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a b s t r a c t

Predictor techniques are an indispensable part of the control design toolbox for plants with input and
state delays of significant size. Yet, they suffer from sensitivity to the design values. Explicit feedback laws
were recently introduced by Jankovic for a class of feedforward linear systems with simultaneous state
and input delays. For the case where the delays are of unknown length, using the certainty equivalence
principle, we design a Lyapunov-based adaptive controller, which achieves global stability and regulation,
for arbitrary initial estimates for the delays. We consider a two-block sub-class of linear feedforward
systems. A generalization to the n-block case involves a recursive application of the same techniques.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The design of stabilizing controllers for systems with delays
continues to be an active area of research. Controllers for both
linear and nonlinear systems exist in the literature, many of which
are based on predictor-like techniques [1–9,24–38]. However,
systems with simultaneous input and state delay remain a
challenge, even for linear systems [10,2–4,11–13].

An even more challenging problem is the adaptive control
of systems with simultaneous input and state delays. From the
practical point of view, controllers for delay systems should be
robust to parametric uncertainties, including plant parameters
and delays. The importance of designing robust controllers when
the delays are the unknown parameters was highlighted in the
control problems considered in [14] and [15]. On the other hand,
since there already exists a rich literature for the control of time
delay systems, adaptive control schemes that are based on existing
control techniques are of interest. Since many control schemes are
based on predictor-like techniques, which are known to be very
sensitive to delay uncertainties [16], designing adaptive versions
of these control schemes is crucial for making them usable in
scenarios with uncertain delays.

Adaptive control schemes can be found in [17,18]. Yet, the
adaptive control problem when the delays are the unknown
parameters had not been solved until recently with the works
in [19,20]. In [19] the problem of designing an adaptive control
scheme for a linear systemwithunknown input delay is solved, and
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in [20] the result is extended to also incorporate unknown plant
parameters. The aforementioned designs are based on predictor
feedback together with tools that come from the adaptive control
of parabolic PDEs [21].

In this paper we develop a delay-adaptive version of the design
introduced by Jankovic in [4] for linear feedforward systems with
simultaneous state and input delays. In [4], for the system

Ẋ1(t) = F1X1(t) + H1X2(t − D1) + B1U(t) (1)

Ẋ2(t) = F2X2(t) + B2U(t), (2)
a predictor-based controller is designed as

U(t) = K1D1

� 1

0
e−F1D1θH1X2 (t + D1(θ − 1)) dθ

+ K1X1(t) + K2X2(t). (3)
The above controller is based on a transformation that reduces
the system to an equivalent system without state delay. This
transformation is

Z1(t) = X1(t) + D1

� 1

0
e−F1D1θH1X2 (t + D1(θ − 1)) dθ (4)

Z2(t) = X2(t), (5)
and it transforms the system (1)–(2) to

Ż1(t) = F1Z1(t) + e−F1D1H1Z2(t) + B1U(t) (6)

Ż2(t) = F2Z2(t) + B2U(t). (7)
The importance of the previous transformation, besides transform-
ing the original system to an equivalent one without state delay, is
that the system can be linearly parameterized in the state delay,
which is the key for designing an adaptive control law.
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Then, assuming that the pair
��

F1 e−D1F1H1
0 F2

�
,
�
B1
B2

��
is com-

pletely controllable, a state feedback controller U(t) = K1Z1(t) +
K2Z2(t) is designed such that the transformed system is asymptot-
ically stable. It can be shown that controllability of the original sys-
tem is equivalent to controllability of the transformed system [22].
This design can be also applied in the case where there is a delay
in the input, say D2. In this case after employing the state transfor-
mation a predictor feedback is needed for the transformed system.
In this case the controller that compensates for D2 is given by

U(t) = KeAD2Z(t) + KD2

� 1

0
eAD2(1−θ)

BU (t − D2(θ − 1)) dθ , (8)

where

A =
�
F1 e−D1F1H1
0 F2

�
(9)

B =
�
B1
B2

�
(10)

K =
�
K1 K2

�
. (11)

The controller (8) is the basis of our adaptive design.

2. Problem formulation

In this paper we consider both the state and input delays to be
unknown, that is, we consider the system

Ẋ1(t) = F1X1(t) + H1X2(t − D1) + B1U(t − D2) (12)

Ẋ2(t) = F2X2(t) + B2U(t − D2), (13)

withD1 andD2 unknown. SinceD1 andD2 are unknown, in addition
to the predictor based controller, we must design two estimators,
one for each of the delays. We employ projector operators and
assume a bound on the length of the delays to be known.

Assumption 1. There exist known constants D1, D1 and D2 such
that D1 ∈ [D1,D1] and D2 ∈ [0,D2].

Our controller is based on the transformed system (i.e., on the
system without state delay). As indicated in Section 1, the pair��

F1 e−D1F1H1
0 F2

�
,
�
B1
B2

��
must be completely controllable. Under

this assumptionwe can find a stabilizing state feedback. In the case
of unknown state delay D1, we must assume that there exists a
stabilizing state feedback for all values of the state delay in a given
interval. We thus make the following assumption.

Assumption 2. The pair
��

F1 e−D1F1H1
0 F2

�
,
�
B1
B2

��
is completely

controllable ∀D1 ∈ [D1,D1]. Furthermore, we assume that there
exists a triple of vector/matrix-valued functions (K(D1), P(D1),
Q (D1)) such that K(D1) ∈ C

1
�
[D1,D1]

�
, P(D1) ∈ C

1
�
[D1,D1]

�
, Q

(D1) ∈ C
0
�
[D1,D1]

�
, the matrices P(D1) and Q (D1) are positive

definite and symmetric, and the following Lyapunov equation is
satisfied ∀D1 ∈ [D1,D1]:
(A(D1) + BK(D1))

T
P(D1) + P(D1) (A(D1) + BK(D1))

= −Q (D1), ∀D1 ∈ [D1,D1]. (14)

Our final assumption is needed in the choice of the normaliza-
tion coefficients in the adaptation laws for the delay estimates.

Assumption 3. The quantities λ = inf
D1∈[D1,D1] min{λmin(Q (D1)),

λmin(P(D1))} and λ = sup
D1∈[D1,D1] λmax (P(D1)) exist and are

known.

3. Controller design

We first rewrite (12)–(13) using a PDE representation of the
delayed states and control as

Ẋ1(t) = F1X1(t) + H1ξ(0, t) + B1u(0, t) (15)
D1ξt(x, t) = ξx(x, t) (16)
ξ(1, t) = X2(t) (17)

Ẋ2(t) = F2X2(t) + B2u(0, t) (18)
D2ut(x, t) = ux(x, t) (19)
u(1, t) = U(t), (20)

where x ∈ [0, 1]. We assume that the infinite-dimensional states
ξ(x, t), u(x, t), x ∈ [0, 1] are available for measurement. This as-
sumption is not in contradictionwith the assumption that the con-
vection speeds 1/D1 and 1/D2 are unknown. As restrictive as the
requirement for measurement of ξ(x, t), u(x, t), x ∈ [0, 1] may
appear, we do not believe that the delay-adaptive problemwithout
such measurements is solvable globally because it cannot be for-
mulated as linearly parameterized in the unknown delays D1 and
D2.

The transport PDE states can be expressed in terms of the past
values of X2 and U as

ξ(x, t) = X2(t + D1(x − 1)) (21)
u(x, t) = U(t + D2(x − 1)). (22)

Using the certainty equivalence principle the controller (8) is taken
as

U(t) = K(D̂1)eA(D̂1)D̂2(t)



X1(t) + D̂1(t)

� 1

0
e−F1D̂1(t)yH1ξ(y, t)dy

X2(t)





+ K(D̂1)D̂2(t)

� 1

0
eA(D̂1)D̂2(t)(1−y)

Bu(y, t)dy. (23)

The update laws for the estimations of the unknown delays D1 and
D2 are given by

˙̂
D1(t) = γ1Proj[D1,D1]{τD1} (24)

˙̂
D2(t) = γ2Proj[0,D2]{τD2}, (25)

where the projector operators are defined as

Proj[Di,Di]
�
τDi

�
=






0 if D̂i = D
i
and τDi

< 0
0 if D̂i = Di and τDi

> 0
τDi

else
, (26)

and where

τD1 =
� 1
0 (1 + x)w(x, t)K(D̂1)eA(D̂1)D̂2(t)xdx − 2

a2
Z
T (t)P(D̂1)

Γ (t)
× R2(t) (27)

τD2 = −
� 1
0 (1 + x)w(x, t)K(D̂1)eA(D̂1)D̂2(t)xdx

Γ (t)

×
�
Bu(0, t) + A(D̂1)Z(t)

�
(28)

Γ (t) = 1 + Z
T (t)P(D̂1)Z(t) + a2

� 1

0
(1 + x)w2(x, t)dx

+ k

� 1

0
(1 + x)ξ T (x, t)ξ(x, t)dx, (29)
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with

k ≤ λD1

8
(30)

a2 ≥
D2 sup

D̂1∈[D1,D1]
|P(D̂1)B|2

λ
. (31)

In the above relation we use the following signals which are
derived in the stability analysis of the closed-loop system

Z1(t) = X1(t) + D̂1(t)

� 1

0
e−D̂1(t)F1yH1ξ(y, t)dy (32)

Z2(t) = X2(t) (33)

R2(t) =



e−D̂1(t)F1H1Z2(t) − H1ξ(0, t) + D̂1(t)F1

� 1

0
e−D̂1(t)F1yH1ξ(y, t)dy

0



(34)

and the transformed infinite dimensional state of the actuator

w(x, t) = u(x, t) − K(D̂1)

�
eA(D̂1)D̂2(t)xZ(t) + D̂2(t)

×
�

x

0
eA(D̂1)D̂2(t)(x−y)

Bu(y, t)dy
�

. (35)

4. Stability analysis

This section is devoted to the proof of the main result. We start
by giving the main theorem and in the rest of the section we prove
it using a series of technical lemmas.

Theorem 1. Let Assumptions 1–3 hold. Then system (12)–(13) with

the controller (23) and the update laws (24)–(25) is stable in the sense

that there exist constants R and ρ such that

Ω(t) ≤ R

�
eρΩ(0) − 1

�
, (36)

where

Ω(t) = |X(t)|2 + �ξ(t)�2 + �u(t)�2 + D̃
2
1(t) + D̃

2
2(t), (37)

and

�ξ(t)�2 =
� 1

0
ξ(y, t)T ξ(y, t)dy = 1

D1

�
t

t−D1

X2(θ)T X2(θ)dθ (38)

�u(t)�2 =
� 1

0
u
2(y, t)dy = 1

D2

�
t

t−D2

U
2(θ)dθ . (39)

Furthermore

lim
t→∞

X(t) = 0 (40)

lim
t→∞

U(t) = 0. (41)

We start proving the above theorem by first transforming the
system (15)–(20) using the transformations (32)–(33) and (35). By
differentiating with respect to time (32) and (33) and by using (15)
and (18) we get

Ż1(t) = F1X1(t) + H1ξ(0, t) + B1u(0, t)

+ ˙̂
D1(t)

� 1

0
e−D̂1(t)F1yH1ξ(y, t)dy

− D̂1(t)
˙̂
D1(t)

� 1

0
F1ye−D̂1(t)F1yH1ξ(y, t)dy

+ D̂1(t)

� 1

0
e−D̂1(t)F1yH1ξt(y, t)dy (42)

Ż2(t) = F2X2(t) + B2u(0, t). (43)

Using relations (16) and (17), the fact that D̂1
D1

= 1 − D̃1
D1

and
integrating by parts the last integral in (42) we obtain

Ż1(t) = F1X1(t) + H1ξ(0, t) + B1u(0, t)

+ ˙̂
D1(t)

� 1

0
e−D̂1(t)F1yH1ξ(y, t)dy

− D̂1(t)
˙̂
D1(t)

� 1

0
F1ye−D̂1(t)F1yH1ξ(y, t)dy

+
�

1 − D̃1

D1

� �
e−D̂1(t)F1H1X2(t) − H1ξ(0, t)

�

+
�

1 − D̃1

D1

� � 1

0
D̂1(t)F1e−D̂1(t)F1yH1ξ(y, t)dy (44)

Ż2(t) = F2X2(t) + B2u(0, t). (45)

Using (32)–(33) and after some algebra we arrive at

Ż(t) =
�
Ż1(t)

Ż2(t)

�

= A(D̂1)Z(t) + Bu(0, t) + ˙̂
D1(t)R1(t) − D̃1

D1
R2(t), (46)

where R2(t) is defined in (34) and

A(D̂1) =
�
F1 e−D̂1(t)F1H1
0 F2

�
(47)

B =
�
B1
B2

�
(48)

R1(t) =




� 1

0

�
I − D̂1(t)F1y

�
e−D̂1(t)F1yH1ξ(y, t)dy

0



 . (49)

Using relation (35) for x = 0 we get that

Ż(t) =
�
A(D̂1) + BK(D̂1)

�
Z(t) + Bw(0, t)

+ ˙̂
D1(t)R1(t) − D̃1

D1
R2(t). (50)

Moreover the transformation of the actuator state w satisfies

D2wt(x, t) = wx(x, t) + D̃1

D1
D2p1(x, t) − D̃2p2(x, t)

−D2
˙̂
D1(t)q1(x, t) − D2

˙̂
D2(t)q2(x, t), (51)

where

p1(x, t) = K(D̂1)eA(D̂1)D̂2(t)xR2(t) (52)

q1(x, t) =
�

x

0

�
∂K(D̂1)

∂D̂1
+ K(D̂1)

∂A(D̂1)

∂D̂1
(x − y)

�

× D̂2(t)eD̂2(t)A(D̂1)(x−y)
Bu(y, t)dy

+
�

∂K(D̂1)

∂D̂1
+ K(D̂1)

∂A(D̂1)

∂D̂1
D̂2(t)x

�

× eD̂2(t)A(D̂1)xZ(t) + K(D̂1)eD̂2(t)A(D̂1)xR1(t) (53)

p2(x, t) = K(D̂1)eD̂2(t)A(D̂1)xBu(0, t) + K(D̂1)A(D̂1)

× eD̂2(t)A(D̂1)xZ(t) (54)

q2(x, t) = K(D̂1)

�
x

0

�
I + D̂2(t)(x − y)A(D̂1)

�
eA(D̂1)D̂2(t)(x−y)

× Bu(y, t)dy. (55)
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Thus now, system (15)–(20) is mapped to the target system that is
comprised of (50) and (51). Moreover, the inverse transformation
of the state X(t) is easily obtained from Eqs. (32)–(33) and the
inverse transformation of (35) is given by

u(x, t) = w(x, t) + K(D̂1)

�
e
�
A(D̂1)+BK(D̂1)

�
D̂2(t)x

Z(t)

+ D̂2(t)

�
x

0
e
�
A(D̂1)+BK(D̂1)

�
D̂2(t)(x−y)

Bw(y, t)dy
�

. (56)

We first prove that the signals in (50) and (51) that multiply the
‘‘disturbances’’ ˙̂

Di and D̃i, i = 1, 2., are bounded with respect to
the system’s transformed states Z(t), ξ(x, t) and w(x, t). Before
doing that, we point out that boundness of the transformed states
is equivalent to boundness of the original states.

Lemma 1. There exist constants Mu, Mw , MX and MZ such that

�u(t)�2 ≤ Mu

�
�w(t)�2 + |Z(t)|2

�
(57)

|X(t)|2 ≤ MX

�
|Z(t)|2 + �ξ(t)�2� (58)

�w(t)�2 ≤ Mw

�
�u(t)�2 + |Z(t)|2

�
(59)

|Z(t)|2 ≤ MZ

�
|X(t)|2 + �ξ(t)�2� . (60)

Proof. First observe that the signals K(D̂1), P(D̂1) and A(D̂1) are
continuously differentiable with respect to D̂1. Moreover, since D̂1
and D̂2 are uniformly bounded, the signals K(D̂1), P(D̂1) and A(D̂1)
and their derivatives are also uniformly bounded. Denote by MK ,
MP andMA the bounds of K(D̂1), P(D̂1) and A(D̂1) respectively, and
withM

�
K
,M �

P
andM

�
A
the bounds of their derivatives. From relations

(32)–(33) and (35), (56) and using Young’s and Cauchy–Schwartz’s
inequalities it easy to show that the above bounds hold with

Mu = 3max
�
1 + M

2
K
D
2
2e

2D2(MA+|B|MK )|B|2,M2
K
e2D2(MA+|B|MK )

�
(61)

MZ = 2max
�
1,D

2
1e

2|F1|D1 |H1|2
�

(62)

MX = 2max
�
1,D

2
1e

2|F1|D1 |H1|2
�

(63)

Mw = 3max
�
1 + M

2
K
D
2
2e

2MAD2 |B|2,M2
K
e2MAD2

�
. � (64)

We are now ready to state the following lemma

Lemma 2. There exist constants MR1 , MR2 , Mp1 , Mp2 , Mq1 and Mq2
such that the following bounds hold

|R1(t)|2 ≤ MR1�ξ(t)�2 (65)

|R2(t)|2 ≤ MR2

�
|Z(t)|2 + |ξ(0, t)|2 + �ξ(t)�2� (66)

p
2
1(x, t) ≤ Mp1

�
|Z(t)|2 + |ξ(0, t)|2 + �ξ(t)�2� (67)

p
2
2(x, t) ≤ Mp2

�
|Z(t)|2 + u

2(0, t)
�

(68)

q
2
1(x, t) ≤ Mq1

�
|Z(t)|2 + �u(t)�2 + �ξ(t)�2� (69)

q
2
2(x, t) ≤ Mq2�u(t)�2, (70)

for all x ∈ [0, 1].
Proof. From relations (49) and (34) and by using Young’s and
Cauchy–Schwartz’s inequalities we get the bounds for R1(t) and
R2(t) with

MR1 =
�
1 + D1|F1|

�2
e2D2|F1||H1|2 (71)

MR2 = 3|H1|2 max
�
e2D2|F1||F1|2, 1,D2

1|F1|2e2D2|F1|
�

. (72)

Using relations (52)–(55) together with Young’s and Cauchy–
Schwartz’s inequalities, relations (65)–(66) and (57) we get the
bounds of the lemma with

Mp1 = M
2
K
e2MAD2MR2 (73)

Mp2 = 3max
�
M

2
K
e2MAD2 |B|2,M2

K
M

2
A
e2MAD2

�
(74)

Mq1 = 3max
��

M
�
K
D2 + D2MKM

�
A

�2 |B|2e2MAD2 ,

M
2
K
e2MAD2MR1 ,

�
M

�
K

+ MKM
�
A
D2

�2
e2MAD2

�
(75)

Mq2 = M
2
K

�
1 + D2MA

�2
e2MAD2 . � (76)

Lemma 3. There exist constants k, a2, γ1 and γ2 such that for the

Lyapunov function

V (t) = D2 log (1 + Ξ(t)) + a2D2
D̃
2
1(t)

D1γ1
+ a2

D̃
2
2(t)

γ2
, (77)

where

Ξ(t) = Z(t)T P
�
D̂1

�
Z(t) + k

� 1

0
(1 + x)ξ T (x, t)ξ(x, t)dx

+ a2

� 1

0
(1 + x)w2(x, t)dx, (78)

the following holds

V (t) ≤ V (0). (79)

Proof. Taking the time derivative of the above function we obtain

V̇ (t) = −2a2D2
D̃1

D1γ1

� ˙̂
D1(t) − γ1τD1

�
− 2a2

D̃2

γ2

� ˙̂
D2(t) − γ2τD2

�

+ D2

1 + Ξ(t)

�

−Z
T (t)Q (D̂1)Z(t) + 2ZT (t)P(D̂1)Bw(0, t)

+ 2k
D1

Z
T

2 (t)Z2(t) − k

D1
|ξ(0, t)|2

− a2

D2
w2(0, t) − k

D1

� 1

0
ξ T (x, t)ξ(x, t)dx

− a2

D2

� 1

0
w2(x, t)dx + ˙̂

D1(t)

�
Z
T (t)

∂P(D̂1)

∂D̂1
Z(t)

+ 2ZT (t)P(D̂1)R1(t) − 2a2
� 1

0
(1 + x)w(x, t)q1(x, t)dx

�

− 2a2
˙̂
D2(t)

� 1

0
(1 + x)w(x, t)q2(x, t)dx

�

. (80)

Using the properties of the projector operators and relations
(24)–(25) we get

V̇ (t) ≤ D2

1 + Ξ(t)

�

−Z
T (t)Q (D̂1)Z(t) + 2k

D1
Z
T

2 (t)Z2(t)

− k

D1
|ξ(0, t)|2 − a2

D2
w2(0, t) + Z

T (t)P(D̂1)Bw(0, t)

− k

D1

� 1

0
ξ T (x, t)ξ(x, t)dx − a2

D2

� 1

0
w2(x, t)dx

+ ˙̂
D1(t)

�
Z
T (t)

∂P(D̂1)

∂D̂1
Z(t) + 2ZT (t)P(D̂1)R1(t)
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− 2a2
� 1

0
(1 + x)w(x, t)q1(x, t)dx

�

− 2a2
˙̂
D2(t)

� 1

0
(1 + x)w(x, t)q2(x, t)dx

�

. (81)

Then using Young’s inequality and (30)–(31) we get

V̇ (t) ≤ D2

1 + Ξ(t)

�

−λ

2
|Z(t)|2 − k

D1
|ξ(0, t)|2 − k

D1
�ξ(t)�2

− a2

2D2
w2(0, t) − a2

D2
�w(t)�2 + ˙̂

D1(t)

�
Z
T (t)

∂P(D̂1)

∂D̂1
Z(t)

+ 2ZT (t)P(D̂1)R1(t) − 2a2
� 1

0
(1 + x)w(x, t)q1(x, t)dx

�

− 2a2
˙̂
D2(t)

� 1

0
(1 + x)w(x, t)q2(x, t)dx

�

. (82)

Using bounds (65)–(70) together with relations (26) and
(24)–(25), and by employing Young’s inequality one more time we
get

| ˙̂D1(t)| ≤ γ1|τD1 |

≤ γ1M1

�
|Z(t)|2 + |ξ(0, t)|2 + �ξ(t)�2 + �w(t)�2

�

1 + Ξ(t)
(83)

| ˙̂D2(t)| ≤ γ2|τD2 | ≤ γ2M2

�
|Z(t)|2 + w2(0, t) + �w(t)�2

�

1 + Ξ(t)
, (84)

where

M1 = max
�
Mp1 + 1

a2
MP + 1

a2
MPMR2 , 1

�
(85)

M2 = max
�
1, 2Mp2 , 2Mp2M

2
K

+ Mp2

�
. (86)

Plugging in the above bound to (82) (and applying once more
Young’s and Cauchy–Schwartz’s inequalities) we get

V̇ (t) ≤ D2

1 + Ξ(t)

�

−λ

2
|Z(t)|2 − k

D1
|ξ(0, t)|2 − k

D1
�ξ(t)�2

− a2

2D2
w2(0, t) − a2

D2
�w(t)�2

+ B1γ1

�
|Z(t)|2 + |ξ(0, t)|2 + �ξ(t)�2 + �w(t)�2

�

1 + Ξ(t)

×
�

|Z(t)|2 + �ξ(t)�2 + �w(t)�2
�

+ B2γ2

�
|Z(t)|2 + w2(0, t) + �w(t)�2

�

1 + Ξ(t)

×
�

|Z(t)|2 + �w(t)�2
��

, (87)

where

B1 = M1 max
�
M

�
P
+ MP + a2Mq1 + 2a2Mq1Mu + 2a2Mq1 ,

MPMR1 + 2a2Mq1 , 2a2 + 2a2Mq1Mu

�
(88)

B2 = 2M2a2
�
1 + Mq2Mu

�
. (89)

Now by defining the constants

m1 = min
�

λ

2
,

k

D1
,

a2

2D2

�
(90)

m2 = max {B1, B2}
min

�
λ, k, a2

� , (91)

we get

V̇ (t) ≤ − D2

1 + Ξ(t)
(m1 − m2 (γ1 + γ2))

�
|Z(t)|2 + w2(0, t)

+ �w(t)�2 + |ξ(0, t)|2 + �ξ(t)�2
�
. (92)

Thus when γ1 + γ2 ≤ m1
m2

, V̇ (t) is negative definite and thus

V (t) ≤ V (0). � (93)

To prove the stability bound of Theorem 1 we use the following
lemma.

Lemma 4. There exist constants M and M such that

MΞ(t) ≤ Π(t) ≤ MΞ(t), (94)

where

Π(t) = |X(t)|2 + �ξ(t)�2 + �u(t)�2. (95)

Proof. Immediate, using (57)–(60) with

M = max {Mu + MX ,MX + 1} (96)
M = max {Mw + MZ ,MZ + 1} . � (97)

We are now ready to derive the stability estimate of Theorem 1.
Using (77) it follows that

Ξ(t) ≤
�
e

V (t)
D2 − 1

�
(98)

D̃
2
1 + D̃

2
2 ≤ C2

V (t)

D2
≤ C2

�
e

V (t)
D2 − 1

�
, (99)

where

C2 =
�
γ2D2 + γ1D1

�

a2
. (100)

Consequently

Ω(t) ≤
�
M + C2

� �
e

V (t)
D2 − 1

�
. (101)

Moreover, from (77) we take

V (0) ≤ max
�
λ, k, a2

� �
|Z(0)|2 + �ξ(0)�2 + �w(0)�2�

+ max

�
a2

γ2
,
a2D2

γ1D1

� �
D̃
2
1(0) + D̃

2
2(0)

�
, (102)

and using Lemma 4 we have

V (0) ≤ C3Ω(0), (103)

where

C3 = max

�

max

�
1

2γ2
,

D2

2γ1D1

�

,
max

�
λ, k, a2

�

M

�

. (104)

Thus, by setting

R = M + C2 (105)
ρ = C3, (106)

we get the stability result in Theorem 1.
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Fig. 1. System’s response for the cases D̂2(0) = 0 and D̂2(0) = 1.6.

We now turn our attention to proving the convergence of X(t)
and U(t) to zero. We use here an alternative to Barbalat’s Lemma
from [23]. We first point out that from (93) it follows that |Z(t)|,
�w(t)�, �ξ(t)�, D̂1 and D̂2 are uniformly bounded. Moreover,
using (57) and (58) we get the uniform boundness of |X(t)| and
�u(t)�. Using (23) it follows that U(t) is uniformly bounded. From
(24)–(25), (83)–(84) and (50) we conclude that dX2(t)

dt is uniformly
bounded. Finally, since from (92) it turns out that |Z(t)| and �ξ(t)�
are square integrable, using (58) and the alternative to Barbalat’s
Lemma from [23], we conclude that limt→∞ X(t) = 0. We now
turn our attention to proving the convergence of U(t). Using (92)
we also get that �w(t)� is square integrable in time. Thus, with the
help of (57) and by the square integrability of |Z(t)| we conclude
using (23) that U(t) is square integrable. It only remains to show
that dU2(t)

dt is uniformly bounded. Hence, it is sufficient to show that

U̇(t) is uniformly bounded. From (23) one can observe that since ˙̂
D1

and ˙̂
D2 are uniformly bounded, with the help of (16) and (19) we

conclude the uniform boundness of dU2(t)
dt .

5. Simulations

We give here a simulation example to illustrate the effective-
ness of the proposed adaptive scheme. We choose a second order
feedforward system with parameters F1 = F2 = 0.25, H1 = 1,
D1 = 0.4 and D2 = 0.8. This is an unstable system with two poles

Fig. 2. The estimations of the unknown delays for the cases D̂2(0) = 0 and D̂2
(0) = 1.6.

at 0.25. The lower bounds for the unknown delays are D1 = 0.1
for D1 and 0 for D2. Analogously the upper bounds are chosen as
twice the real values of the delays i.e., D1 = 0.8 and D2 = 1.6.
The initial conditions are chosen as X1(0) = 0.5, X2(0) = 0.5 and
X2(θ) = 0.5, ∀θ ∈ [−D1, 0], and finally D̂1(0) = D1 = 0.1. The
controller parameters are chosen as a2 = 200, k = 0.005, γ1 = 25,
γ2 = 25 and K(D̂1) =

�
−10.0625e0.25D̂1 −8.5

�
.

Figs. 1–3 show two distinct simulations, starting from two
extreme initial values for the input delay estimate, one at zero, and
the other at twice the true delay value. In Figs. 1 and 3 we observe
that, as Theorem 1 predicts, convergence to zero is achieved for the
states and the input, despite starting with initial estimate for the
input delay at the two extreme values and for the state delay at the
lower bound. In Fig. 2 one can see the evolution of the estimates for
the two distinct simulation cases. The estimates for the two delays,
after a transient response, converge to stabilizing for the system
values.

6. Conclusions

In this paper we presented an adaptive control design for a
system in feedforward form with simultaneous unknown input
and state delays. The design of the controller is based on predictor
feedback. The update laws for the estimation of the unknown
delays are based on the construction of a Lyapunov function with
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Fig. 3. The control effort for the cases D̂2(0) = 0 and D̂2(0) = 1.6.

normalization. Convergence to zero is then proved using the linear
boundness of the relative signals.
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