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Applications of (Nonconstant) Delay (Nonlinear)
Systems

• Control over networks

• Traffic control

• Cooling systems

• Teleoperation

• Milling Processes

• Population Dynamics

• Irrigation channels

• Supply networks

• Rolling mills

• Chemical process control



Nonlinear Control of (Nonconstant) Delay Systems

Ẋ(t) = f (X (t−D1(t,X(t))) , U (t−D2(t,X(t))))

• {D1(t,X(t)) = constant, D2(t,X(t)) = 0}: Jankovic, Karafyllis, Mazenc,
Pepe ...

• {D1(t,X(t)) = time-varying or state-dependent, D2(t,X(t)) = 0}: X

• {D1(t,X(t)) = 0, D2(t,X(t)) = constant}: X(for large delay)

• {D1(t,X(t)) = 0, D2(t,X(t)) = time-varying or state-dependent}: X

• {D1(t,X(t)), D2(t,X(t)) = time-varying or state-dependent}: X
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Linear Predictor Feedback for

Constant Delay



Linear Systems with Constant Delays (Design)

Ẋ(t) = AX(t) +BU(t−D)

Delay-free control law:

U(t) = KX(t)

Predictor feedback law:

U(t) = KP (t)

P (t) = X(t+D)

Challenge: Compute the future state, i.e., X(t+D).

Explicit derivation for linear systems with the variation of constants formula

P (t) = X(t) +

∫ t

t−D
eA(t−θ)BU(θ)dθ



Some History

• Predictor Feedback Design for Linear Systems with Constant Delays on the
Input and the State : Manitius & Olbrot, Artstein

Yet, No Analysis was Provided



Linear Systems with Constant Delays (Analysis)

Backstepping Transformation:

W (θ) = U(θ)−KP (θ), t−D ≤ θ ≤ t

Traget system:

Ẋ(t) = (A+BK)X(t) +BW (t−D)

W (t) = 0, for all t ≥ 0

Lyapunov-Krasovskii functional:

V (t) = X(t)TPX(t) + b

∫ t

t−D
eθ+D−tW (θ)2dθ,

Theorem 1: ∃ λ, ρ such that for all t ≥ 0

|X(t)|+
√∫ t

t−D
U(θ)2dθ ≤ ρ

|X(0)|+
√∫ 0

−D
U(θ)2dθ

 e−λt



Nonlinear Predictor Feedback for
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Nonlinear Systems with Constant Delays (Design)

Ẋ(t) = f (X(t), U(t−D))

Delay-free control law:

U(t) = κ (X(t))

Predictor feedback law:

U(t) = κ (P (t))

Implicit formula for predictor:

P (t) =

∫ t

t−D
f (P (θ), U(θ)) dθ



Assumptions (Delay-Free Plant)

Ẋ = f (X,ω) is forward complete.

Ẋ = f (X,κ (X) + ω) is ISS, and hence, ∃ a dissipative Lyapunov function S

Global asymptotic stability suffices, but for a Lyapunov construction (of the
overall infinite-dimensional system) ISS is required



Nonlinear Systems with Constant Delays (Analysis)

Lemma 1 (infinite-dimensional backstepping transformation of the actuator state)

W (θ) = U(θ)− κ (P (θ)), t−D ≤ θ ≤ t,
transforms the closed-loop system into the “target system”

Ẋ(t) = f (X(t), κ (X(t)) +W (t−D))

W (t) = 0, ∀t ≥ 0.

Lemma 2 (g.u.a.s. of target system)

∃ β2 ∈ KL s.t.,

|X(t)|+ sup
t−D≤θ≤ t

|W (θ)| ≤ β2

(
|X(0)|+ sup

−D≤θ≤ 0
|W (θ)| , t

)
.

Proof: Using the Lyapunov-Krasovskii functional:

V (t) = S(X(t)) + b

∫ L(t)

0

α(r)

r
dr,

L(t) = sup
t−D≤θ≤t

∣∣eθ+D−tW (θ)
∣∣
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Nonlinear Systems with Constant Delays (Analysis)

Lemma 3 (norm equivalence between the original system and target system)

∃ρ2, α9 ∈ K∞ s.t.,

|X(t)|+ sup
t−D≤θ≤t

|U(θ)| ≤ α−1
9

(
|X(t)|+ sup

t−D≤θ≤t
|W (θ)|

)
|X(t)|+ sup

t−D≤θ≤t
|W (θ)| ≤ ρ2

(
|X(t)|+ sup

t−D≤θ≤t
|U(θ)|

)



U(· + τ)

τ ∈ [-D(X),0]
W(· + τ)

τ ∈ [-D(X),0]

.



Linear Predictor Feedback for

Time-Varying Delay



Linear Systems with Time-Varying Delays (Design)

Ẋ(t) = AX(t) +BU(t−D(t))

φ(t) = t−D(t)

Predictor feedback:

U(t) = K

(
eA(φ−1(t)−t)X(t) +

∫ t

t−D(t)

eA(φ−1(t)−φ−1(θ))B
U(θ)

φ′ (φ−1(θ))
dθ

)
︸ ︷︷ ︸

P (t) = X (φ−1(t))

Comparison with the constant delay case:

U(t) = K

(
eADX(t) +

∫ t

t−D
eA(t−θ)BU(θ)dθ

)
In the time-varying case D 6= D

D = φ−1(t)− t
D = t− φ(t)



Some History

• Predictor Feedback Design for Linear Systems with Time-Varying Input
Delay : Nihtila

What about a Lyapunov Functional?



Linear Systems with Time-Varying Delays (Analysis)

Backstepping Transformation:

W (θ) = U(θ)−KP (θ), t−D(t) ≤ θ ≤ t

Traget system:

Ẋ(t) = (A+BK)X(t) +BW (t−D(t))

W (t) = 0, for all t ≥ 0

Lyapunov-Krasovskii functional:

V (t) = X(t)TPX(t) + a

∫ t

t−D(t)

e
b
φ−1(θ)−t
φ−1(t)−tW (θ)2dθ

Theorem 3: ∃ λ, ρ such that for all t ≥ 0

|X(t)|+
√∫ t

t−D(t)

U(θ)2dθ ≤ ρ
(
|X(0)|+

√∫ 0

−D(0)

U(θ)2dθ

)
e−λt



Nonlinear Predictor Feedback for

Time-Varying Delay



Nonlinear Systems with Time-Varying Delays
(Design)

Ẋ(t) = f (X(t), U(t−D(t)))

φ(t) = t−D(t)

Predictor feedback law:

U(t) = κ (P (t))

= κ
(
X
(
φ−1(t)

))
Predictor formula:

P (t) = X(t) +

∫ t

φ(t)

f (P (θ), U (θ))
dθ

φ′ (φ−1 (θ))



Assumptions (Delay-Free Plant)

Ẋ = f (X,ω) is forward complete.

Ẋ = f (X,κ (X) + ω) is ISS.



Assumptions (Delay)

D(t) ≥ 0 (guarantees the causality of the system)

D(t) <∞ (guarantees that all inputs applied to the plant eventually reach
the plant)

Ḋ(t) < 1 (guarantees that the plant never feels input values that are older
than the ones it has already felt–input signal direction never reversed)

Ḋ(t) > −∞ (guarantees that the delay cannot disappear instantaneously,
but only gradually)



Achilles heel: φ−1(t) > t > φ(t)

t

D(t) needs to be known sufficiently far in advance

⇒ method appears not to be usable for state-dependent delays



Nonlinear Systems with Time-Varying Delays
(Analysis)

Backstepping Transformation:

W (θ) = U(θ)− κ(P (θ)), t−D(t) ≤ θ ≤ t
Traget system:

Ẋ(t) = f (X(t), κ(X(t)) +W (t−D(t)))

W (t) = 0, for all t ≥ 0

Lyapunov-Krasovskii functional:

V (t) = S(X(t)) + b

∫ L(t)

0

α(r)

r
dr,

L(t) = sup
t−D(t)≤θ≤t

∣∣∣∣eφ−1(θ)−t
φ−1(t)−tW (θ)

∣∣∣∣
Theorem 4: ∃ β ∈ KL such that for all t ≥ 0

|X(t)|+ sup
t−D(t)≤θ≤t

|U(θ)| ≤ β
(
|X(0)|+ sup

−D(0)≤θ≤0

|U(θ)|, t
)



Example

Ẋ1(t) = X2(t)−X2(t)2U(t−D(t))

Ẋ2(t) = U(t−D(t))

D(t) =
1 + t

1 + 2t

Delay-free control law

U(t) = −X1(t)− 2X2(t)− 1

3
X2(t)3

Predictor feedback

U(t) = −P1(t)− 2P2(t)− 1

3
P2(t)3

P1(t) =

∫ t

t−D(t)

(
P2(θ)− P2(θ)2U (θ)

) dθ

φ′ (φ−1(θ))
+X1(t)

P2(t) =

∫ t

t−D(t)

U (θ)
dθ

φ′ (φ−1(θ))
+X2(t)
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Figure: Controller “kicks in” at t = φ−1(0) = 1√
2



State-Dependent Delay



Non-holonomic Unicycle with Distance-Dependent
Delay (1)

Nonholonomic Unicycle

ẋ(t) = v (t−D (x(t), y(t))) cos (θ(t))

ẏ(t) = v (t−D (x(t), y(t))) sin (θ(t))

θ̇(t) = ω (t−D (x(t), y(t)))

Delay that grows with the distance relative to the reference position

D (x(t), y(t)) = x(t)2 + y(t)2

A time-varying controller due to Pomet (1992) is

ω(t) = −5P (t)2 cos (3t)− P (t)Q(t)
(

1 + 25 cos (3t)
2
)
− θ(t)

v(t) = −P (t) + 5Q(t) (sin (3t)− cos (3t)) +Q(t)ω(t)

P (t) = x(t) cos (θ(t)) + y(t) sin (θ(t))

Q(t) = x(t) sin (θ(t))− y(t) cos (θ(t))



Non-holonomic Unicycle with Distance-Dependent
Delay (2)
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Trajectory of the robot for t ∈ [0, 500]

x(t)

y(t)

The trajectory of the robot with the uncompensated controller with initial
conditions x(0) = y(0) = θ(0) = 1 and ω(s) = v(s) = 0 for all
−x(0)2 − y(0)2 ≤ s ≤ 0.



Nonlinear Systems with State-Dependent Delay

Ẋ(t) = f (X(t), U (t−D (X(t))))

Main challenge:

P (t) = X (t+D (P (t)))



Predictor Feedback

P (t) = X(t) +

∫ t

t−D(X(t))

f (P (s), U(s)) ds

1−∇D (P (s)) f (P (s), U(s))

= X (σ(t))

φ−1(t)︷︸︸︷
σ(t) = t+D (P (t))

U(t) = κ (P (t))



Global Stabilization is not Possible in General

Ẋ(t) = X(t) + U

φ(t)︷ ︸︸ ︷(
t−X(t)2

)
with U(θ) = 0, for all −X(0)2 ≤ θ ≤ 0.
The control signal never kicks in for X(0) ≥ X∗ = 1√

2e
= 0.43
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The state of the system with the delay-compensated controller and four different
initial conditions X(0) = 0.15, 0.25, 0.35, X∗.



Why the Results are not Global

The feasibility condition that the delay rate is less than one must hold to
ensure that the control signal reaches the plant and that the control remains
bounded

The solutions of the system and the initial conditions must satisfy

Fc : ∇D (P (θ)) f (P (θ), U(θ)) < c, for all θ ≥ −D (X(0))

for c ∈ (0, 1]. We refer to F1 as the feasibility condition of the controller.



Assumptions (Delay-Free Plant)

Ẋ = f (X,ω) is forward complete

Ẋ(t) = f (X(t), κ (X(t)) + ω(t)) is ISS



Assumptions (Delay)

D ∈ C1 (Rn;R+)

The rest of the assumptions are satisfied by restricting the initial conditions



Theorem 5:

∃ψ ∈ K and β ∈ KL such that for all initial conditions that satisfy

B0(c) : |X(0)|+ sup
−D(X(0))≤θ≤0

|U(θ)| < ψ (c)

for some 0 < c < 1,

|X(t)|+ sup
t−D(X(t))≤θ≤t

|U(θ)| ≤ β
(
|X(0)|+ sup

−D(X(0))≤θ≤0

|U(θ)|, t
)



The Infinite-Dimensional State-Space

level set of 
Lyapunov functional

state:   X,  U(•+s),  -D(X) ≤ s ≤ 0

Sets arising in the proof of the Theorem in the infinite-dimensional state space
Rn × C[t−D(X(t)), t). B0(c): the ball of initial conditions allowed in the proof
of the theorem. B̄(c): the ball inside which the ensuing solutions are trapped.



⇓

⇓

(X,U)

(X,W )

(X,U)



Lemmas 1–3 (from the constant delay case apply here as well)

Lemma 4 (finding a ball B̄ around the origin and within the feasibility region)

∃ρ̄c ∈ KC∞ s.t. Fc (0 < c < 1) is satisfied by all solutions that satisfy

B̄(c) : |X(t)|+ sup
t−D(X(t))≤θ≤t

|U(θ)| < ρ̄c(c, c) ∀t ≥ 0.

Lemma 5 (ball B0 of initial conditions s.t. all solutions are confined in B̄⊂ Fc)
∃ψRoA ∈ K s.t. for all initial conditions in B0(c), the solutions remain in
B̄(c) ⊂ Fc for some 0 < c < 1.



Non-holonomic Unicycle Revisited (1)

ω(t) = −5P (t)2 cos (3σ(t))− P (t)Q(t)
(

1 + 25 cos (3σ(t))
2
)
−Θ(t)

v(t) = −P (t) + 5Q(t) (sin (3σ(t))− cos (3σ(t))) +Q(t)ω(t)

P (t) = X(t) cos (Θ(t)) + Y (t) sin (Θ(t))

Q(t) = X(t) sin (Θ(t))− Y (t) cos (Θ(t))

With the predictors

X(t) = x(t) +

∫ t

t−x(t)2−y(t)2
g(s)v (s) cos (Θ(s)) ds

Y (t) = y(t) +

∫ t

t−x(t)2−y(t)2
g(s)v (s) sin (Θ(s)) ds

Θ(t) = θ(t) +

∫ t

t−x(t)2−y(t)2
g(s)ω(s)ds

σ(t) = t+X(t)2 + Y (t)2

g(s) =
1

1− 2 (X(s)v (s) cos (Θ(s)) + Y (s)v (s) sin (Θ(s)))



Non-holonomic Unicycle Revisited (2)
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The trajectory of the robot, with the compensated controller and the delay
function with the compensated controller (solid line) and the uncompensated
controller (dashed line) with initial conditions x(0) = y(0) = θ(0) = 1 and
ω(s) = v(s) = 0 for all −x(0)2 − y(0)2 ≤ s ≤ 0.



When a Global Result is Possible

∇D (X) f (X,ω) < c < 1

is satisfied, for all (X,ω) ∈ Rn+1.



When a Global Result is Possible (An Example)

Ẋ(t) =
X(t) + U (t−D (X(t)))

U (t−D (X(t)))
2

+ 1
, with D (X(t)) =

1

4
log
(
X(t)2 + 1

)
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The state of the system with the delay-compensated controller and initial
conditions X(0) = 1.5, U(θ) = 0, for all − 1

4 log
(
X(0)2 + 1

)
≤ θ ≤ 0. After the

controller kicks in, X(t) decays according to Ẋ(t) = − X(t)
1+4X(t)2 .



Forward Completeness and ISS are NOT Necessary!



Assumption (Delay-Free Plant)

Ẋ = f (X,ω) is locally stabilizable, i.e., ∃κ, R > 0 and β∗ ∈ KL such that,
the system Ẋ = f (X,κ(t,X)) satisfies

|X(t)| ≤ β∗ (|X(0)| , t) , t ≥ 0,

for all |X(0)| ≤ R.



Why the Results are not Global

t

|X
(t
)|

R

initial condition so large that
control never kicks in

control kicks in but state
already outside RoA,
state so large that it retards
control to earlier values after
control kicks in

control kicks in within RoA
and state transient not large
enough to retard control
to earlier values

OR

σ*

blue: system runs in open loop

Four possibilities that may arise with closed-loop solutions.



Proof (1)

D(0)+δ₁(R)

control kicks in

σ*

D(0)+δ₁(η(r₀,t))

D(0)

D(X₀)
D(X(t))

ξ*

D(0)+δ₁(η(r₀,ξ*))

t

estimate of timeξ*
when control kicks in

ξ*(r₀)
from a fixed pt. problem

determined

t

The strategy of the proof. The exact time σ∗ when the control reaches the plant
is not known analytically. We find an upper bound ξ∗ ≥ σ∗ by using an upper
bound D(X) ≤ D(0) + δ1(|X|) on the delay and by estimating an upper bound on
the open-loop solution |X(t)| ≤ η(r0, t), r0 := |X(0)|+ sup−D(X(0))≤θ≤0 |U(θ)|.



Proof (2)

D(0)+δ₁(R)

D(0)

ξ*(r₀)

r₀δ

The function ξ∗(r0) determined from the fixed-point problem
ξ∗ = D(0) + δ1(η(r0, ξ

∗). By reducing r0 sufficiently, we can ensure that the
control signal reaches the plant before |X(t)| has exceeded R.



A Locally Stabilizable Example

Ẋ(t) = X(t)4 + 2X(t)5 +
(
X(t)2 +X(t)3

)
U


φ(t)︷ ︸︸ ︷

t−X(t)2


not locally exponentially stabilizable nor globally asymptotically stabilizable.
Delay-free controller U(t) = −X(t) yields Ẋ(t) = −X(t)3 + 2X(t)5, with
R = 1√

2
.
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Solid: Delay-compensating controller. Dashed: Uncompensated controller. Dot:
Nominal controller for a system without delay. The controller “kicks in” at
σ∗ = 0.46 and hence, X∗ =

√
σ∗ = 0.678, which is almost at R = 1√

2
.



Nonlinear Predictor Feedback for Simultaneous

Time-Varying Delays on the Input and the State



Nonlinear Systems with Delayed Integrators (Design)

Ẋ1(t) = f1 (X1(t)) +X2 (φ1(t))

Ẋ2(t) = f2 (X1(t), X2(t)) + U (φ2(t))

Predictor feedback law:

U(t) = −f2

(
P1

(
ψ
(
φ−1

2 (t)
))
, P2(t)

)
− c2

(
P2(t) + c1P1(t) + f1 (P1(t))

)
−
(
c1 +

∂f1 (P1)

∂P1

)
(f1 (P1(t)) + P2(t))R

(
φ−1

2 (t)
)

Predictor formula:

P1(t) = X1(t) +

∫ t

ψ(t)

(f1 (P1 (θ)) + P2 (θ))
dθ

ψ′ (ψ−1(θ))

P2(t) = X2(t) +

∫ t

φ2(t)

(
f2

(
P1

(
ψ
(
φ−1

2 (θ)
))
, P2(θ)

)
+ U(θ)

)
dθ

φ′2
(
φ−1

2 (θ)
)

ψ(t) = φ2 (φ1(t))

In the constant delay case:
φi(t) = t−Di, ψ(t) = φ2 (φ1(t)) = t−D1 −D2



Assumptions

Plant

Ẋ1(t) = f1 (X1(t)) +X2 (φ1(t))

Ẋ2(t) = f2 (X1(t), X2(t)) + U (φ2(t))

is forward complete.

Delays

Di(t) positive and bounded.

Ḋi(t) less than one.



Nonlinear Systems with Delayed Integrators
(Analysis)

Backstepping Transformation:

Z2(t) = X2(t) + f1 (P1 (φ2(t))) + c1P1 (φ2(t))

Traget system:

Ż1(t) = −c1Z1(t) + Z2(φ1(t))

Ż2(t) = −c2Z2(t) +W (φ2(t))

W (t) = 0, t ≥ 0

Theorem 6:

∃β̂ ∈ KL such that

|X1(t)|+ ‖X2(t)‖∞ + ‖U(t)‖∞ ≤ β̂
(
|X1(0)|+ ‖X2(0)‖∞ + ‖U(0)‖∞, t

)
‖ · ‖∞ sup norms over [t−Di(t), t]



An Example

Ẋ1(t) = sin (X1(t)) +X2 (t−D(t)) , Ẋ2(t) = U(t)

Predictor feedback

U(t) = −c2 (X2(t) + c1P1(t) + sin (P1(t)))

− (c1 + cos (P1(t))) (sin (P1(t)) +X2(t))
d(t−D(t))−1

dt

P1(t) = X1(t) +

∫ t

t−D(t)︸ ︷︷ ︸
φ(t)

(sin (P1 (θ)) +X2 (θ))
dθ

φ′ (φ−1(θ))
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• Dotted: Assuming D(t) = 0
and D(t) = 0

• Dashed: Assuming D(t) = 0
but D(t) = 1+t

1+2t

• Solid: With predictor
feedback

• Control signal reaches X1(t)
at t = φ−1(0) = 1√

2



State-Dependent State Delay



Nonlinear Systems with State-Dependent State
Delay

Ẋ1(t) = f1 (t,X1(t), X2 (t−D (X1(t))))

Ẋ2(t) = f2 (t,X1(t), X2(t)) + U(t)

Additional challenge: The predictor design does not follow immediately from
the delay-free design



Predictor Feedback

U(t) = −f2 (t,X1(t), X2(t))− c2 (X2(t)− κ (σ(t), P1(t)))

+

∂κ(σ,P1)
∂σ + ∂κ(σ,P1)

∂P1
f1 (σ(t), P1(t), X2(t))

1−∇D (P1(t)) f1 (σ(t), P1(t), X2(t))
,

where

P1(t) = X1(t) +

∫ t

t−D(X1(t))

f1 (σ(s), P1(s), X2(s)) ds

1−∇D (P1(s)) f1 (σ(s), P1(s), X2(s))

σ(t) = t+D (P1(t))



Why the Results are not Global (Even for Forward
Complete Systems)

The feasibility condition that the delay rate is less than one must hold to
ensure that the control signal reaches the state X1 and that the control
remains bounded

The solutions of the system and the initial conditions must satisfy

Gc : ∇D (P1(θ)) f1 (σ(θ), P1(θ), X2(θ)) < c,

for all θ ≥ t0 −D (X1(t0)), for c ∈ (0, 1]. We refer to G1 as the feasibility
condition of the controller.



Theorem 7:

∃ξRoA ∈ K and β∗ ∈ KL such that for all initial conditions that satisfy

Ω(t0) < ξRoA (c)

Ω(t) = |X1(t)|+ sup
t−D(X1(t))≤θ≤t

|X2(θ)|

for some 0 < c < 1,

Ω(t) ≤ β∗ (Ω(t0), t− t0)



Assumptions (Delay-Free Plant)

∃ smooth positive definite function R and α1, α2 and α3 ∈ K∞ s.t.
∀(X,ω, t)

α1 (|X|) ≤ R (t,X) ≤ α2 (|X|)
∂R (t,X)

∂t
+
∂R (t,X)

∂X
f1 (t,X, ω) ≤ R (t,X) + α3 (|ω|) ,

which guarantees that Ẋ = f1 (t,X, ω) is forward-complete.

Ẋ(t) = f1 (t,X(t), κ (t,X(t)) + ω(t)) is ISS



Assumptions (Delay)

D ∈ C1 (Rn;R+)



Proof (Infinite-Dimensional Backstepping
Transformation)

The infinite-dimensional backstepping transformation of the state X2

Z2(θ) = X2(θ)− κ (θ +D (P1(θ)) , P1(θ)) , t−D (X1(t)) ≤ θ ≤ t

transforms the system to the “target system”

Ẋ1(t) = f1 (t,X1(t), κ (t,X1(t)) + Z2 (t−D (X1(t))))

Ż2(t) = −c2Z2(t)

Then prove stability of “target system” from ISS.

Using forward-completeness and ISS prove the norm equivalency.

On the way to do so, prove that the feasibility condition is satisfied when the
original norm is small.



Nonlinear Systems with State-Dependent State
Delay (Example 1)

ṡ(t) = v(t− r1 sin2 (ωs(t)))

v̇(t) = a(t)

The predictor-based controller is

a(t) = −c2 (v(t) + c1P1(t))− c1
v(t)

1− r1ω sin (ωP1(t)) cos (ωP1(t)) v (t)

where

P1(t) = s(t) +

∫ t

t−r1 sin2(ωs(t))

v (s) ds

1− r1ω sin (ωP1(s)) cos (ωP1(s)) v (s)



Nonlinear Systems with State-Dependent State
Delay (Example 1)

The initial conditions are s(0) = 1, v(θ) = 0.1, for all −r1 sin2 (ωs(0)) ≤ θ ≤ 0
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Nonlinear Systems with State-Dependent State
Delay (Example 2)

Delay
H(Tout)

C

Heat Exchanger

Tin Tout

q1

1

Figure: A marine cooling system with one consumer

Tout = X1, Tin = X2, H = b
k1Tout+k2

= D, q1 = U

Ẋ1(t) = a (X1(t)−X2 (t−D(X1(t)))) (k1X1(t) + k2)

Ẋ2(t) = (k1X1(t) + k2) (X1(t)−X2(t))− U(t)

where, a < 0, b, k1, k2 > 0.



Nonlinear Systems with State-Dependent State
Delay (Example 2)

We choose

U(t) = (k1X1(t) + k2) (X1(t)−X2(t)) + c2

(
X2(t)− P1(t)− c1

a

P1(t)− Teq

k1P1(t) + k2

)

−

1 +
c1
ak1

Teq + k2
k1(

P1(t) + k2
k1

)2

× (P1(t)−X2 (t)) (k1P1(t) + k2)

R(t)

where

P1(t) = X1(t) +

∫ t

t− b
k1X1(t)+k2

a
(P1(θ)−X2 (θ)) (k1P1(θ) + k2) dθ

R(θ)

R(θ) = 1 +
bk1a (P1(θ)−X2 (θ))

(k1P1(θ) + k2)
2 (k1P1(θ) + k2)



Nonlinear Systems with State-Dependent State
Delay (Example 2)

a = −1, c1 = c2 = b = k1 = k2 = 1 , Tout(0) = 1, Tin(θ) = 0.6, θ ≤ 0, Teq = 0.4

Figure: Dashed: Open-loop response. Solid: Response with predictor feedback.
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Figure: Response of the system with the delay-compensating controller (solid line) and in
open-loop (dashed line).



Robustness of Linear Constant-Delay Predictors to

Time-Varying Delay Perturbations



Robustness to Time-Varying Delay Perturbations

Ẋ(t) = AX(t) +BU
(
t− D̂ − δ(t)

)
U(t) = K

(
eAD̂X(t) +

∫ t

t−D̂
eA(t−θ)BU(θ)dθ

)

Theorem 8: ∃ δ1, such that if

|δ(t)|+ |δ′(t)| < δ1, for all t ≥ 0

then, the closed-loop system is exponentially stable, in the sense of the norm

ΠL(t) = |X(t)|2 +

∫ t

t−D̂−max{0,δ(t)}
U(θ)2dθ +

∫ t

t−D̂
U̇(θ)2dθ



Robustness to Time-Varying Delay Perturbations

Are larger absolute delay and delay rates allowed?

Theorem 9: ∃ δ2, δ3 such that if

∫ ∞
0

(|δ′(θ)|+ |δ(θ)|) dθ ≤ δ2

or

|δ(t)|+ |δ′(t)| → 0, when t→∞
or

1

∆

∫ t+∆

t

(|δ′(θ)|+ |δ(θ)|) dθ ≤ δ3 for all t ≥ T

then, the closed-loop system is exponentially stable, in the sense of the norm

ΠL(t) = |X(t)|2 +

∫ t

t−D̂−max{0,δ(t)}
U(θ)2dθ +

∫ t

t−D̂
U̇(θ)2dθ



Centralized Teleoperation

Local
Manipulator

Delay
δ(t)

Delay
δ(t)

Remote
Manipulator

Centralized Controller
Computational Delay

D̂

Network

τm

xs, ẋs

xm, ẋm

τs

1

ẍm(t) + ẋm(t) = τm

(
t− D̂ − δ(t)

)
ẍs(t) + ẋs(t) = τs

(
t− D̂ − 2δ(t)

)



Centralized Teleoperation (Design)

U1(t) = −Kp

(
P̂1(t)− P̂3(t)

)
−BmP̂2(t)−Kp

(
P̂1(t)− r

)
U2(t) = Kp

(
P̂1(t)− P̂3(t)

)
−BsP̂4(t)−Kp

(
P̂3(t)− r

)
P̂i(t) = Xi(t) +

∫ t

t−D̂
P̂i+1(θ)dθ, i = 1, 3

P̂j(t) = Xj(t) +

∫ t

t−D̂

(
−P̂j(θ) + U j

2
(θ)
)
dθ, j = 2, 4
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Figure: The delay perturbation δ induced by the network in teleoperation.



Centralized Teleoperation (Simulations)

D̂ = 1
δ̇(t)=−δ(t)+0.1 sin(t)2, δ(0)=1 (solid). δ(t)=0 (dashed).
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Figure: The error between the position of the master and the slave and the input
torques. The two robots are coordinated through a network that induces an unknown
time-varying delay δ(t). The initial conditions are xm(0) = 0, xs(0) = 1,
ẋm(0) = ẋs(0) = 0, τm(θ) = τs(θ) = 0, −1− δ(0) ≤ θ ≤ 0.



Robustness of Nonlinear Constant-Delay Predictors

to Time- and State-Dependent Delay Perturbations



Motivation

Delay
δ(t, X) e−D̂s Plant

Effect of other controllers controlling
other plants over the same network

Network

Predictor
Controller

κ

U(t) X(t)

P̂

1

Figure: Control over a network, with delay that varies with time (as a result of other
users’s activities) and may be state-dependent. The designer only knows a nominal,
constant delay value D̂. The delay fluctuation δ(t,X) is unknown.



Robustness to Time- and State-Dependent Delay
Perturbations

Ẋ(t) = f
(
X(t), U

(
t− D̂ − δ (t,X(t))

))
U(t) = κ

(
P̂ (t)

)
P̂ (t) = X(t) +

∫ t

t−D̂
f
(
P̂ (s), U(s)

)
ds

Assumptions

Ẋ = f (X,ω) is forward-complete

Ẋ = f (X,κ(X)) is l.e.s.



Theorem 10: ∃ c1, c∗∗ > 0, and µ̂, α∗, ζ ∈ K∞, and β ∈ KL such that if

|δ (t, ξ)|+ |δt (t, ξ)|+ |∇δ (t, ξ)| ≤ c1 + µ̂ (|ξ|)

then for all

Π(0) < c∗∗

it holds

Π(t) ≤ β (Π(0), t) , for all t ≥ 0

where

Π(t) = |X(t)|+
∫ t

t−D̂
α∗ (|U(θ)|) dθ +

∫ t

t−D̂−max{0,δ(t,X(t))}
U̇(θ)2dθ

+

∫ t

t−D̂
Ü(θ)2dθ



Control of a DC Motor over a Network (1)

dω(t)

dt
= θif(t)ia(t)

dia(t)

dt
= −bia(t)+k−cif(t)ω(t)

dif(t)

dt
= −aif(t)+U

(
t−D̂−δ(t, if(t), ia(t), ω(t))

)
if , ia are field and armature currents and ω is angular velocity.
Delay-free design (based on full-state linearization)

U(t) = 1/γ × (−K1Z1(t)−K2Z2(t)−K3Z3(t)− α)

Z1(t) = θia(t)2 + cω(t)2 − θk
2

b2
− cω2

0

Z2(t) = 2θia(t) (k − bia(t))

Z3(t) = 2θ (k − 2bia(t)) (−bia(t) + k − cif(t)ω(t))

γ = −2cθ (k − 2bia(t))ω(t)

α = 2caθ (k − 2bia(t)) if(t)ω(t)− 2bθ (3k − 4bia(t)

−2cif(t)ω(t)) (−bia(t) + k − cif(t)ω(t))

−2cθ (k − 2bia(t)) if(t)
2ω(t).



Control of a DC Motor over a Network (2)

Nominal delay: D̂ = 1
Delay Perturbation: δ (t, ia(t)) = 0.5ia(t)2 + 0.2 sin(t)2 (solid). δ (t, ia(t)) = 0
(dashed).
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Figure: The field and armature currents with initial conditions if(0) = 0.1, ia(0) = 0.8.



Control of a DC Motor over a Network (2)

Nominal delay: D̂ = 1
Delay Perturbation: δ (t, ia(t)) = 0.5ia(t)2 + 0.2 sin(t)2 (solid). δ (t, ia(t)) = 0
(dashed).
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Figure: The angular velocity and the field voltage. The initial conditions are ω(0) = 1
and U(θ) = 0, −1− δ(0, ia(0)) ≤ θ ≤ 0.



For the Future

• Robust control for linear systems with constant input delays

• Nonlinear systems with constant distributed input delays

• Nonlinear systems with more complex input dynamics

• State-dependent delays that depend on delayed states

• Input-dependent delays



Sampled-data and control over networks

(with Iasson Karafyllis)



Sampled-data stabilization of LTI systems with input delay τ ,
measurement delay r, and sampling time T

Theorem 11: Let l = integer

{
τ + r

T

}
∈ Z and δ = τ + r − lT . Suppose that

the matrix

exp(AT )

(
I +

∫ T

0

exp(−As)dsBK
)

has all of its eigenvalues inside the unit circle (guaranteed for suffic. small T). The
controller

u(t) = ui , t ∈ [iT, (i+ 1)T ) , i ∈ Z+

with input applied with zero-order hold given by

ui = Kexp(A(τ + r))x(iT − r) +K

l+1∑
j=1

QjBui−j , [difference eqn in u]

where

Qj = exp(AjT )

∫ T

0

exp(−As)ds , j = 1, . . . , l

Ql+1 = exp(AlT )

∫ δ

0

exp(As)ds

guarantees exp. stability in the supremum norm of x over [−r, 0] and u over [−τ, 0].



Nonlinear Predictor Fbk for Non-holonomic Unicycle Controlled
Over a Network with Arbitrarily Sparse Sampling

Let (for simplicity)

D = transmission delay in both directions = sampling time



Controller

v(t) =
1

D
(k1(P,Q,Θ) +Qk2(P,Q,Θ)) , for t ∈ [iD, (i+ 1)D)

ω(t) =
1

D
k2(P,Q,Θ), for t ∈ [iD, (i+ 1)D)

with transformation

P = X cos (Θ) + Y sin (Θ)

Q = X sin (Θ)− Y cos (Θ)

the exact predictor of (x, y, θ)((i+ 1)D)

X = x( (i− 1)D ) +

∫ iD

(i− 2)D
v(s) cos

(
θ( (i− 1)D ) +

∫ s

(i−2)D

ω(z)dz

)
ds

Y = y( (i− 1)D ) +

∫ iD

(i− 2)D
v(s) sin

(
θ( (i− 1)D ) +

∫ s

(i−2)D

ω(z)dz

)
ds

Θ = θ( (i− 1)D ) +

∫ iD

(i− 2)D
ω(s)ds



and the discontinuous sampled-data stabilizer designed for the delay-free case

k1(P,Q,Θ) = −



|Q|1/2, Q(2Q− PΘ) 6= 0

P 2Θ

P 2 + Θ2
, Q = 0, PΘ 6= 0

Θ, 2Q = PΘ

k2(P,Q,Θ) = −



2
(
P + sgn(Q)|Q|1/2

)
, Q(2Q− PΘ) 6= 0

PΘ2

P 2 + Θ2
, Q = 0, PΘ 6= 0

P, 2Q = PΘ

Theorem 12: For any D > 0, the closed-loop system is globally asymptotically
stable at the origin. Moreover, x(t) = y(t) = θ(t) = 0 for t ≥ 5D .

Predictor allows stabilization based on states from two long sample periods ago.



Adaptive Control for Unknown Delay



Robustness to Delay Mismatch

The biggest open question in robustness of predictor feedbacks.

Ẋ = AX +BU(t−D0−∆D)

U(t) = K

[
eAD0X(t) +

∫ t

t−D0

eA(t−θ)BU(θ)dθ

]
∆D either positive or negative

Theorem 13: ∃δ > 0 s.t. ∀∆D ∈ (−δ, δ) the closed-loop system is exp. stable in
the sense of the state norm

N2(t) =

(
|X(t)|2 +

∫ t

t−D̄
U(θ)2dθ

)1/2

,

where D̄ = D0 + max{0,∆D}.



Delay-Robustness of Predictor Feedback

uncertain delay LTI-ODE
plant

U(t)



Delay-Adaptive Control

uncertain delay LTI-ODE
plant

U(t)

unknown delay LTI-ODE
plant

U(t)

Motivation: control of thermoacoustic instabilities in gas turbine combustors



transport PDE with 
unknown

propagation speed 1/D

LTI-ODE
plant

U(t) X(t)

estimator of D

u(x,t)

certainty equivalence
version of 

predictor feedback



Update law

d

dt
D̂(t) = −γ

∫ 1

0

(1 + x)

reg.
error︷ ︸︸ ︷
w(x, t)

regressor︷ ︸︸ ︷
KeAD̂(t)xdx (AX(t) +Bu(0, t))

1 +X(t)TPX(t) + b

∫ 1

0

(1 + x)w(x, t)2dx︸ ︷︷ ︸
normalization

w(x, t) = u(x, t)− D̂(t)

∫ x

0

KeAD̂(t)(x−y)Bu(y, t)dy −KeAD̂(t)xX(t) .



Update law

d

dt
D̂(t) = −γ

∫ 1

0

(1 + x)

reg.
error︷ ︸︸ ︷
w(x, t)

regressor︷ ︸︸ ︷
KeAD̂(t)xdx (AX(t) +Bu(0, t))

1 +X(t)TPX(t) + b

∫ 1

0

(1 + x)w(x, t)2dx︸ ︷︷ ︸
normalization

w(x, t) = u(x, t)− D̂(t)

∫ x

0

KeAD̂(t)(x−y)Bu(y, t)dy −KeAD̂(t)xX(t) .

Theorem 14: ∃R, ρ > 0 s.t.

Υ(t) ≤ R
[
exp
(
ρΥ(0)

)
− 1
]

(exp. growing class K∞ glob. stab. bound)

where

Υ(t) = |X(t)|2 +

∫ 1

0

u(x, t)2dx+
(
D − D̂(t)

)
2 .

Furthermore, X(t), U(t)→ 0.



X(s) =
e−s

s− 0.75
U(s)

unstable X-29 aircraft
[Ens, Ozbay, Tannenbaum, 1992]
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0–1 sec The delay precludes any influence of the control on the plant, so
X(t) shows an exponential open-loop growth.

1–3 sec The plant starts responding to the control and its evolution changes
qualitatively, resulting also in a qualitative change of the control signal.

3–4 sec When the estimation of D̂(t) ends at about 3 seconds, the controller
structure becomes linear. However, due to the delay, the plant state X(t)
continues to evolve based on the inputs from 1 second earlier, so, a
non-monotonic transient continues until about 4 seconds.

4 sec and onwards The (X,U) system is linear and the delay is sufficiently
well compensated, so the response of X(t) and U(t) shows a monotonically
decaying exponential trend of a first order system.


