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a b s t r a c t

We consider the problems of trajectory generation and tracking for general 2 × 2 systems of first-
order linear hyperbolic PDEs with anti-collocated boundary input and output. We solve the trajectory
generation problem via backstepping. The reference input, which generates the desired output,
incorporates integral operators acting on advanced and delayed versions of the reference output with
kernels which were derived by Vazquez, Krstic, and Coron for the backstepping stabilization of 2 × 2
linear hyperbolic systems.We apply our approach to awave PDEwith indefinite in-domain and boundary
damping. For tracking the desired trajectory we employ a PI control law on the tracking error of the
output. We prove exponential stability of the closed-loop system, under the proposed PI control law,
when the parameters of the plant and the controller satisfy certain conditions, by constructing a novel
‘‘non-diagonal’’ Lyapunov functional. We demonstrate that the proposed PI control law compensates in
the output the effect of in-domain and boundary disturbances. We illustrate our results with numerical
examples.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Control of 2 × 2 systems of first-order hyperbolic PDEs is an
active area of research since numerous processes can be modeled
with this class of PDE systems. Among various applications, 2 × 2
systemsmodel the dynamics of traffic [1,2], hydraulic [3–6], aswell
as gas pipeline networks [7], and the dynamics of transmission
lines [8].

Several articles are dedicated to the control and analysis of 2×2
linear [3,9,5,10] [11–13] and nonlinear [14–19] systems. Results
for the control of n × n systems also exist [20–23]. Algorithms for
disturbance rejection in 2× 2 systems are recently developed [24,
25]. Themotion planning problem is solved in [26,27], for a class of
2 × 2 systems and in [28,29] for a class of wave PDEs. Perhaps the
most relevant results to the present article are the results in [5],
dealing with the Lyapunov-based output-feedback control of 2×2
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linear systems, the results in [12], dealing with the backstepping
stabilization of 2×2 linear systems, and the results in [27], dealing
with the motion planning for a class of 2 × 2 systems.

In this paper, we are concerned with the trajectory generation
and tracking problems for general 2×2 systems of first-order linear
hyperbolic PDEs with anti-collocated boundary input and output.
We solve the motion planning problem for this class of systems
employing backstepping (Section 2.1). Specifically, we start from
a simple transformed system, namely, a cascade of two first-
order hyperbolic PDEs, for which the motion planning problem
can be trivially solved. We then apply an inverse backstepping
transformation to derive the reference trajectory and reference
input for the original system. Our approach is different than the
one in [12], in that we use backstepping for trajectory generation
rather than stabilization, and the one in [27], in that we employ
a different conceptual idea to a different class of systems. The
idea of the backstepping-based trajectory generation for PDEs,
which was conceived in [30], is applied to a beam PDE in [31]
and the Navier–Stokes equations in [32], and is recently extended
to general n × n linear hyperbolic systems in [22]. We apply
this methodology to a wave PDE with indefinite in-domain and
boundary damping by transforming (see, for example, [33]) the
wave PDE to a 2 × 2 linear hyperbolic system coupled with a
first-order ODE (Section 2.2).
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We then employ a PI control law for the stabilization of
the error system, namely, the system whose state is defined as
the difference between the state of the plant and the reference
trajectory. We prove exponential stability in the L2 norm of the
closed-loop system by constructing a Lyapunov functional which
incorporates cross-terms between the PDE states of the system
and the ODE state of the controller, when the parameters of the
system and the controller satisfy certain conditions (Section 3.1).
Our result differs than the result in [5] in that we employ PI
control on an output of the system in the Riemann coordinates
and we construct a non-diagonal Lyapunov functional for proving
closed-loop stability. We demonstrate that the proposed PI control
law is capable of compensating in the output the effect of
additive disturbances affecting the boundary or the interior of the
PDE domain (Section 3.2). We present several examples, for the
illustration of our methodologies, including a simulation example
dealing with the generation of a sinusoidal reference trajectory for
a wave PDE (Section 4.1) and a simulation example of a system
tracking a sinusoidal reference output (Section 4.2).

2. Trajectory generation using backstepping

2.1. General 2 × 2 linear hyperbolic systems

We consider the following system

z1t + ε1(x)z1x = c1(x)z1 + c2(x)z2 (1)

z2t − ε2(x)z2x = c3(x)z1 + c4(x)z2, (2)
under the boundary conditions

z1(0, t) = qz2(0, t) (3)

z2(1, t) = S(t) (4)

z2(0, t) = y(t), (5)
where t ∈ [0,+∞) is the time variable, x ∈ [0, 1] is the spatial
variable, y is the output of the system, and S is the control input. The
functions ε1, ε2 belong to C2 ([0, 1]) and satisfy ε1(x), ε2(x) > 0,
for all x ∈ [0, 1], and the functions ci, i = 1, 2, 3, 4 belong to
C1([0, 1]).

Defining the change of variables (see, for example, [3])

χ1(x) = exp


−

 x

0

c1(s)
ε1(s)

ds


(6)

χ2(x) = exp
 x

0

c4(s)
ε2(s)

ds


(7)

χ(x) =
χ1(x)
χ2(x)

, (8)

and the new coordinates

u = χ1(x)z1 (9)

v = χ2(x)z2, (10)
system (1)–(5) is transformed into the following system
ut + ε1(x)ux = γ1(x)v (11)

vt − ε2(x)vx = γ2(x)u, (12)
with
γ1(x) = χ(x)c2(x) (13)

γ2(x) = χ−1(x)c3(x). (14)
The boundary conditions become
u(0, t) = qv(0, t) (15)
v(1, t) = U(t) (16)
v(0, t) = y(t), (17)
where the original control variable satisfies

U = χ2(1)S. (18)

We aim at designing a reference control input U r(t) such that the
output y(t) follows a given reference trajectory yr(t), for t ≥ 0. For
achieving this we need first to construct the reference trajectory
(ur(x, t), vr(x, t)) that satisfies (11), (12), (15), and (17) with
y(t) = yr(t). The trajectory generation problem is solvable when
the initial data (u0, v0) match the reference trajectory, i.e., when
u0(x) = ur(x, 0) and v0(x) = vr(x, 0) (and hence, the initial data
belong to the same space with ur(x, 0) and vr(x, 0)).

Theorem 1. Let yr ∈ C1(R) be uniformly bounded. The functions

ur(x, t) = qyr (t − Φ1(x))+

 x

0

f (ξ)
ε1 (ξ)

yr (t − Φ1(x)+ Φ1(ξ)) dξ

+ q
 x

0
Lαα(x, ξ)yr(t − Φ1(ξ))dξ

+

 x

0
Lαα (x, ξ)

 ξ

0

f (ζ )
ε1(ζ )

yr (t − Φ1(ξ)+ Φ1(ζ )) dζdξ

+

 x

0
Lαβ (x, ξ) yr (t + Φ2(ξ)) dξ (19)

vr(x, t) = yr(t + Φ2(x))+ q
 x

0
Lβα(x, ξ)yr (t − Φ1(ξ)) dξ

+

 x

0
Lβα(x, ξ)

 ξ

0

f (ζ )
ε1(ζ )

yr (t − Φ1(ξ)+ Φ1(ζ )) dζdξ

+

 x

0
Lββ(x, ξ)yr (t + Φ2(ξ)) dξ (20)

U r(t) = yr (t + Φ2(1))+ q
 1

0
Lβα(1, ξ)yr (t − Φ1(ξ)) dξ

+

 1

0
Lβα(1, ξ)

 ξ

0

f (ζ )
ε1(ζ )

yr (t − Φ1(ξ)+ Φ1(ζ )) dζdξ

+

 1

0
Lββ(1, ξ)yr (t + Φ2(ξ)) dξ, (21)

where

Φ1(x) =

 x

0

1
ε1(s)

ds (22)

Φ2(x) =

 x

0

1
ε2(s)

ds (23)

f (x) =


ε2(0)K uv(x, 0), if q = 0
0, if q ≠ 0, (24)

and Lαα , Lαβ , Lβα , Lββ , K uv are the solutions of the following equations

ε2(x)Lβαx − ε1(ξ)L
βα

ξ = ε′

1(ξ)L
βα

− γ2(x)Lαα (25)

ε2(x)Lββx + ε2(ξ)L
ββ

ξ = −ε′

2(ξ)L
ββ

− γ2(x)Lαβ (26)

ε1(x)Lααx + ε1(ξ)Lααξ = −ε′

1(ξ)L
αα

+ γ1(x)Lβα (27)

ε1(x)Lαβx − ε2(ξ)L
αβ

ξ = ε′

2(ξ)L
αβ

+ γ1(x)Lββ (28)

ε1(x)K uu
x + ε1(ξ)K uu

ξ = −ε′

1(ξ)K
uu

− γ2(x)K uv (29)

ε1(x)K uv
x − ε2(ξ)K uv

ξ = ε′

2(ξ)K
uv

− γ1(x)K uu, (30)

with the boundary conditions

Lβα(x, x) = −
γ2(x)

ε1(x)+ ε2(x)
(31)
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Lαα(x, 0) =

h1(x), if q = 0
ε2(0)
qε1(0)

Lαβ(x, 0), if q ≠ 0 (32)

Lββ(x, 0) =


1

ε2(0)

 x

0
Lβα(x, ξ)f (ξ)dξ, if q = 0

qε1(0)
ε2(0)

Lβα(x, 0), if q ≠ 0
(33)

Lαβ(x, x) =
γ1(x)

ε1(x)+ ε2(x)
(34)

K uu(x, 0) = h2(x) (35)

K uv(x, x) =
γ1(x)

ε1(x)+ ε2(x)
, (36)

where h1, h2 ∈ C1 ([0, 1]) are arbitrary, uniformly bounded and
solve the boundary value problem (11), (12), (15), (16). In particular,
vr(0, t) = yr(t), for t ≥ 0.

Before proving Theorem 1 we make the following observation,
which is also helpful in understanding better the proof strategy of
Theorem 1.

Remark 1. The approach for the trajectory generation introduced
here is inspired from backstepping. Consider the following system

αt + ε1(x)αx − f (x)β(0, t) = 0 (37)

βt − ε2(x)βx = 0, (38)

with boundary condition

α(0, t) = qβ(0, t), (39)

which follows by directly applying the backstepping transforma-
tion

α(x, t) = u(x, t)−

 x

0
K uu (x, ξ) u (ξ , t) dξ

−

 x

0
K uv (x, ξ) v (ξ, t) dξ (40)

β(x, t) = v(x, t)−

 x

0
K vu (x, ξ) u (ξ , t) dξ

−

 x

0
K vv (x, ξ) v (ξ, t) dξ, (41)

where the kernels K uu, K uv , K vu, K vv are given in [12], to
system (11), (12), and (15). It is shown that the functions

α(x, t) = qyr(t − Φ1(x))

+

 x

0

f (ξ)
ε1 (ξ)

yr (t − Φ1(x)+ Φ1(ξ)) dξ (42)

β(x, t) = yr(t + Φ2(x)), (43)

whereΦ1 andΦ2 are defined in (22) and (23), respectively, satisfy
(37)–(39) with

β(1, t) = yr (t + Φ2(1)) (44)

and, in particular, β(0, t) = yr(t). Using the inverse backstepping
transformations introduced in [12]

u(x, t) = α(x, t)+

 x

0
Lαα(x, ξ)α(ξ, t)dξ

+

 x

0
Lαβ(x, ξ)β(ξ, t)dξ (45)
v(x, t) = β(x, t)+

 x

0
Lβα(x, ξ)α(ξ, t)dξ

+

 x

0
Lββ(x, ξ)β(ξ, t)dξ, (46)

and relations (42), (43) one can conclude that the functions ur , vr ,
andU r

= vr(1) solve the trajectory generation problem for system
(11), (12), (15)–(17).

Note that the present approach cannot be directly applied to
cases where ε1(x) or ε2(x) vanish for some x ∈ [0, 1]. This is
evident, for instance, from (33) which would imply that the kernel
Lββ of the open-loop control law U r may become infinity for all
x ∈ [0, 1].

Proof. We first consider the case q ≠ 0. Note that since ε1,
ε2 ∈ C2([0, 1]) with ε1(x), ε2(x) > 0, for all x ∈ [0, 1] and γ1,
γ2 ∈ C1([0, 1]), system (25)–(34) has a unique solution with Lαα ,
Lαβ , Lβα , Lββ ∈ C1(T ) where T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1} [16].
Hence, from (19)–(21) and the uniform boundedness of yr it fol-
lows that ur , vr , and U r are bounded for all t ≥ 0 and x ∈ [0, 1].

Taking the time and space derivatives of ur we get

ur
t + ε1(x)ur

x = q
 x

0
Lαα(x, ξ)yr ′(t − Φ1(ξ))dξ

+

 x

0
Lαβ(x, ξ)yr ′(t + Φ2(ξ))dξ

+ ε1(x)
 x

0
Lαβx (x, ξ)y

r (t + Φ2(ξ)) dξ

+ qε1(x)
 x

0
Lααx (x, ξ)y

r (t − Φ1(ξ)) dξ

+ ε1(x)Lαβ(x, x)yr (t + Φ2(x))

+ qε1(x)Lαα(x, x)yr (t − Φ1(x)) . (47)

Integrating by parts the first two integrals we get

ur
t + ε1(x)ur

x = q
 x

0


ε1(x)Lααx (x, ξ)

+ ε1(ξ)Lααξ (x, ξ) + ε′

1(ξ)L
αα(x, ξ)


yr(t − Φ1(ξ))dξ

+

 x

0


ε1(x)Lαβx (x, ξ)− ε2 (ξ) L

αβ

ξ (x, ξ)

− ε′

2 (ξ) L
αβ(x, ξ)


yr(t + Φ2(ξ))dξ

+

qε1(0)Lαα(x, 0)− ε2(0)Lαβ(x, 0)


yr(t)

+ (ε1(x)+ ε2(x)) Lαβ(x, x)yr(t + Φ2(x)). (48)

Due to the fact that Lαβ and Lαα are the solutions of (27) and (28)
with the boundary conditions (32) and (34) one gets, by using (20),
that ur satisfies (11). The proof that vr satisfies (12) follows anal-
ogously. Setting x = 0 in (19), (20) and using (22), (23), we get
that ur and vr satisfy (15). Setting x = 1 in (20) it follows that
(21) satisfies (16). Setting in (20) x = 0 and using (23) we get
vr(0, t) = yr(t).

Let us consider next the case q = 0. First observe that
the PDEs (25), (27) with boundary conditions (31), (32), for the
kernels Lαα and Lβα are decoupled, and hence, Lαα and Lβα arewell-
defined [16]. Hence, since f satisfies (24) and K uv , K uu are well-
defined [16], one can conclude that Lαβ and Lββ are well-defined
as well.

Taking the time and space derivatives of ur we get

ur
t + ε1(x)ur

x = f (x)yr(t)+

 x

0
Lαα(x, ξ)

×

 ξ

0

f (ζ )
ε1(ζ )

yr ′ (t − Φ1(ξ)+ Φ1(ζ )) dζdξ
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+

 x

0
Lαβ(x, ξ)yr ′(t + Φ2(ξ))dξ

+ ε1(x)Lαα(x, x)
 x

0

f (ζ )
ε1(ζ )

yr(t − Φ1(x)+ Φ1(ζ ))dζ

+ ε1(x)Lαβ(x, x)yr(t + Φ2(x))

+ ε1(x)
 x

0
Lαβx (x, ξ)y

r(t + Φ2(ξ))dξ

+ ε1(x)
 x

0
Lααx (x, ξ)

 ξ

0

f (ζ )
ε1(ζ )

yr(t − Φ1(ξ)

+Φ1(ζ ))dζdξ . (49)

Integrating by parts the first two integrals we get

ur
t + ε1(x)ur

x

=

 x

0


ε1(x)Lααx (x, ξ)+ ε1(ξ)Lααξ (x, ξ)+ ε′

1(ξ)L
αα(x, ξ)


×

 ξ

0

f (ζ )
ε1(ζ )

yr(t − Φ1(ξ)+ Φ1(ζ ))dζdξ

+

 x

0


ε1(x)Lαβx (x, ξ)

− ε2(ξ)L
αβ

ξ (x, ξ)− ε′

2(ξ)L
αβ(x, ξ)


yr(t + Φ2(ξ))dξ

+ (ε1(x)+ ε2(x)) Lαβ(x, x)yr(t + Φ2(x))

+ yr(t)

f (x)+

 x

0
Lαα(x, ξ)f (ξ)dξ − ε2(0)Lαβ(x, 0)


. (50)

Using (20), (27), (28), and (34) one can conclude that ur satis-
fies (11) if f satisfies

f (x) = ε2(0)Lαβ(x, 0)−

 x

0
Lαα(x, ξ)f (ξ)dξ . (51)

This fact can been shown as follows. The inverse of the back-
stepping transformation (40), (41) is uniquely defined and has
the form (45), (46) (see, for example, [34]). Hence, substitut-
ing (40), (41) in (45), (46) we get x

0


K uu(x, ξ)− Lαα(x, ξ)


u(ξ , t)+


K uv(x, ξ)− Lαβ(x, ξ)


v(ξ, t)dξ

+

 x

0

 ξ

0


Lαα(x, ξ)K uu(ξ , ζ )+ Lαβ(x, ξ)K vu(ξ , ζ )


u(ζ , t)

+

Lαα(x, ξ)K uv(ξ , ζ )+ Lαβ(x, ξ)K vv(ξ , ζ )


v(ζ , t)


dζdξ

= 0. (52)

Performing a change in the order of integration in the second in-
tegral of (52) and using the fact that (52) holds for all u and v, one
obtains

K uv(x, ξ) = Lαβ(x, ξ)

−

 x

ξ


Lαα(x, s)K uv(s, ξ)+ Lαβ(x, s)K vv(s, ξ)


ds. (53)

Setting ξ = 0 in (53), multiplying (53) by ε2(0), and using the facts
that K vv(x, 0) = 0 for all x ∈ [0, 1] (see relation (31) in [12]) and
that f is defined by (24), we get that f satisfies (51) for q = 0. The
rest of the proof is similar to the case q ≠ 0.

Example 1. We consider the following system

z1t + ε1z1x = −
1
τ
z1 (54)

z2t − ε2z2x = −
1
τ
z1, (55)
with boundary conditions

z1(0, t) = qz2(0, t) (56)

z2(1, t) = S(t), (57)

where τ is a positive parameter. Among various systems that can
bemodeled by (54)–(57) (for instance, the Saint-Venant equations,
see [5,4]), system (54)–(57) can be viewed as a linearized version
of the Aw–Rascle–Zhang (ARZ) macroscopic model of traffic flow
in the Riemann coordinates

z1 = w − V ′(s∗)s (58)

z2 = w, (59)

where w and s correspond to the velocity and density of the
vehicles at time t and location x, respectively. The variable V (s∗)
is the nominal velocity of the cars and s∗ is the nominal density.
The opposite transport velocities in (54), (55) correspond to traffic
flow in a congested mode. The parameter 1

τ
is an indicator of

the convergence rate of the velocity w of the cars to the nominal
velocity V (s). For more details the reader is referred to [1]. The
boundary condition (56) in the original variables is written as

w =
V ′(s∗)s
1 − q

. (60)

Hence, the boundary condition (56) dictates that there is a static
relation, at the entrance of the road, between the density and
the velocity similarly to the static relation between the nominal
velocity V (s) and the density of the cars in the road. The change of
variables (9), (10), (13), and (14) transform system (54)–(57) to

ut + ε1ux = 0 (61)

vt − ε2vx = −
1
τ
exp


−

1
τε1

x

u (62)

u(0, t) = qv(0, t) (63)
v(1, t) = U(t), (64)

where U(t) is given by (18). Observing that γ1 = 0, relations
(25)–(34) can be solved explicitly as

Lαα(x, ξ) = 0 (65)

Lαβ(x, ξ) = 0 (66)

Lβα(x, ξ) =
1

τ (ε1 + ε2)
exp


−

1
τε1


ε1x + ε2ξ

ε1 + ε2


(67)

Lββ(x, ξ) =
qε1

τε2 (ε1 + ε2)
exp


−

1
τε1


ε1x − ε1ξ

ε1 + ε2


. (68)

Therefore, for system (54)–(57), the reference input which
generates the desired output yr(t) is

Sr(t) = yr

t +

1
ε2


+

q
τ (ε1 + ε2)

×

 1

0
exp


−

1
τε1


ε1 + ε2ξ

ε1 + ε2


yr


t −

ξ

ε1


dξ

+
qε1

τε2 (ε1 + ε2)

×

 1

0
exp


−

1
τε1


ε1 − ε1ξ

ε1 + ε2


yr


t +

ξ

ε2


dξ . (69)
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2.2. Application to a wave PDE with indefinite in-domain and
boundary damping

Let us consider system

ztt = ε(x)zxx + h(x)zt + b(x)zx (70)
zx(0, t) = −gzt(0, t) (71)
zx(1, t) = W (t), (72)

with g ≠


1

√
ε(0)
,− 1

√
ε(0)


, h, b ∈ C1([0, 1]), and ε ∈ C2 ([0, 1])

with ε(x) > 0, for all x ∈ [0, 1]. The objective is z(0, t) to track
a reference trajectory, say, ζ (t), which belongs to C2(R). Let us
define the output of the system as

ψ(t) = z(0, t). (73)

With the change of variables

z1(x, t) =
1 −

√
ε(0)g

1 +
√
ε(0)g


zt(x, t)−


ε(x)zx(x, t)


(74)

z2(x, t) = zt(x, t)+


ε(x)zx(x, t) (75)

S(t) =


ε(1)W (t)+ zt(1, t), (76)

system (70)–(72) is rewritten as (1)–(5) where

y(t) =


1 −


ε(0)g


ψ̇(t) (77)

ε1(x) =


ε(x) (78)

ε2(x) =


ε(x) (79)

q = 1 (80)

c1(x) =
h(x)
2

−
b(x)

2
√
ε(x)

+
ε′(x)

4
√
ε(x)

(81)

c2(x) = mc4(x) (82)

c3(x) =
1
m

c1(x) (83)

c4(x) =
h(x)
2

+
b(x)

2
√
ε(x)

−
ε′(x)

4
√
ε(x)

(84)

m =
1 −

√
ε(0)g

1 +
√
ε(0)g

, (85)

together with the integrator ψ̇(t) =
1

1−
√
ε(0)g

z2(0, t). Applying
Theorem 1 we get the following reference input

W r(t) =
1

2
√
ε(1)

 
1 −


ε(0)g


× exp


−

 1

0

c4(s)
ε2(s)

ds
 

ζ̇ (t + Φ2(1))

+

 1

0
Lβα(1, ξ)ζ̇ (t − Φ1(ξ)) dξ

+

 1

0
Lββ(1, ξ)ζ̇ (t + Φ2(ξ)) dξ


−


1 +


ε(0)g


exp

 1

0

c1(s)
ε1(s)

ds
 

ζ̇ (t − Φ1(1))

+

 1

0
Lαα(x, ξ)ζ̇ (t − Φ1(ξ)) dξ

+

 1

0
Lαβ(x, ξ)ζ̇ (t + Φ2(ξ)) dξ


. (86)
3. Trajectory tracking using PI control

3.1. Stability analysis with a non-diagonal Lyapunov functional

For stabilizing the system around the desired trajectory
for any initial condition (u(x, 0), v(x, 0)), rather than only for
(u(x, 0), v(x, 0)) = (ur(x, 0), vr(x, 0)), we employ a PI-feedback
control law. We first write the dynamics of the tracking errors
ũ(x, t) = u(x, t)− ur(x, t) and ṽ(x, t) = v(x, t)− vr(x, t) as

ũt + ε1(x)ũx = γ1(x)ṽ (87)

ṽt − ε2(x)ṽx = γ2(x)ũ (88)

ũ(0, t) = qṽ(0, t) (89)

ṽ(1, t) = Ũ(t), (90)

where Ũ = U − U r and U r is the reference input generating the
desired reference trajectory. We employ the controller

Ũ(t) = −kP ṽ(0, t)− kI η̃(t), (91)

with

˙̃η(t) = ṽ(0, t). (92)

Theorem 2. Consider system (87)–(90) together with the control
law (91), (92). Let the positive constants µ, β , ρ , γ , ν , κ , and θ be
such that the matrices

M1 =

 −q2 − β

k2Pe

µ
− 1


−
κγ

2
−βkPkIeµ +

γ

2
(eνkP + 1)−

ρ

2
−βkPkIeµ +

γ

2
(eνkP + 1)−

ρ

2
−βk2I e

µ
+ γ eνkI −

γ

2

 (93)

M2(x) =


M21(x) M22(x)
M23(x) M24(x)


(94)

with

M21(x) =


µ−

θ

ε1(x)


e−µx

+
γ 2

2 (θρ − γ )

γ 2
2 (x)
ε22(x)

e2νx (95)

M22(x) = −
γ1(x)
ε1(x)

e−µx
− β

γ2(x)
ε2(x)

eµx

−
γ 2

2 (θρ − γ )

γ2(x)
ε2(x)


ν −

θ

ε2(x)


e2νx (96)

M23(x) = −
γ1(x)
ε1(x)

e−µx
− β

γ2(x)
ε2(x)

eµx

−
γ 2

2 (θρ − γ )

γ2(x)
ε2(x)


ν −

θ

ε2(x)


e2νx (97)

M24(x) = β


µ−

θ

ε2(x)


eµx −

γ

2κ
e2νx

ε22(x)

+
γ 2

2 (θρ − γ )


ν −

θ

ε2(x)

2

e2νx, (98)

are positive semi-definite for all x ∈ [0, 1], and the inequalities

βρ >
γ 2e(2ν−µ)x

2ε2(x)
, ∀x ∈ [0, 1] (99)

γ > θρ, (100)

hold. Then, there exist positive constants λ and Ω such that, for
all initial conditions satisfying


ũ0(x), ṽ0(x), η̃0


∈ L2 (0, 1) ×
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L2 (0, 1)× R, the following holds for all t ≥ 0 1

0


ũ2(x, t)+ ṽ2(x, t)


dx + η̃2(t)

≤ Ωe−λt
 1

0


ũ2(x, 0)+ ṽ2(x, 0)


dx + η̃2(0)


. (101)

Proof. In order to analyze the stability of system (87)–(92) we
propose the following Lyapunov functional

V (t) =

 1

0

ũ(x, t)
ṽ(x, t)
η̃(t)

⊤

P(x)

ũ(x, t)
ṽ(x, t)
η̃(t)


dx

= R1(t)+ R2(t)+ R3(t)+ R4(t), (102)

with

P(x) =


e−µx

ε1(x)
0 0

0 β
eµx

ε2(x)
γ eνx

2ε2(x)

0
γ eνx

2ε2(x)
ρ

2

 , (103)

and

R1(t) =

 1

0
ũ2(x, t)

e−µx

ε1(x)
dx (104)

R2(t) = β

 1

0
ṽ2(x, t)

eµx

ε2(x)
dx (105)

R3(t) = γ η̃(t)
 1

0
ṽ(x, t)

eνx

ε2(x)
dx (106)

R4(t) =
ρ

2
η̃2(t). (107)

Let us introduce the constants

λ = min
x∈[0,1]

λmin(P(x)) (108)

λ = max
x∈[0,1]

λmax(P(x)). (109)

Inequality (99) ensures that P(x) is positive definite and symmetric
for all x ∈ [0, 1], and hence, using the fact that ε1, ε2 ∈ C2 ([0, 1])
with ε1(x), ε2(x) > 0, for all x ∈ [0, 1], one can conclude that,
λ, λ > 0. Therefore,

λ

 1

0


ũ2(x, t)+ ṽ2(x, t)


dx + η̃2(t)


≤ V (t)

≤ λ

 1

0


ũ2(x, t)+ ṽ2(x, t)


dx + η̃2(t)


. (110)

Using (104)–(107) we get along the solutions of system (87)–(92)
that

Ṙ1(t) = −2
 1

0
ũ(x, t)ũx(x, t)e−µxdx

+ 2
 1

0
ũ(x, t)ṽ(x, t)

γ1(x)
ε1(x)

e−µxdx

=

q2ṽ2(0, t)− e−µũ2(1, t)


− µ

 1

0
ũ2(x, t)e−µxdx

+ 2
 1

0
ũ(x, t)ṽ(x, t)

γ1(x)
ε1(x)

e−µxdx (111)
Ṙ2(t) = 2β
 1

0
ṽ(x, t)ṽx(x, t)eµxdx

+ 2β
 1

0
ũ(x, t)ṽ(x, t)

γ2(x)
ε2(x)

eµxdx

= β

k2Pe

µṽ2(0, t)+ 2kPkIeµṽ(0, t)η̃(t)+ k2I e
µη̃2(t)

− ṽ2(0, t)

− µβ

 1

0
ṽ2(x, t)eµxdx

+ 2β
 1

0
ũ(x, t)ṽ(x, t)

γ2(x)
ε2(x)

eµxdx (112)

Ṙ3(t) = γ η̃(t)
 1

0
ṽx(x, t)eνxdx + γ ṽ(0, t)

 1

0
ṽ(x, t)

eνx

ε2(x)
dx

+ γ η̃(t)
 1

0
ũ(x, t)

γ2(x)
ε2(x)

eνxdx

≤ γ η̃(t) (eν (−kP ṽ(0, t)− kI η̃(t))− ṽ(0, t))

− νγ η̃(t)
 1

0
ṽ(x, t)eνxdx

+
κγ

2
ṽ2(0, t)+

γ

2κ

 1

0
ṽ2(x, t)

e2νx

ε22(x)
dx

+ γ η̃(t)
 1

0
ũ(x, t)

γ2(x)
ε2(x)

eνxdx (113)

Ṙ4(t) = ρṽ(0, t)η̃(t), (114)

where we used integration by parts in the first terms of
(111)–(113) and Young’s inequality in the second term of (113).
Using (102), (111)–(114) we get

V̇ (t) ≤ −


ṽ(0, t)
η̃(t)

⊤

M1


ṽ(0, t)
η̃(t)



−

 1

0

ũ(x, t)
ṽ(x, t)
η̃(t)

⊤

M(x)

ũ(x, t)
ṽ(x, t)
η̃(t)


dx

− e−µũ2(1, t)− θV (t), (115)

where M1 is given by (93) and

M(x) =


A(x) B⊤(x)
B(x) C


, (116)

with

A(x) =


A1(x) A2(x)
A3(x) A4(x)


, (117)

where

A1(x) =


µ−

θ

ε1(x)


e−µx (118)

A2(x) = −
γ1(x)
ε1(x)

e−µx
− β

γ2(x)
ε2(x)

eµx (119)

A3(x) = −
γ1(x)
ε1(x)

e−µx
− β

γ2(x)
ε2(x)

eµx (120)

A4(x) = β


µ−

θ

ε2(x)


eµx −

γ

2κ
e2νx

ε22(x)
(121)

B(x) =


−
γ

2
γ2(x)
ε2(x)

eνx
γ

2


ν −

θ

ε2(x)


eνx


(122)

C =
γ − θρ

2
. (123)
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Using the Schur complement of C inM(x) and (100), (123) one has
thatM(x) ≥ 0 for all x ∈ [0, 1], if and only if

M2(x) = A(x)− B⊤(x)C−1B(x) ≥ 0. (124)

Thus, ifM1 ≥ 0 andM2(x) ≥ 0, for all x ∈ [0, 1], one has

V̇ (t) ≤ −e−µũ2(1, t)− θV (t), (125)

and hence, V (t) ≤ e−θ tV (0), for all t ≥ 0. Combining this relation
with (110) the proof is complete.

Remark 2. A control law with an integral action is designed in [5]
for 2 × 2 hyperbolic systems. Stability of the closed-loop system
is proved using a diagonal Lyapunov functional. Here the non-
diagonal term in the Lyapunov functional is needed for proving
stability using a quadratic Lyapunov functional. Indeed, let us
assume that the Lyapunov functional is diagonal. We can write it
as

V (t) =

 1

0


q1(x)ũ2(x, t)+ q2(x)ṽ2(x, t)


dx +

ρ

2
η̃2(t), (126)

where the functions q1 and q2 belong to C1 ([0, 1]) with q1(x),
q2(x) > 0, for all x ∈ [0, 1]. The time derivative of V along the
solutions of system (87), (88) with boundary conditions (89)–(92)
is given by

V̇ (t) =


ṽ(0, t)
η̃(t)

⊤ 
D1 D2
D3 D4

 
ṽ(0, t)
η̃(t)


+

 1

0


ũ(x, t)
ṽ(x, t)

⊤

E(x)

ũ(x, t)
ṽ(x, t)


dx

− q1(1)ε1(1)ũ2(1, t), (127)

where

D1 = q1(0)ε1(0)q2 − q2(0)ε2(0)+ q2(1)ε2(1)k2P (128)

D2 =
1
2
(q2(1)ε2(1)kPkI + ρ) (129)

D3 =
1
2
(q2(1)ε2(1)kPkI + ρ) (130)

D4 = q2(1)ε2(1)k2I (131)

E(x) =


(q1(x)ε1(x))x q1(x)γ1(x)+ q2(x)γ2(x)

q1(x)γ1(x)+ q2(x)γ2(x) −(q2(x)ε2(x))x


. (132)

Using (127) and (131) one can conclude that when kI ≠ 0 the
inequality V̇ ≤ 0 cannot be satisfied for any


ũ ṽ η̃

⊤.
In [3], it is proved that if there exist two boundary controllers

for 2× 2 linear hyperbolic systems of the form (87), (88) such that
the functional

V (t) =

 1

0
q1(x)ũ2(x, t)+ q2(x)ṽ2(x, t)

+ q3(x)ũ(x, t)ṽ(x, t)dx, (133)

along the solutions of the system (87), (88) with the state

ũ, ṽ


satisfies V̇ < 0 then the cross term q3 between ũ and ṽ is
necessarily identically zero. However, in the case of stabilization
of 2 × 2 linear hyperbolic systems of the form (87), (88) with
a PI control law that we consider here, the cross term (106) in
the Lyapunov functional (102) between the integral state η̃ of the
controller and the state of the plant ṽ is necessary (as explained
above) for proving stability of the overall closed-loop system
consisting of the plant state


ũ, ṽ


and the integral state η̃, using

the Lyapunov functional defined in (102) (although a cross term
between ũ and ṽ is not necessary).
Fig. 1. Evolution of the eigenvalues of (94) as a function of x (square and cross
markers), and of the determinant of P(x) in (103) (star marker) for Example 2.

As explained in Remark 2 the non-diagonal term in the Lya-
punov functional is crucial for proving stability using a quadratic
Lyapunov functional. However, this term adds considerable com-
plexity in verifying analytically that thematrices (93), (94) are pos-
itive definite and that (99) holds. In general, the positivity ofM1 and
M2 must be verified numerically. Yet, from the expression ofM1 we
see that a necessary condition is that kI is strictly positive. In addi-
tion, from (93) it is evident that kP must satisfy |kP | < 1. Note that
from (93)–(100) it seems possible that the positivity ofM1 andM2
may depend on the values of γ1, γ2, and q. Next, we numerically
verify the conditions of Theorem 2 for the system from Example 1.

Example 2 (Example 1 Continued).We set in (61)–(63)

ε1 = 3 (134)
ε2 = 6 (135)
τ = 5 (136)
q = 0.2, (137)

and choose U in (90) according to (91) with

kP = 0.1 (138)
kI = 1.0583, (139)

in order to stabilize the zero equilibrium of (61)–(63). We verify
numerically that the conditions of Theorem 2 are satisfied with

(β, κ, µ, ν, θ, ρ, γ ) = (0.7, 0.2, 0.5, 0.2, 0.7, 2, 2). (140)

From (93) we get that

M1 =


0.4485 0

0 0.2926


> 0. (141)

The verification of the positive definiteness of matrix (94) is more
delicate due to its dependence on x. Fig. 1 shows the evolution
of the eigenvalues of M2(x) and the determinant of matrix (103),
which remain positive for all x ∈ [0, 1].

3.2. Compensation in the output of in-domain and boundary
disturbances

Let us assume that there exist some disturbances d1, d2 ∈

C1 ([0, 1]) on the right-hand side of (11), (12), respectively and
some disturbances d3, d4 ∈ R on the right-hand side of (15), (16),
respectively. The error system (87)–(90) becomes

ũt + ε1(x)ũx = γ1(x)ṽ + d1(x) (142)

ṽt − ε2(x)ṽx = γ2(x)ũ + d2(x) (143)
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ũ(0, t) = qṽ(0, t)+ d3 (144)

ṽ(1, t) = Ũ(t)+ d4, (145)

with Ũ(t) and η̃(t) given by (91) and (92) respectively. The
equilibrium of the perturbed system (142)–(144) and (90) is the
solution of the following ordinary differential equation

Z ′(x) = F(x)Z(x)+ G(x), (146)

where F(x) =

 0
γ1(x)
ε1(x)

−
γ2(x)
ε2(x)

0

 and G(x) =

 d1(x)
ε1(x)

−
d2(x)
ε2(x)

, with

boundary conditions

Z1(0) = d3 (147)
Z2(0) = 0. (148)

The ordinary differential equation (146) together with the
boundary conditions (147), (148) is a well-posed initial value
problem for x. The equilibrium depends on d1, d2, and d3. Let us
denote this equilibrium by ũss(x; d1, d2, d3), ṽss(x; d1, d2, d3). From
(145) it follows that the equilibriumvalue of Ũ , namely Ũss, satisfies

Ũss = ṽss(1; d1, d2, d3)− d4. (149)

Using (91) and (148)with Z =

ũss, ṽss

⊤, it follows from (149) that
the equilibrium value of η̃, namely η̃ss, satisfies

η̃ss = −
ṽss(1; d1, d2, d3)− d4

kI
. (150)

Let us define

u(x, t) = ũ(x, t)− ũss (x; d1, d2, d3) (151)

v(x, t) = ṽ(x, t)− ṽss (x; d1, d2, d3) (152)

η(t) = η̃(t)− η̃ss. (153)

Using (146) with Z =

ũss, ṽss

⊤ together with (142), (143) it is
shown that the variables u and v satisfy

ut + ε1(x)ux = γ1(x)v (154)

vt − ε2(x)vx = γ2(x)u. (155)

Setting x = 0 in (151), (152), and using (144), (147), and (148) we
get that

u(0, t) = qv(0, t). (156)

Setting x = 1 in (152) and using (145), (91), and (150) we get
v(1, t) = −kP ṽ(0, t)−kI η̃(t)+kI η̃ss. Using (152) for x = 0 together
with (148) and (153) we arrive at

v(1, t) = −kPv(0, t)− kIη(t). (157)

Using (153) and the fact that

v(0, t) = ṽ(0, t), (158)

relation (92) becomes

η̇(t) = v(0, t). (159)

Under the assumptions of Theorem 2 the zero equilibrium of
(154)–(157) and (159) is exponentially stable.
Fig. 2. Solution to the trajectory generation problem for system (70)–(72) with
parameters (160)–(163).

4. Simulations

4.1. Trajectory generation for a wave PDE

In this subsection, we illustrate our trajectory generation
methodology with a wave PDE of the form (70)–(72). We choose
the parameters of the system as

ε = 1 (160)
h = 1 (161)
b = −1 (162)
g = 0. (163)

The reference for the output is chosen as ζ (t) = sin(3t). As in
Example 1, this choice of parameters gives c2 = c4 = 0, and hence
γ1 = 0. Therefore, using relations (65)–(68) we obtain

Lαα(x, ξ) = 0 (164)

Lαβ(x, ξ) = 0 (165)

Lβα(x, ξ) = −
1
2
exp


x + ξ

2


(166)

Lββ(x, ξ) = −
1
2
exp


x − ξ

2


. (167)

The reference trajectory zr for system (70)–(72) is given by

zr(x, t) =
1
37
(19 sin (3t + 3x)− 3 exp(x) cos (3t − 3x)

+ 3 cos (3t + 3x)+ 18 exp(x) sin(3t − 3x)) , (168)

which gives the following reference input

W r(t) =
57
37
(cos (3t + 3)− exp(1) cos (3t − 3))

+
9
37
(exp(1) sin (3t − 3)− sin (3t + 3)) . (169)

Fig. 2 shows the evolution of the reference trajectory zr . Fig. 3
shows the evolution of the spatial derivative of zr and, in particular,
the control effortW r(t) = zrx(1, t) given by (169).

4.2. Trajectory tracking

In this subsection, a simulation study for the system from
Examples 1 and 2 is presented. The numerical approximation of the
solution is computedwith a two-step variant of the Lax–Friedrichs
(LxF) method [35]. The reference for the output is chosen as
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Fig. 3. The spatial derivative of the reference trajectory of Fig. 2. Note in particular
the reference inputW r (t) = zrx (1, t) given by (169).

yr(t) = cos(t). We add disturbances at the right-hand side of (61),
(62) given by

d1(x) = 0.5 exp(x) (170)
d2(x) = cos(2x), (171)

together with constant additive disturbances on the boundary
conditions (63), (64) given by

d3 = 0.5 (172)
d4 = 0.5. (173)

The initial conditions for u and v are chosen as the reference initial
conditions given by (19), (20) for t = 0, perturbed by spatially-
varying errors as

u(x, 0) = ur(x, 0)+ sin(x) (174)

v(x, 0) = vr(x, 0)+ cos(x), (175)

and the initial condition for η̃ is chosen such that U(0) = v(1, 0),
that is,

η̃(0) =
U r(0)− v(1, 0)+ kP(vr(0, 0)− v(0, 0))

kI
. (176)

Fig. 4 shows that the output of the system v(0, t) follows the
desired trajectory under the PI controller given by

U(t) = cos

t +

1
6


+

3
229


exp


−

1
45


sin(t)

− exp


−
1
15


sin


t −

1
3


+

2
1145


exp


−

1
45


cos(t)− exp


−

1
15


cos


t −

1
3


+

6
241


exp


1
45


sin


t +

1
6


− exp


−

1
45


sin (t)


+

8
1205


exp


1
45


cos


t +

1
6


− exp


−

1
45


cos(t)


− kP (v(0, t)− cos(t))− kI η̃(t), (177)

with gains (138), (139), and ˙̃η(t) = v(0, t) − cos(t). One can also
observe that with only a P controller (i.e., when kI = 0 in (177))
there is a steady-state tracking error. Fig. 5 shows the evolution of
the state v.
Fig. 4. The output v(0, t) of system (61)–(64) with parameters (134)–(137) under
the control law (177) with gains (138), (139) (square marker) and with gains (138),
kI = 0 (star marker) for the initial conditions (174)–(176). The single line is the
reference output yr (t) = cos(t).

Fig. 5. Evolution of the state v of system (61)–(64) with parameters (134)–(137)
under the control law (177) with gains (138), (139) for the initial conditions
(174)–(176).

5. Conclusions

We presented solutions to the trajectory generation and
tracking problems for general 2 × 2 systems of first-order linear
hyperbolic PDEs. We solved the motion planning problem with
backstepping and the trajectory tracking problem with PI control.
We proved exponential stability of the closed-loop system by
constructing a Lyapunov functional.
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