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IV. CONCLUSION

We revisit the singular control problem and obtain new numerical
and theoretical results. The advantage of the obtained numerical algo-
rithm is that it is robust in respect to the numerical inaccuracy, which
is due to a numerical rounding. Indeed, if some incorrect FGEs are ex-
tracted due to the numerical inaccuracy instead of the correct IGEs,
then we reject them since they do not appear in symmetric pairs. A
numerical algorithm for the orthogonal transformation (2.2) is avail-
able [10].

The results on singular control are used to solve the singular LQ
control problem of descriptor systems, under the constraints of impulse
free, marginally stable and physically realizable closed loop system.
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Compensating the Distributed Effect of Diffusion
and Counter-Convection in Multi-Input

and Multi-Output LTI Systems

Nikolaos Bekiaris-Liberis and Miroslav Krstic

Abstract—Compensation of infinite-dimensional input or sensor dy-
namics in SISO, LTI systems is achieved using the backstepping method.
For MIMO, LTI systems with distributed input or sensor dynamics,
governed by diffusion with counter-convection, we develop a methodology
for constructing control laws and observers that compensate the infi-
nite-dimensional actuator or sensor dynamics. The explicit construction
of the compensators are based on novel transformations, which can be
considered of “backstepping-forwarding” type, of the finite-dimensional
state of the plant and of the infinite-dimensional actuator or sensor states.
Based on these transformations we construct explicit Lyapunov functionals
which prove exponential stability of the closed-loop system, or convergence
of the estimation error in the case of observer design. Finally, we illustrate
the effectiveness of our controller with a numerical example.

Index Terms—Multiple-input multiple-output (MIMO).

I. INTRODUCTION

For LTI systems with input or sensor delays, predictor-based tech-
niques have been very successful in control and observer design [1],
[8], [9], [11], [12], [16]. Extensions of these techniques to nonlinear
systems have been developed recently [4], [5], [7], while adaptive ver-
sions can be also found [2], [10].

The first efforts in designing predictor feedback controllers for re-
alistic forms of infinite-dimensional actuator and sensor dynamics dif-
ferent than pure delays can be found in [7] and [14]. In [7] input and
sensor dynamics governed by diffusion PDEs are compensated using
the backstepping method for PDEs [6]. In [14] the results are extended
to the case of input and sensor dynamics governed by diffusion with
counter-convection. Finally, also in [7], the backstepping method is
used for control and observer design in LTI systems with a string PDE
in the actuation or sensing path. However, the applicability of the back-
stepping is limited to the class of systems where the ODE-PDE cascade
is in the strict-feedback form.

In this work we consider the system

(1)

(2)

(3)

where , , and . The backstep-
ping method is not applicable neither in the case of single-input ODE
systems with distributed input nor in the case of multi-input ODE sys-
tems in which the diffusion and/or the counter-convection coefficients
of the inputs’s dynamics are different in each individual input channel.
This is since the system that comprised of the finite-dimensional state

and the infinite-dimensional actuator states , ,
are not in the strict-feedback form. The controller design for these cases
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is recognized as one of the “key limitations” of the backstepping de-
sign [7], Chapter 1.10. In this technical note, novel forwarding-back-
stepping transformations of the finite-dimensional state of the plant and
of the infinite-dimensional actuator states are introduced to transform
the system to an exponentially stable system. These transformations
completely decouple the ODE-PDE interconnection. By constructing a
Lyapunov functional we prove exponential stability of the transformed
system. The invertibility of our transformations guarantees the expo-
nential stability of the system in the original variables.

In this technical note we consider the following special cases of
(1)–(3).

1) Distributed Diffusion With Counter-Convection: In this case
, and there is an additional boundary condition in (1)–(3),

. Note here that a mixed-type condition, i.e.,
, can be treated analogously. Moreover, we consider a Neumann

or a mixed-type condition to be the most challenging one, since in this
case the actuator dynamics can be unstable. This is not the case with the
actuator dynamics given by (2)–(3) and with a Dirichlet boundary con-
dition, i.e., . The term has the effect of “counter-
convection,” namely an effect which opposes the propagation of the
control signal from to . We rely on the presence of
diffusion in (2) to achieve stabilization of the system in the pres-
ence of counter-convection. A practical example of this behavior can
be a model of a plasma that flows towards the actuator and the actuator
sends current upstream (see [13] and the references therein). This type
of input dynamics are compensated in [14] for the special case of single-
input systems, with , where is the Dirac function.
In this work we construct explicit feedback laws for multi-input sys-
tems with distributed inputs that enter the system through channels with
different diffusion and counter-convection coefficients (Section II). We
also develop a dual of our actuator dynamics compensator and design
an infinite-dimensional observer which compensates the dynamics of
the sensor (Section III). Finally, a numerical example of a second order
single-input system, with distributed input dynamics governed by dif-
fusion with counter-convection, demonstrates the effectiveness of the
proposed controller (Section IV).

2) Distributed Diffusion: In this case , . An example
of this behavior can be a linearized model for fluid-structure interac-
tion where the ODE (that can be used to approximate an infinite-di-
mensional system) component has a distributed coupling with the heat
component (see [15] and the references therein). This type of input dy-
namics are compensated in [7] for the special case of single-input sys-
tems, with and being the Dirac function. As in
the previous case, compensators for both actuator and sensor dynamics
(as special cases of the designs in Sections II and III, respectively) gov-
erned by diffusion are constructed (Remarks 2.1 and 3.1).

II. CONTROLLER DESIGN FOR DISTRIBUTED DIFFUSION

WITH COUNTER-CONVECTION

We consider the system

(4)

(5)

(6)

(7)

(8)

(9)

(10)

where , , , , and
, . For notational simplicity we consider a two-input case. The

same analysis can be carried out for an arbitrary number of inputs. We
next state the main result of this section.

Theorem 1: Consider the closed-loop system consisting of the plant
(4)–(10) and the control law

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

and the block matrices and 0 are of dimension . Let the pair
, be completely controllable and let the ma-

trices , , , 2 be invertible. Moreover, choose and
such that the matrix is Hur-
witz and such that none of its eigenvalues are located at

, , 2. Then for any initial conditions
, , 2 the closed-loop system has a unique solution

which is exponentially stable in the sense that there exist positive con-
stants and such that

(20)

(21)
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Proof: Consider the transformation of the finite-dimensional state
, given in (12) and the transformations of the infinite-dimen-

sional actuator states and given by

(22)

(23)

where the kernels , , 2 are to be specified. Using (12) and
(22)–(23) we map the plant (4)–(10) to the “target system”

(24)

(25)

(26)

(27)

(28)

(29)

(30)

To see this we first differentiate in (12). Using relations (5) and
(8), integration by parts and relations (6)–(7), (9)–(10) and (12) we get

(31)

Since the , , 2 in (13) are the solutions of the following
boundary value problems

(32)

(33)

(34)

relation (31) becomes
.

Therefore, with the controller (11) we take (24). We now prove
(25)–(27) (the proof of (28)–(30) follows exactly the same pattern).
Differentiating (22) with respect to time, using integration by
parts together with relations (4)–(10) and using the fact that

, we get

(35)

By taking the spatial derivatives of (22) and if the kernels satisfy

(36)

(37)

(38)

i.e.

(39)

(40)

(41)

(42)

then, combining (35) with the spatial derivatives of (22) and (36), we
get (25). Moreover, by setting in (22) and in the first spatial
derivative of (22) and by taking into account (6), (38) we arrive at (26).
Finally, by setting in (22) and using relations (11) and (37) we
get (27).

The matrices , , 2 can be shown to be invertible as follows:
Using the Maclaurin series expansion of the exponential matrix in the
expressions for , , 2 and matching the terms for the powers
of , , 2 one can conclude that the following holds

. Assume
now a Jordan form for the matrix as

, where each Jordan block
for corresponds to an eigenvalue of the matrix

. Then the matrices are invertible if and only if the
matrix is invertible. Hence, we have

and thus
.

Since the blocks are upper diagonal and since is
different than zero, we can conclude that the are invertible if it
holds that , for
all , which is true if
for all and is a natural number. To sum-up,
both the conditions of stability of and the invertibility of
the matrices are satisfied if we choose and such
that is Hurwitz and none of the eigenvalues of the matrix

are located at the positions . This
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is always possible provided that the controllability conditions are
satisfied. Similarly one obtains (28)–(30).

In a similar manner the inverse transformations of (22)–(23) are
given by

(43)

(44)

where the satisfy with boundary
conditions as and , , 2, i.e.

(45)

Finally, the inverse transformation of (12) is given by

(46)

Consider now the Lyapunov function
,where

and satisfy

(47)

With the help of (25), (28), (47) and using integration by parts we obtain

(48)

where is the smallest eigenvalue of in (47).
Using the boundary conditions (26)–(27), (29)–(30) and the
Poincare inequality we obtain

. Thus, if we
set and is
the largest eigenvalue of in (47) we obtain . Using
the comparison principle we get . To prove stability
in the original variables and , it is sufficient
to show that

(49)

for some positive and and Theorem 1 is proved with
. Is straightforward to establish bound (49) using

expressions (12), (22)–(23) and (43)–(44), (46) together with Young
and Cauchy-Schwartz’s inequalities. Bound (49) holds with

where , ,

,

.
Moreover, from (24) we conclude that is bounded and converges
exponentially to zero. From (22)–(23) one can conclude that

, , 2 and thus it follows from (25)–(30) that
, , 2. Using the inverse transformations

(43)–(44) we can conclude that , , 2.
The uniqueness of weak solution is proved using the uniqueness of
weak solution to the boundary problems (25)–(30) (see, e.g., [3]).
Hence, the theorem is proved.

Remark 2.1: An interesting special case of the system (4)–(10) is the
case where , , 2. That is, the inputs to the plant satisfy diffu-
sion equations. In this case Theorem 1 applies by setting , ,
2 in (11)–(19). It is important here to observe that the direct transforma-
tions (22)–(23) are significantly simplified when we set , ,
2. Moreover, the inverse transformations (43)–(44) are trivially satis-
fied with , , 2. One can see this by looking at the
expressions (39)–(40) and (45) when , , 2, or by observing
that (22)–(23) when , , 2, can be written as

and .
Remark 2.2: We consider the case of a Neumann or a mixed-type

condition to be the most challenging one, since in this case the actuator
dynamics can be unstable. In the case of a Dirichlet boundary condi-
tion, i.e., , , 2 then the boundary condition of the
target system can be chosen as , , 2 since the ac-
tuator dynamics are stable for , , 2. The case of a
mixed type condition can be treated very similarly with the case of a
Neumann boundary condition. Consider for example a boundary con-
dition as , , 2. Then it can be shown that
the boundary value problem (36)–(38) will remain the same whereas
the problem (32)–(34) will be as

with boundary conditions
as and , , 2. In the case
of a Dirichlet boundary condition the control law and consequently the
transformations , , 2 are significantly simplified. Specif-
ically, the control laws simply become , , 2 and
the , , 2 transformations become

, where

, and , , 2.

III. OBSERVER DESIGN WITH DISTRIBUTED DIFFUSION

WITH COUNTER-CONVECTION

In this section, we consider the system

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

Next we state a new observer that compensates the sensor dynamics
and prove exponential convergence of the resulting observer error
system.
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Theorem 2: Let the pair be observable, where

(59)

(60)

(61)

(62)

(63)

Let the matrices , , 2 be invertible, and define the observer

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

where and are chosen such that
is Hurwitz. Then for any , ,
2 the observer error system has a unique solution

which is exponentially stable in the sense
that there exist positive constants and such that

(73)

(74)

Proof: Introducing the error variables ,
and ,

we obtain ,

, ,
and

,
, . With the transformations

(75)

(76)

and by noting that and in (59)–(60) are the solutions of
the following boundary value problems

, and , , 2, we get

(77)

(78)

(79)

(80)

(81)

(82)

(83)

Since the pair is observ-

able, we can choose and such that

. To establish exponential stability of the error system
we use the following Lyapunov functional

.
Taking its time derivative of , using integration
by parts, relations (77)–(83) and Young’s inequality,
similarly to the calculations in Section II, we get

. Using Poincare and

Agmon’s inequalities we get

,
with and

. Choosing
and and using one more time Poincare’s inequality we
have , where .
Now, as in the proof of Theorem 1, using (75)–(76)
one can show that with

and
. From (75)–(76) one can conclude that

, , 2 and thus it follows from (78)–(83) that
, , 2. Thus from (77) it follows that

is bounded. Using the inverse transformations of (78)–(83) we
can conclude that , , 2. The uniqueness
of weak solution is proved using the uniqueness of weak solution to
the boundary problems (78)–(83) (see, e.g., [3]). This completes the
proof.

Remark 3.1: As in Section II, setting , , 2 in relations
(64)–(72) we recover the observer for a system with distributed sensor
dynamics governed by diffusion, i.e., for the special case of system
(50)–(58), with , , 2.
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Fig. 1. Response of the system in the example with initial conditions
.

IV. EXAMPLE

We consider the system ,
, ,

and where . This example is a special case
of system (4) with one input and, say, ,
with being the Dirac function. We choose the parameters of the

system as , , , and . It

is important here to observe that neither the pair nor
are controllable, however, the pair is. We choose

, . Finally is chosen such that
the eigenvalues of are and . The response of the
system is shown in Figs. 1–2.

V. CONCLUSION

In this technical note we present new feedback laws for multi-input
LTI systems with distributed inputs. The inputs to the system satisfy
diffusion or diffusion with counter-convection PDEs. In addition, we
develop observers, for LTI systems in which the sensor dynamics sat-
isfy similar, with the controller design case, PDEs. Our designs are
based on novel backstepping-forwarding transformations of the finite-
dimensional state of the plant and of the infinite-dimensional actuator
or sensor states. Based on these transformations we construct Lya-
punov functionals with which we prove exponential stability of the
closed-loop system, or convergence of the estimation error in the case
of observer design. Finally, our controller design is illustrated by a nu-
merical example.

Fig. 2. Control effort (top figure) and the function (bottom figure) of
the system in the example with initial condition , .
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Sufficient Conditions for Local Asymptotic Stability and
Stabilization for Discrete-Time Varying Systems

A. Stamati and J. Tsinias

Abstract—The purpose of this paper is to establish sufficient conditions
for local asymptotic stability and feedback stabilization for discrete-time
systems with time depended dynamics. Our main results constitute gener-
alizations of those developed by same authors in a recent paper, published
in same journal, for the case of continuous-time systems.

Index Terms—Asymptotic stability, averaging, discrete-time systems, sta-
bilization.

Notations: We adopt the following notations. For , de-
notes its usual Euclidean norm. Given a matrix we denote
by its induced norm. By we denote the

closed ball of radius around zero . denotes the set of
all functions and is the set of all functions
which are strictly increasing and vanishing at zero. denotes the
subset of that constitutes by all with as .

I. INTRODUCTION

The present work provides sufficient conditions for local asymptotic
stability and feedback stabilization for the case of discrete-time systems
with time depended dynamics. Our results generalize those in existing
works (see for instance [1], [2], [4], [5], [8]). Propositions 1 and 2 in
Section II are the main results of the paper establishing Lyapunov-like
sufficient conditions for asymptotic stability for systems

(1)

These results constitute, in some sense, the discrete analogue to [9,
Proposition 1]. It should be emphasized however, that Proposition 1
and 2, as well as the averaging result of Proposition 5 in Section IV,
are based on weaker hypotheses than the discrete-analogue conditions
imposed in earlier works concerning continuous-time systems (see for
instance, [2], [3], [7], [9] and relative references therein). The result of
Proposition 1 is applied in Sections III and IV for the establishment
of sufficient conditions for the solvability of the feedback stabilization
problem for control systems

(2)
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and to derive an averaging type sufficient condition for local asymptotic
stability for the case

(3)

We next provide the concepts of stability, local asymptotic stability and
local exponential stability for the case (1). In what follows, we assume
that is an equilibrium, i.e., . We say that is
stable with respect to (1), if for each and given bounded
there exists a constant such that

(4)

where , denotes the
solution of (1) initiated from at time . We say that

is an attractor for (1), if there exists a constant such that
for every and given bounded , a time
can be found with

(5)

We say that (1) is Asymptotically Stable (AS) (at zero ), if
zero is stable and an attractor. We say that (1) is Uniformly in time
Asymptotically Stable (UAS), if both (4) and (5) hold for every
and for and depending only on . We say that (1) is Exponentially
AS (expo-AS), if there exists a constant such that for any given
bounded , a constant can be found with

(6)

Finally, (1) is Exponentially UAS (expo-UAS), if (6) holds for every
and for certain being independent of the initial values

of time.

II. MAIN RESULT

The aim of this section is to establish an extension of the main result
in [9] for the discrete-time systems (1). We assume that there exists a
constant such that the following properties hold:

A1. There exists a function such that

(7)

moreover, we assume that one of the following conditions is ful-
filled:
A2. There exist functions

, a sequence , a function
and a constant , such that

(8a)

(8b)

and further the following hold for the solution ,
, of (1)

(8c)
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