the development of extensions to non-
linear systems (Bekiaris-Liberis & Krstic, 2017), to systems with
simultaneous input and state delays (Bresch-Pietri & Di Meglio,
2017; Kharitonov, 2017), and to extremum seeking control for
static maps with delays (Oliveira, Krstic, & Tsubakino, 2017).

In the single-delay linear case, the inverse optimality and
disturbance attenuation properties of the basic predictor feedback
as well as its low-pass-filtered modification are studied in Cai,
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Bekiaris-Liberis, and Krstic (2018) and Krstic (2008), whereas for
nonlinear systems respective developments can be found, for in-
stance, in Cai, Lin, and Liu (2015) and Karafyllis and Krstic (2017).
Robustness of predictor feedback to delay mismatches, for both
linear and nonlinear systems with a single input delay, is studied
in Bekiaris-Liberis and Krstic (2013), Karafyllis and Krstic (2013)
and Krstic (2008). When uncertainties in the plant parameters or
the delay are large, adaptive prediction-based schemes may be
employed, which are recently developed for systems with a single
(Basturk & Krstic, 2015; Bresch-Pietri, Chauvin, & Petit, 2012;
Bresch-Pietri & Krstic, 2014; Zhu, Krstic, & Su, 2017) or multiple
(Zhu, Krstic, & Su, 2018) delays. Prediction-based control designs
for single-delay systems under sampling also exist (Karafyllis &
Krstic, 2013; Mazenc & Normand-Cyrot, 2013).

Besides highlighting some of the benefits of the exact
predictor-feedback scheme and the accompanying backstepping
transformation, the problem we tackle in the present paper is
inspired by highway traffic control problems. In particular, in
scenarios where the goal is to regulate the flow (ODE state)
at a potential bottleneck area, far downstream from the loca-
tions of actuated on-ramps whose flows (control inputs) may
be manipulated (via, for example, ramp metering) and where
the mainstream inflow (plant disturbance) to the highway is un-
measured, see, for instance (Wang, Kosmatopoulos, Papageorgiou,
& Papamichail, 2014). Other applications in which multi-input
systems with several delays may appear include network con-
gestion control (Quet et al., 2002; Tregouet, Seuret, & Di Loreto,
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2016), robotic manipulators (Ailon, 2004), multi-agent systems
(Abdessameud & Tayebi, 2011) and autonomous ground vehicles
(Malisoff & Zhang, 2013), to name only a few (Donkers, Daafouz,
& Heemels, 2014; Fridman, 2014; Mahjoub, Van Assche, Giri, &
Chaoui, 2015).

Motivated by these specific applications, for the exact
predictor-feedback controller in the present work we establish
(1) input-to-state stability with respect to additive plant distur-
bances, (2) robustness to constant multiplicative uncertainties
affecting the inputs, and (3) inverse optimality with respect
to a meaningful differential game problem. All of these results
for multi-input linear systems with distinct input delays under
predictor feedback are novel. Our proofs are based on a recursive
formulation of the infinite-dimensional backstepping transforma-
tion and the construction of a Lyapunov functional. A simulation
example of an unstable third-order system with two delays is also
provided to illustrate the validity of the presented analysis.

Notation. For an n-vector, |·| denotes the Euclidean norm. For
a matrix A = (aij)n×m, |A| denotes the induced matrix norm.
For functions ui : [0,Di] × R → R and Ui : R → R, i =

1, . . . ,m, we denote ∥ui(t)∥ =

(∫ Di
0 ui(x, t)2dx

)1/2
and ∥Ui(t)∥ =(∫ t

t−Di
Ui(θ )2dθ

)1/2
, respectively.

2. System description and control law design

Consider the following system:

Ẋ(t) = AX(t) +

m∑
i=1

biUi(t − Di) + Bδ(t), (1)

where X ∈ Rn is the state, U1, . . . ,Um ∈ R are control inputs,
D1, . . . ,Dm are input delays satisfying (without loss of generality)
0 < D1 ≤ · · · ≤ Dm, A is an n × n matrix, bi, i = 1, . . . ,m are n-
dimensional vectors, B is an n×lmatrix, and δ ∈ Rl is disturbance.
We assume that the pair ([A, b1, . . . , bm]) is stabilizable. In the
delay-free case of system (1), we choose the following linear
feedback control law:

U i(t) = kTi X(t), (2)

where each vector ki ∈ Rn, i = 1, 2, . . . ,m, is selected so that
A +

∑m
i=1 bik

T
i is Hurwitz.

We consider the following basic predictor-feedback control
law:

Ui(t) =
ci

ci + 1
U i(t) = U∗

i (t), (3)

where ci > 0, i = 1, 2, . . . ,m, are sufficiently large constants and
U i(t) are given in Tsubakino et al. (2016) as

U i(t) = kTi Pi(t), i = 1, 2, . . . ,m, (4)

where the predictors are given by

P1(t) = eAD1X(t)

+

∫ t

t−D1

eA(t−s)
m∑
i=1

biUi(s − Di,1)ds, (5)

P2(t) = eA1D2, 1P1(t)

+

∫ t

t−D2,1

eA1(t−s)
m∑
i=2

biUi(s − Di,2)ds, (6)

...

Pm(t) = eAm−1Dm,m−1Pm−1(t)

+

∫ t

t−Dm,m−1

eAm−1(t−s)bmUm(s)ds, (7)

the matrices Ai, i = 1, . . . ,m, are

Ai = A +

i∑
j=1

bjkTj , (8)

and Dj, i = Dj − Di, for all i ≤ j ≤ m, with D0 = 0.

3. Gain-robustness and inverse optimality of the basic predic-
tor feedback controller

We first prove that the closed-loop system (1), (3)–(7) is input-
to-state stable (ISS) and we then show the inverse optimality of
(3)–(7), when the ci’s are sufficiently large.1

3.1. ISS of the basic predictor-feedback controller

Theorem 1. Consider the closed-loop system consisting of (1) with
the control laws (3)–(7). There exists c∗ > 0 such that the closed-
loop system is ISS provided that c = mini=1,2,...,m ci > c∗, that is,
there exist positive constants ψ, λ, and ζ > 0, such that for all
c > c∗,

Ω(t) ≤ ψΩ(0)e−λ t
+ ζ

(
sup
0≤τ≤t

|δ(τ )|
)2

, for all t ≥ 0, (9)

with

Ω(t) = |X(t)|2 +

m∑
i=1

∥Ui(t)∥2. (10)

Remark 1. Theorem 1 shows that the basic predictor-feedback
controller (3)–(7), besides being input-to-state stabilizing with
respect to additive plant disturbances, is robust to constant mul-
tiplicative uncertainty affecting the system’s inputs. Moreover, if
the control law (3) is modified to

Ui(t) =
ci + 1
ci

U i(t), i = 1, 2, . . . ,m, (11)

then the result of Theorem 1 still holds. In other words, the basic
predictor-feedback controller is robust to uncertainties that are
both larger and smaller than unity. Since such a result could be
established employing identical arguments to the proof of The-
orem 1, its proof is omitted as the superfluous technical details
would only distract the reader from the substance of the result,
which is robustness of predictor feedback.

Remark 2. When the control gains ki
ci

ci+1 in (3) are replaced by
ki + △i where |△i|, i = 1, 2, . . . ,m, are sufficiently small, the
result of Theorem 1 still holds. The proof of such a result would
be almost identical to that of Theorem 1.

Remark 3. The closed-loop system in Tsubakino et al. (2016) is
not the same with the closed-loop system (1) under (3)–(7), with
δ ≡ 0, and thus, the result in Theorem 1 cannot follow combining
the exponential stability result in Tsubakino et al. (2016) with the
results in, for example, Dashkovskiy and Mironchenko (2013). It
should be also noted that another advantage of performing the
stability analysis adopting the constructive strategy of the proof
of Theorem 1 is that one obtains explicit input-to-state stability

1 Considering the system of retarded functional differential equations derived
by differentiating (3)–(7) and assuming that the initial conditions Ui(s), −Di ≤

s ≤ 0, i = 1, . . . ,m, are absolutely continuous and compatible with the feedback
laws (3)–(7), existence and uniqueness of an absolutely continuous solution
(X(t), U1(t), . . . , Um(t)), t ≥ 0, i = 1, . . . ,m to the closed-loop system (1),
(3)–(7), may follow, e.g., from Theorem 5.2 in Kolmanovskii and Myshkis (1999)
(for a measurable and bounded disturbance δ).
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estimates, as estimate (9) with the specific constants ψ , λ, and
ζ , which is a result of the explicit construction of a Lyapunov
functional.

The proof of Theorem 1 is based on a series of technical
lemmas, which are presented next, together with transport PDE
representation for the actuator state, which allows us to re-write
system (1) as

Ẋ(t) = AX(t) +

m∑
i=1

biui(0, t) + Bδ(t) (12)

∂tui(x, t) = ∂xui(x, t), x ∈ (0,Di), i = 1, 2, . . . ,m (13)
ui(Di, t) = Ui(t), i = 1, 2, . . . ,m, (14)

where

ui(x, t) = Ui(x + t − Di), i = 1, 2, . . . ,m. (15)

In this notation, we define

p1(x, t) = eAxX(t)

+

∫ x

0
eA(x−α)

m∑
i=1

biui(α, t)dα, 0 ≤ x ≤ D1, (16)

p2(x, t) = eA1(x−D1)p1(D1, t)

+

∫ x

D1

eA1(x−α)
m∑
i=2

biui(α, t)dα, D1 ≤ x ≤ D2, (17)

...

pm(x, t) = eAm−1(x−Dm−1)pm−1(Dm−1, t) +

∫ x

Dm−1

eAm−1(x−α)

×bmum(α, t)dα, Dm−1 ≤ x ≤ Dm, (18)

and thus, with this representation, (4) becomes

U i(t) = kTi pi(Di, t), i = 1, 2, . . . ,m. (19)

From (16)–(18), it is also easy to see that

p1(0, t) = X(t), (20)
p2(D1, t) = p1(D1, t), (21)

...

pm(Dm−1, t) = pm−1(Dm−1, t). (22)

Lemma 1. The backstepping transformations of ui(x, t), i =

1, . . . ,m, defined as

ω1(x, t) = u1(x, t) − kT1p1(x, t), x ∈ [0,D1] (23)

ω2(x, t) = u2(x, t) −

{
kT2p1(x, t), x ∈ [0,D1]

kT2p2(x, t), x ∈ [D1,D2]
(24)

...

ωm(x, t) = um(x, t) −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
kTmp1(x, t), x ∈ [0,D1]

kTmp2(x, t), x ∈ [D1,D2]

...

kTmpm(x, t), x ∈ [Dm−1,Dm],

(25)

where pi(x, t), i = 1, 2, . . . ,m, are given by (16)–(18), together
with the control laws (3), (19), (16)–(18) transform system (12)–
(14) to the following ‘‘target system’’:

Ẋ(t) =

(
A +

m∑
i=1

bikTi

)
X(t) +

m∑
i=1

biωi(0, t) + Bδ(t) (26)

∂tω1(x, t) = ∂xω1(x, t) − kT1e
AxBδ(t), x ∈ (0,D1) (27)

∂tω2(x, t) = ∂xω2(x, t)

−

⎧⎪⎪⎨⎪⎪⎩
kT2e

AxBδ(t), x ∈ (0,D1),
kT2e

A1(x−D1)eAD1Bδ(t)

−
kT2

c1+1 e
A1(x−D1)b1kT1p1(D1, t),
x ∈ (D1,D2)

(28)

...

∂tωm(x, t) = ∂xωm(x, t)

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kTme
AxBδ(t), x ∈ (0,D1),

kTme
A1(x−D1)eAD1Bδ(t)

−
kTm

c1+1 e
A1(x−D1)b1kT1p1(D1, t), x ∈ (D1,D2)

...

kTme
Am−1(x−Dm−1)eAm−2Dm−1,m−2

×eAm−3Dm−2,m−3 · · · eA1D2,1eAD1Bδ(t)
−
∑m−2

j=1

{
kTme

Am−1(x−Dm−1)eAm−2Dm−1,m−2

×eAm−3Dm−2,m−3 · · · eAjDj+1,j
bjkTj
cj+1pj(Dj, t)

}
−kTme

Am−1(x−Dm−1)
bm−1kTm−1
cm−1+1 pm−1(Dm−1, t),

x ∈ (Dm−1,Dm)

(29)

ωi(Di, t) = −
1

ci + 1
kTi pi(Di, t), i = 1, 2, . . . ,m. (30)

Proof. The space is limited, the proof is omitted.

Lemma 2. The inverse backstepping transformations of (23)–(25)
are defined by

u1(x, t) = ω1(x, t) + kT1q1(x, t), x ∈ [0,D1] (31)

u2(x, t) = ω2(x, t) +

{
kT2q1(x, t), x ∈ [0,D1]

kT2q2(x, t), x ∈ [D1,D2]
(32)

...

um(x, t) = ωm(x, t) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kTmq1(x, t), x ∈ [0,D1]

kTmq2(x, t), x ∈ [D1,D2]

...

kTmqm(x, t), x ∈ [Dm−1,Dm],

(33)

where

q1(x, t) = eAmxX(t) +

∫ x

0
eAm(x−α)

×

m∑
i=1

biωi(α, t)dα, 0 ≤ x ≤ D1, (34)

q2(x, t) = eAm(x−D1)q1(D1, t) +

∫ x

D1

eAm(x−α)

×

m∑
i=2

biωi(α, t)dα, D1 ≤ x ≤ D2, (35)

...

qm(x, t) = eAm(x−Dm−1)qm−1(Dm−1, t) +

∫ x

Dm−1

eAm(x−α)

×bmωm(α, t)dα, Dm−1 ≤ x ≤ Dm. (36)

Proof. It can be deduced using similar arguments to the corre-
sponding proof in Tsubakino et al. (2016) (Appendix B).
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Lemma 3. There exist positive scalars γj and ιj (independent of the
cj’s), j = 1, 2, . . . ,m, such that

sup
x∈[Dj−1,Dj]

⏐⏐pj(x, t)⏐⏐2 ≤ γj

(
|X(t)|2 +

m∑
i=1

∥ui(t)∥2

)
, (37)

sup
x∈[Dj−1,Dj]

⏐⏐qj(x, t)⏐⏐2 ≤ ιj

(
|X(t)|2 +

m∑
i=1

∥ωi(t)∥2

)
, (38)

for all j = 1, 2, . . . ,m.

Proof. Noting that 0 < D1 ≤ · · · ≤ Dm and using Cauchy–Schwarz
inequality, from (16)–(18) and (34)–(36), we can derive (37) and
(38), respectively, with

γj = 2j+1e2|Aj−1|Dj · · · e2|A|D1

×max
{
1, (m − j + 1)Dj, j−1 max

i=j,...,m
{|bi|2}

}
· · ·

×max
{
1,mD1 max

i=1,...,m
{|bi|2}

}
, (39)

with j = 1, 2, . . . ,m, A0 = A, and

ιj = 2j+1e2|Am|(D1+D2+···+Dj)

×max
{
1, (m − j + 1)Dj,j−1 max

i=j,...,m
{|bi|2}

}
· · ·

×max{1,mD1 max
i=1,...,m

{|bi|2}}, j = 1, 2, . . . ,m. (40)

Lemma 4. There exist positive constants α1 and α2 (independent
of the ci’s) such that

|X(t)|2 +

m∑
i=1

∥ωi(t)∥2
≤ α1

(
|X(t)|2 +

m∑
i=1

∥ui(t)∥2

)
, (41)

|X(t)|2 +

m∑
i=1

∥ui(t)∥2
≤ α2

(
|X(t)|2 +

m∑
i=1

∥ωi(t)∥2

)
. (42)

Proof. With Lemma 3 and relations (23)–(25), (31)–(33), we get
(41), (42) with α1 = 2

(
1 +

∑m
j=1 Dj|kj|2γj

)
and α2 =

2
(
1 +

∑m
j=1 Dj|kj|2ιj

)
, respectively.

Proof of Theorem 1. Since A +
∑m

i=1 bik
T
i is Hurwitz, for any

positive definite matrix S, there exists a unique positive definite
matrix M such that

M

(
A +

m∑
i=1

bikTi

)
+

(
A +

m∑
i=1

bikTi

)T

M = −S. (43)

Consider a Lyapunov functional

V (t) = X(t)TMX(t) +
a1
2

m∑
i=1

∫ Di

0
exωi(x, t)2dx, (44)

where the constant a1 > 0 is determined later on. The deriva-
tive of V (t) along the solutions of system (26)–(30) satisfies the
following equality:

V̇ (t) = −XT (t)SX(t) + 2XT (t)M
m∑
i=1

biωi(0, t)

+2XT (t)MBδ(t)

+a1
m∑
i=1

∫ Di

0
exωi(x, t)∂tωi(x, t)dx. (45)

With (26)–(30), we compute the following integral for each i:∫ Di

0
exωi(x, t)∂tωi(x, t)dx

=

∫ D1

0
exωi(x, t)

(
∂xωi(x, t) − kTi e

AxBδ(t)
)
dx

+

∫ D2

D1

exωi(x, t)
(
∂xωi(x, t) − kTi e

A1(x−D1)eAD1Bδ(t)

+
kTi

c1 + 1
eA1(x−D1)b1kT1p1(D1, t)

)
dx

...

+

∫ Di

Di−1

exωi(x, t)
(
∂xωi(x, t) − kTi e

Ai−1(x−Di−1)

×eAi−2Di−1,i−2eAi−3Di−2,i−3 · · · eA1D2,1eAD1Bδ(t)
)
dx

+

i−2∑
j=1

∫ Di

Di−1

(
exωi(x, t)kTi e

Ai−1(x−Di−1)eAi−2Di−1, i−2

eAi−3Di−2, i−3 · · · eAjDj+1, j
bjkTj
cj + 1

pj(Dj, t)

)
dx

+

∫ Di

Di−1

(
exωi(x, t)kTi e

Ai−1(x−Di−1)

×
bi−1kTi−1

ci−1 + 1
pi−1(Di−1, t)

)
dx. (46)

We estimate the first term of the right-hand side of (46) as∫ D1

0
exωi(x, t)(∂xωi(x, t) − kTi e

AxBδ(t))dx

≤
1
2
eD1ωi(D1, t)2 −

1
2
ωi(0, t)2 −

1
4

∫ D1

0
exωi(x, t)2dx

+D1eD1 |ki|2e2|A|D1 |B|2|δ(t)|2. (47)

Similarly, for the second term of the right-hand side of (46), we
have∫ D2

D1

exωi(x, t)
(
∂xωi(x, t) − kTi e

A1(x−D1)eAD1Bδ(t)

+
kTi

c1 + 1
eA1(x−D1)b1kT1p1(D1, t)

)
dx

≤
1
2
eD2ωi(D2, t)2 −

1
2
eD1ωi(D1, t)2 −

1
4

∫ D2

D1

exωi(x, t)2dx

+2D2,1eD2 |ki|2e2|A1|D2e2|A|D1 |B|2|δ(t)|2

+2D2,1eD2
|ki|2

(c1 + 1)2
e2|A1|D2 |b1|2|k1|2|p1(D1, t)|2. (48)

For the general lth term of (46), we get

Γl =

∫ Dl

Dl−1

exωi(x, t)
(
∂xωi(x, t) − kTi e

Al−1(x−Dl−1)

×eAl−2Dl−1,l−2eAl−3Dl−2,l−3 · · · eA1D2,1eAD1Bδ(t)
)
dx

+

l−2∑
j=1

∫ Dl

Dl−1

(
exωi(x, t)kTi e

Al−1(x−Dl−1)eAl−2Dl−1,l−2

×eAl−3Dl−2,l−3 · · · eAjDj+1,j
bjkTj
cj + 1

pj(Dj, t)

)
dx +
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Dl−1

exωi(x, t)kTi e
Al−1(x−Dl−1)

bl−1kTl−1

cl−1 + 1
pl−1(Dl−1, t)dx

≤
1
2
eDlωi(Dl, t)2 −

1
2
eDl−1ωi(Dl−1, t)2

−
1
4

∫ Dl

Dl−1

exωi(x, t)2dx + lDl,l−1eDl |ki|2e2|Al−1|Dl,l−1

×e2|Al−2|Dl−1,l−2 · · · e2|A|D1 |B|2|δ(t)|2

+

l−2∑
j=1

(
lDl,l−1eDl |ki|2e2|Al−1|Dl, l−1e2|Al−2|Dl−1,l−2 · · ·

×e2|Aj|Dj+1,j
|bj|2|kj|2

(cj + 1)2
|pj(Dj, t)|2

)
+ lDl,l−1eDl |ki|2

×e2|Al−1|Dl,l−1
|bl−1|

2
|kl−1|

2

(cl−1 + 1)2
|pl−1(Dl−1, t)|2, (49)

for all l = 3, . . . , i. Recalling (30), from (47), (48), (49), we have∫ Di

0
exωi(x, t)∂tωi(x, t)dx

≤
1
2
eDi

1
(ci + 1)2

|ki|2|pi(Di, t)|2 −
1
2
ωi(0, t)2

−
1
4

∫ Di

0
exωi(x, t)2dx + ςi|δ(t)|2

+2D2,1eD2
|ki|2

(c1 + 1)2
e2|A1|D2 |b1|2|k1|2|p1(D1, t)|2 + · · ·

+lDl,l−1eDl |ki|2
l−1∑
j=1

(
e2|Al−1|Dl,l−1e2|Al−2|Dl−1,l−2 . . .

×e2|Aj|Dj+1,j
|bj|2|kj|2

(cj + 1)2
|pj(Dj, t)|2

)
+ · · ·

+iDi,i−1eDi |ki|2
i−1∑
j=1

(
e2|Ai−1|Di,i−1e2|Ai−2|Di−1,i−2 . . .

×e2|Aj|Dj+1,j
|bj|2|kj|2

(cj + 1)2
|pj(Dj, t)|2

)
(50)

where

ςi = D1eD1 |ki|2e2|A|D1 |B|2 + 2D2,1eD2 |ki|2e2|A1|D2e2|A|D1 |B|2

+ · · · + iDi,i−1eDi |ki|2e2|Ai−1|Di,i−1

×e2|Ai−2|Di−1,i−2 . . . e2|A|D1 |B|2. (51)

Denoting

c = min
i=1,2,...,m

{ci}. (52)

ρi =
1
2
eDi |ki|2γi + 2D2,1eD2 |ki|2e2|A1|D2 |b1|2|k1|2|γ1

+lDl,l−1eDl |ki|2
l−1∑
j=1

e2|Al−1|Dl,l−1e2|Al−2|Dl−1,l−2 · · ·

×e2|Aj|Dj+1,j |bj|2|kj|2γj + · · ·

+iDi,i−1eDi |ki|2
i−1∑
j=1

e2|Ai−1|Di,i−1e2|Ai−2|Di−1,i−2 . . .

×e2|Aj|Dj+1,j |bj|2|kj|2|γj, (53)

with the help of (37), (42), (50), we finally get∫ Di

0
exωi(x, t)∂tωi(x, t)dx

≤
α2

(c + 1)2
ρi

(
|X(t)|2 +

m∑
i=1

∥ωi(t)∥2

)
−

1
2
ωi(0, t)2

−
1
4

∫ Di

0
exωi(x, t)2dx + ςi|δ(t)|2, (54)

for all i = 1, 2, . . . ,m. With (54), it can be deduced from (45) that

V̇ (t) ≤ −
λmin(S)

2
XT (t)X(t)

+
4mλmax(M2)
λmin(S)

max
i=1,2,...,m

{
|bi|2

} m∑
i=1

ωi(0, t)2

+
4λmax(MBBTM)

λmin(S)
|δ(t)|2

+
α2a1

(c + 1)2

(
|X(t)|2 +

m∑
i=1

∥ωi(t)∥2

)
m∑
i=1

ρi

−
1
2
a1

m∑
i=1

ωi(0, t)2 −
a1
4

m∑
i=1

∫ Di

0
exωi(x, t)2dx

+a1|δ(t)|2
m∑
i=1

ςi. (55)

Let

a1 =
8mλmax(M2)
λmin(S)

max
i=1,2,...,m

{
|bi|2

}
+ 1. (56)

With (55), we get

V̇ (t) ≤ −

(
λmin(S)

2
−

α2a1
(c + 1)2

m∑
i=1

ρi

)
|X(t)|2

−

(
a1
4

−
α2a1

(c + 1)2

m∑
i=1

ρi

)
m∑
i=1

∥ωi(t)∥2

+

(
4λmax(MBBTM)

λmin(S)
+ a1

m∑
i=1

ςi

)
|δ(t)|2. (57)

For c > c∗, where

c∗
=

√
2α2

∑m
i=1 ρi max

{
a1

λmin(S)
, 2
}

√
1 − µ

, (58)

for some 0 < µ < 1, we get

V̇ (t) ≤ −µ min
{
λmin(S)

2
,
a1
4

}(
|X(t)|2 +

m∑
i=1

∥ωi(t)∥2

)

+

(
4λmax(MBBTM)

λmin(S)
+ a1

m∑
i=1

ςi

)
|δ(t)|2. (59)

Moreover, from (44), we have

min
{
λmin(M),

a1
2

}(
|X(t)|2 +

m∑
i=1

∥ωi(t)∥2

)
≤ V (t)

≤ max
{
λmax(M),

a1eDm

2

}(
|X(t)|2 +

m∑
i=1

∥ωi(t)∥2

)
, (60)
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and thus, from (59), (60), it holds that

V̇ (t) ≤ −λV (t) + ν|δ(t)|2, (61)

with

λ =

µ min
{
λmin(S)

2 ,
a1
2

}
max

{
λmax(M), a1eDm

2

} , (62)

ν =
4λmax(MBBTM)

λmin(S)
+ a1

m∑
i=1

ςi. (63)

Combining (15), (41), (42), (60), and (61), we get (9) with

ζ =
α2ν

λmin
{
λmin(M), a12

} , ψ =

α1α2 max
{
λmax(M), a1e

Dm
2

}
min

{
λmin(M), a12

} .

3.2. Inverse optimality of the basic predictor-feedback controller

Theorem 2. Consider system (1) together with the control laws (3)–
(7). There exist c∗∗

≥ c∗ and d∗∗ > 0, such that for all c > c∗∗ and
d > d∗∗, the control laws (3)–(7) minimize the cost functional

J = sup
δ∈Ξ

lim
t→∞

(
2βV (t) +

∫ t
0

(
L(τ ) + a1β

∑m
i=1

eDiUi(τ )2

ci

−dβ|δ(τ )|2
)
dτ
)
, (64)

where L is a functional of (X(t),U1(θ1), . . . ,Um(θm)), t − Di ≤ θi ≤

t, i = 1, . . . ,m, such that

L(t) ≥ βχΩ(t), (65)

for an arbitrary β > 0 and some χ > 0, and where a1, V ,
Ω are given by (56), (44), (10), respectively, with Ξ being the
set of l-dimensional vector-valued linear bounded functionals of
(X(t),U1(θ1), . . . ,Um(θm)), t − Di ≤ θi ≤ t, i = 1, . . . ,m.

Remark 4. Although cost functional (64) is not as general as a
respective cost functional that would be employed in a direct
optimal control approach, it is a meaningful cost since it puts
quadratic penalties both on the control efforts and the distur-
bances, as well as on the overall infinite-dimensional state of
the system (via the term L, which is lower bounded by Ω), and
it also incorporates a terminal penalty. Moreover, the (inverse)
optimality result in Theorem 2, is derived without needing to
solve complicated operator Riccati equations and it provides an
optimal value function that is actually a Lyapunov functional for
the closed-loop system. Finally, note that inverse optimality also
implies certain gain margin guarantees as it is evident in the
present case from relation (3), which may be seen as a perturbed
version of the nominal controller (4).

Proof of Theorem 2. Denote

Θi(t) =

∫ D2

D1

exωi(x, t)
kTi

c1 + 1
eA1(x−D1)b1kT1p1(D1, t)dx

+ · · ·

+

∫ Di

Di−1

i−2∑
j=1

(
exωi(x, t)kTi e

Ai−1(x−Di−1)eAi−2Di−1,i−2

×eAi−3Di−2,i−3 · · · eAjDj+1,j
bjkTj
cj + 1

pj(Dj, t)

)
dx

+

∫ Di

Di−1

exωi(x, t)kTi e
Ai−1(x−Di−1)

×
bi−1kTi−1

ci−1 + 1
pi−1(Di−1, t)dx, (66)

for i = 2, . . . ,m, and

ηi(t) = −

∫ D1

0
exωi(x, t)kTi e

Axdx

−

∫ D2

D1

exωi(x, t)kTi e
A1(x−D1)eAD1dx − · · ·

−

∫ Di

Di−1

exωi(x, t)kTi e
Ai−1(x−Di−1)eAi−2Di−1,i−2

×eAi−3Di−2,i−3 · · · eA1D2,1eAD1dx, (67)

for i = 1, 2, . . . ,m. Choose

L(t) = −a1β
m∑
i=1

eDi

ci + 1
U i(t)2 + a1β

m∑
i=1

ωi(0, t)2

+a1β
m∑
i=1

∫ Di

0
exωi(x, t)2dx + 2βXT (t)SX(t)

−4βXT (t)M
m∑
i=1

biωi(0, t) − 2a1β
m∑
i=1

Θi(t)

−
β

d

⏐⏐⏐⏐⏐2XT (t)MB + a1
m∑
i=1

ηi(t)B

⏐⏐⏐⏐⏐
2

, (68)

where a1, U i, S are given by (56), (4), (43), respectively, and d >
0, and β is an arbitrary positive scalar. From (66), (67), using
Cauchy–Schwarz inequality, after some calculations, we have

Θi(t) ≤
1
8

∫ Di

0
exωi(x, t)2dx

+
α2

(c + 1)2
ρi

(
|X(t)|2 +

m∑
i=1

∥ωi(t)∥2

)
, (69)

for i = 1, 2, . . . ,m, where c , ρi, α2 are given by (52), (53), (42),
respectively, and

|ηi(t)|2 ≤ ie2D1

∫ D1

0
ωi(x, t)2dx

∫ D1

0

⏐⏐kTi eAx⏐⏐2 dx
+ie2D2,1

∫ D2

D1

ωi(x, t)2dx
∫ D2

D1

⏐⏐kTi eA1(x−D1)eAD1
⏐⏐2 dx

+ · · ·

+ie2Di,i−1

∫ Di

Di−1

ωi(x, t)2dx
∫ Di

Di−1

⏐⏐kTi eAi−1(x−Di−1)

×eAi−2Di−1,i−2eAi−3Di−2,i−3 · · · eA1D2,1eAD1
⏐⏐2 dx

≤ Λi

∫ Di

0
ωi(x, t)2dx, (70)

where

Λi = max{D1e2D1 ,D2,1e2D2,1 , . . . ,Di,i−1e2Di,i−1}

×i|ki|2e
2
∑i−1

j=0 |Aj|Dj+1, j , (71)

for i = 1, 2 . . . ,m.
Noting from (56) that a1 > 8mλmax(M2)

λmin(S)
maxi=1,2,...,m |bi|2, by (4),

(37), (42), (67)–(71), after some tedious calculations, we get

L(t) ≥ β

(
3λmin(S)

2
−

2a1α2

(c + 1)2

m∑
i=1

ρi

−a1α2

m∑
i=1

γieDi

ci + 1
−

8
d
λmax(MBBTM)

)
|X(t)|2
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+β

(
3a1
4

−
2a1α2

(c + 1)2

m∑
i=1

ρi

−a1α2

m∑
i=1

γieDi

ci + 1
−

2a21|B|
2mξ

d

)
m∑
i=1

∥ωi(t)∥2, (72)

with ξ = max{Λ1, . . . ,Λm}. Choose c∗∗ and d∗∗ such that

c∗∗
≥ max

{
a1α2 max

{
2

λmin(S)
,
4
a1

}
×

(
2

m∑
i=1

ρi +

m∑
i=1

γieDi
)
, c∗

}
, (73)

where c∗ is defined in (58), and

d∗∗
≥ max

{
16λmax(MBBTM)

λmin(S)
, 8a1|B|2mξ

}
. (74)

By (15), (42), (73) and (74), we get from (72) that

L(t) ≥

βmin
{
λmin(S)

2 ,
a1
4

} (
|X(t)|2 +

∑m
i=1 ∥Ui(t)∥2

)
α2

, (75)

and hence, (65) is achieved with χ =
min

{
λmin(S)

2 ,
a1
4

}
α2

. With the
help of (45), (46) and using (66), (67), from (68), we have

L(t) = −a1β
m∑
i=1

eDi

ci + 1
U i(t)2 + a1β

m∑
i=1

eDiωi(Di, t)2

−2βV̇ (t) + 4βXT (t)MBδ(t) + 2a1β
m∑
i=1

ηi(t)Bδ(t)

−
β

d

⏐⏐⏐⏐⏐2XT (t)MB + a1
m∑
i=1

ηi(t)B

⏐⏐⏐⏐⏐
2

. (76)

Furthermore, using the fact that ωi(Di, t) = Ui(t) − U i(t), for all
i = 1, 2, . . . ,m, and relation (3) we get

L(t) = a1β
m∑
i=1

eDi
(
Ui(t) − U∗

i (t)
)2

−a1β
m∑
i=1

eDi
2Ui(t)U∗

i (t)
ci

+ a1β
m∑
i=1

eDi
U∗

i (t)
2

ci

−2βV̇ (t) + 4βXT (t)MBδ(t) + 2a1β
m∑
i=1

ηi(t)Bδ(t)

−
β

d

⏐⏐⏐⏐⏐2XT (t)MB + a1
m∑
i=1

ηi(t)B

⏐⏐⏐⏐⏐
2

. (77)

Denoting

Π (δ(τ )) = 4βXT (τ )MBδ(τ ) + 2a1β
m∑
i=1

ηi(τ )Bδ(τ )

−
β

d

⏐⏐⏐⏐⏐2XT (τ )MB + a1
m∑
i=1

ηi(τ )B

⏐⏐⏐⏐⏐
2

−dβ|δ(τ )|2, (78)

by (77), (78), completing the squares, it can be deduced that∫ t

0

(
L(τ ) + a1β

m∑
i=1

eDiUi(τ )2

ci
− dβ|δ(τ )|2

)
dτ

= −2βV (t) + 2βV (0)

+a1β
∫ t

0

m∑
i=1

eDi

(
1 +

1
ci

)
(Ui(τ ) − U∗

i (τ ))
2dτ

+

∫ t

0
Π (δ(τ ))dτ . (79)

With the help of (79), we get from (64) that

J = 2βV (0) + a1β
∫

∞

0

m∑
i=1

eDi

(
1 +

1
ci

)
(Ui(τ ) − U∗

i (τ ))
2dτ

+ sup
δ∈Ξ

∫
∞

0
Π (δ(τ ))dτ . (80)

With (78), it can then be deduced that

Π (δ(τ )) = −β

⏐⏐⏐⏐⏐ 1√
d

(
2XT (τ )M + a1

m∑
i=1

ηi(τ )

)
B (81)

−
√
dδT (τ )

⏐⏐⏐2 ≤ 0,

with Π (δ) = 0, if and only if δ = δ∗, where

δ∗
=

1
d
BT

(
2MTX + a1

m∑
i=1

ηTi

)
. (82)

Thus,

sup
δ∈Ξ

∫
∞

0
Π (δ(τ ))dτ = 0, (83)

and the ‘worst case’ disturbance is given by (82). With (80) and
(83), we get

J = 2βV (0) + a1β
∫

∞

0

∑m
i=1 e

Di
(
1 +

1
ci

)
(Ui(τ ) − U∗

i (τ ))
2dτ .

(84)

So the minimum of (84) is reached with

Ui(t) = U∗

i (t), (85)

for i = 1, 2, . . . ,m, and is such that

J = 2βV (0). (86)

4. Example

Consider system (1) with the matrices A, b1, b2, and B given by

A =

( 0 1 0
−3 4 0
−6 2 3

)
, b1 =

( 0
1
0

)
,

b2 =

( 0
−1
1

)
, B =

( 0
2
3

)
.

(87)

It is easy to see that (A, b1, b2) is controllable, but neither (A, b1)
nor (A, b2) alone are controllable. The nominal gains k1, k2 are
(see (Tsubakino et al., 2016)

k1 =
(

4 −10 0
)T
, k2 =

(
6 −2 −6

)T
, (88)

which render A + b1kT1 + b2kT2 Hurwitz. Assume that there are
delays D1 = 0.2 and D2 = 0.5 in the control inputs U1 and U2,
respectively. The proposed control laws are

U1(t) =
c1

c1 + 1

(
4 −10 0

)
P1(t), (89)

U2(t) =
c2

c2 + 1

(
6 −2 −6

)
P2(t), (90)
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Fig. 1. Response of the states X1, X2, X3 with the control laws (89)–(92) for
initial conditions as X1(0) = 0, X2(0) = 1, X3(0) = 0.5, and U1(θ ) = 0, for
θ ∈ [−0.2, 0], U2(θ ) = 0, for θ ∈ [−0.5, 0].

where ci > 0, i = 1, 2, are sufficiently large, and Pi(t), i = 1, 2,
are given as

P1(t) = eAD1X(t) (91)

+

∫ t

t−D1

eA(t−s)(b1U1(s) + b2U2(s − D2 + D1))ds,

P2(t) = eA1(D2−D1)P1(t) +

∫ t

t−D2+D1

eA1(t−s)b2U2(s)ds, (92)

with A1 = A+b1kT1 . The obtained allowable lower bound for c1, c2,
within Theorem 1, may be somewhat conservative, yet, it may be
computed explicitly using (58) as c∗

= 904.6266, with µ = 0.1
and S = 10I .

Responses of the states under the control laws (89)–(92) are
shown for c1 = c2 = 1000 in Fig. 1, whereas the control efforts
are shown in Fig. 2. Disturbance δ(t) in Fig. 1 comprised randomly
generated numbers from a uniform distribution in [−1, 1]. The
closed-loop system is ISS.

Fig. 2. Control laws (89)–(92) for c1 = c2 = 1000.

5. Conclusions

We consider multi-input linear systems, with distinct input
delays in each individual input channel, under the predictor-
feedback controller from Tsubakino et al. (2016). We established
(1) ISS with respect to additive plant disturbances, (2) robustness
to constant multiplicative perturbations appearing at the system
inputs, and (3) inverse optimality with respect to a meaningful
differential game problem. Our analyses are based on the avail-
ability of a backstepping transformation. Future research includes
extensions to nonlinear systems as well as extensions to systems
with more complex actuator dynamics than pure transport PDEs,
with the results in Bekiaris-Liberis and Krstic (2011, 2014), Cai
and Krstic (2015, 2016), as potential starting points.
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