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SUMMARY

In this paper, a delay-compensated bang-bang control design methodology for the control of the nozzle
output flow rate of screw extruder-based three-dimensional printing processes is developed. A geometri-
cal decomposition of the screw extruder in a partially and a fully filled regions allows to describe the
material convection in the extruder chamber by a one-dimensional hyperbolic partial differential equation
(PDE) coupled with an ordinary differential equation. After solving the hyperbolic PDE by the method
of characteristics, the coupled PDE–ordinary differential equation’s system is transformed into a nonlinear
state-dependent input delay system. The aforementioned delay system is extended to the non-isothermal case
with the consideration of periodic fluctuations acting on the material’s convection speed, which represent
the process variabilities due to temperature changes in the extruder chamber, resulting to a nonlinear system
with an input delay that simultaneously depends on the state and the time variable. Global exponential sta-
bility of the nonlinear delay-free plant is established under a piecewise exponential feedback controller that
is designed. By combining the nominal, piecewise exponential feedback controller with nonlinear predictor
feedback, the compensation of the time-dependent and state-dependent input delay of the extruder model
is achieved. Global asymptotic stability of the closed-loop system under the bang-bang predictor feedback
control law is established when certain conditions related to the extruder design and the material properties,
as well as to the magnitude and frequency of the materials transport speed variations, are satisfied. Simula-
tions results are presented to illustrate the effectiveness of the proposed control design. Copyright © 2017
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Additive manufacturing (AM) has a promising future and demonstrates its effectiveness in various
applications involving tissue engineering [1, 2], chemical engineering [3], thermoplastics [4], metal
[5], and ceramic [6] material’s fabrication. Functional three-dimensional (3D) objects with complex
geometrical shape can be produced in a short time without the needs of tools thanks to the computer
aid design that drastically reduces the product’s development procedure. Currently, the most pop-
ular plastics 3D printers are based on fused deposition modeling (FDM) [7–9] and syringe-based
extrusion [4, 10] technologies (Figure 1).

In these processes, biodegradable polymers are transported, heated, and pressurized in an extruder
chamber before being dropped on a platform, one horizontal thin layer at a time, until the complete
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Figure 1. (a) Fused deposition modeling, (b) syringe-based extrusion, and (c) screw extrusion processes [4].
[Colour figure can be viewed at wileyonlinelibrary.com]

3D part is built such that it closely resembles the original computer aid design model. One of the
crucial point that is not commonly addressed in the existing literature of extrusion-based 3D print-
ing is controlling of the start and stop of extrusion on demand. A hybrid extrusion force-velocity
modeling and tracking control for the fabrication of functionally graded material parts is developed
in [11] using a first-order differential equation that describes the plunger dynamic in a syringe-
based extrusion process. Some extents of that approach are proposed by [12] with a robust tracking
of the extrusion force to recover constant flow disturbances, whereas [13] considers an unknown
transfer function gain with an adaptive control strategy. Several issues regarding on FDM are dis-
cussed in [14, 15] and references therein, including the potential clogging because of agglomerate
formation at the nozzle, appearance of bubbles, density inhomogeneity, tracking of short time-
scale process variations, and prediction of anomalies such as material overflow and underflow for
diverse applications. Thermal control is left out of most prior studies that are essentially based on
empirical models.

In this paper, we are interested in the flow control issues related to the recent advances of 3D
printing technology for which a screw extrusion (SE) process is utilized. In SE, the rotating screw
allows a continuous feeding mechanism and generates a sufficiently high pressure in the extruder
chamber, increasing, as a result, the printing speed. In addition, the screw motion extends the mixing
capabilities of the system and thereby reduces drastically the risk of potential clogging at the nozzle
while improving the homogeneity of the extruded filament [4, 16]. The SE process with granular
material moves beyond the restrictions of FDM and does not require filament-shaped raw materials
to operate. Consequently, it enables the processing of a broader range of raw materials and permits
an easy recycling of wasted plastic during extrusion [4, 16–20]. In a recent review of melt extrusion
AM processes [21], the authors emphasize that the traditional extrusion manufacturing processes
that use a granular or pelletized feedstock with a screw-type extruder is theoretically feasible, but no
such mechanism is used in a commercially available AM system. In such processes, the need to con-
trol the start and stop of the extrusion process on demand calls for advanced control methodologies
that are capable of enhancing the final product’s quality in an industrial level. Even if experimental
results demonstrate the effectiveness of SE [4, 16], the challenging control problems arising in such
applications are actually poorly investigated.

In the present article, a generic and dynamical model of a homogeneous melt SE process derived
from mass and momentum balance laws [22–30] is used for the design of a delay-compensated
bang-bang controller that permits a fast and accurate control of the flow at the nozzle output. The
model consists of a one-dimensional partial differential equation (PDE) that is defined on a time-
varying spatial domain whose dynamics obeys to an ordinary differential equation (ODE). The
transformation of the coupled PDE–ODE system into a state-dependent input delay system, which
describes the dynamics of the material convection in the extruder chamber, is achieved after solving
the PDE by the method of characteristics [24, 26]. In order to also account for potential periodic
fluctuations of the materials transport speed when processing granular pellets [31], because of the
thermal energy that is supplied into the system from the heater of the extruder and the mechanical
shearing effect by the rotation of the screw, the state-dependent input delay model is extended to a
nonlinear system with an input delay that depends simultaneously on the state and the time variable
(see [32, 33] and [34] for the treatment of systems with time-dependent and state-dependent delays).
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The choice of the fluctuation model is motivated by several studies, in which, external disturbances
entering the process from various sources and internal flow instabilities are identified to generate
periodic oscillations in the process [31, 35–38].

In [26], a delay-compensated bang-bang control law is developed for the control of the nozzle
output flow rate of an isothermal SE process, achieving GES of the delay-free plant at any given
setpoint. By combining the nominal, piecewise exponential feedback controller [26] with nonlinear
predictor feedback, which is extended from the state-dependent input delay case [32] to the case
in which the vector field and the delay function depend explicitly on time, the compensation of
the time-dependent and state-dependent input delay of the non-isothermal SE model is achieved.
Global asymptotic stability (GAS) of the closed-loop system under the delay-compensated bang-
bang controller is established when certain conditions, related to the extruder design and the material
properties, as well as to the periodic fluctuations, are satisfied. Several simulations results are pre-
sented including the case in which there is uncertainty in the value of the periodic variations of the
material’s transport speed.

In [33], the design is based only on a constant-delay predictor, and thus, it does not aim at com-
pensating a time-dependent and state-dependent delay, which, in contrast, is the case in the present
paper. For this reason, also the stability analysis in [33] is performed differently because it aims at
proving robustness of the constant-delay predictor to an unknown time and state-dependent delay
rather than to prove stability of the predictor-feedback controller that compensates a known time-
dependent and state-dependent delay. (Note that, although the delay-compensating design for a
time-dependent and state-dependent delay may be presented in [33], it is neither employed nor its
stability properties are analyzed.)

This paper is organized as follows: The screw extruder mechanisms and the bizone model of
the extruder consisting of the transport PDE coupled with the ODE for the moving interface is
discussed in Section 2. In Section 3, the transformation of the coupled PDE–ODE system into a
state-dependent input delay system by computing the PDE solution by the method of characteristics
is presented, and it is then extended to a nonlinear system with a time-dependent and state-dependent
input delay. The control of the delay-free plant with a piecewise exponential bang-bang-like control
law is described in Section 4. In Section 5, we design the predictor feedback control law for nonlin-
ear systems with time-dependent and state-dependent delay acting on the input. The application of
the predictor feedback control law to the screw extruder model is presented in Section 6. The paper
ends with simulations, including a discussion on the robustness properties of a state-dependent input
delay compensator to time-varying perturbations acting on the vector field and the delay function,
in Section 7.

2. THREE-DIMENSIONAL PRINTING BASED ON SINGLE-SCREW EXTRUDERS

2.1. Extrusion process description and structural decomposition of the extruder into a partially
and a fully filled zone

A screw extruder is divided into one or several conveying zones (transport zones), melting zones
(for material fusion) and mixing zones in which the extruded melt is submitted to high pressure,
before its eviction through the nozzle [22, 24, 25, 30, 39–43]. The net flow rate at the extruder
nozzle depends mainly on the material flow in the longitudinal direction given by one-dimensional
heat and mass transport equations [44, 45]. Another particularity of these processes is that they can
be divided in geometric regions that are partially and fully filled called partially filled zone (PFZ)
and fully filled zone (FFZ), respectively (Figure 2). The PFZ, which is submitted to an atmospheric
pressure, is a conveying region, and the flow in the FFZ is determined by the pressure gradient
building up in that region due to the nozzle resistance. These two zones are coupled by an interface
that moves according to the volume of material accumulated in the FFZ. Basically, the moving
interface is located at the point where the pressure gradient passes from zero to a non null value.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3727–3757
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Figure 2. Bizone model of a screw extruder.

2.2. Mass and momentum balance of an extrusion process

2.2.1. Mass balance of the partially filled zone. The PFZ is defined on the time-varying spatial
interval .x.t/; L/, x.t/, being the length of the FFZ and L the extruder length (Figure 2). The mass
balance in this area can be expressed using the fraction of the effective volume between a screw
element and the barrel (Veff) that is occupied by the extruded material, namely, the filling ratio u.
Considering an incompressible homogeneous mixture with constant density �0 and viscosity �, the
following mass conservation equation is deduced

@tu.´; t/ D �N0@´u.´; t/; .t; ´/ 2 .R
C; .x.t/; L// (1)

u.L; t/ D U.t/; (2)

where N0 is the constant screw speed and � the uniform pitch of the screw. The boundary condition
u.L; t/ is defined assuming the continuity of the flow at the inlet ¹´ D Lº

U.t/ D
Fin.t/

�0N0Veff
; (3)

where Fin.t/ is the feeding rate. Physically, the term �0N0Veff in (3) is the maximum pumping
capacity of the screw.

2.2.2. Momentum balance of the fully filled zone. The FFZ whose filling ratio is equal to one is
defined on the spatial domain .0; x.t//, where the coordinate ¹´ D 0º is the extruder’s end. The FFZ
flow depends on the pressure gradient that appears in this region, resulting to backward or forward
flow. The momentum balance, which is derived from Navier–Stokes equations under stationary
conditions, yields the pressure gradient

@´P.´; t/ D ��
�0VeffN0 � Fd .t/

B�0
; (4)
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for all .t; ´/ 2 .RC; .0; x.t///, where B is a coefficient of pressure flow. The net flow rate Fd .t/, in
the case of a Poiseuille flow is expressed with the help of the nozzle conductance Kd , the viscosity
�, and the pressure at the nozzle P.0; t/ as

²
Fd .t/ D

Kd
�
�P.t/;

�P.t/ D P.0; t/ � P0:
(5)

2.2.3. Mass balance of the fully filled zone. The FFZ mass balance leads to an ODE that describes
the time evolution of its length. This length denoted by x.t/ determines the location of the small
transfer region that is assimilated to the point at which the pressure changes from the atmospheric
pressure P0 to a different value [22, 25, 42, 43, 46]

dx.t/

dt
D
�0N0Veffu.x.t/; t/ � Fd .t/

�0Seff.1 � u.x.t/; t//
; (6)

where Seff is the available section and Veff D �Seff.

2.2.4. Coupling relations at the partially filled zone–fully filled zone interface. The coupling
condition is formulated imposing the pressure continuity at the spatial coordinate x.t/

P.x�; t / D P.xC; t / D P0: (7)

Integrating the pressure gradient equation (4), the net flow rate defined in (5) is written as

Fd .t/ D
KdVeffN0�0x.t/

B�0 CKdx.t/
: (8)

Substituting (5) in (6) and using (8), Equation (6) for the length of the FFZ is written as

dx.t/

dt
D ��N0

Kdx.t/ � .B�0 CKdx.t// u.x.t/; t/

.B�0 CKdx.t// .1 � u.x.t/; t//
: (9)

3. FROM MASS BALANCE EQUATIONS OF THE EXTRUDER TO A DELAY SYSTEM

3.1. Isothermal delay system model

The bizone model (1), (2), and (9) can be reduced to a nonlinear state-dependent input delay system
[32]. The characteristic solutions of (1) with respect to the boundary condition (2) are

u.´; t/ D U

�
t �

L � ´

�N0

�
: (10)

Substituting (10) into (9), we derive the following nonlinear system

Px.t/ D �N0

�
�

Kdx.t/

.B�0 CKdx.t// .1 � U .t �Ds.x.t////
C

U .t �Ds.x.t///

.1 � U .t �Ds.x.t////

�
; (11)

for all U.t/ 2 Œ0; 1/. The state-dependent input delay function is denoted as

Ds.x.t// D
L � x.t/

�N0
: (12)

A detailed derivation of the ODE (11) and an extensive description of the screw extruder model for
3D printing is given in [26].

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3727–3757
DOI: 10.1002/rnc



3732 M. DIAGNE, N. BEKIARIS-LIBERIS AND M. KRSTIC

3.2. Delay system representation including process variabilities

As stated in [38], the SE process always exhibits complex and periodic fluctuations that arise from
the effects of external disturbances entering the process from various sources, as well as internal
flow instabilities.‡ Internal instabilities such as cyclic breakup and buildup of the solid bed in the
melting, flow impurities, and nozzle flow instabilities are also well known as potential sources of
process variabilities [38].

Although the prediction of flow instability with good reliability for any given system has not been
achieved so far, for specific applications, several results state the oscillatory nature of extruders [31,
35, 36, 38, 47]. For instance, [38] insists on the periodic fluctuations that are damped out above
a critical frequency with the expansion of the FFZ length, and [31] uses a simplified model of an
extrusion cooker to study the effects of the low-frequency periodic instability for a fluid whose
viscosity is significantly reduced by the action of shear forces, considering a fully filled extruder
and perturbing the constant flow velocity with a known sinusoidal signal. Other significant results
include [37], which describes the process fluctuations using inferential monitoring of the screw load
torque. Studying a virgin and recycled high-density polyethylene material, [37] concludes that the
periodic fluctuations occur at the screw speed frequency and are significantly higher for the virgin
material than the recycled material at all screw speed except 10 rpm.

In this section, we account for such process variabilities, which might be provoked by temperature
changes using the analytical framework developed in [31]. Specifically, knowing that the process
is subject to oscillations, we consider them as fluctuations acting on the convection speed of the
PFZ. From the equivalence between the original PDE–ODE system (1)–(6) and the state-dependent
input delay system (11) and (12), we directly account for this model of fluctuations by modifying
(11). We consider the following model in which the transport speed c.t/ is subjected to the periodic
variabilities mentioned earlier.

Px.t/ D c.t/

�
�

�2x.t/

.1C �2x.t// .1 � U .t �D.t; x.t////
C

U .t �D.x.t///

.1 � U .t �D.t; x.t////

�
; U.t/ 2 Œ0; 1/;

(13)
where

�1 D �N0; (14)

�2 D
Kd

B�0
; (15)

and,

D.t; x.t// D
L � x.t/

c.t/
; (16)

c.t/ D �1.1C � cos.!t//; (17)

where 0 < � < 1 is a positive constant and ! is the mean value of the angular frequency of the
periodic fluctuations. The restriction on � is motivated by the fact that the PDE–ODE model (1)–
(6) is valid only when the convection speed is strictly positive, and relaxing this contraint leads to
a configuration in which the screw is pumping the material downwards, and thus, the material is
flowing in the opposite direction inside the barrel.

4. CONTROL OF THE DELAY-FREE SYSTEM WITH A ‘BANG-BANG’ CONTROL LAW

4.1. Review of the literature on screw extrusion control

Because of the strong interaction between the mass, energy, and momentum balances that occurs
in SE processes, the design of efficient model-based controllers for such processes is still difficult

‡ Under certain conditions, the amplitude of those fluctuations is large enough to cause undesirable effects such as surging
or spurt flow, bamboo fracture, sharkskin, and other forms of product nonuniformity.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3727–3757
DOI: 10.1002/rnc



BANG-BANG CONTROL OF A SCREW EXTRUDER FOR 3D PRINTING 3733

to achieve. So far, most of the control-oriented models of extruders are derived from empirical and
oversimplified models of limited operational range. Control strategies for control of the temperature
profile, output flow rate, or pressure dynamics are proposed for traditional extrusion processes based
on empirical models, including PID, predictive controllers, and lead–lag compensators [48–52].

To our knowledge the only controllers based on the bizone model (1)–(6) are proposed in [24,
26–28]. Particularly, in [27], a Lyapunov-based controller, based on the indirect measurement of the
output pressure, achieves the stabilization of the output flow rate to a desired setpoint. A predictive
controller is designed in [26], which, in fact, is the inspiration for the present paper. We mention that
the exact controllability and the well-posedness of the bizone model (1)–(6) are also treated in [29].

4.2. ‘Bang-bang’ controller design with piecewise exponential functions

The starting point of the delay system controller design consists of the construction of a nonlinear
control law that stabilizes the delay-free system

Px.t/ D c.t/

�
�

�2x.t/

.1C �2x.t// .1 � U .t//
C

U .t/

.1 � U .t//

�
; U.t/ 2 Œ0; 1/: (18)

For � < 1, the time-varying speed of the material transport c.t/ is strictly positive, and the open-loop
stabilizing control law of the delay-free plant (18) is given by

v.x�/ D
�2x
�

1C �2x�
; 8x� 2 Œ0; L/: (19)

This statement is directly derived considering the Lyapunov function V D je.t/j, where e.t/ D
x.t/ � x�.

For the feedback stabilization of (18), we consider two exponential functions [26]:

� For x.t/ � x�, a left-exponential function

vl.x; x
�/ D v.x�/C .vmax � v.x

�//
1 � eal.x

�/.x�x�/

1 � e�al.x�/.x�/
; (20)

where al.x
�/ > 0 is the gain of the left exponential control law. The function (20) takes values

in Œv.x�/; vmax�, where vmax < 1 is the maximal value of the inlet filling ratio, namely, the
maximal feeding capacity of the extruder. Therefore, vl.0/ D vmax allows to set the inlet flow
at its maximum capacity for a rapid refill action when the extruder is empty.
� For x.t/ � x�, a right-exponential function

vr.x; x
�/ D v.x�/ � v.x�/

1 � e�ar.x
�/.x�x�/

1 � e�ar.x�/.L�x�/
; (21)

where ar.x
�/ > 0 is the gain of the right exponential control law. The function (21) belongs

into the interval Œ0 ; v.x�/�, and the control action stops radically the flow when the extruder is
completely filled, namely, vr.L/ D 0.

4.3. Extension of the ‘bang-bang’ control law on the whole domain .0; L/

Next, we introduce the characteristic function of the domains Œ0; x�� and Œx�; L� and write the
extended control law as

v.x; x�/ D vl.x; x
�/h.x� � x/C vr.x; x

�/h.x � x�/; (22)

where h is the Heaviside function.
A continous slope function at the setpoint x� denoted by S.x�/ is imposed to extend the left

and the right exponential controllers (20) and (21), respectively, into the differentiable piecewise
exponential feedback law (22). The slope function is defined as S.x/ D �dv.x;x

�/
dx

(the minus sign
is conventional). More precisely, the key point of the design is to define a free parameter that may be

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3727–3757
DOI: 10.1002/rnc



3734 M. DIAGNE, N. BEKIARIS-LIBERIS AND M. KRSTIC

specified by the user as the value of slope function at the equilibrium S.x�/, under some restrictions
that will be emphasized in this section. It is clear that, equiting the assigned value S.x�/ to both left
and right slope functions of (20) and (21), we can easily derive the following relations:

S.x�/ D
al.x

�/.vmax � v.x
�//

1 � e�al.x�/x�
; (23)

S.x�/ D
ar.x

�/v.x�/

1 � e�ar.x�/.L�x�/
: (24)

Equations (23) and (24) are both transcendental and admit numerical solutions, namely, the suitable
exponential parameters needed to the left and to the right of the setpoint to achieve the differentia-
bility of the controller (22). A unique solution al.x

�/ > 0 (respectively, ar.x
�/ > 0) exists if the

linear and exponential functions of al.x
�/ (respectively, ar.x

�/) have a strictly positive intersection
(Figure 3), given by ²

 l.al.x
�// D al.x

�/.vmax � v.x
�//

	l.al.x
�// D S.x�/.1 � e�al.x

�/x�/:
(25)

The sufficient condition, for a given x�, for the given solution to (23) to be unique is

d l.0/

dal
<
d	l.0/

dal
: (26)

It follows that S.x�/ should satisfy

S.x�/ >
vmax � v.x

�/

x�
: (27)

Similarly, we deduce that for a unique solution of (24) to exist (Figure 3), it must hold that

d r.0/

dar
<
d	r.0/

dar
; (28)

where ²
 r.ar.x

�// D ar.x
�/v.x�/

	r.ar.x
�// D S.x�/.1 � e�ar.x

�/.L�x�//:
(29)

Figure 3. Gains al and ar of the bang-bang controller. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 4. Control function for different Smin and setpoints. [Colour figure can be viewed at
wileyonlinelibrary.com]

Hence,

S.x�/ >
v.x�/

L � x�
: (30)

Finally, the minimal value of the setpoint slope Smin.x
�/ above which there exist unique gains

al.x
�/, and ar.x

�/ that ensure the differentiability of the extended control law (22) on .0; L/ is
given by

Smin.x
�/ D

1
1

�2x�
C 1

max

8<
:
vmax

�
1C 1

�2x�

�
� 1

x�
I

1

L � x�

9=
; : (31)

The speed of the controller or its ‘aggressiveness’ increases with the rise of the setpoint slope S.x�/.
As it is illustrated in Figure 4, with the characteristics of the control law for the setpoints x� D
0:02 m and x� D 0:16 m with different values of the setpoint slope value S.x�/.

Theorem 1
For any setpoint x� 2 Œ0; L/ and for any chosen setpoint slope S.x�/ 2 R satisfying S.x�/ �
Smin.x

�/, where Smin.x
�/ is given by (31), taking the control gains .al.x

�/; ar.x
�// as solutions of

al.x
�/.vmax � v.x

�// � S.x�/.1 � e�al.x
�/x�/ D 0; (32)

ar.x
�/v.x�/ � S.x�/.1 � e�ar.x

�/.L�x�// D 0: (33)

The closed-loop system consisting of (18) with an initial condition x0 2 Œ0; L/ and the extended
control law (20)–(22) is GES at x D x�.

Proof
We rewrite the delay-free plant (18) as

Pe.t/ D
c.t/ .U.t/ � v.x�//

.1 � v.x�// .1C �2.e.t/C x�// .1 � U.t//
�

c.t/�2e.t/

1C �2.e.t/C x�/
; (34)

where e.t/ D x.t/ � x�. The control law (22) is written as

v.x.t/; x�/ D v.e.t/C x�; x�/: (35)
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The extended control law (22) is a decreasing function of x and consequently for all x.t/ 2 Œ0; L/,

sgn
�
v.e.t/C x�; x�/ � v.x�; x�/

	
D � sgn .e.t// : (36)

Moreover, 0 � v.x; x�/ � vmax < 1 and v.x�; x�/ D v.x�/ is defined as the setpoint open-loop
control (19). Next, we introduce the following Lyapunov function

V D je.t/j: (37)

Hence,

PV D Pe.t/ sgn .e.t// ; (38)

and with the help of (36), by choosing U.t/ D v.x.t/; x�/, (38) is written as

PV D �˛.t/V � ˇ.t/; (39)

where ˛.t/ > 0 and ˇ.t/ � 0 for all x 2 Œ0; L/ and U 2 Œ0; 1/. The functions ˛.t/ and ˇ.t/ are
given by

˛.t/ D
c.t/�2

1C �2.e.t/C x�/
(40)

ˇ.t/ D
1

.1 � v.e.t/C x�; x�//
�
c.t/ jv.e.t/C x�; x�/ � v.x�/j

.1 � v.x�// .1C �2.e.t/C x�//
; (41)

where c.t/ � �1 .1 � �/, for all t � 0. Therefore,

PV � �
�1.1 � �/

1C �2L
V: (42)

From (42), the closed-loop system is exponentially stable at x� 2 Œ0; L/ for all x0 2 Œ0; L/. �

5. PREDICTOR FEEDBACK CONTROL FOR NONLINEAR SYSTEMS WITH
TIME-DEPENDENT AND STATE-DEPENDENT INPUT DELAY

5.1. Predictor feedback design

We consider the following nonlinear system with a time-dependent and state-dependent input delay§

Px.t/ D f .t; x.t/; U.	.t/// (43)

	.t/ D t �D .t; x.t// ; (44)

where x 2 Rn, U W Œ	.t0//;1/ ! R, t � t0 � 0, D 2 C 1 .RC �RnIRC/, and f W RC � Rn �
R! Rn is locally Lipschitz with f .t; 0; 0/ D 0 for all t � 0, and there exists a class K1 function
Ǫ such that

jf .t; x; U / j � Ǫ .jxj C jU j/ : (45)

Let us define 
.t; x/ as the nominal stabilizing feedback control law for the delay free plant Px.t/ D
f .t; x.t/; U.t// : The predictor feedback control law for system (43) and (44) is

U.t/ D 
.�.t/; P.t//; (46)

§ As it is illustrated in Sections 2 and 3, such systems may derived from transport equations of the form (1) evolving on
time-varying domains. Other examples of transport equations evolving on time-varying domains can be found in [53].
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where for all 	.t/ � � � t

P.�/ D x.t/C

Z �

�.t/

f .�.s/; P.s/; U.s//

1 � F.�.s/; P.s/; U.s//
ds; (47)

�.�/ D t C

Z �

�.t/

1

1 � F.�.s/; P.s/; U.s//
ds; (48)

and

F.�.�/; P.�/; U.�// D
@D

@t
.�.�/; P.�//C

@D

@x
.�.�/; P.�// � f .�.�/; P.�/; U.�//: (49)

When simulating the predictor feedback controller (46)–(48), at each time step, the ODE for the
system (43) and (44) must be solved (using, e.g., a simple Euler scheme), and the length of the
delay must be computed (e.g., as the integer part of N.i/ D D.i;x.i//

�
, say NN.i/, where � is the

discretization step). The predictor is then computed by integrating simultaneously the two integral
relations (47) and (48) at each time step, using a numerical integration scheme. For instance, with
the left endpoint rule of integration, we obtain

P.i/ D x.i/C �

kDi�1X
kDi� NN.i/

f .�.k/; P.k/; U.k//

1 � F.�.k/; P.k/; U.k//
; (50)

�.i/ D i C �

kDi�1X
kDi� NN.i/

1

.1 � F.�.k/; P.k/; U.k//
: (51)

The prediction of the state at the time when the current control will have an effect on the state is
defined as

P.t/ D x .t CD.�.t/; P.t/// ; (52)

where the prediction time is defined as

�.t/ D t CD.�.t/; P.t//; (53)

which is derived from the inversion of the time variable t ! t�D.t; x.t// in t ! tCD.�.t/; P.t//.
Differentiating (52) and (53) and using (43), we arrive at

dx.�.t//

dt
D f .�.t/; x.�.t//; U.t//

d�.t/

dt
; (54)

and

P�.t/ D
1

1 � F.�.t/; P.t/; U.t//
; (55)

where F is defined in (49). Finally, the implicit integral relations (47) and (48) are derived by
integrating (54) and (55) on the delay interval Œ	.t/; ��.

The key point of the predictor feedback design is the feasibility condition defined as

Fc W
@D

@t
.�.�/; P.�//C

@D

@x
.�.�/; P.�// f .�.�/; P.�/; U.�// < c; (56)

for all � � t0�D.t0; x.t0// and some c 2 .0; 1/. Condition (56) guarantees that the feedback control
action can reach the plant, namely, the delay rate is bounded by unity and that the denominator of
the predictor (47) and the prediction time (48) is positive. We refer the reader to [32] for details on
the predictor feedback control design and analysis for systems with state-dependent input delay.
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5.2. Stability analysis

Assumption 1
There exist a continuously differentiable function R, class K1 functions 
1, 
2, 
3, and a positive
constant � such that for the plant Px D f .t; x; !/, the following holds


1.jxj/ � R.t; x/ � 
2.jxj/ (57)

@R.t; x/

@t
C
@R.t; x/

@x
f .t; x; !/ � �R.t; x/C 
3.j!j/; (58)

for all .x; !/T 2 RnC1 and t � t0.

Assumption 1 guarantees that system Px D f .t; x; !/ is strongly forward complete with respect
to !.

Assumption 2
There exist a locally Lipschitz function 
 2 .Œt0;1/ �RnIR/ and a function O� 2 K1 such that
the system plant Px D f .t; x; 
.t; x/C !/ is input-to-state stable with respect to !, with Px D
f .t; x; 
.t; x/C !/ periodic with respect to t , and 
 is uniformly bounded with respect to its first
argument, that is,

j
.t; x/j � O�.jxj/ 8 t � t0: (59)

Assumption 3
D 2 C 1.RC�R

nIRC/, @D@t and @D
@x

are locally Lipschitz (to guarantee the uniqueness of solutions),
and there exist class K1 functions 
4, 
5, 
6 and non-negative constants c1, c2, c3, with c3 < c,
for some 0 < c < 1, such that

D.t; x.t// � c1 C 
4.jxj/; (60)

ˇ̌̌
ˇ@D@x .t; x.t//

ˇ̌̌
ˇ � c2 C 
6.jxj/; (61)

ˇ̌̌
ˇ@D@t .t; x.t//

ˇ̌̌
ˇ � c3 C 
5.jxj/: (62)

The definitions of strong forward completeness and input-to-state stability are those from [54],
and [55], respectively.

Theorem 2
Consider the closed-loop system consisting of the plant (43) and the control law (46)–(48). Under
Assumptions 1–3, there exist a class K function  RoA and a class KL function ˇs such that for all
initial conditions for which U is locally Lipschitz on the interval Œt0 �D.t0; x.t0//; t0/ and which
satisfy

�.t0/ <  RoA.c � c3/; (63)

for some 0 < c < 1, where

�.t/ D jx.t/j C sup
t�D.t;x.t//���t

jU.�/j; (64)

there exists a unique solution to the closed-loop system with x Lipschitz on Œt0;1/, U Lipschitz on
.t0;1/, and the following holds

�.t/ � ˇs .�.t0/; t � t0/ ; (65)
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for all t � t0. Furthermore, there exists a positive constant � such that for all t � t0,

D.t; x.t// � � (66)

ˇ̌̌
ˇdD.t; x.t//dt

ˇ̌̌
ˇ � c: (67)

Proof of Theorem 2
Estimates (65)–(67) follow by Lemmas 1–8 (Appendix). Existence and uniqueness of a solution x
Lipschitz on Œ0;1/ follows from the proof of theorem 1 in [32] (page 7). It remains to show that U
is Lipschitz on .t0;1/. Because U.t/ D 
 .�.t/; P.t// and

PP .t/ D
f .�.t/; P.t/; 
.�.t/; P.t///

1 � F.�.t/; P.t/; 
 .�.t/; P.t///
; (68)

P�.t/ D
1

1 � F.�.t/; P.t/; 
 .�.t/; P.t///
; (69)

F.�.t/; P.t// D
@D

@x
D .�.t/; P.t// f .�.t/; P.t/; 
 .�.t/; P.t////C

@D

@t
.�.t/; P.t// ; (70)

for t � t0, the Lipschitzness of @D
@t

, @D
@x

, 
 and f , and (56) ensure that the right-hand side of (68) and
(69) are Lipschitz and consequently .P; �/ 2 .C 1.t0;1/ � C 1.t0;1//. From the Lipschitzness of

, it follows that U is Lipschitz. �

6. APPLICATION TO THE EXTRUSION PROCESS MODEL

From now, we recall the predictor feedback (46)–(48) for the compensation of the time-dependent
and state-dependent input delay in system (13) that we rewrite formally as

Px.t/ D f .t; x.t/; U .t �D.t; x.t//// ; (71)

f .t; x.t/; U.t// D �c.t/�.x.t/; U.t//; (72)

where D.t; x.t// and c.t/ are defined in (16) and (17), respectively, and for all U.t/ 2 Œ0; 1/

�.x.t/; U.t// D
�2x.t/

.1C �2x.t// .1 � U .t//
�

U .t/

1 � U .t/
; (73)

6.1. Verification of Assumptions 1–3 for the screw extrusion model

� Assumption 1: From the definitions of the functions � in (73) and f expressed in terms of the
error variable (34), we deduce from (17) that for all 0 � U � Um, with any Um < 1, and for
all x 2 Œ0;1/, 0 < � < 1, R.t; e/ D e2

2
satisfies

@R.t; e/

@e
fe.t; e; QU / �

�1.1C �/j QU jjej

.1 � v.x�// .1 � Um/
; (74)

where

fe.t; e; QU/ D f .t; e C x
�; QU C v.x�/// (75)

and

QU D U � v.x�/: (76)

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3727–3757
DOI: 10.1002/rnc



3740 M. DIAGNE, N. BEKIARIS-LIBERIS AND M. KRSTIC

Using Young’s inequality, we arrive at

@R.t; e/

@e
fe.t; e; QU / �

e2

2
C

�21 .1C �/
2

2.1 � v.x�//2 .1 � Um/
2
QU 2: (77)

From (77), choosing R.t; e/ D e2

2
and 
3. QU / D

.1C�/2

2.1�v.x�//2.1�Um/
2
QU 2, Assumption 1

is verified.
� Assumption 2: Taking 
.t; x/ D U.x; x�/ � v.x�/, where v.x; x�/ is defined in (22), the

existence of a classK1 function O� such that (59) holds, follows given that v.x; x�/ 2 C 1Œ0; L�.
Setting U D v.x; x�/C! and using (34) and (37), we deduce that for all ! � 1�!m, for any
�m such that !m > vmax, the following holds

PV .t/ � ��V.t/C
c.t/j!j sgn.e.t//

�.x�; e.t/; !/
(78)

�.x�; e.t/; !/ D .1 � v.x�//.1C �2.e.t/C x
�//.1 � v.e.t/C x�; x�/ � !/ (79)

� D
�1.1 � �/

1C �2L
: (80)

That is,

PV .t/ � ��V.t/C
2�1j!j

minj�.x�; e.t/; !/j
; (81)

and equivalently for v.e.t/C x�; x�/ 2 Œ0; vmax�,

PV � ��V C
2�1j!j

.1 � v.x�//.!m � vmax/
: (82)

Defining ˛.!/ 2 K1, such that

˛.!/ D
2�1j!j

.1 � v.x�//.!m � vmax/
; (83)

from (82), we have

PV .t/ � ��V.t/C ˛.!/: (84)

Finally, from (84), Assumption 2 holds.
� Assumption 3: From the delay function (16) and the fact that 0 < � < 1, we obtain that

min¹c.t/º D �1.1 � �/; and hence,

D.t; x/ D
L � x

c.t/
�

L

�1.1 � �/
(85)

ˇ̌̌
ˇ@D@x .t; x/

ˇ̌̌
ˇ D 1

c.t/
�

1

�1.1 � �/
(86)

and ˇ̌̌
ˇ@D@t .t; x/

ˇ̌̌
ˇ D �1�!j sin.!t/j

c2.t/
.L � x/ �

�!L

�1.1 � �/2
: (87)

Using (85)–(87), it is easy to verify that conditions (60)–(62) of Assumption 3 hold.
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6.2. Predictor feedback for the screw extrusion model

The predictive feedback controller based on the piecewise exponential feedback law (22) is given by

U.t/ D v .P.t// ; (88)

P.�/ D x.t/C

Z �

t�D.t;x.t//

f .�.s/; P.s/; U.s//

1 � F.�.s/; P.s/; U.s//
ds (89)

�.�/ D t C

Z �

t�D.t;x.t//

1

1 � F.�.s/; P.s/; U.s//
ds; (90)

for all t � D.t; x.t// � � � t . The function F defined in (49) for the system (71) and (72) is
computed with the help of (16) and (17) as

F.�.t/; P.t/; U.t// D
�1�! sin.!�.t//.L � P.t//

c2.t/

C �.P.t/; U.t//;

(91)

where �.P.t/; U.t// is defined in (73).
The parameters al.x

�/ and ar.x
�/ of the feedback control law (88) are the solutions of

(23) and (24) for an assigned slope function value at the setpoint that satisfies (31). P.t/ D
x .t CD.�.t/; P.t/// is the prediction of the state at the time when the current control will have
an effect on the state. Recall that the implicit integral relation (89) is derived from the inversion of
the time variable t ! t � D.t; x.t// in t ! t C D.�.t/; P.t// with the prediction time defined
as �.t/ D t CD.�.t/; P.t//. The key point of the design is the feasibility condition Fc defined in
(56), which ensures that the control action can reach the plant, namely, the delay rate is bounded by
unity. The a priori satisfaction of (56) depends on the magnitude � and the angular frequency ! of
the periodic instability and on the design parameters of the extruder.

Theorem 3
For any setpoint x� 2 .0; L/ and for any chosen setpoint slope S.x�/ 2 R satisfying S.x�/ �
Smin.x

�/, where Smin.x
�/ is given by (31) and any initial condition x0 2 Œ0; L/ and,

¹U0.�/ jU0.�/ 2 Œ0; Um�; for all � 2 Œ�D.t0; x0/; 0/º ; (92)

and any Um < 1, taking the control gains al.x
�/ and ar.x

�/ as solutions of (32) and (33), respec-
tively, the closed-loop system consisting of the plant (71)–(73) with state x.t/, together with the
control law (88)–(91), (22) with actuator state U.t C �/, � 2 Œ�D.t; x.t//; 0/, is GAS at x D x�,
U D v.x�/ if the parameters of the extruder model and the perturbation satisfy,

0 �
�!

.1 � �/2
<

�1�2

.1C �2L/2
; (93)

or,

�1�2

.1C �2L/2
<

�!

.1 � �/2
<
�1

L
; and �2 <

1

L
; (94)

or,

�1�2

.1C �2L/2
<

�!

.1 � �/2
<

4�1�2

.1C �2L/2
; and �2 >

1

L
; (95)

where �1 and �2 are defined in (14) and (15), respectively.
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Proof
The proof of Theorem 2 is based on the Lyapunov-like condition (56) that must be satisfied a priori
to guarantee the GAS property for any given x� 2 .0; L/. In the following, we compute the function
(49) for the time-dependent and state-dependent input delay model of the extruder (71)–(73), (16),
and (17) in order to establish that the feasibility region as it is defined by (56) is the entire physical
domain, namely, x 2 .0; L/ and U 2 Œ0; 1/. First, (56) is satisfied if

@D

@t
.t; x/C

@D

@x
.t; x/f .t; x; U / < 1: (96)

Using (87) and (86) together with (71)–(73), we rewrite (96) as

�1�! sin.!t/

c2.t/
.L � x/C �.x; U / < 1: (97)

The gradient of (73) with respect to the input U satisfies

rU�.x; U / D �
�2

.1C �2x/ .1 � U/
2
; (98)

and indeed, (73) is a strictly decreasing function of U Œ0; 1/, for all x.t/ 2 Œ0;1/ and

sup
U2Œ0;1/

�.x; U / D
�2x

.1C �2x/
: (99)

Next, with the help of (99) and (87), we deduce that condition (56) is satisfied if,

ƒ.x/ < 1 8x 2 Œ0; L�; (100)

where

ƒ.x/ D
�!.L � x/

�1.1 � �/2
C

�2x

.1C �2x/
: (101)

Taking the derivative of (101), we obtain

ƒ
0

.x/ D
�2

.1C �2x/2
�

�!

�1.1 � �/2
: (102)

Because ƒ
0

is a decreasing function with respect to x, for all x 2 Œ0; L�, from (102), three different
cases are possible for the sign of ƒ

0

, and thus also for the monotonicity of ƒ.

� Case 1: ƒ
0

.x/ > 08 x 2 Œ0; L�, that is, ƒ.x/ is strictly increasing with respect to x. Thus,
(100) is satisfied when

ƒ.L/ D
�2L

.1C �2L/
< 1: (103)

The function ƒ
0

.x/ is strictly positive for all Œ0; L� when

�!

.1 � �/2
<

�1�2

.1C �2L/2
: (104)

Because ! > 0 and 0 < � < 1, we obtain from (103) and (104) condition (93) of Theorem 3.
� Case 2: ƒ

0

.x/ < 0; 8 x 2 Œ0; L�, that is, ƒ.x/ is strictly decreasing with respect to x. Thus,

sup
x2Œ0;L�

ƒ.x/ D
�!L

�1.1 � �/2
: (105)

The function ƒ
0

.x/ is strictly negative for all x 2 Œ0; L� when
�!

.1 � �/2
> �1�2: (106)
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Hence, by combining (105) and (106), (100) is satisfied when

�1�2 <
�!

.1 � �/2
<
�1

L
: (107)

One should notice that (107) necessarily restricts �2 as

�2 <
1

L
: (108)

� Case 3: ƒ
0

.x/ > 0; 8 x 2 Œ0; x1� and ƒ
0

.x/ < 0; 8 x 2 Œx1; L�, thus ƒ
0

.x1/ D 0 and
ƒ.x/ admits a maximum at x D x1 (note that if ƒ

0

.0/ < 0, then ƒ
0

.x/ < 0 8 x 2 Œ0; L�).
One obtains

x1 D .1 � �/

s
�1

�2�!
�
1

�2
: (109)

Solution (109) is admissible if and only if x1 2 .0; L/, that is,

0 < .1 � �/

s
�1

�2�!
�
1

�2
< L; (110)

or, equivalently, if

�1�2

.1C �2L/2
<

�!

.1 � �/2
< �1�2: (111)

Moreover, using (109), one can conclude that (100) holds if

�!

.1 � �/2
<

4�1�2

.1C �2L/2
: (112)

For satisfying (111) and (112) simultaneously, we need to either impose (95) or condition (111)
together with condition �2 < 1

L
, which can be combined with conditions (107) and (108), into

one condition given by (94).

�

Remark 1
For given values for the parameters of the extruder, namely, �1, �2, and L, the condition (93) is
always satisfied if � or ! are sufficiently small. An increase of the magnitude of � causes a decrease
of the allowed ! and vice versa, as it is evident from (93)–(95). For given �1 and L, the maximum
bound of the perturbation parameters, namely, � or ! is expressed in (93) as

sup
�22R

²
�1�2

.1C �2L/2

³
D
�1

4L
; �2 D

1

L
: (113)

Larger variations of � and ! are possible, especially in the case in which �2 is small, as it is evi-
dent from (94) and (95). However, for very large �2, one can conclude from (93) and (95) that the
allowable size of � and ! is restricted. Moreover, from (93)–(95), one can conclude that the size
of the allowable fluctuations of the transport speed in � and ! is proportional to �1 and inversely
proportional to the extruder length L.

In physical terms, conditions (93)–(95) are mainly a correlation between the pressure and the
‘rotation’ flow, namely, �2 defined in (15) and �1 defined in (14), respectively. We recall the expres-
sion of the net flow rate defined in (8) that is an increasing function of �2 as it is shown in Figure 5.
Therefore, changes in �2, by manipulating Kd , B , or �0, the nozzle conductance, the screw resis-
tance, and the melt density, respectively, affect the output flow rate Fd . For example, an increase in
�2 by increasing the nozzle conductance Kd leads to an increase in the outflow rate. Note that Kd ,
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Figure 5. The nozzle flow rate is an increasing function of �2 [Colour figure can be viewed at
wileyonlinelibrary.com].

which defines the nozzle opening, is directly related to the printing resolution, namely, the accu-
racy of the printing process. A large nozzle opening leads to an extrusion of a filament with a large
diameter and consequently deteriorates the printer precision. Moreover, from (94) and (15), it can
be also seen that the ‘robustness’ of the controller depends on the material thickness, namely, the
mass density �0: A thicker material is less sensitive to large fluctuations of the transport speed under
the predictor feedback control law. The parameter B in the expression of �2 in (15) is given by

B D
WH 3

12
; (114)

whereH is the approximate depth of screw channel from the screw thread root to the barrel internal
surface and W is the width of screw channel. Consequently, changes in �2 because of the changes
in B affect also the parameter �1, because the screw pitch value � also depends directly on W .

Relations (93)–(95) show that an increase in �1, namely, an increase of the material convection
speed, by enabling a large screw pitch � or a high screw speed N0, improves the ‘robustness’ of
the controller in some way and allows for a system that supports broader changes of the convection
velocity in frequency and amplitude. Note that a sharp increase in the rotational screw speed N0
results in material overload and clogging problems and has a major effect on the residence time
that is the critical time during which the material should be heated to have good properties before
being evicted through the nozzle. Particulary, the extruded filament homogeneity is directly related
to the residence time and to the process of solidification after layers deposition in 3D printers.
In addition, an increase in �1 in the screw speed N0 increases the thermal energy in the extruder
chamber because of the material shearing and decreases the viscosity of the melt. In that case, a
rapid feeding of the extruder with granular material by applying a more aggressive ‘bang-bang’
control action absorbs the excess heat in the system. Maintaining a reasonable temperature inside
the barrel is essential because an excessive overheating of the system burns the polymer or produces
poor extrusion. Generally, the conventional extrusion processes are equipped with a cooling system
to compensate for the heat generated by the mechanical shearing effect that is proportional to the
screw speed.

In general, the nozzle and the screw designs are directly related to the predictor feedback control
design and for achieving high performances for the closed-loop system, the scale of the extruder
should be neatly chosen. For instance, the aggressiveness of the controller is influenced by the choice
of �2 because the minimum value of the slope at the setpoint Smin.x

�/ defined in (31) depends on
this parameter. Moreover, the entire process operates with an extruder head that moves very fast to
print filament lines layer upon layer on a moving platform. A sufficiently light extruder head with
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small nozzle openingKd and a small length L that operates at a sufficiently high screw speed N0 is
needed to ensure a high rate of extrusion with a high precision.

7. SIMULATIONS

7.1. Time-dependent and state-dependent input delay compensation

The setpoint is chosen as x� D 0:16 m that corresponds to a desired nozzle output flow rate as
indicated by Equation (8). The initial position of the moving interface is set to x0 D 0:1 m, the
total length of the extruder is L D 0:2 m, and the system is supposed to settle at x0 D 0:1 m at
the initial time. The value of the slope function is set to S.x�/ D Smin.x

�/C 30. The simulations
show the dynamics of the input filling ratio U.t/, the interface position x.t/, the predictor state
P.t/, and the delay function D.t; x.t//. Different cases including the open-loop dynamics, both
uncompensated and compensated delay control laws, are simulated for ¹� D 0:1; ! D 4 rad/sº and
¹� D 0:4; ! D 0:8º , as shown in Figures 6 and 7. It is clear that the uncompensated input leads to
oscillatory responses, and the compensated closed-loop control allows faster convergence than the
open-loop control.

Remark 2
We emphasize that the real time estimation of the delay can be achieved using a pressure sensor at
the nozzle, (5) and (8) and with the knowledge of the variabilities parameters � and !. In fact, in the
recent papers [56, 57], the implementation issue of predictor feedback is discussed in detail and var-
ious numerical schemes are developed for computation of predictor feedback laws. In applications
where the delay is not given explicitly as a function of measured quantities, such as, for example, in
spark-ignited engines [58], numerical schemes for the real-time computation of the delay should be
developed [58].

7.2. The state-dependent input delay compensator for the model with constant viscosity

The simulation results presented in Figure 8 show the stabilization of the model described by (11)
with the delay-compensated ‘bang-bang’ control law [26]. Defining (11) as

Px.t/ D f .x; U .t �Ds.x.t/// ; (115)

Ds.x.t// D
L � x.t/

�1
; (116)

Figure 6. Compensation of the time-dependent and state-dependent input delay (a). [Colour figure can be
viewed at wileyonlinelibrary.com]
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Figure 7. Compensation of the time-dependent and state-dependent input delay (b). [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 8. Compensation of the state-dependent input delay. [Colour figure can be viewed at
wileyonlinelibrary.com]

where

f .x.t/; U.t// D ��1�.x.t/; U.t//; (117)

�1 is the nominal transport velocity of the material defined in (14), and the function �.x.t/; U.t//
is given by (73). The predictor feedback controller is written as

U.t/ D v .Ps.t// ; (118)

Ps.t/ D x.t/C

Z t

t�Ds.x.t//

f .Ps.
/; U.
//

1 � Fs.Ps.
/; U.
//
d
; (119)

where for all t �Ds.x.t// � 
 � t ,

Fs.Ps.
/; U.
// D
@Ds

@x
.Ps.
//f .Ps.
/; U.
//: (120)

By specializing Theorem 3 to the case � D 0, it can be shown that the predictor feedback law
(118)–(120) renders system (115)–(117) GAS (in the physical domain) at any given equilibrium x�.
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7.3. Control with a state-dependent input delay compensator

We deal with the case in which the time variations of the transport speed are unknown and consider
the closed-loop system consisting of the plant (13) with an actual delay D.t; x.t//, given in (16),
(17), together with a state-dependent input delay predictor feedback defined by

U.t/ D v
�
OP .t/

�
; (121)

OP .t/ D x.t/C

Z t

t� OD.x.t//

Of . OP .s/; U.s//

1 � OF . OP .s/; U.s//
ds; (122)

where

OF . OP .s/; U.s// D
@ OD

@x
. OP .s// Of . OP .s/; U.s//: (123)

With an estimated delay function defined as

OD.x.t// D
L � x.t/

�N0
; (124)

and the nominal vector field,

Of .x.t/; U.t// D �1

�
�

�2x.t/

.1C �2x.t// .1 � U .t//
C

U .t/

1 � U .t/

�
; U.t/ 2 Œ0; 1/: (125)

More precisely, both the predictor state, OP .t/ and the delay function, OD.x.t//, are estimates of
the actual prediction state, namely, P.t/, and delay function, namely, D.t; x.t//, that are described
by (89) and (16), (17), respectively. For implementing the controller (121) and (122), the ‘actual’
feasibility condition, defined in (93)–(95) have to hold, in order to guarantee that the controller
actually ‘kicks in’. In addition, we assume that the following condition, which guarantees that
the denominator in (122) remains always positive (and hence, the controller remains bounded)
is satisfied

�2 OP .�/�
1C �2 OP .�/

�
.1 � U.�//

�
U.�/

.1 � U.�//
< 1; � 2 Œt � OD.x.t//; t �: (126)

Note that with strictly positive physical parameters B , �0, and Kd , and for U 2 Œ0; vmax�, relation
(126) is satisfied whenever OP .�/ 2 Œ0;1/, for all � 2 Œt � OD.x.t//; t �.

Figure 9. Robustness of the state-dependent input delay compensator. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 10. Feasibility condition: the delay rate is bounded by unity. [Colour figure can be viewed at
wileyonlinelibrary.com]

The simulation results in Figure 9 illustrate that the state-dependent input delay compensator can
handle small time-varying uncertainties on the vector field (125) and the delay function (124), as
described by (72) and (73) and (16) and(17), respectively. An increase in the necessary control effort
to drive the system to the setpoint is also denoted, and the rate of convergence decreases compared
with the time-dependent and state-dependent predictor feedback (88)–(90) shown in Figure 10.

7.4. Verification of the feasibility condition

As it is shown in Figure 10, the feasibility condition is satisfied in both presented simulation results.

8. CONCLUSIONS

This paper is devoted to the stabilization of an SE process. A coupled PDE–ODE model is used to
derive a state-dependent input delay system describing the melt convection in the extruder cham-
ber for an isothermal case. The extension of the aforementioned model to a non-isothermal case
is proposed introducing a periodic time-dependent function in the state-dependent input delay
function. Next, we design a predictor feedback controller to compensate the state-dependent and
time-dependent input delay and establish the GAS of any setpoint with respect to the physical
domain under physical and design restrictions. The delay compensator is constructed with a nominal
bang-bang-like controller that ensures the GES of the delay-free plant.

It is clear that the delay function model for the non-isothermal extrusion process should depend
on the rheological properties of the extruded polymer. In general, a fairly accurate estimation of
the material friction and the viscosity behavior is extremely hard to achieve in such processes
because of the change in material composition and the strong interaction between the heat and mass
transfer phenomena. An interesting future work would be to consider an unknown time-dependent
perturbation acting on the polymer convection speed. As it is shown in the simulation results, the
state-dependent compensator might be able to handle time-varying perturbations acting on the vec-
tor field and the delay function. The proof of the robustness properties of the state-dependent input
delay predictor is an interesting perspective.

Physical definition of the parameters

L D 200:10�3 m extruder length
N0 D 90 rpm screw speed
B D 9:3450 10�9 m4 geometric parameter
Fd D �� Kg s�1 net forward mass flow rate
Kd D 2:45 10

�5 kg nozzle conductance
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� D 10 10�3 m screw pitch
Seff D �� m2 effective area
Veff D �Seff m3 effective volume
� D �� Pa s�1 melt viscosity
�0 D 1240 Kg m�3 PLA melt density
� D �� – – amplitude of the perturbation
! D �� rad:s�1 frequency

APPENDIX

In the following, Lemmas 1–8 are presented for the proof of Theorem 2.

Lemma 1 (Backstepping Transformation of the Actuator State)
The infinite-dimensional backstepping transform of the actuator state given by

W.�/k D U.�/ � 
.�.�/; P.�//; (A-1)

for all 	.t/ � � � t , allows to transform the system (43) with the controller (47) and (46) into the
following target system

Px.t/ D f .t; x.t/; 
.t; x.t//CW.	.t// (A-2)

W.t/ D 0; (A-3)

where 	.t/ is defined in (44).

Proof
The proof of Lemma 1 is based on a direct verification considering P .	.t// D x.t/ and � .	.t// D
t in the original system (43). �

Lemma 2 (Inverse Backstepping Transformation)
The inverse of the infinite-dimensional backstepping transormation (A-1) is defined for all 	.t/ �
� � t by

U.�/ D W.�/C 
. N�.�/;….�//; (A-4)

with

….�/ D x.t/C

Z �

�.t/

f . N�.s/;….s/; 
. N�.s/;….s//CW.s//

1 � F. N�.s/;….s/;W.s//
ds (A-5)

F. N�.s/;….s/;W.s// D
@D

@t
. N�.s/;….s//C

@D

@x
. N�.s/;….s// f . N�.s/;….s/; 
. N�.s/;….s//CW.s//

(A-6)

N�.�/ D t C

Z �

�.t/

1

1 � F. N�.s/;….s/;W.s//
ds; (A-7)

where 	.t/ is defined in (44).

Proof
Direct verification considering that P.�/ D ….�/ and N�.�/ D �.�/ for all 	.t/ � � � t . We
refer to P.�/ as the plant-predictor system and ….�/ as the target-predictor system, respectively.
However, they play different roles because they are driven by different inputs (U vs. W ). �
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Lemma 3 (Stability of the Target System)
There exists a class KL function ˇ such that for all solutions of the system satisfying the feasibility
condition (56), the following holds:

„.t/ � ˇ .„.t0/; t � t0/ ; t � t0 (A-8)

„.t/ D jx.t/j C sup
�.t/���t

jW.�/j; (A-9)

where 	.t/ is defined in (44).

Proof
Under Assumption 2, from [59] and [60] (see also [61–63]), there exist a continuously differentiable
function S W RC �Rn ! RC and class K1 functions ˛1, ˛2, ˛3, ˛4 such that for any g > 0,

˛1.jx.t/j/ � S.t; x.t// � ˛2.jx.t/j/; (A-10)

PS.t; x.t// � �gS.t; x.t//C ˛3.jW.	.t//j/; (A-11)

with

PS.t; x.t// D
@S.t; x.t//

@t
C
@S.t; x.t//

@x
f .t; x.t/; 
.t; x.t//CW.	.t/// : (A-12)

Let us define a functional as

Lg;n.t/ D

Z t

�.t/

e2ng.�.�/�t/W.�/2nd�; (A-13)

for any positive integer n and any g > 0. The time derivative of (A-13) along (A-2), (A-3) is
written as

PLg;n.t/ D �
d	.t/

dt
e2ng.�.�.t//�t/W.	.t//2n � 2ng

Z t

�.t/

e2ng.�.�/�t/W.�/2nd�: (A-14)

From (56), it follows that P	.t/ > 0, for all t � t0, and thus, the following inequality holds for all
t � t0

PLg;n.t/ � �2ngLg;n.t/: (A-15)

Let us now define for any g > 0 the functional

L.t/ D

Z t

�.t/

eg.�.�/�t/ N� .jW.�/j/
1

	0.�.�//
d�; (A-16)

for any class K1 function N� . Knowing that �.	.t// D t , the derivative of L with respect to time
along (A-2), (A-3) is written as

PL.t/ D � N� .jW.	.t/j/ � gL.t/: (A-17)

Next, defining the functional

V1.t/ D S.t; x.t//C L.t/; (A-18)

whose time derivative along (A-2) is written as

PV1.t/ D
@S.t; x.t//

@t
C
@S.t; x.t//

@x
f .x.t/; 
.x.t//CW.	.t///C PL.t/; (A-19)

and combining (A-11) with (A-17), we obtain the following inequality

PV1.t/ � �g .S.t; x.t//C L.t//C ˛3.jW.	.t//j/ � N� .jW.	.t//j/ : (A-20)

Choosing N� such that N�.s/ � ˛3.s/, for all s � 0, we obtain
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PV1.t/ � �gV1.t/: (A-21)

Let us define next the Lyapunov functional for the target system (A-2) and (A-3) as

Vg;n.t/ D V1.t/
2n C Lg;n.t/: (A-22)

Taking the derivative of Vg;n with the help of (A-15) and (A-21), we obtain

PVg;n.t/ � �2ngVg;n.t/: (A-23)

Therefore,

Vg;n.t/
1
2n � e�g.t�t0/Vg;n.t0/

1
2n : (A-24)

It then follows that

V1.t/C Lg;n.t/
1
2n � 2e�g.t�t0/

�
V1.t0/C Lc;n.t0/

1
2n

�
: (A-25)

From (A-13), the following holds

Lg;n.t/
1
2n D

�Z t

�.t/

e2ng.�.�/�t/W.�/2nd�

� 1
2n

: (A-26)

Thus, taking the limit as n!1 of (A-26) and using the fact that

lim
n!1

Lg;n.t/
1
2n D sup

�.t/���t

ˇ̌̌
eg.�.�/�t/W.�/

ˇ̌̌
� kW.t/kg;1; (A-27)

we conclude that the following holds

V1.t/C kW.t/kg;1 � 2e
�g.t�t0/

�
V1.t0/C kW.t0/kg;1

�
: (A-28)

From (A-16) and noting that 	0.t/ > 0, for all t � t0, it follows that

L.t/ � sup
�.t/���t

ˇ̌̌
eg.�.�/�t/ N�.jW.�/j/

ˇ̌̌ Z t

�.t/

1

	0.�.�//
d�: (A-29)

Noting that P�.�/ D 1
�0.�.�//

, the following holds

L.t/ � .�.t/ � t / sup
�.t/���t

ˇ̌̌
eg.�.�/�t/ N�.jW.�/j/

ˇ̌̌
: (A-30)

Using the feasibility condition (56) and (55), we deduce

P�.�/ �
1

1 � c
: (A-31)

By integration of (A-31) on Œ	.t/; t � and using the fact that � .	.t// D t , we derive the inequality

�.t/ � t �
1

1 � c
D.t; x.t//: (A-32)

From Assumption 3 and (60), the following inequality holds

�.t/ � t �
1

1 � c
.c1 C 
4.jx.t/j// : (A-33)

Hence, from (A-30), it follows that

L.t/ �
1

1 � c
.c1 C 
4.jx.t/j// e

g.c1C	4.jx.t/j// sup
�.t/���t

N�.jW.�/j/; (A-34)
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and thus,

L.t/ �
1

1 � c
.c1 C 
4.jx.t/j// e

g.c1C	4.jx.t/j// N�

 
sup

�.t/���t

jW.�/j

!
: (A-35)

From the definition of V1 in (A-18), using the fact that

sup
�.t/���t

ˇ̌
W.�/

ˇ̌
� kW.t/k1 � kW.t/kg;1 � e

g.c1C	4.jxj//kW.t/k1 (A-36)

and that S.t; x.t// � V1.t/, which follow from the fact that P�.�/ > 0 for all � � 	.t0/, together
with (A-10) and (A-34), we obtain from (A-28) that

˛1.jX.t/j/C kW.t/k1 � 2e
�g.t�t0/ .˛2.jx.t0/j/

C
1

1 � c
.c1 C 
4.jx.t/j// e

g.c1C	4.jx.t/j// N�
�

W.t0/

1	

C eg.c1C	4.jxj//


W.t0/

1� :

(A-37)

With the properties of comparison functions, we conclude that there exists a class KL function ˇ
such that (A-8) holds. �

Lemma 4 (Bound of the Predictor in Terms of Actuator State)
There exists a class K1 function � such that for all the solutions of the system satisfying the
feasibility condition (56), the following holds for all 	.t/ � � � t

jP.�/j � �

 
jx.t/j C sup

�.t/�s�t

jU.s/j

!
; (A-38)

where 	.t/ is defined in (44).

Proof
Differentiating (47), we deduce the following relation for all 	.t/ � � � t

dP.�/

d�
D

f .�.�/; P.�/; U.�//

1 � F.�.�/; P.�/; U.�//
;

F.�.�/; P.�/; U.�// D
@D

@x
D .�.�/; P.�// f .�.�/; P.�/; U.�//C

@D

@t
.�.�/; P.�// ;

(A-39)

and with the change of variable y D �.�/, (A-39) may be rewritten as

dP.	.y//

dy
D f .y; P.	.y//; U.y �D.	.y//// ; t � y � �.t/:

From Assumption 1 and (56), which implies that P�.�/ > 0, for all 	.t/ � � � t , we obtain that

dR.y; P.	.y///

d�
� P�.�/ .�R.y; P.	.y///C 
3 .jU.y �D.	.y///j// ; (A-40)

for all t � y � �.t/ and using the feasibility condition (56), we deduce, for all 	.t/ � � � t:

dR.�.�/; P.�//

d�
�

1

1 � c
.�R.�.�/; P.�//C 
3.jU.�/j// : (A-41)

By Assumption 3 and the comparison principle, we obtain

R.�.�/; P.�// � e
�
1�c .c1C	4.jxj//

 
R.t; x.t//C

1

�
sup

�.t/�s�t


3.jU.s/j/

!
; 	.t/ � � � t: (A-42)
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With the standard properties of class K1 functions the Lemma (4) is deduced and the class K1
function � is written as

�.s/ D 
�11

��

2.s/C

1

�

3.s/

�
e
�
1�c .c1C	4.s//

�
: (A-43)

�

Lemma 5 (Bound of the Predictor in Terms of Transformed Actuator State)
There exists a class K function such that for all the solutions of the system satisfying the feasibility
condition (56), the following holds:

j….�/j �  

 
jx.t/j C sup

�.t/�s�t

jW.s/j

!
; for all 	.t/ � � � t; (A-44)

where 	.t/ is defined in (44).

Proof
The plant Px.t/ D f .t; x.t/; 
.t; x.t//C !.t// satisfying the uniform input-to-state stability prop-
erty with respect to ! and the function 
 being locally Lipschitz in both arguments and uniformly
bounded with respect to its first argument, there exist a class KL function ˇ2 and a class K function
 1 such that for all � � t0

Y.�/ � ˇ2 .jY.t0/j; � � t0/C  1

�
sup
s�t0

j!.s/j

�
; (A-45)

with

PY .�/ D f .Y.�/; 
.�; Y.�//C !.�// : (A-46)

Now, we consider the change of variable y D �.�/ and write the predictor of the target system
(A-5) as

d….	.y//

dy
D f .y;….	.y//; 
.y;….	.y///C !.	.y/// ; t � y � �.t/: (A-47)

Using (A-46), we derive the following relation

j….�/j �  2.jx.t/j/C  1

 
sup

�.t/�s�t

jW.s/j

!
; (A-48)

for all 	.t/ � � � t with a class K function  2.s/ D ˇ2.s; 0/. Using the properties of class K
functions, (A-44) is deduced with  .s/ D  1.s/C  2.s/. �

Lemma 6 (Equivalence of the Norms of the Original and the Target System)
There exist class K1 functions �1, 
7 such that for all the solutions of the system satisfying the
feasibility condition (56) and for all t � t0, the following hold:

�.t/ � 
�17 .„.t//; (A-49)

„.t/ � �1.�.t//; (A-50)

where � and „ are defined in (64) and (A-9), respectively.

Proof
Using the inverse transformation (A-4) and the bound (A-44), we derive (A-49) with


�17 .s/ D s C O�. .s//; (A-51)
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and from the direct transformation (A-1) together with the bound (A-38), we deduce (A-50), where
�1 is define as

�1.s/ D s C O�.�.s//: (A-52)

�

Lemma 7 (Ball Around the Origin Within the Feasibility Region)
There exists a positive constant N� such that for all the solutions of the system that satisfy

jx.t/j C sup
�.t/���t

jU.�/j < N�; (A-53)

the feasibility condition (56) is satisfied.

Proof
From (45), we derive the following inequality

jf .t; x.t/; U.	.t/// j � Ǫ

 
jx.t/j C sup

�.t/�s�t

jU.s/j

!
: (A-54)

Recalling the relations (61) and (62) of Assumption 3, we deduce that for all � 2 Œ	.t/; t � and
c 2�0; 1Œ , if a solution satisfies

c3 C 
5.jP.�/j/C .c2 C 
6.jP.�/j// Ǫ

 
jP.�/j C sup

�.t/�s�t

jU.s/j

!
< c; (A-55)

then it also satisfies (56).
Using Lemma 4, we conclude that (A-55) is satisfied if the following holds

.c2 C 
6.�.�.t//// Ǫ .�.�.t//C�.t//C 
5.�.�.t/// < c � c3: (A-56)

Let us define a class K1 function �c as

�c.s/ D 
5.�.s//C .c3 C 
6.�.s/// Ǫ .�.s/C s/ : (A-57)

It follows that

N� D ��1c .c � c3/: (A-58)

�

Lemma 8 (Estimate of the Region of Attraction)
There exists a class K function RoA such that for all initial conditions of the closed-loop system that
satisfy relation (63), the solutions of the system satisfy (A-53) for c 2�0; 1Œ and hence satisfy (56).

Proof
Using Lemma 6 and (A-8), the following holds:

�.t/ � 
�17 .ˇ.�?.�1.�.t0///; t � t0// ; (A-59)

where� is defined in (64). Introducing the class K1 function 
9.s/ D 
�17 .ˇ.s; 0//, we derive the
inequality

�.t/ � 
9 .�?.�1.�.t0//// : (A-60)
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Hence, for all initial conditions that satisfy the bound (56) with any class K choice

 RoA.c � c3/ � �
�1
1 .��1� .


�1
9 .�

�1
c .c � c3////; (A-61)

the solutions satisfy (A-53). Moreover, for all of those initial conditions, the solutions verify (64),
for all � > 	.t0/. �
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