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1. Introduction

A wealth of knowledge and research results exist for control
of systems with state delays and input delays. Problems with
long input delays, for unstable plants, represent a particular
challenge. In fact, they were the first challenge to be dealt with,
in Otto J. M. Smith’s article (Smith, 1959), where a compensator,
now known as the Smith predictor, was introduced five decades
ago. The Smith predictor’s value is in its ability to compensate
for a long input or output delay in set point regulation or
constant disturbance rejection problems. However, its major
limitation is that, when the plant is unstable, it fails to recover
the stabilizing property of a nominal controller for the plant
without delay.

A substantial modification to the Smith predictor, which
removes its limitation to stable plants was developed three
decades ago in the form of finite spectrum assignment (FSA)
controllers (Artstein, 1982; Kwon & Pearson, 1980; Manitius &
Olbrot, 1979). More recent treatment of this subject can be found
in the books (Michiels & Niculescu, 2007; Zhong, 2006a). In the FSA
approach, the system

ẊðtÞ ¼ AXðtÞ þ BUðt % DÞ; (1)

where X is the state vector, U is the control input (scalar in our
consideration here), D is an arbitrarily long delay, and (A, B)

is a controllable pair, is stabilized with the infinite-dimensional
predictor feedback

UðtÞ ¼ K eADXðtÞ þ
Z t

t%D
eAðt%uÞBUðuÞdu

! "
; (2)

where the gain K is chosen so that thematrix A + BK is Hurwitz. The
word ‘predictor’ comes from the fact that the bracketed quantity is
the future state X(t + D), expressed using the current state X(t) as
the initial condition and using the controls U(u) from the past time
window [t % D, t]. Concerns are raised in (Mondie &Michiels, 2003)
regarding the robustness of the feedback law (2) to digital
implementation of the distributed delay (integral) term but are
resolved with appropriate discretization schemes (Zhong, 2006b;
Zhong & Mirkin, 2002).

One can view the feedback law (2) as implicit, since U appears
both on the left and on the right. However, one should observe that
the input memory U(u), u 2 [t % D, t] is a part of the state of the
overall infinite-dimensional system, so the control law is in fact
given by an explicit full-state feedback formula. The predictor
feedback (2) represents a particular form of boundary control,
commonly encountered in control of partial differential equations.

Following our recent studies in solving boundary control
problems for various classes of partial differential equations
(PDEs) using the continuum version of the backstepping method
(Krstic & Smyshlyaev, 2008; Vazquez & Krstic, 2007), we review
in this article several extensions to the predictor feedback design
that we have recently developed, particularly for nonlinear and
PDE systems. These extensions, presented in the book (Krstic,
2009a), include the extension of predictor feedback to nonlinear
systems and PDEs with input delays, robustness and inverse
optimality results, a delay-adaptive design, an extension to time-
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varying delays, and observer design in the presence of sensor
delays and PDE dynamics. Moreover, combining the PDE
backstepping approach with a recently developed infinite-
dimensional forwarding transformation, we design control laws
for MIMO LTI systems with distributed input dynamics governed
by diffusion with counter-convection or wave PDEs (see
Bekiaris-Liberis & Krstic, 2010a and Bekiaris-Liberis & Krstic,
2010b).

2. Lyapunov functional and its benefits

2.1. Single-input systems with discrete delay

The key to extensions of the predictor feedback that we present
here is the observation that the invertible backstepping transfor-
mation

wðx; tÞ ¼ uðx; tÞ %
Z x

0
KeAðx%yÞBuðy; tÞdy% KeAxXðtÞ; (3)

uðx; tÞ ¼ wðx; tÞ þ
Z x

0
KeðAþBKÞðx%yÞ Bwðy; tÞ dyþ KeðAþBKÞxXðtÞ;

(4)

where

uðx; tÞ ¼ Uðt þ x% DÞ; (5)

can transform the system (1), (2) into the target system

ẊðtÞ ¼ ðAþ BKÞXðtÞ þ Bwð0; tÞ; (6)

wtðx; tÞ ¼ wxðx; tÞ; (7)

wðD; tÞ ¼ 0; (8)

which is a cascade of an undriven transport PDE w-subsystem
and the exponentially stable X-system. Since an undriven
transport PDE is exponentially stable, the overall cascade is
exponentially stable. This fact is established with a Lyapunov
functional

VðtÞ ¼ XðtÞTPXðtÞ þ 2
jPBj2

lmin ðQÞ

Z D

0
ð1þ xÞwðx; tÞ2 dx; (9)

where P is the solution of the Lyapunov equation

PðAþ BKÞ þ ðAþ BKÞTP ¼ %Q ; (10)

and is summarized in the following theorem.

Theorem 1. There exist positive constants G and g such that the
solutions of the closed-loop system (1), (2) satisfyG(t) & Ge%gtG(0) for
all t ' 0, where

GðtÞ ¼ jXðtÞj2 þ
Z D

0
uðx; tÞ2dx: (11)

In the literature on delay systems the representation through
the transport PDE state (5) is somewhat non-standard. The
constructions provided in the transport PDE notation can also
be expressed in the delay notation, such that the Lyapunov
functional (9) is written as

VðtÞ ¼ XðtÞTPXðtÞ þ 2
jPBj2

lmin ðQÞ

Z t

t%D
1þ u þ D% tð ÞWðuÞ2du; (12)

and the backstepping transformation (3) is

WðuÞ ¼ UðuÞ % K
Z u

t%D
eAðu%sÞBUðsÞds þ eAðuþD%tÞXðtÞ

" #
; (13)

with %D & t % D & u & t. We pursue the PDE notation for delay
systems so we can seamlessly transition to PDE problems in the
subsequent sections of the article.

The ability to construct a Lyapunov functional can be exploited
in various ways, including deriving disturbance attenuation
estimates when the system (1) is subject to an additive
disturbance, proving robustness to a small actuator lag, and
conducting an inverse optimal redesign of the predictor feedback.
We consider these three problems in the current section. In
subsequent sections, we present more substantial benefits of
constructing a Lyapunov functional and a backstepping transfor-
mation. These benefits are the establishment of robustness to a
small error in D, where the error is allowed to be either positive or
negative, the design of adaptive controllers in the presence of a
completely unknown and arbitrarily long D, the design of
stabilizing predictor feedback for time varying delays, and the
design of predictor feedback for some classes of nonlinear and PDE
systems.

We now consider the system

ẊðtÞ ¼ AXðtÞ þ BUðt % DÞ þ B1dðtÞ; (14)

where d(t) is an unmeasurable disturbance which is bounded but
its bound is unknown, and the controller

UðtÞ ¼ c
sþ c

K eADXðtÞ þ
Z t

t%D
eAðt%uÞBUðuÞdu

! "# $
; (15)

where c > 0, and where we use the transfer function representa-
tion for compactness of notation.

The following result is established with the Lyapunov
functional

VðtÞ ¼ XðtÞTPXðtÞ þ 2
jPBj2

lmin ðQÞ

Z D

0
ð1þ xÞwðx; tÞ2 dxþ 1

2
wðD; tÞ2:

(16)

Theorem 2. There exists a positive constant c( such that for all c > c(,
the feedback system (14), (15) is L1-stable, that is, there exist positive
constants b1, b2, g1 such that

NðtÞ & b1e
%b2tNð0Þ þ g1 sup

t 2 ½0;t*
jdðtÞj; (17)

where

NðtÞ ¼ jXðtÞj2 þ
Z t

t%D
UðuÞ2du þ UðtÞ2

% &1=2

: (18)

Furthermore, there exists a constant c(( > c( such that for all c ' c((

the feedback (15) minimizes the cost functional

J ¼ sup
d2D

lim
t!1

2cVðtÞ þ
Z t

0
ðQðtÞ þ U̇ðtÞ2 % cg2dðtÞ

2Þdt
! "

; (19)

for each

g2 'g((
2 ¼ 8

jPBj2

lmin ðQÞ
; (20)

where Q(t) 'mN(t)2 for some m(c, g2) > 0, which is such that m(c,
g2)!1 as c!1, and D is the set of linear scalar-valued functions
of X.
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The following four special cases can be inferred from
Theorem 2. First, the predictor feedback (2) is robust to the
introduction of a lag c/(s + c) for sufficiently high c. The lag can be
either a part of the control law, as in (15), or an unmodeled part of
the system dynamics, as shown in Fig. 1. Second, the system under
predictor feedback (2), as well as under feedback (15) with
sufficiently high c, has a finite L1 gain relative to an additive
disturbance. Third, the feedback (15) is an inverse optimal
stabilizer for sufficiently high but finite c, in the absence of the
disturbance d. This property is not so easy to see. It is obtained by
writing the feedback law in terms of U̇ðtÞ as the control input, in
which case the feedback law is of the form ‘%LgV’ (Sepulchre,
Jankovic, & Kokotovic, 1997). Fourth, in the presence of the
disturbance, the feedback (15) with sufficiently high c is an inverse
optimal solution to a differential game problem (Krstic & Deng,
1998) with a positive definite penalty on the state and control, and
a negative-definite penalty on the disturbance.

2.2. Multi-input systems with distributed delays

In this section we consider the system

ẊðtÞ ¼ AXðtÞ þ
Z D1

0
B1ðsÞU1ðt % sÞds þ

Z D2

0
B2ðsÞU2ðt % sÞds:

(21)

In this case a backstepping transformation as in (3) and (4) is not
applicable since the system comprised of the finite-dimensional
state of the plant X(t) and the infinite-dimensional actuator states
U1(t + x % D1), x 2 [0, D1] and U2(t + z % D2), z 2 [0, D2], is not in the
strict-feedback form.

For system (21), under the controllability condition of the pair
ðA; ½BD1

BD2
*Þ with

BDi
¼
Z Di

0
e%AsBiðsÞds; i ¼ 1;2; (22)

the controller developed in (Artstein, 1982; Kwon& Pearson, 1980;
Manitius & Olbrot, 1979) which achieves asymptotic stabilization
for any D1, D2 > 0, has the form

UðtÞ ¼ U1ðtÞ
U2ðtÞ

! "
¼ K1e

AD1

K2e
AD2

! "
ZðtÞ (23)

ZðtÞ ¼ XðtÞ þ
X2

i¼1

Z Di

0

Z Di

Di%y
eAðDi%y%sÞBiðsÞds + Uiðt þ y% DiÞdy;

i ¼ 1;2; (24)

where the control gains K1 and K2 may be designed by an LQR/
Riccati approach, pole-placement, or some other method that
makes Acl ¼ Aþ BD1

K1eAD1 þ BD2
K2eAD2 Hurwitz.

To perform a closed-loop stability analysis, we denote the
actuator state as

u1ðx; tÞ ¼ U1ðt þ x% D1Þ; x2 ½0;D1* (25)

u2ðz; tÞ ¼ U2ðt þ z% D2Þ; z2 ½0;D2* (26)

and introduce two infinite-dimensional transformations of the
actuator states given by

w1ðx; tÞ ¼ u1ðx; tÞ % K1e
AxXðtÞ %

Z x

0

Z D1

D1%y
K1

+ eAðD1þx%y%sÞB1ðsÞdsu1ðy; tÞdy

þ
Z D1

x

Z D1%y

0
K1e

AðD1þx%y%sÞB1ðsÞdsu1ðy; tÞdy

%
Z D2

0

Z D2

D2%y
K1e

AðD2þx%y%sÞB2ðsÞdsu2ðy; tÞdy (27)

w2ðz; tÞ ¼ u2ðz; tÞ % K2e
AzXðtÞ %

Z z

0

Z D2

D2%y
K2

+ eAðD2þz%y%sÞB2ðsÞdsu2ðy; tÞdy

þ
Z D2

z

Z D2%y

0
K2e

AðD2þz%y%sÞB2ðsÞdsu2ðy; tÞdy

%
Z D1

0

Z D1

D1%y
K2e

AðD1þz%y%sÞB1ðsÞdsu1ðy; tÞdy; (28)

together with the transformation of the finite-dimensional state
X(t) given in (24), to transform the system (21) into the target
system

ŻðtÞ ¼ AclZðtÞ (29)

@tw1ðx; tÞ ¼ @xw1ðx; tÞ % q1ðx;D2ÞK2e
AD2ZðtÞ (30)

w1ðD1; tÞ ¼ 0 (31)

@tw2ðz; tÞ ¼ @zw2ðz; tÞ % q2ðz;D1ÞK1e
AD1ZðtÞ (32)

w2ðD2; tÞ ¼ 0: (33)

The inverse transformations of (24) and (27)–(28) are

XðtÞ ¼ I %
X2

i¼1

Z Di

0

Z Di

Di%y
eAðDi%y%sÞBiðsÞdsKie

ðAþBieKiÞðy%DiÞdy

 !
ZðtÞ

%
X2

i¼1

Z Di

0

Z Di

Di%y
eAðDi%y%sÞBiðsÞdsðwiðy; tÞ

%
Z Di

y
Kie

ðAþBieKiÞðy%rÞBiewiðr; tÞdrÞdy

(34)

u1ðx; tÞ ¼ w1ðx; tÞ þ K1e
ðAþB1eK1Þðx%D1ÞeAD1ZðtÞ

%
Z D1

x
K1e

ðAþB1eK1Þðx%yÞeðAþB1eK1Þðx%yÞB1ew1ðy; tÞdy (35)

u2ðz; tÞ ¼ w2ðz; tÞ þ K2e
ðAþB2eK2Þðz%D2ÞeAD2ZðtÞ %

Z D2

z
K2

+ eðAþB2eK2Þðx%yÞB2ew2ðy; tÞdy; (36)

where

Bie ¼ eADiBDi
; i ¼ 1;2: (37)

Using a Lyapunov functional

VðtÞ ¼ ZðtÞTPZðtÞ þ a
Z D1

0
ð1þ xÞw2

1ðx; tÞdx

þ b
Z D2

0
ð1þ zÞw2

2ðz; tÞdz;

[()TD$FIG]

Fig. 1. An ODE with input delay and with an unmodeled input lag and additive
disturbance. A suitable form of robustness holds with respect to both perturbations
under predictor feedback (2), as stated in Theorem 2.
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where the positive parameters a, b are appropritately chosen and
P = PT > 0 is the solution of the following Lyapunov equation

AT
clP þ PAcl ¼ %Q ; (39)

for some Q = QT > 0, we arrive at the following result

Theorem 3. Consider the closed-loop systems consisting of the plant
(21) and the controller (23). Let the pair ðA; ½BD1

BD2
*Þ be completely

controllable and choose K1 and K2 such that Aþ BD1
K1eAD1 þ

BD2
K2eAD2 is Hurwitz. There exist positive constantsm andr, such that

VðtÞ & mVð0Þe%rt (40)

VðtÞ ¼ XðtÞj j2 þ
X2

i¼1

Z Di

0
U2
i ðt % uÞdu: (41)

3. Delay-robustness, delay-adaptivity, and time-varying delays

In control systems with input delay, the length of the delay is
the most significant uncertainty, affecting robustness to a small
mismatch in the delay D when designing constant predictor
feedback. It is also crucial in the design of delay-adaptive predictor
feedback for a large uncertainty in the delay D.

3.1. Robustness to delay mismatch

We first discuss the problem of robustness to delay mismatch
DD, as depicted in Fig. 2, and consider the feedback system

ẊðtÞ ¼ AXðtÞ þ BUðt % D0 %DDÞ; (42)

UðtÞ ¼ K eAD0XðtÞ þ
Z t

t%D0

eAðt%uÞBUðuÞdu
! "

: (43)

The delay mismatch DD can be either positive or negative relative
to the assumed actuator delay D0 > 0. However, the actual delay
must be nonnegative, D0 + DD ' 0. For the study of robustness to a
small DD, we use two different Lyapunov functionals, one for
DD > 0, which is the easier of the two cases, and another for
DD < 0, in which case we employ

VðtÞ ¼ XðtÞTPXðtÞ þ a
2

Z D0þDD

0
ð1þ xÞwðx; tÞ2dx

þ 1
2

Z 0

DD
ðD0 þ xÞwðx; tÞ2dx (44)

with a sufficiently large a.

Theorem 4. There exists a positive constant d such that for all
DD 2(% d, d) there exist positive constants G and g such that the
solutions of the closed-loop system (42), (43) satisfy G(t) & Ge%gtG(0)
for all t ' 0, where

GðtÞ ¼ jXðtÞj2 þ
Z t

t%D̄
UðuÞ2du (45)

and where

D̄ ¼ D0 þmax f0;DDg: (46)

The significance of this robustness result can be assessed based
on the intuition drawn from existing results. For example, the
result (Teel, 1998) that finite-dimensional feedback laws for finite-
dimensional plants are robust to small delays does not apply to our

infinite-dimensional problem. The delay perturbation to predictor
feedback incorporates the possibility of two different classes of
perturbations, depending onwhetherDD is positive or negative, so
existing results cannot be used.

The result of Theorem 4 may be surprising in light of negative
result on delay-robustness for certain examples of hyperbolic PDEs
with boundary control (Datko, 1988). Even though the input-delay
problem also involves a hyperbolic PDE, such a negative result does
not hold for predictor feedback because of a significant difference
between first-order and second-order hyperbolic PDEs. The
second-order hyperbolic PDEs in Datko’s work have infinitely
many eigenvalues on the imaginary axis, whereas this is not the
case with an ODEwith input delay. Evenwhen the ODE is unstable,
only a finite number of open-loop eigenvaluesmay be in the closed
right-half plane.

3.2. Delay-adaptive control

Now we turn our attention from robustness to small delay
mismatch to adaptivity for large delay uncertainty. Several results
exist on adaptive control of systems with known input delays,
including (Niculescu & Annaswamy, 2003; Ortega & Lozano, 1988).
However, existing results deal with parametric uncertainties in the
ODE plant, whereas the key challenge is uncertainty in the delay.

Let us consider the plant (1) but with a transport PDE
representation of the input delay given as

ẊðtÞ ¼ AXðtÞ þ Buð0; tÞ; (47)

Dutðx; tÞ ¼ uxðx; tÞ; (48)

uð1; tÞ ¼ UðtÞ: (49)

We take the predictor feedback in the certainty equivalence form

UðtÞ ¼ K eAD̂ðtÞXðtÞ þ D̂ðtÞ
Z 1

0
eAD̂ðtÞð1%yÞBuðy; tÞdy

" #

; (50)

where the update law for the estimate D̂ðtÞ is designed as

˙̂DðtÞ ¼ gProj½0;D̄*ftðtÞg; (51)

tðtÞ ¼ %
R 1
0 ð1þ xÞwðx; tÞK

GðtÞ
eAD̂ðtÞxdx AXðtÞ þ Buð0; tÞð Þ (52)

GðtÞ ¼ 1þ XðtÞTPXðtÞ þ b
Z 1

0
ð1þ xÞwðx; tÞ2dx (53)

wðx; tÞ ¼ uðx; tÞ % D̂ðtÞ
Z x

0
KeAD̂ðtÞðx%yÞBuðy; tÞdy% KeAD̂ðtÞxXðtÞ;

(54)

with b'ð4D̄jPBj2Þ=ðlmin ðQÞÞ, where D̄ is an a priori known upper
bound onD. The standard projection operator projects D̂ðtÞ into the
interval ½0; D̄*. The structure of the adaptive control system is
shown in Fig. 3. The choice of the update law (51) and (52) is
motivated by a rather subtle Lyapunov analysis, resulting in a

[()TD$FIG]

Fig. 2. An ODE with input delay which is known up to a small mismatch error DD,
which can be either positive or negative. Stability is preserved under predictor
feedback (43) for sufficiently small jDD j but arbitrarily large D, as stated in
Theorem 4.
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normalization of the update law, without the use of any filters or
overparametrization.

Theorem 5. Consider the closed-loop adaptive system (47)–(52).
There exists g( > 0 such that for all g 2 (0, g() there exist positive
constants R and r (independent of the initial conditions) such that for
all initial conditions satisfying ðX0;u0; D̂0Þ2Rn + L2½0;1* + ½0; D̄*, the
norm of the solutions obeys an exponential bound relative to the norm
of initial conditions, namely

YðtÞ & R erYð0Þ % 1
' (

; for all t'0; (55)

where

YðtÞ ¼ jXðtÞj2 þ
Z 1

0
uðx; tÞ2dxþ ðD% D̂ðtÞÞ

2
: (56)

Furthermore

lim
t!1

XðtÞ ¼ 0; lim
t!1

UðtÞ ¼ 0: (57)

Example 3.1. We illustrate the delay-adaptive design for the
unstable plant

XðsÞ ¼ e%s

ðs% 0:75Þ
UðsÞ (58)

with the simulation results given in Fig. 4. The interval up to 1 s, in
which the state X(t) grows exponentially, is the result of input
delay, which is 1 s. The parameter estimation is active until about
3 s. The control evolution is exponential (corresponding to a
predominantly LTI system) after 3 s. The state decays exponen-
tially after 4 s, namely, after the predominantly linear feedback has
passed through the 1 s input delay. The adaptive controller is
successful both with D̂ð0Þ ¼ 0 and with D̂ð0Þ ¼ 2D (100% parame-
ter error in both cases).

The controller (50)–(52) uses full state measurement of the
transport PDE state. In the absence of suchmeasurement, a slightly
different design guarantees local stability, which is the strongest
result achievable in that case due to a nonlinear parametrization of
the operator e%Ds.

3.3. Time-varying input delay

Before we close this section on uncertain delays, let us briefly
turn our attention to the problem of known time-varying input
delays (Fig. 5). We consider the system

ẊðtÞ ¼ AXðtÞ þ BUðfðtÞÞ: (59)

A predictor feedback for this system is

UðtÞ ¼ K eAðf
%1ðtÞ%tÞXðtÞ þ

Z t

fðtÞ
eAðf

%1ðtÞ%f%1ðuÞÞB
UðuÞ

f0ðf%1ðuÞÞ
du

" #

;

for all t'0:

(60)

with rather extensive effort, going through a transport PDE
representation with u(x, t) = U(f(t + x(f%1(t) % t))) and the time-
varying backstepping transformation

wðx; tÞ ¼ uðx; tÞ % KeAxðf
%1ðtÞ%tÞXðtÞ

% K
Z x

0
eAðx%yÞðf%1ðtÞ%tÞBuðy; tÞðf%1ðtÞ % tÞdy (61)

into the target system

ẊðtÞ ¼ ðAþ BKÞXðtÞ þ Bwð0; tÞ; (62)

wtðx; tÞ ¼ pðx; tÞwxðx; tÞ; (63)

wð1; tÞ ¼ 0; (64)

where the variable speed of propagation of the transport equation
w is given by

pðx; tÞ ¼ 1þ xðdðf%1ðtÞÞ=dt % 1Þ
f%1ðtÞ % t

; (65)

we obtain the following stabilization result.

Theorem 6. Consider the closed-loop system (59), (60). Let the delay
function d(t) = t % f(t) be strictly positive and uniformly bounded
from above. Let the delay rate function d0(t) be strictly smaller than
1 and uniformly bounded from below. There exist positive constants G
and g (the latter one being independent of f) such that

jXðtÞj2 þ
Z t

fðtÞ
U2ðuÞdu & Ge%gtðjX0j2 þ

Z 0

fð0Þ
U2ðuÞduÞ;

for all t'0:

(66)

4. Predictor feedback for nonlinear systems

In robust nonlinear control several types of uncertainties are
considered, including unmeasurable disturbances, uncertain static
nonlinearities, unmodeled dynamics acting on the state, and
unmodeled dynamics acting on the input, which have been the
most significant challenge. Considerable success has been achieved
with control of nonlinear systems with state delays (Germani,

[()TD$FIG]

Fig. 3. Delay-adaptive predictor feedback for a true delay D varying in a broad range from 0 to a possibly large value D̄. The certainty-equivalence controller (50) is combined
with the update law (51)–(52). Global stability and regulation of the state and control are achieved, as specified in Theorem 5.
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Manes, & Pepe, 2003; Jankovic, 2001; Karafyllis, 2006; Mazenc &
Bilman, 2006) and one result was even developed for robustness to
input delay of arbitrary length for feedforward systems (Mazenc,
Mondie, & Francisco, 2004). However, systematic compensation of
long delays at the input of nonlinear control systems, as depicted in
Fig. 6, has never been considered.

An approach to compensate input delays in nonlinear control is
through an extension of predictor feedback to nonlinear systems,
which we present next. Consider the nonlinear system

ẊðtÞ ¼ f ðXðtÞ;Uðt % DÞÞ; f ð0;0Þ ¼ 0; (67)

and assume that a feedback law U = k(X) with k(0) = 0 is known
which globally asymptotically stabilizes the system at the origin
when D = 0. Denote the initial conditions as Z0 = Z(0) and
U0(u) = U(u), u 2[% D, 0]. A predictor feedback is given by

UðtÞ ¼ kðPðtÞÞ; (68)

where the predictor state is defined as

PðtÞ ¼
Z t

t%D
f ðPðuÞ;UðuÞÞdu þ ZðtÞ; t'0; (69)

PðuÞ ¼
Z u

%D
f ðPðsÞ;U0ðsÞÞds þ Z0; u2 ½%D;0*: (70)

A key feature of the predictor P(t) is that it is defined implicitly,
through a nonlinear integral equation, rather than explicitly,
through matrix exponentials and the variation of constants
formula, as is the case when the plant is linear. The lack of an
explicit formula for P(t) is not an obstacle, since P(t) is defined in
terms of its past values.

The nonlinear predictor design is developed for systems that
do not exhibit a finite escape time for any initial condition and any
input signals that remain finite over finite time intervals ( forward
complete systems), which includes many mechanical and other
systems, predictor feedback is developed which achieves global
asymptotic stability, as long as the system without delay is
globally asymptotically stabilizable. The predictror requires the
solution of a nonlinear integral equation, or a nonlinear DDE, in
real time.

Theorem 7. Let Ẋ ¼ f ðX;UÞ be forward complete and Ẋ ¼
f ðX;kðXÞÞ be globally asymptotically stable at X = 0. Consider the
closed-loop system (67)–(70). There exists a function b̂2KL such
that

VðtÞ & b̂ Vð0Þ; t
) *

(71)

VðtÞ ¼ jZðtÞjþ kUkL1 ½t%D;t* (72)

for all ðZ0;U0Þ2Rn + L1½%D;0* and for all t ' 0.

A significant class of nonlinear system exists for which P(t) is
explicitly computable. This is the class of strict-feedforward
systems (Sepulchre et al., 1997).
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Fig. 4. Time responses of D̂ðtÞ, X(t), and U(t) under delay-adaptive predictor
feedback for an unstable first-order plant. Stabilization is achieved bothwith D̂ð0Þ ¼
0 and with a D̂ð0Þ that heavily overestimates the true D.

[()TD$FIG]

Fig. 5. Linear system ẊðtÞ ¼ AXðtÞ þ BUðfðtÞÞ with time-varying actuator delay
d(t) = t % f(t). The predictor feedback (60) with compensation of the time-varying
delay achieves exponential stabilization according to Theorem 6.

[()TD$FIG]

Fig. 6. Nonlinear control in the presence of arbitrarily long input delay. Global
stabilization is achieved with the predictor feedback (68)–(70) if the plant is
forward complete and globally asymptotically stabilizable in the absence of delay,
as stated in Theorem 7.
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Example 4.1. We illustrate the explicit computability of the pre-
dictor, and thus of the feedback law, for the third-order system

Ẋ1ðtÞ ¼ X2ðtÞ þ X2
3ðtÞ; (73)

Ẋ2ðtÞ ¼ X3ðtÞ þ X3ðtÞUðt % DÞ; (74)

Ẋ3ðtÞ ¼ Uðt % DÞ; (75)

which is not feedback linearizable, but is in the strict-feedforward
class. The globally asymptotically stabilizing predictor feedback for
this system is

UðtÞ ¼ %P1ðtÞ % 3P2ðtÞ % 3P3ðtÞ %
3
8
P2
2ðtÞ þ

3
4
P3ðtÞ

+
%P1ðtÞ % 2P2ðtÞ þ

1
2
P3ðtÞ þ

P2ðtÞP3ðtÞ
2

þ5
8
P2
3ðtÞ %

1
4
P3
3ðtÞ %

3
8

P2ðtÞ %
P2
3ðtÞ
2

% &2

0

BBB@

1

CCCA; (76)

where the predictor of (X1(t), X2(t), X3(t)) is given explicitly by

P1ðtÞ ¼ X1ðtÞ þ DX2ðtÞ þ
1
2
D2X3ðtÞ þ DX2

3ðtÞ

þ 3X3ðtÞ
Z t

t%D
ðt % uÞUðuÞdu þ 1

2

Z t

t%D
ðt % uÞ2UðuÞdu

þ 3
2

Z t

t%D

Z u

t%D
UðsÞds

 !2

du; (77)

P2ðtÞ ¼ X2ðtÞ þ DX3ðtÞ þ X3ðtÞ
Z t

t%D
UðuÞdu þ

Z t

t%D
ðt % uÞUðuÞdu

þ 1
2

Z t

t%D
UðuÞdu

% &2

; (78)

P3ðtÞ ¼ X3ðtÞ þ
Z t

t%D
UðuÞdu: (79)

Note that the nonlinear infinite-dimensional feedback operator
employs a finite Volterra series in U(u).

5. Delay-PDE cascades

When a plant with an input delay is a PDE, such as in Fig. 7,
special challenges arise in the design of predictor feedback,
particularly if the PDE is actuated through boundary control, which
makes the B operator unbounded. In (Krstic, 2009a) we consider
two benchmark delay-PDE cascades, one where the plant is a
parabolic PDE and the other where the plant is a second-order
hyperbolic PDE. We review here the parabolic case, where the
plant is an unstable reaction-diffusion equation with an arbitrarily
large number of unstable eigenvalues in open loop.

Consider the PDE system

utðx; tÞ ¼ uxxðx; tÞ þ luðx; tÞ; (80)

uð0; tÞ ¼ 0; (81)

uð1; tÞ ¼ Uðt % DÞ; (82)

where l is an arbitrary constant. We derive a stabilizing feedback
law in the explicit form

UðtÞ ¼ 2
X1

n¼1

Z 1

0
sin ðpnjÞlj

I1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 1% j2
' (r% &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 1% j2
' (r dj

+
%e l%p2n2ð ÞD

Z 1

0
sin ðpnyÞuðy; tÞdy

þpnð%1Þn
Z t

t%D
e l%p2n2ð Þðt%uÞ + UðuÞdu

0

BBB@

1

CCCA; (83)

where I1( , ) is a Bessel function.

Theorem 8. Consider the closed-loop system defined in (80)–(83).
There exists a positive continuous function % : R2 !Rþ such that, for
all initial conditions (u0,U0) 2 L2[0, 1] + H1[0,D], and for all c > 0, the
solutions are bounded as follows

YðtÞ & %ðD;lÞecDYð0Þe%min f2;cgt; for all t'0; (84)

where

YðtÞ ¼
Z 1

0
u2ðx; tÞdxþ

Z t

t%D
U2ðuÞ þ U̇

2ðuÞ
' (

du: (85)

Two features of this result are of significance and they arise in
any application of predictor feedback to PDEs with boundary
control. First, the feedback law (83) is derived explicitly. The
explicit determination of the control gains is made possible by first
deriving the control gain forD = 0 explicitly, whichwas achieved in
(Smyshlyaev & Krstic, 2004), and then by solving the undriven
version of the PDE system (80)–(82) with an initial condition given
by the control gain for D = 0. In more specific terms, we solve the
PDE systems

kxxðx; yÞ ¼ kyyðx; yÞ þ lkðx; yÞ; 0 & y & x & 1; (86)

kðx;0Þ ¼ 0; (87)

kðx; xÞ ¼ %l
2
x; (88)

and

gxðx; yÞ ¼ gyyðx; yÞ þ lgðx; yÞ; ðx; yÞ2 ½1;1þ D* + ð0;1Þ; (89)

gðx;0Þ ¼ 0; (90)

gðx;1Þ ¼ 0; (91)

gð1; yÞ ¼ kð1; yÞ: (92)

Note that the k-system is hyperbolic and defined on a triangular
domain, whereas the g-system is parabolic and defined on a
rectangular semi-infinite domain, aswell as that the solution to the
k-system acts as an initial condition to the g-system, as given by
(92). The process of explicitly solving for g(x, y) is the PDE
equivalent of analytically finding the vector KeAD in (2).

[()TD$FIG]

Fig. 7. Control of an unstable parabolic PDE with input delay, that is, of a boundary
controlled cascade of a transport PDE and a reaction-diffusion PDE. Explicit gains
are derived for the predictor feedback (83). As stated in Theorem 8, stability is
achieved in a somewhat non-standard Sobolev norm, rather than in the basic L2
norm of the state of the PDE cascade.
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The second feature is that, when dealing with boundary control
of a PDE with input delay, we are facing the problem of control of
two PDEs fromdifferent classes, such as a parabolic PDE and a first-
order hyperbolic PDE in the case covered here, where the PDEs are
interconnected through a boundary. While for each one of the two
PDEs individually a natural system norm may be the standard L2
norm, for the interconnected system this may not be the case and a
higher order normmay have to be used for one of the subsystems,
as is the case in (85).

6. ODEs controlled through distributed diffusionwith counter-
convection or through wave PDEs

For single-input systems explicit feedback laws are constructed
in (Krstic, 2009b, 2009c; Susto & Krstic, 2010), for input dynamics
governed by diffusion, diffusion with counter-convection and
string PDEs respectively, based on the PDE backstepping. Here we
consider a more complex set of problems involving multi-input
ODE systems in which the convection, diffusion, counter-convec-
tion or wave propagation speed coefficients of the inputs’s
dynamics are different in each individual input channel.

As also mentioned in Section 2.2, the PDE backstepping
approach alone does not suffice in the case of distributed input
dynamics (where the ODE’s right hand side incorporates an
integral of the actuator state). Backstepping also does not suffice in
the case of multi-input ODEs with PDE actuator dynamics in which
the convection, diffusion, counter-convection or wave propagation
speed coefficients are different in each individual input channel.
We combine here backstepping and forwarding to introduce
invertible transformations not only of the actuator states but also
of the state of the plant.

6.1. Diffusion with counter-convection

We consider the system

ẊðtÞ ¼ AXðtÞ þ
Z D1

0
B1ðyÞu1ðy; tÞdyþ

Z D2

0
B2ðyÞu2ðy; tÞdy (93)

@tu1ðx; tÞ ¼ @xxu1ðx; tÞ % b1@xu1ðx; tÞ (94)

@xu1ð0; tÞ ¼ 0 (95)

u1ðD1; tÞ ¼ U1ðtÞ (96)

@tu2ðz; tÞ ¼ @zzu2ðz; tÞ % b2@zu2ðz; tÞ (97)

@zu2ð0; tÞ ¼ 0 (98)

u2ðD2; tÞ ¼ U2ðtÞ; (99)

where x 2 [0,D1], z 2 [0,D2] and b1, b2 > 0.We refer to the b1 and b2
terms in (94) and (97), respectively, as counter-convection because
the terms act in amanner opposite to the usual convection terms in
the standard transport PDE. While convection promotes the
motion of the control signal away (‘downstream’) from the
boundary condition at which the input is applied, these
counter-convection terms actually promote a backward (‘up-
stream’) motion of the control signal. The only reason why the
control signals U1(t) andU2(t) can actually propagate and reach the
ODE in (93) is the presence of the diffusion terms in (94) and (97).
While convection (and counter-convection) has a fixed propaga-

tion speed, diffusion is not subject to that limitation, so the effect of
diffusion prevails and the control signals can reach the ODE, to
stabilize it. However, the interplay between the diffusion and
counter-convection is not only about the propagation direction
and speed, but it is more complex. Convection is a simple transport
process, which does not change the waveform of the input signal.
Diffusion is more complex and its effect is of low-pass character,
but the effect gets increasingly severe for signals of higher
frequency because diffusion induces infinitely many eigenvalues
extending all the way to infinity on the negative real axis. Hence, a
controller whose task is to stabilize the ODE (93) faces two
challenges associated with the actuator dynamics—these dynam-
ics are of high relative degree due to diffusion and are unstable due
to counter-convection.

For notational simplicity we consider a two-input case. The
same control design and analysis can be carried out for an arbitrary
number of inputs. We define the transformations

ZðtÞ ¼ XðtÞ þ
X2

i¼1

Z Di

0
giðyÞuiðy; tÞdy (100)

w1ðx; tÞ ¼ u1ðx; tÞ % g1ðxÞ XðtÞ þ
X2

i¼1

Z Di

0
giðyÞuiðy; tÞdy

 !

þ b1
2

Z x

0
eb1ðx%yÞu1ðy; tÞdy (101)

w2ðz; tÞ ¼ u2ðz; tÞ % g2ðzÞ XðtÞ þ
X2

i¼1

Z Di

0
giðyÞuiðy; tÞdy

 !

þ b2
2

Z z

0
eb2ðz%yÞu2ðy; tÞdy; (102)

where

giðxÞ ¼ I 0½ * eAix
I

%biI

" #
%
Z x

0
eAiðx%yÞ

0

I

" #
bi
2
ebiðDi%yÞdyRi

 !

Fi % I 0½ *

Z x

0
eAiðx%yÞ

0

I

" #
BiðyÞdy

þ
Z x

0
eAiðx%yÞ

0

I

" #
bi
2
ebiðDi%yÞdyGi

0

BBBB@

1

CCCCA
(103)

g iðwÞ ¼ KiGi I
bi
2
I

! "
e

0 Acl

I biI

! "
w I

0

! "
(104)

Ai ¼
0 I
A %biI

! "
(105)

Mi ¼ I þ
Z Di

0
0 I½ *eAiðDi%yÞ 0

I

! "
bi
2
ebiðDi%yÞdy (106)

Ri ¼ M%1
i 0 I½ *eAiDi

I
%biI

! "
(107)

Gi ¼ %M%1
i

Z Di

0
0 I½ *eAiðDi%yÞ 0

I

! "
BiðyÞdy (108)
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Ei ¼ I 0½ *eAiDi
I

%biI

! "
%
Z Di

0
I 0½ *eAiðDi%yÞ 0

I

! "
bi
2
ebiðDi%yÞdyRi

(109)

Fi ¼ E%1
i

Z Di

0
I 0½ *eAiðDi%yÞ 0

I

! "
BiðyÞdyþ

Z Di

0
I 0½ *

+eAiðDi%yÞ 0

I

! "
bi
2
ebiðDi%yÞdyGi

0

BBB@

1

CCCA (110)

Gi ¼ L%1
i (111)

Li ¼ I
bi
2
I

! "
e

0 Acl

I biI

! "
Di I

0

! "
; i ¼ 1;2: (112)

Transformations (100)–(102) convert system (93)–(99) into

ŻðtÞ ¼ AclZðtÞ (113)

@tw1ðx; tÞ ¼ @xxw1ðx; tÞ % b1@xw1ðx; tÞ (114)

@xw1ð0; tÞ ¼
b1
2
w1ð0; tÞ (115)

w1ðD1; tÞ ¼ 0 (116)

@tw2ðz; tÞ ¼ @zzw2ðz; tÞ % b2@zw2ðz; tÞ (117)

@zw2ð0; tÞ ¼
b2
2
w2ð0; tÞ (118)

w2ðD2; tÞ ¼ 0; (119)

where

Acl ¼ A% g01ðD1ÞK1 % g02ðD2ÞK2; (120)

and K1, K2 are chosen such that Acl is Hurwitz. The transforma-
tions (100)–(102) completely decouple the finite-dimensional
state of the plant X(t) and the infinite-dimensional actuator
states u1(x, t) and u2(z, t). The target system (113)–(119) is
comprised of the exponentially stable Z-system and two
exponentially stable PDE w1 and w2-systems which incorporate
diffusion with counter-convection. The reason why these w-
system are stabile in spite of the presence of counter-convection
is that they have stabilizing boundary conditions (115) and
(118).

The inverse transformations of (100)–(102) are given by

XðtÞ ¼ I %
X2

i¼1

Z Di

0
giðyÞdiðyÞ

 !
ZðtÞ

%
X2

i¼1

Z Di

0
giðyÞ wiðy; tÞ %

bi
2

Z y

0
eðbi=2Þðy%rÞwiðr; tÞdr

% &
dy

(121)

u1ðx; tÞ ¼ w1ðx; tÞ þ d1ðxÞZðtÞ %
b1
2

Z x

0
eðb1=2Þðx%yÞw1ðy; tÞdy (122)

u2ðz; tÞ ¼ w2ðz; tÞ þ d2ðzÞZðtÞ %
b2
2

Z z

0
eðb2=2Þðz%yÞw2ðy; tÞdy; (123)

where

diðwÞ ¼ KiGi I 0½ *e
0 Acl

I biI

! "
w I

0

! "
; i ¼ 1;2: (124)

Using the Lyapunov functional

VðtÞ ¼ ZðtÞTPZðtÞ þ 1
2

Z D1

0
w1ðx; tÞ2dxþ

1
2

Z D2

0
w2ðz; tÞ2dz; (125)

where P = PT > 0 and Q = QT > 0 satisfy

AT
clP þ PAcl ¼ %Q ;

the following result can be proved.

Theorem 9. Consider the closed-loop system consisting of the plant
(93)–(99) and the control laws

U1ðtÞ ¼ K1ZðtÞ %
b1
2

Z D1

0
eb1ðD1%yÞu1ðy; tÞdy (126)

U2ðtÞ ¼ K2ZðtÞ %
b2
2

Z D2

0
eb2ðD2%yÞu2ðy; tÞdy: (127)

Let the pair ðA; ½g01ðD1Þg02ðD2Þ*Þ be completely controllable and let the
matrices Mi, Ri, i = 1, 2 be invertible. Choose K1 and K2 such that the
matrix Acl is Hurwitz and such thatLi, i = 1, 2 are invertible. Then the
closed-loop system is exponentially stable in the sense that there exist
positive constants h and n such that

VðtÞ & hVð0Þe%nt (128)

VðtÞ ¼ XðtÞj j2 þ
Z D1

0
u1ðx; tÞ2dxþ

Z D2

0
u2ðz; tÞ2dz: (129)

An interesting special case of the system (93)–(99) is when
bi = 0, i = 1, 2, that is, when the inputs to the plant satisfy diffusion
equations. In this case Theorem 9 applies by setting bi = 0, i = 1, 2 in
Eqs. (126)–(127). It is important here to observe that the direct
transformations (101)–(102) are significantly simplified when we
set bi = 0, i = 1, 2. Moreover, the inverse transformations (122)–
(123) are trivially satisfied with di( ,)= gi( , ), i = 1, 2. One can see
this by looking at the expressions (104) and (124) when bi = 0, i = 1,
2, or by observing that (101) and (102) when bi = 0, i = 1, 2, can be
written as

w1ðx; tÞ ¼ u1ðx; tÞ % g1ðxÞZðtÞ (130)

w2ðz; tÞ ¼ u2ðz; tÞ % g2ðzÞZðtÞ: (131)

6.2. Wave dynamics

In this section we consider the following system

ẊðtÞ ¼ AXðtÞ

þ
X2

i¼1

Z Di

0
BiðyÞuiðy; tÞdyþ

Z Di

0
BitðyÞ@tuiðy; tÞdy

% &
(132)

@ttu1ðx; tÞ ¼ @xxu1ðx; tÞ (133)
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@xu1ð0; tÞ ¼ 0 (134)

@xu1ðD1; tÞ ¼ U1ðtÞ (135)

@ttu2ðz; tÞ ¼ @zzu2ðz; tÞ (136)

@zu2ð0; tÞ ¼ 0 (137)

@zu2ðD2; tÞ ¼ U2ðtÞ; (138)

where x 2 [0, D1], z 2 [0, D2], D1, D2 > 0. Define the transformations

ZðtÞ ¼ XðtÞ þ
X2

i¼1

+

Z Di

0
AgiðyÞ % BitðyÞ þ giðDiÞc0ic1ið Þuiðy; tÞdy

þ
Z Di

0
giðyÞ@tuiðy; tÞdyþ c1igiðDiÞuiðDi; tÞ

0

BBB@

1

CCCA (139)

where

g iðwÞ ¼ Ci I c0iI½ *e
0 A2

cl
I 0

! "
w I

0

! "
(143)

diðwÞ ¼ Ci 0½ *e
0 A2

cl
I 0

! "
w I

0

! "
(144)

Gi ¼ I % I 0½ *
Z Di

0
e

0 I
A2 0

! "
ðDi%rÞ 0

I

! "
drAc1ic0i (145)

gið0Þ ¼ E%1
i Di

Z Di

0
e

0 I
A2 0

! "
ðDi%rÞ 0

I

! "
BiðrÞ þ ABitðrÞð Þdr (146)

Di ¼ 0 I½ * I þ
Z Di

0
e

0 I
A2 0

! "
ðDi%rÞ 0

I

! "
dyAc1ic0iG

%1
i I 0½ *

0

B@

1

CA

þ c0iI þ c1iAð ÞG%1
i I 0½ *

(147)

Ei ¼ Die

0 I
A2 0

! "
Di I

0

! "
(148)

g1ðxÞ ¼ C1 I c01I½ *e
0 A2

cl
I 0

! "
x I

0

! "
(149)

Ri ¼ I c0iI½ *e
0 A2

cl
I 0

! "
Di c1iAcl

I

! "
(150)

Acl ¼ Aþ g1ðD1ÞK1 þ g2ðD2ÞK2 (151)

Ci ¼ KiR
%1
i ; i ¼ 1;2; (152)

K1 and K2 are chosen such that Acl is Hurwitz and c0i, c1i, i = 1, 2 are
positive constants. Using (139)–(141) we transform system (132)–
(138) into the target system

ŻðtÞ ¼ AclZðtÞ (153)

@ttw1ðx; tÞ ¼ @xxw1ðx; tÞ (154)

@xw1ð0; tÞ ¼ c01w1ð0; tÞ (155)

@xw1ðD1; tÞ ¼ %c11@tw1ðD1; tÞ (156)

@ttw2ðz; tÞ ¼ @zzw2ðz; tÞ (157)

@zw2ð0; tÞ ¼ c02w2ð0; tÞ (158)

w1ðx; tÞ ¼ u1ðx; tÞ % g1ðxÞ XðtÞ þ
X2

i¼1

Z Di

0
AgiðyÞ % BitðyÞ þ giðDiÞc0ic1ið Þuiðy; tÞdyþ c1igiðDiÞuiðDi; tÞ

% &
þ c1igiðDiÞuiðDi; tÞ

 !

þ c01

Z x

0
u1ðy; tÞdy (140)

w2ðz; tÞ ¼ u2ðz; tÞ % g2ðzÞ XðtÞ þ
X2

i¼1

Z Di

0
ðAgiðyÞ % BitðyÞ þ giðDiÞc0ic1iÞuiðy; tÞdyþ

Z Di

0
giðyÞ@tuiðy; tÞdy

% &
þ c1igiðDiÞuiðDi; tÞ

 !

þ c02

Z z

0
u2ðy; tÞdy; (141)

giðyÞ ¼ I 0½ *e
0 I
A2 0

! "
y

I þ
Z y

0
e
%

0 I
A2 0

! "
r

dr
0
I

! "
Ac1ic0iG

%1
i I 0½ *e

0 I
A2 0

! "
Di

0

B@

1

CA I
0

! "
gið0Þ % I 0½ *

+
Z y

0
e

0 I
A2 0

! "
ðy%rÞ 0

I

! "
BiðrÞ þ ABitðrÞð Þdr % I 0½ *

Z y

0
e

0 I
A2 0

! "
ðy%rÞ

dr
0
I

! "
Ac1ic0iG

%1
i I 0½ *

Z Di

0
e

0 I
A2 0

! "
ðDi%yÞ 0

I

! "

+ BiðyÞ þ ABitðyÞð Þdy (142)
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@zw2ðD2; tÞ ¼ %c12@tw2ðD2; tÞ: (159)

This target system is exponentially stable because of it consists of
decoupled Z-dynamics, which are exponentially stable, and w-
dynamics, which are given by two wave equations with boundary
damping, which are also exponentially stable.

The inverse transformations of (139)–(141) are

u1ðx; tÞ ¼ w1ðx; tÞ þ d1ðxÞZðtÞ % c01

Z x

0
e%c01ðx%yÞw1ðy; tÞdy (161)

u2ðz; tÞ ¼ w2ðz; tÞ þ d2ðzÞZðtÞ % c02

Z z

0
e%c02ðz%yÞw2ðy; tÞdy: (162)

Using the Lyapunov functional

VðtÞ ¼ ZðtÞTPZðtÞ þ EðtÞ; (163)

where P = PT > 0 and Q = QT > 0 satisfy

AT
clP þ PAcl ¼ %Q ; (164)

and

EðtÞ ¼
X2

i¼1

1
2

c0iwið0; tÞ2 þ k@ywiðtÞk2 þ k@twiðtÞk2
' (

þei
Z Di

0
ð1þ yÞ + @ywiðy; tÞ@twiðy; tÞdy

0

BB@

1

CCA; (165)

where ei, i = 1, 2 are sufficiently small positive constants, we arrive
at the following theorem

Theorem 10. Consider the closed-loop system consisting of the plant
(132)–(138) and the control laws

U1ðtÞ ¼ K1ZðtÞ % c01 c11

Z D1

0
@tu1ðy; tÞdyþ u1ðD1; tÞ

% &

% c11@tu1ðD1; tÞ (166)

U2ðtÞ ¼ K2ZðtÞ % c02 c12

Z D2

0
@tu2ðy; tÞdyþ u2ðD2; tÞ

% &

% c12@tu2ðD2; tÞ: (167)

Let the pair (A, [g1(D1)g2(D2)]) be completely controllable and choose
the positive constants c0i, c1i, i = 1, 2 such that the matrices Gi, Ei, i = 1,
2 are invertible. Furthermore, choose K1, K2 such that Acl is Hurwitz,
and such that the matrices Ri, i = 1, 2 are invertible. Then the closed-
loop system is exponentially stable in the sense that there exist positive
constants k and l such that

VðtÞ & kVð0Þe%lt (168)

VðtÞ ¼ XðtÞj j2

þ
X2

i¼1

Z Di

0
@yuiðy; tÞ2dyþ

Z Di

0
@tuiðy; tÞ2dyþ uið0; tÞ2

% &
:

(169)

7. Conclusions

The PDE backstepping approach is a powerful tool in advancing
the design techniques for systems with input and output delays.

Two techniques presented in this article are of interest to
researchers in delay systems. The first technique is the construc-
tion of backstepping and forwarding transformations that allow
the designer to deal with delays and PDE dynamics at the input, as
well as in the main line of applying control action, such as in the
chain of integrators for systems in triangular forms,

The second technique is the construction of Lyapunov func-
tionals and explicit stability estimates, with the help of direct and
inverse backstepping and forwarding transformations.

A wealth of future opportunities exist for research in this area

- Extending the explicit predictor feedback design to various
classes of systems with simultaneous input and state delays.

- Developing predictor feedback for systemswith state-dependent
input delays, which are related to, but not a sub-class, of the case
of time-varying delays.

- Developing design tools for nonlinear systems with input
dynamics governed by heat or wave PDEs.

- Developing feedback laws for more general PDE-PDE cascades,
such as wave-heat (or structure-fluid) and other interconnec-
tions.

References

Artstein, Z. (1982). Linear systemswith delayed controls: A reduction. IEEE Transactions
on Automatic Control, 27, 869–879.

Bekiaris-Liberis, N., & Krstic, M. (2010a). Lyapunov stability of linear predictor feedback
for distributed input delays. IEEE Conference on Decision and Control.

Bekiaris-Liberis, N., & Krstic, M. (2010b). Compensating the distributed effect of
counter-convection and diffusion in multi-input and multi-output LTI systems.
IEEE Conference on Decision and Control.

Datko, R. (1988). Not all feedback stabilized hyperbolic systems are robust with respect
to small time delays in their feedbacks. SIAM Journal on Control and Optimization,
26, 697–713.

Germani, A., Manes, C., & Pepe, P. (2003). Input–output linearization with delay
cancellation for nonlinear delay systems: the problem of the internal stability.
International Journal of Robust and Nonlinear Control, 13, 909–937.

Jankovic, M. (2001). Control Lyapunov–Razumikhin functions and robust stabilization
of time delay systems. IEEE Transactions on Automatic Control, 46, 1048–1060.

Karafyllis, I. (2006). Finite-time global stabilization by means of time-varying distrib-
uted delay feedback. SIAM Journal of Control and Optimization, 45, 320–342.

Krstic, M. (2009a). Delay compensation for nonlinear, adaptive and PDE systems. Bir-
khauser.

Krstic, M. (2009b). Compensating actuator and sensor dynamics governed by diffusion
PDEs. Systems and Control Letters, 58, 372–377.

XðtÞ ¼ I %
X2

i¼1

Z Di

0
AgiðyÞ % BitðyÞ þ giðDiÞc0ic1ið ÞdiðyÞdy%

Z Di

0
giðyÞdiðyÞAcldy% c1igiðDiÞdiðDiÞ

% & !
ZðtÞ

%
X2

i¼1

Z Di

0
AgiðyÞ % BitðyÞ þ giðDiÞc0ic1ið Þ wiðy; tÞ % c0i

Z y

0
e%c0iðy%rÞwiðr; tÞdr

% &
dy%

Z Di

0
giðyÞ

@twiðy; tÞ % c0i

Z y

0
e%c0iðy%rÞ@twiðr; tÞdr

% &
dy% c1igiðDiÞ wiðDi; tÞ % c0i

Z Di

0
e%c0iðDi%yÞwiðy; tÞdy

% &

0

BBB@

1

CCCA (160)

M. Krstic, N. Bekiaris-Liberis / Annual Reviews in Control 34 (2010) 233–244 243



Krstic, M. (2009c). Compensating a string PDE in the actuation or sensing path of an
unstable ODE. IEEE Transactions on Automatic Control, 54, 1362–1368.

Krstic, M., & Deng, H. (1998). Stabilization of nonlinear uncertain systems. Springer.
Krstic, M., & Smyshlyaev, A. (2008). Boundary control of PDEs: A course on backstepping

designs. SIAM.
Kwon, W. H., & Pearson, A. E. (1980). Feedback stabilization of linear systems with

delayed control. IEEE Transactions on Automatic Control, 25, 266–269.
Manitius, A. Z., & Olbrot, A. W. (1979). Finite spectrum assignment for systems with

delays. IEEE Transactions on Automatic Control, 24, 541–553.
Mazenc, F., & Bliman, P.-A. (2006). Backstepping design for time-delay nonlinear

systems. IEEE Transactions on Automatic Control, 51, 149–154.
Mazenc, F., Mondie, S., & Francisco, R. (2004). Global asymptotic stabilization of

feedforward systems with delay at the input. IEEE Transactions Automatic Control,
49, 844–850.

Michiels, W., & Niculescu, S.-I. (2007). Stability and stabilization of time-delay systems:
An eigenvalue-based approach. SIAM.

Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay
systems with a safe implementation. IEEE Transactions on Automatic Control, 48,
2207–2212.

Niculescu, S.-I., & Annaswamy, A. M. (2003). An adaptive Smith-controller for time-
delay systems with relative degree n ( ' 2. Systems and Control Letters, 49, 347–
358.

Ortega, R., & Lozano, R. (1988). Globally stable adaptive controller for systems with
delay. International Journal of Control, 47, 17–23.

Sepulchre, R., Jankovic, M., & Kokotovic, P. (1997). Constructive nonlinear control.
Springer.

Smith, O. J. M. (1959). A controller to overcome dead time. ISA, 6, 28–33.
Smyshlyaev, A., & Krstic, M. (2004). Closed form boundary state feedbacks for a class of

1D partial integro-differential equations. IEEE Transactions on Automatic Control,
49, 2185–2202.

Susto, G. A., & Krstic, M. (2010). Control of PDE-ODE cascades with Neumann inter-
connections. Journal of the Franklin Institute, 347, 284–314.

Teel, A. R. (1998). Connections between Razumikhin-type theorems and the ISS
nonlinear small gain theorem. IEEE Transactions on Automatic Control, 43, 960–964.

Vazquez, R., & Krstic, M. (2007). Control of turbulent and magnetohydrodynamic channel
flows. Birkhauser.

Zhong, Q.-C. (2006a). Robust control of time-delay systems. Springer.
Zhong, Q.-C. (2006b). On distributed delay in linear control laws. Part I. Discrete-delay

implementation. IEEE Transactions on Automatic Control, 49, 2074–2080.
Zhong, Q.-C., & Mirkin, L. (2002). Control of integral processes with dead time. Part 2.

Quantitative analysis. IEE Proceedings on Control Theory and Application, 149, 291–
296.

Miroslav Krstic is the Daniel L. Alspach Professor of dynamic systems and control at
University of California, San Diego, and the founding director of the Cymer Center for
Control Systems and Dynamics at UCSD. He is a co-author of eight books, including the
classic Nonlinear and Adaptive Control Design (1995), one of the two most cited
research monographs in control theory, the new single-authored Delay Compensation
for Nonlinear, Adaptive, and PDE Systems(466 pages, Birkhauser, October 2009), and
other books on control of turbulent fluid flows, stochastic nonlinear systems, and
extremum seeking. Krstic has held the Russell Severance Springer Distinguished
Visiting Professorship at UC Berkeley and the Harold W. Sorenson Distinguished
Professorship at UC San Diego. He is a recipient of the PECASE, NSF Career, and
ONR Young Investigator Awards, as well as the Axelby and Schuck Paper Prizes. Krstic
was the first recipient of the UCSD Research Award in the area of engineering. He is a
fellow of IEEE and IFAC and serves as senior editor in IEEE Transactions on Automatic
Control and Automatica.

Nikolaos Bekiaris-Liberis received his undergraduate degree in electrical and com-
puter engineering from the National Technical University of Athens in 2007. He is
currently working towards his PhD at University of California, San Diego.

M. Krstic, N. Bekiaris-Liberis / Annual Reviews in Control 34 (2010) 233–244244


	Compensation of infinite-dimensional input dynamics
	Introduction
	Lyapunov functional and its benefits
	Single-input systems with discrete delay
	Multi-input systems with distributed delays

	Delay-robustness, delay-adaptivity, and time-varying delays
	Robustness to delay mismatch
	Delay-adaptive control
	Time-varying input delay

	Predictor feedback for nonlinear systems
	Delay-PDE cascades
	ODEs controlled through distributed diffusion with counter-convection or through wave PDEs
	Diffusion with counter-convection
	Wave dynamics

	Conclusions
	References


