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a b s t r a c t

The problem of compensation of infinite-dimensional actuator or sensor dynamics of more complex
type than pure delay was solved recently using the backstepping method for PDEs. In this paper we
construct an explicit feedback law for a multi-input LTI system which compensates the wave PDE
dynamics in its input and stabilizes the overall system. Our design is based on a novel infinite-dimensional
backstepping–forwarding transformation. We illustrate the effectiveness of our design with a simulation
example of a single-input second order system, in which the wave input enters the system through two
different channels, each one located at a different point in the domain of thewave PDE. Finally,we consider
a dual problemwhere we design an exponentially convergent observer that compensates the distributed
effect of the wave sensor dynamics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Compensation of input and sensor delays in linear time-
invariant systems is achieved using predictor-based techniques
[1–19]. For nonlinear systems several extensions of these meth-
ods exist [20–30], while adaptive controllers are beginning to
emerge [31–36].

The problem of compensating more complex input and sensor
dynamics than pure delays was solved recently in [37–39] using
the backstepping method for PDEs. In [37] an explicit control law
is constructed for a single-input system with a heat equation as
its input, whereas in [38] a string PDE is compensated in the
input path of an ODE. Finally, in [39] the results from [37] are
extended to incorporate a counter-convection effect. In this paper
we extend the results from [38] in two different directions: (1)
Firstly, although the results in [38] can be almost trivially extended
in themulti-input case, when thewave propagation speeds are the
same in each individual input channel, the backstepping method
is not applicable in the case where the propagation speeds are
different in each input channel. (2) Secondly, in this paper we
consider the case where the wave PDE is entering the ODE system
in a distributed way. This is in contrast to the case considered in
[38] where the wave PDE in the input and the ODE system are in
cascade form, i.e. thewave enters the system through a single point
of its spatial domain. The backsteppingmethod is not applicable in
this case. As pointed out also in [40,41] for the cases of distributed
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delays and diffusion respectively, the key difficulty is that the
system that is comprised of the finite-dimensional state X(t) and
the infinite-dimensional actuator states u(x, t), x ∈ [0,D], is not
in the strict-feedback form.

The challenges of considering the present problem in compari-
son with the one considered in [41] are analogous to those for the
problem considered in [37] in comparison with the one in [38].
These include the fact that all of the (infinitely many) eigenval-
ues of the wave PDE are on the imaginary axis, and due to the
fact that it has a finite (limited) speed of propagation (large con-
trol does not help). Moreover the PDE system is second order in
time and hence one has to deal with the coupling of two infinite-
dimensional states.

As in [40] for the case of distributed input or sensor delays, and
in [41] for the case of diffusionwith counter-convection, we design
feedback laws that are given by explicit formulae. In Section 2
we design an explicit controller. In Section 3 we develop a dual
of our actuator dynamics compensator and design an infinite-
dimensional observer which compensates the wave PDE dynamics
of the sensor. Section 4 presents a simulation example of controller
design for a single-input system, in which the wave enters the
system through two different channels, each one located at a
different point in the domain of the PDE.

2. Controller design

We consider the system

Ẋ(t) = AX(t) +
2�

i=1

��
Di

0
Bi(y)ui(y, t)dy

+
�

Di

0
Bit(y)∂tui(y, t)dy

�
(1)
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∂ttu1(x, t) = ∂xxu1(x, t) (2)
∂xu1(0, t) = 0 (3)
∂xu1(D1, t) = U1(t) (4)
∂ttu2(z, t) = ∂zzu2(z, t) (5)
∂zu2(0, t) = 0 (6)
∂zu2(D2, t) = U2(t), (7)

where x ∈ [0,D1], z ∈ [0,D2], D1,D2 > 0, X(t) ∈ Rn

and U1(t), U2(t) ∈ R. For notational simplicity we consider
a two-input case. The same analysis can be carried out for an
arbitrary number of inputswith differentwave propagation speeds
in each individual input channel. For this system we state next an
explicit feedback controller that compensates the wave dynamics
and stabilizes the overall system.

Theorem 1. Consider the closed-loop system consisting of the plant

(1)–(7) and the control law

U(t) =
�
U1(t)
U2(t)

�
(8)

U1(t) = K1Z(t) − c01

�
c11

�
D1

0
∂tu1(y, t)dy + u1(D1, t)

�

− c11∂tu1(D1, t) (9)

U2(t) = K2Z(t) − c02

�
c12

�
D2

0
∂tu2(y, t)dy + u2(D2, t)

�

− c12∂tu2(D2, t) (10)

Z(t) = X(t) +
�

D1

0
(Ag1(y) − B1t(y)

+ g1(D1)c01c11)u1(y, t) dy

+
�

D1

0
g1(y)∂tu1(y, t)dy + c11g1(D1)u1(D1, t)

+
�

D2

0
(Ag2(y) − B2t(y) + g2(D2)c02c12)u2(y, t) dy

+
�

D2

0
g2(y)∂tu2(y, t)dy + c12g2(D2)u2(D2, t), (11)

where c0i, c1i, i = 1, 2 are positive constants and

gi(y) =
�
I 0

�
e

�
0 I

A
2 0

�

y



I +
�

y

0
e
−

�
0 I

A
2 0

�

r

dr

×
�
0
I

�
Ac1ic0iG

−1
i

�
I 0

�
e

�
0 I

A
2 0

�

Di




�
I

0

�
gi(0)

−
�
I 0

� �
y

0
e

�
0 I

A
2 0

�

(y−r) �
0
I

�
(Bi(r) + ABit(r)) dr

−
�
I 0

� �
y

0
e

�
0 I

A
2 0

�

(y−r)

dr
�
0
I

�
Ac1ic0iG

−1
i

�
I 0

�

×
�

Di

0
e

�
0 I

A
2 0

�

(Di−y) �
0
I

�
(Bi(y) + ABit(y)) dy (12)

Gi = I −
�
I 0

� �
Di

0
e

�
0 I

A
2 0

�

(Di−r) �
0
I

�
drAc1ic0i (13)

gi(0) = E
−1
i

∆i

�
Di

0
e

�
0 I

A
2 0

�

(Di−r) �
0
I

�
(Bi(r) + ABit(r)) dr (14)

∆i =
�
0 I

�


I +
�

Di

0
e

�
0 I

A
2 0

�

(Di−r) �
0
I

�
dyAc1ic0iG−1

i

×
�
I 0

�


 + (c0iI + c1iA)G−1
i

�
I 0

�
(15)

Ei = ∆ie

�
0 I

A
2 0

�

Di
�
I

0

�
, i = 1, 2. (16)

Let the pair (A, [g1(D1) g2(D2)]) be completely controllable and

choose the positive constants c0i, c1i, i = 1, 2 such that the matrices

Gi, Ei, i = 1, 2 are invertible. Furthermore, choose K1, K2 such that

the matrix

Acl = A + g1(D1)K1 + g2(D2)K2, (17)

is Hurwitz, and such that the matrices

Ri =
�
I c0iI

�
e

�
0 A

2
cl

I 0

�

Di
�
c1iAcl

I

�
, i = 1, 2, (18)

are invertible. If ui(·, 0) ∈ H
1(0,Di) and ∂tui(·, 0) ∈ L

2(0,Di),
i = 1, 2, then the closed-loop system has a unique solution

(X(t), u1(·, t), ∂tu1(·, t), u2(·, t), ∂tu2(·, t)) ∈ C([0, ∞], Rn × H
1

(0,D1) × L
2(0,D1) × H

1(0,D2) × L
2(0,D2)) which is exponentially

stable in the sense that there exist positive constants κ and λ such that

Ω(t) ≤ κΩ(0)e−λt (19)

Ω(t) = |X(t)|2 +
2�

i=1

��
Di

0
∂yui(y, t)

2dy

+
�

Di

0
∂tui(y, t)

2dy + ui(0, t)2
�

. (20)

Moreover, if the initial condition (ui(·, 0), ∂tui(·, 0)), i = 1, 2 is

compatible with controller (9) and (10) and belongs to H
2(0,Di) ×

H
1(0,Di), i = 1, 2, then (X(t), u1(·, t), ∂tu1(·, t), u2(·, t), ∂t

u2(·, t)) ∈ C([0, ∞], Rn × H
1(0,D1) × L

2(0,D1) × H
1(0,D2) ×

L
2(0,D2)) is the classical solution of the closed-loop system.

Proof. We introduce three invertible transformations, one of the
finite-dimensional state X(t) given in (11) and the other two for
the infinite-dimensional actuator states u1(x, t) and u2(z, t) given
by

w1(x, t) = u1(x, t) − γ1(x)

�

X(t) +
2�

i=1

��
Di

0
(Agi(y)

− Bit(y) + gi(Di)c0ic1i)ui(y, t) dy

+
�

Di

0
gi(y)∂tui(y, t)dy + c1igi(Di)ui(Di, t)

� �

+ c01

�
x

0
u1(y, t)dy (21)

w2(z, t) = u2(z, t) − γ2(z)

�

X(t) +
2�

i=1

��
Di

0
(Agi(y)

− Bit(y) + gi(Di)c0ic1i)ui(y, t) dy

+
�

Di

0
gi(y)∂tui(y, t)dy

+ c1igi(Di)ui(Di, t)

��

+ c02

�
z

0
u2(y, t)dy, (22)
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where the kernels γ1(x) and γ2(z) are to be derived to transform
the plant (1)–(7), along with the control law (8)–(10), into the
target system

Ż(t) = AclZ(t) (23)
∂ttw1(x, t) = ∂xxw1(x, t) (24)
∂xw1(0, t) = c01w1(0, t) (25)
∂xw1(D1, t) = −c11∂tw1(D1, t) (26)
∂ttw2(z, t) = ∂zzw2(z, t) (27)
∂zw2(0, t) = c02w2(0, t) (28)
∂zw2(D2, t) = −c12∂tw2(D2, t). (29)

It is well known that system (23)–(29) associates with an
exponential stable C0-semigroup solution in the state space
Y = Rn × H

1(0,D1) × L
2(0,D1) × H

1(0,D2) × L
2(0,D2) with

the state variable (Z(t), w1(·, t), ∂tw1(·, t), w2(·, t), ∂tw2(·, t)).
Denote the system operator of system (23)–(29) to be B and
the system operator of system (1)–(11) as A. Let the invertible
transformation from (X(t), u1(·, t), ∂tu1(·, t), u2(·, t), ∂tu2(·, t))
to (Z(t), w1(·, t), ∂tw1(·, t), w2(·, t), ∂tw2(·, t)) be P. Since, A =
P−1BP the theorem is proved if we can show that P is bounded and
invertible. This is given next. We first differentiate (11) and using
relations (2) and (5) we get

Ż(t) = AX(t) +
2�

i=1

��
Di

0
Bi(y)ui(y, t)dy

+
�

Di

0
Bit(y)∂tui(y, t)dy

+
�

Di

0
(Agi(y) − Bit(y) + gi(Di)c0ic1i)∂tui(y, t)dy

+
�

Di

0
gi(y)∂yyui(y, t)dy + c1igi(Di)∂tui(Di, t)

�
. (30)

Using integration by parts together with relations (3)–(4), (6)–(7)
and (11) we get

Ż(t) = AZ(t) +
2�

i=1

��
Di

0
−(A2

gi(y) − ABit(y)

+ Agi(Di)c0ic1i)ui(y, t) dy

−
�

Di

0
Agi(y)∂tui(y, t)dy − c1iAgi(Di)ui(Di, t)

+
�

Di

0
Bi(y)ui(y, t)dy +

�
Di

0
Bit(y)∂tui(y, t) dy

+
�

Di

0
(Agi(y) − Bit(y) + gi(Di)c0ic1i)∂tui(y, t) dy

+ gi(Di)Ui(t) − g
�(Di)ui(Di, t) + g

�
i
(0)ui(0, t)

+
�

Di

0
g

��
i
(y)ui(y, t)dy + c1igi(Di)∂tui(Di, t)

�
. (31)

Consequently the following holds

Ż(t) = AZ(t) −
2�

i=1

��
Di

0
(−g

��
i
(y) + A

2
gi(y) − ABit(y)

− Bi(y) + Agi(Di)c0ic1i)ui(y, t) dy
+ g

�
i
(0)ui(0, t) − ((c1iA + c0iI)gi(Di) + g

�
i
(Di))ui(Di, t)

+ gi(Di)

�
Ui(t) + c0i

�
ui(Di, t) + c1i

�
Di

0
∂tui(y, t) dy

�

+ c1i∂tui(Di, t)

��
. (32)

Observing now that the gi(·), i = 1, 2 in (12) are the solutions of
the following boundary value problems

g
��
i
(y) = A

2
gi(y) − Bi(y) − ABit(y) + c0ic1iAgi(Di) (33)

g
�
i
(0) = 0 (34)

g
�
i
(Di) = − (c0iI + Ac1i)gi(Di), i = 1, 2, (35)

we arrive at

Ż(t) = AZ(t) +
2�

i=1

gi(Di)

�
Ui(t) + c1i∂tui(Di, t)

+ c0i

�
c1i

�
Di

0
∂tui(y, t)dy + ui(Di, t)

��
. (36)

With controller (8)–(10) we get (23). We derive now relations
(24)–(26). The derivation of (27)–(29) follows exactly the same
pattern. Taking two time derivatives in (21), using (2), integration
by parts and relations (11), (23) we have

∂ttw1(x, t) = ∂ttu1(x, t) − γ1(x)A
2
cl
Z(t) + c01∂xu1(x, t). (37)

Taking two spatial derivatives of (21) we get

∂xxw1(x, t) = ∂xxu1(x, t) − γ ��
1 (x)Z(t) + c01∂xu1(x, t). (38)

Let us now examine the expressions

w1(0, t) = u1(0, t) − γ1(0)Z(t) (39)

∂xw1(0, t) = ∂xu1(0, t) − γ �
1(0)Z(t) + c01u1(0, t) (40)

∂xw1(D1, t) = ∂xu1(D1, t) − γ �
1(D1)Z(t) + c01u1(D1, t) (41)

∂tw1(D1, t) = ∂tu1(D1, t) − γ1(D1)AclZ(t)

+ c01

�
D1

0
∂tu1(x, t)dx. (42)

Note here that, although Z(t) appears in relations (37)–(42),
w1(x, t) andw2(z, t) are transformations of the statesX(t), u1(x, t)
and u2(z, t) since Z(t) is given in terms of X(t), u1(x, t) and u2(z, t)
through relation (11). Using expressions (37)–(42) together with
(2)–(4) and (10)–(11) we conclude that (24)–(26) hold if γ1(x)
satisfies the following boundary value problems

γ ��
1 (x) = γ1(x)A

2
cl

(43)

γ �
1(0) = c01γ1(0) (44)

γ �
1(D1) = K1 − c11γ1(D1)Acl, (45)

which can be solved explicitly to give

γ1(x) = C1
�
I c01I

�
e

�
0 A

2
cl

I 0

�

x
�
I

0

�
(46)

C1 = K1R
−1
1 . (47)

Similarly relations (27)–(29) hold if γ2(z) satisfies

γ2(z) = C2
�
I c02I

�
e

�
0 A

2
cl

I 0

�

z
�
I

0

�
(48)

C2 = K2R
−1
2 . (49)

We find next the inverse transformation of (21). We postulate an
inverse transformation in the form

u1(x, t) = w1(x, t) + δ1(x)Z(t)

− c01

�
x

0
e−c01(x−y)w1(y, t)dy. (50)
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With similar derivation one can show that (50) is indeed the
inverse transformation of (21) if δ1(x) satisfy

δ�
1(x) = δ1(x)A

2
cl

(51)

δ�
1(0) = 0 (52)

δ1(0) = C1, (53)

which can be solved explicitly to give

δ1(x) =
�
C1 0

�
e

�
0 A

2
cl

I 0

�

x
�
I

0

�
. (54)

Analogously,

u2(z, t) = w2(z, t) + δ2(z)Z(t)

− c02

�
z

0
e−c02(z−y)w2(y, t)dy (55)

δ2(z) =
�
C2 0

�
e

�
0 A

2
cl

I 0

�

z
�
I

0

�
. (56)

Finally,X(t) can be expressed in termsofw1(x, t),w2(z, t) and Z(t)
as

X(t) =
�
I −

2�

i=1

��
Di

0
(Agi(y) − Bit(y) + gi(Di)c0ic1i)δi(y) dy

−
�

Di

0
gi(y)δi(y)Acldy − c1igi(Di)δi(Di)

��
Z(t)

−
2�

i=1

��
Di

0
(Agi(y) − Bit(y) + gi(Di)c0ic1i)

×
�

wi(y, t) − c0i

�
y

0
e−c0i(y−r)wi(r, t)dr

�
dy

−
�

Di

0
gi(y) ×

�
∂twi(y, t)

− c0i

�
y

0
e−c0i(y−r)∂twi(r, t)dr

�
dy

−c1igi(Di) (wi(Di, t)

− c0i

�
Di

0
e−c0i(Di−y)wi(y, t) dy

��
. (57)

Consider now the Lyapunov function

V (t) = Z(t)T PZ(t) + E(t), (58)

where P = P
T > 0 and Q = Q

T > 0 satisfy

A
T

cl
P + PAcl = −Q , (59)

and

E(t) =
2�

i=1

�
1
2
(c0iwi(0, t)2 + �∂ywi(t)�2 + �∂twi(t)�2)

+ �i

�
Di

0
(1 + y)∂ywi(y, t)∂twi(y, t) dy

�
. (60)

Note that �∂ywi(t)�2 is a compact notation for
�

Di

0 ∂ywi(y, t)
2dy

and that for sufficiently small �i, i = 1, 2, E(t) is positive definite
[42]. Using (23) and applying the same calculations as in [43],
Chapter 7.2, is readily shown that there exists a positive constant
M such that

V (t) ≤ MV (0)e−Mt . (61)

To show (19)–(20), it is sufficient to show that

MΩ(t) ≤ V (t) ≤ MΩ(t), (62)

for some positive M and M . From relations (21)–(22) and (11) we
get

∂ywi(y, t) = ∂yui(y, t) − γ �
i
(y)Z(t) + c0iui(y, t) (63)

∂twi(y, t) = ∂tui(y, t) − γi(y)AclZ(t) + c0i

�
y

0
∂tui(r, t)dr (64)

wi(0, t) = ui(0, t) − γi(0)Z(t), i = 1, 2. (65)

Using (11)–(12) and the fact that 2
�

Di

0 ui(y, t)∂yui(y, t) dy +
ui(0, t)2 = ui(Di, t)

2, i = 1, 2 together with Poincare, Young
and Cauchy–Schwarz’s inequalities we conclude that there exists a
positive constant m such that

|Z(t)|2 ≤ m

�

|X(t)|2 +
2�

i=1

(ui(0, t)2

+ �∂yui(t)�2 + �∂tui(t)�2)

�

. (66)

Hence, using relations (58), (60) and (63)–(66) together with
Young and Cauchy–Schwarz’s inequalities we get the upper
bound in (62). The lower bound is obtained similarly using the
inverse transformations (50)–(55), (57). The rest of the arguments
are almost identical to [42]. This completes the proof of the
theorem. �

3. Observer design

We consider the system

Ẋ(t) = AX(t) + BU(t) (67)
∂ttξ1(x, t) = ∂xxξ1(x, t) + C1(x)X(t) (68)
∂xξ1(0, t) = 0 (69)
ξ1(D1, t) = 0 (70)
∂ttξ2(z, t) = ∂zzξ2(z, t) + C2(z)X(t) (71)
∂zξ2(0, t) = 0 (72)
ξ2(D2, t) = 0 (73)
Y1(t) = ξ1(0, t) (74)
Y2(t) = ξ2(0, t). (75)

The distributed effect of thewave PDEs (68)–(73) in the sensor path
of the ODE (67) is reflected from the non-homogeneous term that
appear in Eqs. (68) and (71). To see this, one can write down the
solution of the wave PDEs (68)–(73). We state next a new observer
that compensates the sensor dynamics and achieves exponential
convergence of the estimation error.

Theorem 2. Define the observer

˙̂
X(t) = AX̂(t) + BU(t) + L1(Y1(t) − Ŷ1(t))

+ L2(Y2(t) − Ŷ2(t)) (76)

∂tt ξ̂1(x, t) = ∂xxξ̂1(x, t) + C1(x)X̂(t) + γ1(x)AL1(Y1(t)

− Ŷ1(t)) + γ1(x)L1(Ẏ1(t) − ˙̂
Y 1(t))

+ γ1(x)AL2(Y2(t) − Ŷ2(t)) + γ1(x)L2(Ẏ2(t) − ˙̂
Y 2(t)) (77)

∂xξ̂1(0, t) = − c01γ1(0)L1(Y1(t) − Ŷ1(t)) − c01(Ẏ1(t) − ˙̂
Y 1(t))

− c01γ1(0)L2(Y2(t) − Ŷ2(t)) (78)
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ξ̂1(D1, t) = 0 (79)

∂tt ξ̂2(z, t) = ∂zz ξ̂2(z, t) + C2(z)X̂(t)

+ γ2(z)AL1(Y1(t) − Ŷ1(t)) + γ2(z)L1(Ẏ1(t) − ˙̂
Y 1(t))

+ γ2(z)AL2(Y2(t) − Ŷ2(t)) + γ2(z)L2(Ẏ2(t) − ˙̂
Y 2(t)) (80)

∂z ξ̂2(0, t) = − c02γ2(0)L2(Y2(t) − Ŷ2(t)) − c02(Ẏ2(t) − ˙̂
Y 2(t))

− c02γ2(0)L1(Y1(t) − Ŷ1(t)) (81)

ξ̂2(D2, t) = 0 (82)

Ŷ1(t) = ξ̂1(0, t) (83)

Ŷ2(t) = ξ̂2(0, t), (84)

where

γi(y) = γi(0)
�
I c0iA

�
e

�
0 A

2

I 0

�

y
�
I

0

�

−
�

y

0

�
0 Ci(r)

�
e

�
0 A

2

I 0

�

(y−r) �
I

0

�
dr (85)

γi(0) =
�

Di

0

�
0 Ci(r)

�
e

�
0 A

2

I 0

�

(Di−r) �
I

0

�
drΛ−1

i
(86)

Λi =
�
I c0iA

�
e

�
0 A

2

I 0

�

Di
�
I

0

�
, i = 1, 2. (87)

Let the pair

�
A,

�
γ1(0)
γ2(0)

��
be observable and choose the gains L1

and L2 such that the matrix A − L1γ1(0) − L2γ2(0) is Hurwitz.

Moreover, choose the positive constants c0i, i = 1, 2 such that the

matrices Λi, i = 1, 2 are invertible. Then for any (ξi(·, 0), ξ̂i(·, 0)) ∈
H

1(0,Di) and (∂tξi(·, 0), ∂t ξ̂i(·, 0)) ∈ L
2(0,Di), i = 1, 2 the

observer error system has a unique solution (X(t)− X̂(t), ξ1(·, t)− ξ̂1
(·, t), ∂tξ1(·, t)−∂t ξ̂1(·, t), ξ2(·, t)− ξ̂2(·, t), ∂tξ2(·, t)−∂t ξ̂2(·, t))
∈ C([0, ∞], Y )with Y = Rn×H

1
R
(0,D1)×L

2(0,D1)×H
1
R
(0,D2)×

L
2(0,D2) and H

1
R
(0,Di) =

�
f ∈ H

1(0,Di)|f (Di) = 0
�
, i = 1, 2

which is exponentially stable in the sense that there exist positive

constants µ and ρ such that

Ξ(t) ≤ µΞ(0)e−ρt (88)

Ξ(t) = |X(t) − X̂(t)|2 +
2�

i=1

��
Di

0
(∂yξi(y, t) − ∂yξ̂i(y, t))

2dy

+
�

Di

0
(∂tξi(y, t) − ∂t ξ̂i(y, t))

2dy
�

. (89)

Proof. Introducing the error variables

X̃(t) = X(t) − X̂(t) (90)

ξ̃1(x, t) = ξ1(x, t) − ξ̂1(x, t) (91)

ξ̃2(z, t) = ξ2(z, t) − ξ̂2(z, t), (92)

we obtain

˙̃
X(t) = AX̃(t) − L1ξ̃1(0, t) − L2ξ̃2(0, t) (93)
∂tt ξ̃1(x, t) = ∂xxξ̃1(x, t) + C1(x)X̃(t) − γ1(x)AL1ξ̃1(0, t)

− γ1(x)L1∂t ξ̃1(0, t) − γ1(x)AL2ξ̃2(0, t) − γ1(x)L2∂t ξ̃2(0, t)

∂xξ̃1(0, t) = c01γ1(0)L1ξ̃1(0, t) + c01∂t ξ̃1(0, t)
+ c01γ1(0)L2ξ̃2(0, t) (94)

ξ̃1(D1, t) = 0 (95)
∂tt ξ̃2(z, t) = ∂zz ξ̃2(z, t) + C2(z)X̃(t) − γ2(z)AL1ξ̃1(0, t)

− γ2(z)L1∂t ξ̃1(0, t) − γ2(z)AL2ξ̃2(0, t) − γ2(z)L2∂t ξ̃2(0, t)

∂z ξ̃2(0, t) = c02γ2(0)L2ξ̃2(0, t) + c02∂t ξ̃2(0, t)
+ c02γ2(0)L1ξ̃1(0, t) (96)

ξ̃2(D2, t) = 0. (97)

Consider now the transformations

ζ̃1(x, t) = ξ̃1(x, t) − γ1(x)X̃(t) (98)

ζ̃2(z, t) = ξ̃2(z, t) − γ2(z)X̃(t), (99)

where γ1(x) and γ2(z) are given in (85). Transformations (98)–(99)
transform system (93)–(97) to the exponentially stable system

˙̃
X(t) = (A − L1γ1(0) − L2γ2(0))X̃(t)

− L1ζ̃1(0, t) − L2ζ̃2(0, t) (100)

∂tt ζ̃1(x, t) = ∂xxζ̃1(x, t) (101)

∂xζ̃1(0, t) = c01∂t ζ̃1(0, t) (102)

ζ̃1(D1, t) = 0 (103)

∂tt ζ̃2(z, t) = ∂zz ζ̃2(z, t) (104)

∂z ζ̃2(0, t) = c02∂t ζ̃2(0, t) (105)

ζ̃2(D2, t) = 0. (106)

It is well known that system (101)–(106) associates with an
exponential stable C0-semigroup solution in the state space Y =
Rn × H

1
R
(0,D1) × L

2(0,D1) × H
1
R
(0,D2) × L

2(0,D2) where
H

1
R
(0,Di) = {f ∈ H

1(0,Di)|f (Di) = 0}, i = 1, 2 with the
state variable (X̃(t), ζ̃1(·, t), ∂t ζ̃1(·, t), ζ̃2(·, t), ∂t ζ̃2(·, t)). Denote
the system operator of system (101)–(106) to be B and the
system operator of system (93)–(97) as A. Let the invertible
transformation from (X̃(t), ξ̃1(·, t), ∂t ξ̃1(·, t), ξ̃2(·, t), ∂t ξ̃2(·, t)) to
(X̃(t), ζ̃1(·, t), ∂t ζ̃1(·, t), ζ̃2(·, t), ∂t ζ̃2(·, t)) beP. Since,A = P−1BP
the theorem is proved if we can show that P is bounded and
invertible. This is given next. We match systems (93)–(97) and
(101)–(106). Since the γi(·), i = 1, 2 in (85) satisfy the following
boundary value problems

γ ��
i
(y) = γi(y)A

2 − Ci(y) (107)

γi(Di) = 0 (108)

γ �
i
(0) = c0iγi(0)A, i = 1, 2, (109)

we get (101)–(106). We choose a Lyapunov function as

V (t) = X̃(t)T PX̃(t) + αE(t) (110)

E(t) =
2�

i=1

�
1
2
(�∂yζ̃i(t)�2 + �∂t ζ̃i(t)�2)

+ �i

�
Di

0
(−1 − Di + y)∂yζ̃i(y, t)∂t ζ̃i(y, t) dy

�
, (111)

where the positive constant α is to be chosen later, P = P
T > 0

and Q = Q
T > 0 satisfy

(A − L1γ1(0) − L2γ2(0))T P + P(A − L1γ1(0)
− L2γ2(0)) = −Q . (112)

Employing Young’s inequality in (111) similarly with the calcula-
tions in [42] we show that for sufficiently small εi, i = 1, 2 there
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exist positive constants r1 and r2 such that

r1Φ(t) ≤ V (t) ≤ r2Φ(t) (113)

Φ(t) = |X̃(t)|2 +
2�

i=1

(�∂yζ̃i(t)�2 + �∂t ζ̃i(t)�2). (114)

Using (98)–(100) we have that

∂yζ̃i(y, t) = ∂yξ̃i(y, t) − γ �
i
(y)X̃(t) (115)

∂t ζ̃i(y, t) = ∂t ξ̃i(y, t) − γi(y)AX̃(t) + γi(y) (L1ξ̃1(0, t)
+ L2ξ̃2(0, t)) (116)

∂t ξ̃i(y, t) = ∂t ζ̃i(y, t) + γi(y)(A − L1γ1(0) − L2γ2(0))X̃(t)

− γi(y)(L1ζ̃1(0, t) + L2ζ̃2(0, t)), i = 1, 2. (117)

By employing Young, Agmon and Poincare’s inequalities in
(115)–(117) it is possible to show that there exist positive
constants r3 and r4 such that

r3Ξ(t) ≤ Φ(t) ≤ r4Ξ(t). (118)

Taking now the time derivative of (110) and using (101)–(106), is
readily shown that

V̇ (t) = −X̃(t)TQ X̃(t) − 2X̃(t)T PL1ζ̃1(0, t)
− 2X̃(t)T PL2ζ̃2(0, t) + αĖ(t) (119)

Ė(t) =
2�

i=1

��
�i(Di + 1)

2
(1 + c

2
0i) − c0i

�
∂t ζ̃i(0, t)

2

− �i

2
∂yζ̃i(Di, t)

2 − �i

2
(�∂yζ̃i(t)�2 + �∂t ζ̃i(t)�2)

�
. (120)

Using again Young, Agmon and Poincare’s inequalities in (119) and
if we choose α ≥ 40maxi=1,2{|PLi|2}

mini=1,2{�i}λmin(Q )
we show that there exist ρ

such that V (t) ≤ ρV (0)e−ρt . Using (113) and (118) we get (88)
with µ = ρr2r4

r1r3
. With similar arguments from [42] the proof is

completed. �

4. Simulations

In this section we consider a special case of system (1)–(7) as

Ẋ(t) = AX(t) + B0u(0, t) + B1u(D, t) (121)
∂ttu(x, t) = ∂xxu(x, t) (122)
∂xu(0, t) = 0 (123)
∂xu(D, t) = U(t), (124)

where, we choose D = 1, A =
�
1 0
1 0

�
, B0 =

�
1
1

�
and B1 =

�
0
1

�
. It is

important here to observe that neither the pair (A, B0) nor (A, B1)
are controllable, however, the pair (A, g(1)) is. To clarify this we
calculate explicitly g(1). Using (13) we have that

I = G
−1 −

�
I 0

� �
D

0
e

�
0 I

A
2 0

�

(D−r) �
0
I

�
drAc1c0G−1. (125)

By taking into account the fact that B(y) = B1δ(D − y) + B0δ(y),
where δ(y) is the Dirac function we get that

g(D) = G
−1 �

I 0
�
e

�
0 I

A
2 0

�

D
�
I

0

�
g(0)

−G
−1 �

I 0
�
e

�
0 I

A
2 0

�

D
�
0
I

�
B0, (126)

Fig. 1. The response of system (121) with initial conditions X1(0) = X2(0) = 1.

and

g(0) = E
−1∆



e

�
0 I

A
2 0

�

D
�
0
I

�
B0 +

�
0
I

�
B1



 . (127)

The most involved calculations are those that incorporate the

matrices∆ and G, due to the integral term
�

D

0 e

�
0 I

A
2 0

�
(D−r)

dr . This
integral can be calculated either using numerical approximation,
or explicitly using the Jordan representation of a matrix and then
by explicitly computing its value using the formula for the matrix
exponential. In the present example we have

�
D

0
e

�
0 I

A
2 0

�

(D−r)

dr

= V





D
D
2

2
0 0

0 D 0 0
0 0 −e−D + 1 0
0 0 0 eD − 1




V

−1, (128)

where V is such that A = VJV
−1 and J is the Jordan form of matrix

A. Using the above relations we get that g(1) =
�
0.1226
0.6226

�
.

The initial conditions are chosen as X1(0) = X2(0) = 1,
u(x, 0) = 1∀x ∈ [0, 1]. Finally K is chosen such that the
eigenvalues of A + g(1)K are −2 and −1 and c0 = 2, c1 = 1.
The response of the system is shown in Figs. 1 and 2. From Figs. 1
and 2 one can observe that the closed-loop system is exponentially
stable, as Theorem 1 predicts.
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Fig. 2. The function u(x, t) with initial condition u(x, 0) = 1, ∀x ∈ [0, 1] for
system (121)–(124).

5. Conclusions

In the presentworkwe construct an explicit feedback law for an
ODE system with distributed inputs which satisfy wave PDEs. Our
design is based on novel transformations of the finite-dimensional
state of the plant and of the infinite-dimensional actuator states.
Using a Lyapunov functional we prove exponential stability of
the transformed system. The invertibility of our transformations
guarantees the exponential stability of the original system. The
effectiveness of our controller is demonstrated with a numerical
example. Finally, we develop an observer and prove exponential
stability of the observer estimation error.
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