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Compensation of Time-Varying
Input and State Delays
for Nonlinear Systems
We consider general nonlinear systems with time-varying input and state delays for
which we design predictor-based feedback controllers. Based on a time-varying infinite-
dimensional backstepping transformation that we introduce, our controller achieves
global asymptotic stability in the presence of a time-varying input delay, which is proved
with the aid of a strict Lyapunov function that we construct. Then, we “backstep” one
time-varying integrator and we design a globally stabilizing controller for nonlinear
strict-feedback systems with time-varying delays on the virtual inputs. The main chal-
lenge in this case is the construction of the backstepping transformations since the pre-
dictors for different states use different prediction windows. Our designs are illustrated
by three numerical examples, including unicycle stabilization. [DOI: 10.1115/1.4005278]

1 Introduction

Ignoring the effect of a time-varying state or input delay can
have catastrophic consequences to a system [1]. Moreover, time-
varying delays are present in numerous real-world applications.
Successful application of various control design methods to
networked control systems is constrained by the presence of time-
varying input delays [2–5]. Time-varying delays appear also in
supply networks, [6] and [7] and irrigation channels [8]. Last but
not least, the reaction time of a driver varies over time [9,10], and
hence, can be modeled as a time-varying input delay.

Several existing techniques for compensating constant input
delays in linear plants, such as [11–17], are extensions of the
“Smith Predictor” [18]. Extensions of these designs to linear sys-
tems with simultaneous input and state delay also exist [19–22].
In addition, predictor-based adaptive schemes for both unknown
plant parameters [23,24] and delays [25–27] are available. Control
techniques for nonlinear systems with input [28–30] or state
delays [31–35] are recently developed. Although numerous results
deal with plants with constant input delays, the problem of
compensation of time-varying input delays, even for linear sys-
tems, is tackled in only a few references [11,36–38]. Even more
rare are papers that deal with the compensation of a time-varying
input delay in nonlinear systems [33]. In this paper, we continue
the efforts on the compensation of input delays for nonlinear sys-
tems, initiated at Ref. [28] for constant delays, to the case of time-
varying input delays. We also extend the results from Ref. [19] in
two major directions: (1) In contrast with the result from Ref.
[19], we consider here nonlinear plants and (2) we are dealing
with time-varying instead of constant delays. These extensions are
not trivial, since for nonlinear systems with time-varying input
and state delays the definition of the predictor states, as well as
the form of the control law, does not follow in an obvious way
from the delay-free plant.

We introduce a methodology for compensating time-varying
state or input delays for nonlinear systems. The assumptions that
we make for the case of nonlinear plants with time-varying input
delay are rather plausible: We assume that the systems under con-
sideration are forward complete, that is to say, they cannot escape
to infinity in finite time. We also assume that our plant can be

asymptotically stabilized by a (possibly time-varying) control law
in the absence of the delay. Based on these assumptions and by
using a backstepping transformation we construct a predictor-
based compensator. Our design achieves asymptotic stability
which is proved using a Lyapunov functional that we construct.
Then, we “backstep” one time-varying integrator and we consider
nonlinear systems in the strict-feedback form with a chain of
time-varying integrators. We employ an infinite-dimensional
backstepping procedure and we derive a control law that uses the
predicted values of the states on different predicted intervals for
each state. We consider the second order case but the result can be
extended recursively to the general nth-order strict-feedback class
with delays in the integrator chain as well as delays on other states
in the system. Finally, we illustrate our design with three numeri-
cal examples. A second order strict-feedforward system with
time-varying input delay, unicycle stabilization subject to a time-
varying input delay and a second order strict-feedback system
with time-varying state delay.

In Sec. 2 we introduce a predictor-based delay compensation
design for general stabilizable nonlinear systems. In Sec. 3 we an-
alyze the stability properties of the closed-loop system. We extend
our design methodology to the case of strict-feedback systems
with time-varying delayed integrators in Sec. 4. Finally, in Sec. 5
we demonstrate our design with two numerical examples.

Notation: For a function rðx; tÞ : ½0; 1� � ½0;1Þ7!R, we denote
its derivative with respect to x with rx(x,t) and its derivative with
respect to t as rt(x,t).

2 Problem Formulation and Controller Design

We consider the following nonlinear system with time-varying
input delay

_XðtÞ ¼ f XðtÞ;Uðt� DðtÞÞð Þ (1)

where X 2 Rn, U 2 R, t 2 Rþ and f: f : C1 Rn �R; Rnð Þ with
f(0,0)¼ 0. Throughout the paper we make the following assump-
tions concerning the plant (1):

Assumption 1. The plant _X ¼ f X;xð Þ is strongly forward com-
plete, that is, there exists a smooth positive definite function R and
class K1 functions d1, d2, and d3 such that the following holds

d1 Xj jð Þ � R Xð Þ � d2 Xj jð Þ (2)

@R Xð Þ
@X

f X;xð Þ � R Xð Þ þ d3 xj jð Þ (3)
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for all X 2 Rn and for all x 2 R.
Assumption 1 guarantees that system (1) does not exhibit finite

escape time, i.e., for every initial condition and every bounded
input signal the corresponding solution is defined for all t� 0, i.e.,
the maximal interval of existence is Tmax¼1. The definition of
forward-completeness is the one from [39].

Assumption 2. There exists a feedback law j 2 C1

Rþ �Rn; Rð Þ such that the plant _XðtÞ ¼ f XðtÞ;j t;XðtÞð ÞþxðtÞð Þ
satisfies the uniform in time input-to-state stability property with
respect to x and the function j is uniformly bounded with respect
to its first argument, that is, there exists a class K1 function q̂
such that

j t; nð Þj j � q̂ nj jð Þ; for all t � 0 (4)

Naturally, the time-varying delay should be uniformly bounded
and positive, and hence, there must exist a positive constant m
such that m>D(t)> 0 for all t� 0. As it turns out later on, our
predictor-based compensator makes use of the inverse of the
function

/ðtÞ ¼ t� DðtÞ (5)

namely /�1(t). Hence, we have to impose certain conditions on /0

(t) that guarantee the invertibility of /(t). We make the following
assumptions regarding the function /(t):

Assumption 3. The function /(t)¼ t�D(t) satisfies

/ðtÞ < t; for all t � 0 (6)

and

p�0 ¼
1

suph�/�1ð0Þ h� /ðhÞð Þ > 0 (7)

Assumption 4. The derivative of the function /(t) satisfies

/0ðtÞ > 0; for all t � 0 (8)

and it holds that

p�1 ¼
1

suph�/�1ð0Þ /
0ðhÞ > 0: (9)

The delay time D(t) has to be positive for all t� 0 (in order to guar-
antee casualty of the plant) which is guaranteed with condition (6)
(note that t�/ (t)¼D(t)) in assumption 3. Moreover, relation (7)
guarantees that D(t) is uniformly bounded from above which
implies that the control signal eventually reaches the plant. Relation
(8) (or equivalently ðdDðtÞÞ=ðdtÞ < 1) in assumption 4 guarantees
that there exists a time at which the controller kicks-in (i.e., there
exists a solution to the equation /(t)¼ 0) and the bound (9) guaran-
tees that ðdDðtÞÞ=ðdtÞ is bounded from below.

The controller for the plant (1) that compensates the time-
varying input delay and achieves global asymptotic stability of the
closed-loop system is given by

UðtÞ ¼ j /�1ðtÞ;PðtÞ
� �

(10)

where P(t) is given from

PðhÞ ¼ /�1ðtÞ � t
� � ð/�1 ðhÞ�t

/�1 ðtÞ�t

0

f P / tþ y /�1ðtÞ � t
� �� �� ��

�U / tþ y /�1ðtÞ � t
� �� �� ��

dyþ XðtÞ

¼
ðh

/ðtÞ
f P rð Þ;U rð Þð Þ dr

/0 /�1 rð Þ
� �þ XðtÞ; /ðtÞ � h � t

(11)

for h¼ t. The initial condition of Eq. (11) is given for t¼ 0 as

PðhÞ ¼
ðh

/ð0Þ
f P rð Þ;U rð Þð Þ dr

/0 /�1 rð Þ
� �þ Xð0Þ

for all h 2 ½/ð0Þ; 0� (12)

For an implementation of the controller (10) one has to numeri-
cally integrate the finite intervals in Eqs. (11) and (12) using one
of the numerical quadratures. In our simulations, we use the
composite left-endpoint rectangle rule. Note that the interval of
integration, i.e., the interval t�/(t)¼D(t), at each time step
may not be an integer multiple of the discretization step h. In
this case, the total number of points that are used in the computa-
tion of the integral are derived by rounding the number
ðt� /ðtÞÞ=h to the nearest integer from below. However, the
study of the complexity of the algorithm in an actual implemen-
tation is beyond the scope of this paper which concentrates in ba-
sic continuous-time designs.

The quantity P(t) given in (predictor) is the /�1(t)� t time units
ahead predictor of X(t), which can be seen as follows: Differenti-
ating relation (predictor) with respect to h, setting h¼ t and per-
forming a change of variables s¼/�1(t) in the ODE for X(s)
given in Eq. (1) (where t is replaced by s), one observes that P(t)
satisfies the same ODE in t as X(/�1(t)). Since from Eq. (12) it
follows that P(/(0))¼X(0), we have that P(0)¼X(/�1(0)).
Hence, indeed P(t)¼X(/�1(t)) for all t� 0.

The choice of (predictor) becomes clear by considering the case
where the input delay is constant, of length, say, D. In this case
the predictor that corresponds to (predictor) is

PcðtÞ ¼ D

ð1

0

f Pc tþ Dðy� 1Þð Þ;U tþ Dðy� 1Þð Þð Þdyþ XðtÞ

¼
ðt

t�D

f Pc hð Þ;U hð Þð Þdhþ XðtÞ (13)

The signal Pc(t) in Eq. (13) is the D time units ahead predictor of
X(t) (see also Ref. [28]), i.e., Pc(t)¼X(tþD) for all t� 0. The
relationship between (predictor) and Eq. (13) can be explained as
follows: Let us define the predictor time in the case of a time-
varying delay as /�1(t)� t, which is uniformly bounded based on
relation (9). Analogously, for the case of a constant delay define
the predictor time as /�1

c tð Þ � t which of course equals D. One
can now re-write Eq. (13) by substituting D with /�1

c tð Þ � t as

PcðtÞ¼D

ð1

0

f Pc tþDðy�1Þð Þ;U tþDðy�1Þð Þð ÞdyþXðtÞ

¼ /�1
c ðtÞ� t

� �ð1

0

f Pc tþDðy�1Þð Þ;U tþDðy�1Þð Þð ÞdyþXðtÞ

(14)

This is the exact analog of relation (predictor) for the constant delay
case. Moreover, the choice of the function /(tþ y(/�1(t)� t))
inside the integral in equation (predictor) is guided by the choice of
an appropriate state, namely U(/(tþ y(/�1(t)� t))) for all
y 2 0; 1½ �, for the infinite-dimensional state of the actuator that also
makes U(/(tþ y(/�1(t)� t))) equal to U(t) in the case where y¼ 1
and equal to U(/(t)) in the case where y¼ 0.

3 Stability Analysis

In this section we prove the following result:
Theorem 1. Consider the system (1) together with the control

law (10)–(12). Under assumptions 1–4 there exists a class KL
function a such that the following holds
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XðtÞj j þ sup
/ðtÞ�h�t

UðhÞj j � a Xð0Þj j þ sup
/ð0Þ�h�0

UðhÞj j; t
 !

; t � 0

(15)

We prove the above theorem using a series of technical lemmas.
We first introduce an equivalent representation of the plant (1)
using a transport partial differential equation (PDE) representation
for the actuator state as

_XðtÞ ¼ f XðtÞ; uð0; tÞð Þ (16)

utðx; tÞ ¼ pðx; tÞuxðx; tÞ; x 2 ½0; 1� (17)

uð1; tÞ ¼ UðtÞ (18)

where

pðx; tÞ ¼
1þ x

d /�1ðtÞ
� �

dt
� 1

 !

/�1ðtÞ � t
(19)

and /(t) is defined in Eq. (5). The choice of the transport speed p(x,t)
is guided by the fact that we seek a representation for the infinite-
dimensional actuator state u(x,t) such that relations (18) and

uð0; tÞ ¼ Uð/ðtÞÞ (20)

are satisfied. One can verify that u(x,t) is given by

uðx; tÞ ¼ U / tþ x /�1ðtÞ � t
� �� �� �

(21)

and consequently both Eqs. (18) and (20) are satisfied. We give first
an alternative proof of the fact that P(t) is the /�1(t)� t time units
ahead predictor of X(t), based on the PDE representation (16)–(18).

Lemma 1. The signal P(t) in Eq. (11) is the /�1(t)� t time
units ahead predictor of X(t), i.e., it holds that

PðtÞ ¼ Xð/�1ðtÞÞ; for all t � 0 (22)

Furthermore, an equivalent representation for P(t) is as

pð1; tÞ ¼ /�1ðtÞ � t
� � ð1

0

f pðy; tÞ; uðy; tÞð Þdyþ XðtÞ (23)

where

pðx; tÞ ¼ P / tþ x /�1ðtÞ � t
� �� �� �

(24)

Proof. Consider

pðx; tÞ ¼ /�1ðtÞ � t
� � ðx

0

f pðy; tÞ; uðy; tÞð Þdyþ XðtÞ; x 2 ½0; 1�

(25)

Differentiating the above relation with respect to time and using
Eq. (17) we get that

ptðx; tÞ ¼ /�1ðtÞ� t
� �ðx

0

@f pðy; tÞ;uðy; tÞð Þ
@pðy; tÞ ptðy; tÞ

þ /�1ðtÞ� t
� �ðx

0

@f pðy; tÞ;uðy; tÞð Þ
@uðy; tÞ pðy; tÞuyðy; tÞdy

þ d/�1ðtÞ
dt

�1

� �ðx

0

f pðy; tÞ;uðy; tÞð Þdyþ f pð0; tÞ;uð0; tÞð Þ

(26)
Moreover, differentiating (25) with respect to the spatial variable
x we have

pðx; tÞpxðx; tÞ ¼ /�1ðtÞ� t
� �

pðx; tÞf pðx; tÞ;uðx; tÞð Þ

¼ /�1ðtÞ� t
� �ðx

0

d pðy; tÞf pðy; tÞ;uðy; tÞð Þð Þ
dy

dy

þ /�1ðtÞ� t
� �

pð0; tÞf pð0; tÞ;uð0; tÞð Þ

¼ /�1ðtÞ� t
� �ðx

0

pyðy; tÞf pðy; tÞ;uðy; tÞð Þdy

þ /�1ðtÞ� t
� �ðx

0

pðy; tÞ@f pðy; tÞ;uðy; tÞð Þ
@pðy; tÞ pyðy; tÞdy

þ /�1ðtÞ� t
� �ðx

0

pðy; tÞ@f pðy; tÞ;uðy; tÞð Þ
@uðy; tÞ uyðy; tÞdy

þ /�1ðtÞ� t
� �

pð0; tÞf pð0; tÞ;uð0; tÞð Þ
(27)

Comparing Eq. (26) with Eq. (27) and using the facts that

pð0; tÞ ¼ 1

/�1ðtÞ � t
and pxðx; tÞ ¼

d/�1ðtÞ
dt

� 1

/�1ðtÞ � t

which follow from the definition of p(x,t) in Eq. (19) we get that

ptðx; tÞ�pðx; tÞpxðx; tÞ ¼ /�1ðtÞ� t
� �ðx

0

@f pðy; tÞ;uðy; tÞð Þ
@pðy; tÞ ptðy; tÞð

�pðy; tÞpyðy; tÞÞdy (28)

Define now the function G(x,t)¼ pt(x,t)�p(x,t)px(x,t), which
satisfies

Gxðx; tÞ ¼ /�1ðtÞ � t
� � @f pðx; tÞ; uðx; tÞð Þ

@pðx; tÞ Gðx; tÞ (29)

Gð0; tÞ ¼ 0 (30)

Hence, G(x,t)¼ 0, for all x 2 0; 1½ �. Equivalently,

ptðx; tÞ ¼ pðx; tÞpxðx; tÞ; for all x 2 ½0; 1� (31)

Using the above relation and by defining p(1,t)¼P(t), we get Eqs.
(23) and (24). Moreover, since from Eq. (25) it holds that
p(0,t)¼X(t), using relation (24) we get Eq. (22).

We next transform our original system given in Eqs. (16)–(18)
to the “target system” which we prove later on to be globally
asymptotically stable.

Lemma 2. The infinite-dimensional transformation of the actu-
ator state defined by

wðx; tÞ ¼ uðx; tÞ � j rðx; tÞ; pðx; tÞð Þ (32)

where

rðx; tÞ ¼ tþ x /�1ðtÞ � t
� �

(33)

together with the control law given in Eq. (10) transforms the
system (16)–(18) to the “target system” given by

_XðtÞ ¼ f XðtÞ; j t;XðtÞð Þ þ wð0; tÞð Þ (34)

wtðx; tÞ ¼ pðx; tÞwxðx; tÞ; x 2 ½0; 1� (35)

wð1; tÞ ¼ 0 (36)

Proof. We first point out that r(x,t) in Eq. (33) satisfies

rtðx; tÞ ¼ pðx; tÞrxðx; tÞ (37)

rð0; tÞ ¼ t (38)
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From Eq. (32) and by using the chain rule together with relations
(17), (31), and (37) we get Eq. (35). Using Eqs. (32) and (33)
for x¼ 0 and x¼ 1 together with Eq. (10) we arrive at Eqs. (34)
and (36).

We now define the inverse of the transformation (32).
Lemma 3. The inverse of the infinite-dimensional transforma-

tion defined in Eq. (32) is given by

uðx; tÞ ¼ wðx; tÞ þ j rðx; tÞ; nðx; tÞð Þ (39)

where n(x,t) is defined as

nðx;tÞ¼ /�1ðtÞ� t
� �ðx

0

f nðy;tÞ;j rðy;tÞ;nðy;tÞð Þþwðy;tÞð ÞdyþXðtÞ

(40)

Proof. We first point out that n(x,t) is for the closed-loop system
(34)–(36), what p(x,t) is for system (16)–(18). Although

nðx; tÞ ¼ pðx; tÞ; for all x 2 ½0; 1� (41)

n(x,t) is driven by the transformed input w(x,t), whereas p(x,t) is
driven by the input u(x,t). In other words, the direct transformation
is defined as X tð Þ; u x; tð Þð Þ7! X tð Þ;w x; tð Þð Þ and is given in
Eq. (32), where p(x,t) is given as a function of X(t) and u(x,t)
through relation (25). Analogously, the inverse transformation is
defined as X tð Þ;w x; tð Þð Þ7! X tð Þ; u x; tð Þð Þ and is given in Eq. (39)
where n(x,t) is given as a function of X(t) and w(x,t) through
relation (40).

We prove next stability of the “target system” (34)–(36).
Lemma 4. There exist a KL class function b such that

XðtÞj j þ sup
/ðtÞ�h�t

WðhÞj j � b Xð0Þj j þ sup
/ð0Þ�h�0

WðhÞj j; t
 !

; t � 0

(42)

Proof. Based on assumption 2 and [40] we can conclude that there
exist a smooth positive definite function S(X(t)) and class K func-
tions c1, c2, c3, and c4 such that

c1 XðtÞj jð Þ � S XðtÞð Þ � c2 XðtÞj jð Þ (43)

@S XðtÞð Þ
@XðtÞ f XðtÞ;j t;XðtÞð Þþwð0; tÞð Þ ��c3 XðtÞj jð Þþ c4 wð0; tÞj jð Þ

(44)

Consider now the functional

LðtÞ ¼ sup
x2½0;1�

ecxwðx; tÞj j

¼ lim
n!1

ð1

0

e2ncxw2nðx; tÞdx

� �1=ð2nÞ
(45)

Following the calculations in Ref. [28] and in Ref. [36] one con-
cludes that

_LðtÞ � �cp�0 min 1;p�1
� �

LðtÞ (46)

Consider now the following Lyapunov function for system
(34)–(36) which is positive definite and radially unbounded

VðtÞ ¼ S XðtÞð Þ þ 2

cp�0 min 1; p�1
� � ðLðtÞ

0

c4 rð Þ
r

dr (47)

Taking the time derivative of V(t) along the solutions of the
“target system” Eqs. (34)–(36) and using Eqs. (44) and (46) we

have _VðtÞ � �c3 XðtÞj jð Þ þ c4 wð0; tÞj jð Þ � 2c4 LðtÞð Þ. Using the

fact that c4 jw 0; tð Þjð Þ � c4 supx2½0;1�jecxw x; tð Þj
� 	

¼ c4 L tð Þð Þ, we

get _VðtÞ � �c3 XðtÞj jð Þ � c4 LðtÞð Þ. Using Eq. (43), the definition
of L(t) in Eqs. (45) and (47) we conclude that there exists a class
K function c5 such that

_VðtÞ � �c5 VðtÞð Þ (48)

Consequently, using the comparison principle and Lemma 4.4
in [41] we can conclude that there exist a class KL function b1

such that

VðtÞ � b1 Vð0Þ; tð Þ (49)

Using Eq. (43), the definition of V(t) in Eq. (47) and the properties
of a class K function we arrive at

XðtÞj j þ LðtÞ � b2 XðtÞj j þ Lð0Þ; tð Þ (50)

for some class KL function b2. Moreover, from Eq. (45) we get

sup
x2½0;1�

wðx; tÞj j � LðtÞ � ec sup
x2½0;1�

wðx; tÞj j (51)

Define now the solution of the transport PDE (35)–(36) as

wðx; tÞ ¼ W / tþ x /�1ðtÞ � t
� �� �� �

(52)

Then combining Eqs. (51) and (52) we get

sup
h2½/ðtÞ;t�

WðhÞj j � LðtÞ (53)

Lð0Þ � ec sup
h2½/ð0Þ;0�

WðhÞj j (54)

Combining Eqs. (50), (53), and (54) the lemma is proved for some
class KL function b.

The following two lemmas allows one to establish stability in
the original variables.

Lemma 5. There exist a class K1 function q1 such that

sup
x2½0;1�

pðx; tÞj j � q1 XðtÞj j þ sup
x2½0;1�

uðx; tÞj j
 !

; t � 0 (55)

Proof. Consider the system

_YðsÞ ¼ f YðsÞ;xðsÞð Þ (56)

with l being a positive constant. With a time rescaling, namely
t ¼ s

l, we get

dY tlð Þ
dt

¼ lf Y tlð Þ;x tlð Þð Þ (57)

Under assumption 1 we get

@R Y0ðtÞð Þ
@Y0ðtÞ lf Y0ðtÞ;x0ðtÞð Þ � l R Y0ðtÞð Þ þ d3 x0ðtÞj jð Þð Þ (58)

where

Y0ðtÞ ¼ YðtlÞ (59)

x0ðtÞ ¼ xðtlÞ (60)

By differentiating relation (25) with respect to the spatial variable
x we get the following ordinary differential equation (ODE) in x
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pxðx; tÞ ¼ /�1ðtÞ � t
� �

f pðx; tÞ; uðx; tÞð Þ (61)

with initial conditions

pð0; tÞ ¼ XðtÞ (62)

Viewing /�1(t)� t in Eq. (61) as a parameter (rather as the run-
ning variable) and comparing Eq. (61) with Eq. (57), with the help
of Eq. (58) we get

@R pðx; tÞð Þ
@pðx; tÞ /�1ðtÞ � t

� �
f pðx; tÞ; uðx; tÞð Þ

� /�1ðtÞ � t
� �

R pðx; tÞð Þð þ d3 uðx; tÞj jð ÞÞ (63)

Using the comparison principle and relation (62) we have that

Rðpðx; tÞÞ � ex /�1ðtÞ�tð ÞR XðtÞð Þ þ /�1ðtÞ � t
� �

ðx

0

e /�1ðtÞ�tð Þðx�yÞd3 uðy; tÞj jð Þdy

� e1=p�
0 R XðtÞð Þ þ sup

x2½0;1�
d3 uðx; tÞj jð Þdy

 !
(64)

where we used bound (7). Using Eq. (2) and the properties of class
K1 functions we get the statement of the lemma.

Lemma 6. There exist a class K1 function q2 such that

sup
x2½0;1�

nðx; tÞj j � q2 XðtÞj j þ sup
x2½0;1�

wðx; tÞj j
 !

; t � 0 (65)

Proof. Differentiating Eq. (40) with respect to x we get the follow-
ing ODE in x

nxðx; tÞ ¼ /�1ðtÞ � t
� �

f nðx; tÞ;j rðx; tÞ; nðx; tÞð Þ þ wðx; tÞð Þ
x 2 ½0; 1�

with initial conditions

nð0; tÞ ¼ XðtÞ (67)

With a rescaling of the spatial variable x, say y as

y ¼ tþ x /�1ðtÞ � t
� �

(68)

and by defining

fðy; tÞ ¼ n
y� t

/�1ðtÞ � t
; t

� �
(69)

xðy; tÞ ¼ w
y� t

/�1ðtÞ � t
; t

� �
(70)

with the help of Eq. (33) we rewrite Eqs. (66) and (67) in the new
spatial variable y as

fyðy; tÞ ¼ f fðy; tÞ;j y; fðy; tÞð Þ þ xðy; tÞð Þ; y 2 ½t;/�1ðtÞ� (71)

fðt; tÞ ¼ XðtÞ (72)

Under assumption 2 and [40], there exist a class KL function
b3(�,y) and a class K function c6 such that

fðy; tÞ � b3 XðtÞj j; y� tð Þ þ c6 sup
y2½t;/�1ðtÞ�

xðy; tÞj j
 !

(73)

where we also used Eq. (67). Using Eqs. (68)–(70) we have that

n x; tð Þ � b3 XðtÞj j; x /�1ðtÞ � t
� �� �

þ c6 sup
x2½0;1�

w x; tð Þj j
 !

8x 2 ½0; 1�
(74)

By noting that b3 is a decreasing function of the second argument
and by taking the supremum of both sides we arrive at

sup
x2½0;1�

n x; tð Þ � b3 XðtÞj j; 0ð Þ þ c6 sup
x2½0;1�

w x; tð Þj j
 !

(75)

With standard properties of class K1 and KL functions we get
the bound of the lemma.

Proof of Theorem 1: Under assumption 2 and by using relation
(32) we have

sup
x2½0;1�

wðx; tÞj j � sup
x2½0;1�

uðx; tÞj j þ q̂ pðx; tÞj jð Þð Þ (76)

sup
x2½0;1�

uðx; tÞj j � sup
x2½0;1�

wðx; tÞj j þ q̂ nðx; tÞj jð Þð Þ (77)

With Lemmas 5 and 6 we have that

sup
x2½0;1�

wðx; tÞj j � sup
x2½0;1�

uðx; tÞj j þ q̂	q1 XðtÞj j þ sup
x2½0;1�

uðx; tÞj j
 !

(78)

sup
x2½0;1�

uðx; tÞj j � sup
x2½0;1�

wðx; tÞj j þ q̂	q2 XðtÞj j þ sup
x2½0;1�

wðx; tÞj j
 !

(79)

Using Eqs. (21) and (52) one can conclude that there exist class
K1 functions â and b̂ such that

XðtÞj j þ sup
/ðtÞ�h�t

WðhÞj j � â XðtÞj j þ sup
/ðtÞ�h�t

UðhÞj j
 !

(80)

XðtÞj j þ sup
/ðtÞ�h�t

UðhÞj j � b̂ XðtÞj j þ sup
/ðtÞ�h�t

WðhÞj j
 !

(81)

From Lemma 4 and Eq. (81) we get

XðtÞj j þ sup
/ðtÞ�h�t

UðhÞj j � b̂	b Xð0Þj j þ sup
/ð0Þ�h�0

WðhÞj j; t
 !

(82)

Setting t¼ 0 in Eq. (80), Theorem 1 is proved with a ¼ b̂	b	â.

4 Adding a Time-Varying Delayed Integrator

In this section, we extend the design of the previous sections to
nonlinear strict-feedback systems with time-varying delayed inte-
grators. We consider the following system

_X1ðtÞ ¼ f1 X1ðtÞð Þ þ X2 /1ðtÞð Þ (83)

_X2ðtÞ ¼ f2 X1ðtÞ;X2ðtÞð Þ þ U /2ðtÞð Þ (84)

where we assume for notational simplicity that X1 and X2 2 R,
U 2 R, and t 2 Rþ. Moreover, it is assumed that the functions
/1(t) and /2(t) satisfy assumptions 3 and 4 with

Journal of Dynamic Systems, Measurement, and Control JANUARY 2012, Vol. 134 / 011009-5



p�1/1
¼ 1

suph�/�1
1 ð0Þ /

0
1ðhÞ

> 0 (85)

p�1/2
¼ 1

suph�/�1
2 ð0Þ /

0
2ðhÞ

> 0 (86)

p�0/1
¼ 1

suph�/�1
1 ð0Þ h� /1ðhÞð Þ > 0 (87)

p�0/2
¼ 1

suph�/�1
2 ð0Þ h� /2ðhÞð Þ > 0 (88)

p�1w
¼ 1

suph�w�1ð0Þ w
0ðhÞ > 0 (89)

p�0w
¼ 1

suph�w�1ð0Þ h� wðhÞð Þ > 0 (90)

where

wðtÞ ¼ /2 /1ðtÞð Þ (91)

We assume that f1 : C1 R; Rð Þ, f2 : R2 7!R is locally Lipschitz
with respect to its arguments and it holds that f1(0)¼ 0,
f2(0,0)¼ 0. For system (83) and (84) we design a predictor-based
feedback for stabilizing the origin. System (83) and (84) can pos-
sibly escape to infinity before the controller reaches it. We thus
make the following assumption.

Assumption 5. System (83) and (84) is forward-complete.
The predictor-based controller for system (83) and (84) is

UðtÞ¼� f2 P1 w /�1
2 ðtÞ

� �� �
;P2ðtÞ

� �
�c2ðP2ðtÞþc1P1ðtÞþ f1 P1ðtÞð ÞÞ

� c1þ
@f1 P1ð Þ
@P1

� �
f1 P1ðtÞð ÞþP2ðtÞð ÞR /�1

2 ðtÞ
� �

(92)

where c1,c2 are positive constants that satisfy c1p�1/1
6¼ 2c2 (a

choice made to simplify one step in the analysis) and

P1ðtÞ ¼ X1ðtÞ þ w�1ðtÞ � t
� � ð1

0

f1 P1 w tþ y w�1ðtÞ � t
� �� �� �� ��

þ P2 w tþ w�1ðtÞ � t
� �

y
� �� ��

dy

¼ X1ðtÞ þ
ðt

wðtÞ
f1 P1 hð Þð Þ þ P2 hð Þð Þ dh

w0 w�1ðhÞ
� � (93)

P2ðtÞ ¼ X2ðtÞ þ /�1
2 ðtÞ � t

� � ð1

0

f2 P1 w tþ y /�1
2 ðtÞ � t

� �� �� ���
P2 /2 tþ y /�1

2 ðtÞ � t
� �� �� ��

þ U /2 tþ y /�1
2 ðtÞ � t

� �� �� ��
dy

¼ X2ðtÞ þ
ðt

/2ðtÞ

f2 P1 w /�1
2 ðhÞ

� �� �
;P2ðhÞ

� �
þ UðhÞ

� �
dh

/02 /�1
2 ðhÞ

� �
(94)

RðtÞ ¼ d/�1
1 ðtÞ
dt

(95)

with initial conditions as

P1ðhÞ ¼ X1ð0Þ

þ
ðh

wð0Þ
f1 P1 rð Þð Þ þ P2 rð Þð Þ dr

w0 w�1ðrÞ
� � ; h 2 ½wð0Þ; 0�

(96)

P2ðhÞ ¼ X2ð0Þ þ
ðh

/2ð0Þ

f2 P1 w /�1
2 ðrÞ

� �� �
;P2 rð Þ

� �
þ UðrÞ

� �
dr

/02 /�1
2 ðrÞ

� �
h 2 ½/2ð0Þ; 0� (97)

We now state the following theorem that is concerned with the
stability properties of the closed-loop system that is comprised of
the plant (83) and (84) with the controller given in Eq. (92).

Theorem 2. Consider the plant (83) and (84) together with the
controller (92)–(97). Under assumptions 3–5 there exists a class
KL function b4 such that for all X1ð0Þ 2 R and for all continuous
initial conditions X2(s),/1(0)� s� 0 and U(s),/2(0)� s� 0 the
following holds

jX1ðtÞj þ X2ðtÞk k1þkUðtÞk1 � b4 jX1ð0Þjð
þ X2ð0Þk k1þkUð0Þk1; t

�
; t � 0 (98)

where

kUðtÞk1 ¼ sup
h2 /2ðtÞ�t;0½ �

Uðtþ hÞj j (99)

kX2ðtÞk1 ¼ sup
h2 /1ðtÞ�t;0½ �

X2ðtþ hÞj j (100)

We prove this theorem using a series of technical lemmas.
Lemma 7. The signals P1(t) and P2(t) defined in Eq. (93) and

in Eq. (94) are the w�1(t)� t and /�1
2 tð Þ � t time units ahead pre-

dictors of the X1(t) and X2(t), respectively. Moreover, an equiva-
lent representation for Eqs. (93) and (94) is given by

p1ð1; tÞ ¼ X1ðtÞ þ w�1ðtÞ � t
� � ð1

0

f1 p1ðy; tÞð Þð

þ p2

/1 tþ w�1ðtÞ � t
� �

y
� �

� t

/�1
2 ðtÞ � t

; t

 !!
dy (101)

p2ð1; tÞ ¼ X2ðtÞþ /�1
2 ðtÞ� t

� �ð1

0

f2 p1

/�1
2 ðtÞ� t

w�1� t
y; t

� �
;p2ðy; tÞ

� ��
þ uðy; tÞÞdy (102)

where

p1ðx; tÞ ¼ P1 w tþ x w�1ðtÞ � t
� �� �� �

(103)

p2ðx; tÞ ¼ P2 /2 tþ x /�1
2 ðtÞ � t

� �� �� �
(104)

and x varies in [0,1].
Proof. Consider the equivalent representation of system (83)

and (84) using transport PDEs for the delayed state X2(t) and the
controller U(t) as

_X1ðtÞ ¼ f1 X1ðtÞð Þ þ n2ð0; tÞ (105)

n2t
ðx; tÞ ¼ p1ðx; tÞn2x

ðx; tÞ; x 2 ½0; 1� (106)

n2ð1; tÞ ¼ X2ðtÞ (107)

_X2ðtÞ ¼ f2 X1ðtÞ;X2ðtÞð Þ þ uð0; tÞ (108)

utðx; tÞ ¼ p2ðx; tÞuxðx; tÞ; x 2 ½0; 1� (109)

uð1; tÞ ¼ UðtÞ (110)

with

p1ðx; tÞ ¼
1þ x

d /�1
1 ðtÞ

� �
dt

� 1

 !

/�1
1 ðtÞ � t

(111)
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p2ðx; tÞ ¼
1þ x

d /�1
2 ðtÞ

� �
dt

� 1

 !

/�1
2 ðtÞ � t

(112)

Consider the following ODEs in x (to become clear that these are
ODEs in x, one should view the time t as a parameter rather than
as the running variable of the ODE),

p1x
ðx; tÞ ¼ w�1ðtÞ � t

� �
� f1 p1ðx; tÞð Þ þ p2

/1 tþ w�1ðtÞ � t
� �

x
� �

� t

/�1
2 ðtÞ � t

; t

 ! !

(113)

p2x
ðx; tÞ ¼ /�1

2 ðtÞ� t
� �
� f2 p1

/�1
2 ðtÞ� t

w�1� t
x; t

� �� �
;p2ðx; tÞÞþuðx; tÞ

� �
(114)

where, x varies in [0,1]. The initial conditions for the above sys-
tem of ODEs are given by

pið0; tÞ ¼ XiðtÞ; i ¼ 1; 2 (115)

and

p2ðh2; tÞ ¼ X2 tþ h2 /�1
2 ðtÞ � t

� �� �
; h2 2

/1 tð Þ � t

/�1
2 ðtÞ � t

; 0

" #

(116)

Assume for the moment that the following holds true

p1t
ðx; tÞ ¼ p3ðx; tÞp1x

ðx; tÞ; x 2 0; 1½ � (117)

p2t
ðx; tÞ ¼ p2ðx; tÞp2x

ðx; tÞ; x 2 0; 1½ � (118)

where

p3ðx; tÞ ¼
1þ x

d w�1ðtÞ
� �

dt
� 1

 !

w�1ðtÞ � t
(119)

Then, by taking into account Eq. (115) we have that

p1ðx; tÞ ¼ X1ðtþ x w�1ðtÞ � t
� �

Þ; x 2 0; 1½ � (120)

p2ðx; tÞ ¼ X2ðtþ x /�1
2 ðtÞ � t

� �
Þ; x 2 0; 1½ � (121)

By defining

p1 1; tð Þ ¼ P1ðtÞ (122)

p2 1; tð Þ ¼ P2ðtÞ (123)

we get Eq. (103). By integrating from 0 to x (113) and (114) we get

p1ðx; tÞ ¼ X1ðtÞ þ w�1ðtÞ � t
� � ðx

0

f1 p1ðy; tÞð Þð

þ p2

/1 tþ w�1ðtÞ � t
� �

y
� �

� t

/�1
2 ðtÞ � t

; t

 !!
dy (124)

p2ðx; tÞ ¼ X2ðtÞ þ /�1
2 ðtÞ � t

� �
�
ðx

0

f2 p1

/�1
2 ðtÞ � t

w�1 � t
y; t

� �� �
; p2ðy; tÞÞ þ uðy; tÞ

� �
dy

(125)

By setting in each pi(x,t), x¼ 1 and using Eq. (103) we get
Eqs. (101) and (102).

To see that Eq. (117) holds, it is sufficient to prove that Eqs.
(120) and (121) are the unique solution of the ODEs in x given by
Eqs. (113) and (114) with the initial conditions (115) and (116). In
this case relations (117) and (118) hold. Thus, it remains to prove
that Eqs. (120) and (121) are the unique solution of the initial
value problem (113)–(116). Toward that end, we substitute
Eqs. (120) and (121) into Eqs. (113) and (114)

X01 tþ x w�1ðtÞ � t
� �� �

¼ f1 X1 tþ x w�1ðtÞ � t
� �� �� �

þ X2 /1 tþ w�1ðtÞ � t
� �

x
� �� �

(126)

X02 tþ x /�1
2 ðtÞ � t

� �� �
¼ f2 X1 tþ /�1

2 ðtÞ � t
� �

x
� �

;
�
� X2 tþ x /�1

2 ðtÞ � t
� �� ��

þ U /2 tþ x /�1
2 ðtÞ � t

� �� �� �
(127)

where the prime symbol denotes the derivative with respect to the
argument of a function. Taking into account Eqs. (83) and (84), we
conclude that, indeed, Eqs. (120) and (121) are solution of the
ODEs in x given by Eqs. (113) and (114). Furthermore, Eqs. (120)
and (121) satisfy the initial conditions (115) and (116). Since
X2(s),/1(0)� s� 0 and U(s),/2(0)� s� 0 are continuous and based

on assumption 5 and [42] (Chap. 2.2), X2ðtþ h2ð/�1
2 tð Þ � tÞÞ is

continuous for all h2 2 ð/1 tð Þ � tÞ=ð/�1
2 ðtÞ � tÞ; 0


 �
and t� 0.

Using Eq. [42] we conclude that Eqs. (120) and (121) is the unique
solution of the ODEs in x given by Eqs. (113) and (114) with the
initial conditions (115) and (116). Thus, Eqs. (117) and (118) hold.

It is important here to observe that the total delay from the input
U(t) to the state X1(t) is t�w(t) and to the state X2(t) is t�/2(t).
This explains the fact that our predictor intervals are different for
each state and specifically must be w�1(t)� t for X1(t) and
/�1

2 tð Þ � t for X2(t). Our controller design is based on a recursive
procedure that transforms system (105)–(110) to a target system
which is globally asymptotically stable with the controller
(92)–(97). Then, using the invertibility of this transformation, we
prove global asymptotic stability of the original system. We now
state this transformation, along with its inverse.

Lemma 8. The state transformation defined by

Z1ðtÞ ¼ X1ðtÞ (128)

Z2ðtÞ ¼ X2ðtÞ þ f1 p1

lðtÞ
kðtÞ ; t
� �� �

þ c1p1

lðtÞ
kðtÞ ; t
� �

(129)

where
lðtÞ ¼ /�1

1 ðtÞ � t (130)

kðtÞ ¼ w�1ðtÞ � t (131)

along with the transformation of the actuator state

wðx; tÞ ¼ uðx; tÞ þ f2 p1

qðtÞ
kðtÞ x; t

� �
; p2ðx; tÞ

� �

þ c2 p2ðx; tÞ þ f1 p1

l xqðtÞ þ tð Þ þ xqðtÞ
kðtÞ ; t

� �� ��

þ c1p1

l xqðtÞ þ tð Þ þ xqðtÞ
kðtÞ ; t

� ��

þ
@f1 p1

l xqðtÞ þ tð Þ þ xqðtÞ
kðtÞ ; t

� �� �

@p1

l xqðtÞ þ tð Þ þ xqðtÞ
kðtÞ ; t

� � þ c1

0
BB@

1
CCA

� f1 p1

l xqðtÞ þ tð Þ þ xqðtÞ
kðtÞ ; t

� �� �
þ p2ðx; tÞ

� �
� R tþ x /�1

2 ðtÞ � t
� �� �

(132)

Journal of Dynamic Systems, Measurement, and Control JANUARY 2012, Vol. 134 / 011009-7



where
qðtÞ ¼ /�1

2 ðtÞ � t (133)

transforms the system (83) and (84) to the “target system” with
the control law given by Eq. (92). The target system is given by

_Z1ðtÞ ¼ �c1Z1ðtÞ þ Z2ð/1ðtÞÞ (134)

_Z2ðtÞ ¼ �c2Z2ðtÞ þWð/2ðtÞÞ (135)

where
WðhÞ ¼ 0; h � 0 (136)

Proof. Before we start our recursive procedure we rewrite the tar-
get system using transport PDEs as

_Z1ðtÞ ¼ �c1Z1ðtÞ þ f2ð0; tÞ (137)

f2t
ðx; tÞ ¼ p1ðx; tÞf2x

ðx; tÞ (138)

f2ð1; tÞ ¼ Z2ðtÞ (139)

_Z2ðtÞ ¼ �c2Z2ðtÞ þ wð0; tÞ (140)

wtðx; tÞ ¼ p2ðx; tÞwxðx; tÞ (141)

wð1; tÞ ¼ 0: (142)

Note that

f2ðx; tÞ ¼ Z2 /1 tþ x /�1
1 ðtÞ � t

� �� �� �
; x 2 ½0; 1� (143)

Define

f2ðx; tÞ ¼ n2ðx; tÞ þ f1 p1

lðtÞ
kðtÞ x; t

� �� �
þ c1p1

lðtÞ
kðtÞ x; t

� �
(144)

Then using Eqs. (105) and (115) we get

_X1ðtÞ ¼ �c1X1ðtÞ þ f2ð0; tÞ (145)

Using relation (117) we have that

p1t
f ðx; tÞ; tð Þ ¼ p3 f ðx; tÞ; tð Þp1f

f ðx; tÞ; tð Þ (146)

with

f ðx; tÞ ¼ lðtÞ
kðtÞ x (147)

From Eq. (144) and by using relation (146) together with
Eq. (106) we get

f2t
ðx; tÞ ¼ p1ðx; tÞn2x

ðx; tÞ

þ @f1 p1 f ðx; tÞ; tð Þð Þ
@p1 f ðx; tÞ; tð Þ þ c1

� �
p1f

f ðx; tÞ; tð Þ ftðx; tÞð

þp3 f ðx; tÞ; tð ÞÞ (148)

and

p1ðx; tÞf2x
ðx; tÞ ¼ p1ðx; tÞn2x

ðx; tÞ þ @f1 p1 f ðx; tÞ; tð Þð Þ
@p1 f ðx; tÞ; tð Þ þ c1

� �
� p1f

f ðx; tÞ; tð Þp1ðx; tÞfxðx; tÞ (149)

Using Eqs. (119), (130), and (131) and the definition of f(x,t) in
Eq. (147) we have that

ftðx; tÞ þ p3 f ðx; tÞ; tð Þ � p1ðx; tÞfxðx; tÞ

¼ 1þ l0ðtÞx
kðtÞ � 1þ xl0ðtÞ

lðtÞ
lðtÞ
kðtÞ ¼ 0 (150)

Consequently, Eq. (138) holds. From Eq. (139) and by using
Eq. (138) we have that

_Z2ðtÞ ¼ f2 X1ðtÞ;X2ðtÞð Þ þ uð0; tÞ

þ @f1 p1 f ð1; tÞ; tð Þð Þ
@p1 f ð1; tÞ; tð Þ þ c1

� �
p1f

f ð1; tÞ; tð Þp1ð1; tÞfxð1; tÞ

(151)

With the help of Eqs. (111), (113), (130), (131), and (147) we re-
write the previous relation as

_Z2ðtÞ¼ f2 X1ðtÞ;X2ðtÞð Þþuð0;tÞ

þ @f1 p1 f ð1;tÞ;tð Þð Þ
@p1 f ð1;tÞ;tð Þ þc1

� �
f1 p1ðf ð1;tÞ;tÞð ÞþX2ðtÞð Þd/�1

1 ðtÞ
dt

(152)

Define now for notational convenience

g1ðx; tÞ ¼
qðtÞ
kðtÞ x (153)

g2ðx; tÞ ¼
l xqðtÞ þ tð Þ þ xqðtÞ

kðtÞ (154)

By noting that g1(x,t), g2(x,t), and Rðtþ xð/�1
2 tð Þ � tÞÞ satisfy the

following boundary value problems

g1t
ðx; tÞ þ p3 g1ðx; tÞ; tð Þ ¼ p2ðx; tÞg1x

ðx; tÞ (155)

g1ð0; tÞ ¼ 0 (156)

g2t
ðx; tÞ þ p3 g2ðx; tÞ; tð Þ ¼ p2ðx; tÞg2x

ðx; tÞ (157)

g2ð0; tÞ ¼
lðtÞ
kðtÞ (158)

Rt tþ x /�1
2 ðtÞ � t

� �� �
¼ p2ðx; tÞRx tþ x /�1

2 ðtÞ � t
� �� �

(159)

and using Eq. (132) we get Eq. (141). Substituting Eq. (132) for
x¼ 0 into Eq. (152) we get Eq. (140). Using the facts that

g2ð1; tÞ ¼ l qðtÞ þ tð Þ þ qðtÞ=kðtÞ
¼ l /�1

2 ðtÞ
� �

þ /�1
2 ðtÞ � t=/�1

1 	 /�1
2 ðtÞ � t

¼ /�1
1 	 /�1

2 ðtÞ � t=/�1
1 	 /�1

2 ðtÞ � t ¼ 1

and p1 qðtÞ=kðtÞ; tð Þ ¼ P1 /1ðtÞð Þ, with the controller (92) we get
Eq. (142). Assuming an initial condition for (132) as
w(x,0)¼w0(x), and by defining a new variable W as
w0 xð Þ ¼ Wð/2ðxð/�1

2 0ð ÞÞÞÞ for all x 2 0; 1½ �, we get that

wðx; tÞ ¼
W /2 tþ x /�1

2 ðtÞ � t
� �� �� �

; 0 � tþ x /�1
2 ðtÞ � t

� �
� /�1

2 ð0Þ
0; tþ x /�1

2 ðtÞ � t
� �

� /�1
2 ð0Þ

( )
(160)
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Defining h ¼ tþ xð/�1
2 tð Þ � tÞ one gets Eq. (136).

The functions f(x,t), g1(x,t), and g2(x,t) are increasing with
respect to x and they take values within [0,1]. Hence, whenever
they appear as the first argument in p1 or p2 they guarantee that
the first argument of p1 or p2 varies within the interval [0,1] which
is consistent with the definitions (103) and (104). We now state
the inverse of the transformation (128)–(132).

Lemma 9. The inverse transformation of Eqs. (128)–(132) is
defined as

X1ðtÞ ¼ Z1ðtÞ (161)

X2ðtÞ ¼ Z2ðtÞ � f1 g1

lðtÞ
kðtÞ ; t
� �� �

þ c1g1

lðtÞ
kðtÞ ; t
� �� �

(162)

uðx; tÞ ¼ wðx; tÞ � f2 g1

qðtÞ
kðtÞ x; t

� �
; g2ðx; tÞ

�

� f1 g1

l xqðtÞ þ tð Þ þ xqðtÞ
kðtÞ ; t

� �� �

� c1g1

l xqðtÞ þ tð Þ þ xqðtÞ
kðtÞ ; t

� ��
� c2g2ðx; tÞ

�
@f1 g1

l xqðtÞ þ tð Þ þ xqðtÞ
kðtÞ ; t

� �� �

@g1

l xqðtÞ þ tð Þ þ xqðtÞ
kðtÞ ; t

� � þ c1

0
BB@

1
CCA

� �c1g1

l xqðtÞ þ tð Þ þ xqðtÞ
kðtÞ ; t

� �
þ g2ðx; tÞ

� �
� R tþ x /�1

2 ðtÞ � t
� �� �

(163)

where g1(x,t) and g2(x,t) are the predictors of the transformed
states Z1(t) and Z2(t) and hence they satisfy

g1ðx;tÞ¼Z1ðtÞþ w�1ðtÞ� t
� �

�
ðx

0

�c1g1ðy;tÞþg2

/1 tþ w�1ðtÞ� t
� �

x
� �

� t

/�1
2 ðtÞ� t

;t

 ! !
dy

(164)

g2ðx; tÞ ¼ Z2ðtÞ þ /�1
2 ðtÞ � t

� � ðx

0

�c2g2ðy; tÞ þ wðy; tÞð Þdy

(165)

where x varies in [0,1].
Proof. Using Eq. (144) we have that

n2ðx; tÞ ¼ f2ðx; tÞ � f1 g1

lðtÞ
kðtÞ x; t

� �� �
þ c1g1

lðtÞ
kðtÞ x; t

� �
(166)

With Eq. (161) we get Eq. (105). Consider further

_X2ðtÞ¼�c2Z2ðtÞþwð0;tÞ

� @f1 g1 f ð1;tÞ; tð Þð Þ
@g1 f ð1;tÞ;tð Þ þc1

� �
�c1g1

lðtÞ
kðtÞ ;t
� �

þZ2ðtÞ
� �

RðtÞ

(167)

Then, with Eq. (163) for x¼ 0 we get Eq. (108).
We now prove stability of the “target system.”
Lemma 10. The target system Eq. (134)–(136) is globally

asymptotically stable in the sense that there exist positive con-
stants G and g such that

jZ1ðtÞj þ kZ2ðtÞk1 þ kWðtÞk1 � G jZ1ð0Þjð
þkZ2ð0Þk1 þ kWð0Þk1

�
e�gt (168)

Proof. Solving explicitly (134)–(135) and using Eq. (136) we
have for all t� 0 that

jZ1ðtÞj � Cz þ
Cwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1jc1p�1/1
� 2c2j infh�/�1

1 ð0Þ /
0
1ðhÞ

q
0
B@

1
CA

� e

�c1 min 1;
p�1/1

2

( )
t

þ e�c2 max /1ðtÞ;0f g

0
BBB@

1
CCCA (169)

Z2ðtÞk k1� 2Cwe�c2 max /1ðtÞ;0f g (170)

where

Cz ¼ jZ1ð0Þj þ /�1
1 ð0Þec1/

�1
1 ð0ÞkZ2ð0Þk1 (171)

Cw ¼ jZ2ð0Þj þ /�1
2 ð0Þec2/

�1
2 ð0ÞkWð0Þk1 (172)

With the help of Eqs. (45), (46) and Eqs. (53), (54) we have

kWðtÞk1 � e
�cp�

0/2
min 1;p�

1/2

n o
t
eckWð0Þk1 (173)

Combining Eqs. (169)–(173) and using the facts that
maxf/1 tð Þ; 0g � t� D1 tð Þ and that

sup
t�0

D1ðtÞ ¼ sup
t�0

t� /1ðtÞ

� sup
0�t�/�1

1 ð0Þ
t� /1ðtÞ þ sup

t�/�1
1 ð0Þ

t� /1ðtÞ (174)

the proof is complete with

G ¼ 3 1þ bþ ec þ /�1
1 ð0Þec1/

�1
1 ð0Þ þ b/�1

2 ð0Þec2/
�1
2 ð0Þ

� 	

� e

g /�1
1 ð0Þ � /1ð0Þ þ

1

p�0/1

 !
(175)

b ¼ 2þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1jc1p�1/1

� 2c2j infh�/�1
1 ð0Þ /

0
1ðhÞ

q (176)

g ¼ min c1;
c1p�1/1

2
; c2; cp

�
0/2

min 1;p�1/2

n o( )
(177)

We have to relate now the stability of the “target system” with the
stability of the system in the original variables.

Lemma 11. There exists a class K1 function â1 such that the
following holds for all t� 0

jp1ðx; tÞj þ jp2ðx; tÞj � â1 X1ðtÞj j þ X2 tð Þk k1þ UðtÞk k1
� �

8x 2 ½0; 1� (178)

Proof. By performing a change of variables as x ¼ y=ðw�1ðtÞ � tÞ
in Eq. (113) and x ¼ y=ð/�1

2 ðtÞ � tÞ in Eq. (114) we re-write the
ODE (in x) system (113)–(115) as

p01y
ðy; tÞ ¼ f1 p01ðy; tÞ

� �
þ p02ð/1ðtþ yÞ � t; tÞ; y 2 ½0;w�1ðtÞ � t�

(179)
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p02y
ðy; tÞ ¼ f2 p01ðy; tÞ; p02ðy; tÞ

� �
þ u0ðy; tÞ; y 2 ½0;/�1

2 ðtÞ � t�
(180)

where

p01ðy; tÞ ¼ p1

y

w�1ðtÞ � t
; t

� �
; y 2 ½0;w�1ðtÞ � t� (181)

p02ðy; tÞ ¼ p2

y

/�1
2 ðtÞ � t

; t

 !
; y 2 ½0;/�1

2 ðtÞ � t� (182)

u0ðy; tÞ ¼ u
y

/�1
2 ðtÞ � t

; t

 !
; y 2 ½0;/�1

2 ðtÞ � t� (183)

Note that we view the function /1(tþ y)� t where y is the inde-
pendent variable as the function /1(y) in Eq. (83) (note that
/1(tþ y)� t satisfies both assumptions 3–4 for all t� 0 and

y 2 0;w�1 tð Þ � t

 �

). Under assumption 5 and using [43] together

with the fact that f1(0)¼ f2(0, 0)¼ 0 we conclude that there exist a
class K function l and a class K1 function � such that for all
t� 0 the following holds

jX1ðtÞj þ sup
/1ðtÞ�h�t

jX2 hð Þj � lðtÞ�

� jX1ð0Þj þ sup
/1ð0Þ�h�0

jX2 hð Þj þ sup
h2 0;t½ �

U /2 hð Þð Þj j
 !

(184)

Comparing the ODE (in y) system (179) and (180) with Eq. (83)
and (84) we get for all y 2 ½0;/�1

2 tð Þ � t� that

jp01ðy; tÞj þ jp02ðy; tÞj � l
1

p�0/2

 !
�

� jp01ð0; tÞj þ sup
/1ðtÞ�t�h�0

jp02ðh; tÞj þ sup
h2 0;y½ �

u0ðh; tÞj j
 !

(185)

Using Eqs. (99) and (120),(121) we get for all y 2 ½0;/�1
2 tð Þ � t�

jp01ðy; tÞjþ jp02ðy; tÞj� l
1

p�0/2

 !
� jX1ðtÞjþ X2 tð Þk k1þkUðtÞk1
� �

(186)

Define now the following function:

xðY; rÞ ¼ sup jp01ðhÞj : /�1
2 ðtÞ � t � h � Y � w�1ðtÞ � t; jp01 /�1

2 ðtÞ � t
� �

j þ sup
/�1

2 ðtÞ�t�h�w�1ðtÞ�t

jp02ð/1ðtþ hÞ � tÞj � r

(

where p01ðyÞ and p02 /1ðtþ yÞ � tð Þ satisfy Eqs: ð179Þ and ð180Þ for all /�1
2 ðtÞ � t � y � w�1ðtÞ � t



(187)

From the forward-completeness assumption we know that x(Y, r)
is finite. Moreover, one concludes that for all /�1

2 tð Þ � t
� y � w�1 tð Þ � t the following holds

jp01ðyÞj�x y; jp01 /�1
2 ðtÞ� t

� �
jþ sup

/�1
2 ðtÞ�t�h�w�1ðtÞ�t

jp02ð/1ðtþhÞ� tÞj
 !

(188)

Since from the definition of x, we conclude that for each fixed
/�1

2 tð Þ � t � y � w�1 tð Þ � t the mapping x(y,�) is increasing and
for each fixed r the mapping x(�,r) is increasing we get for all
/�1

2 tð Þ � t � y � w�1 tð Þ � t that

jp01ðyÞj�x
1

p�0w

; jp01 /�1
2 ðtÞ� t

� �
jþ sup

/�1
2 ðtÞ�t�h�w�1ðtÞ�t

jp02ð/1ðtþhÞ� tÞj
 !

(189)

Using the fact that f1(0)¼ 0 we conclude that x(y, 0)¼ 0 for all y
and hence, there exists a class K1 function a* such that

jp01ðyÞj�a� jp01 /�1
2 ðtÞ� t

� �
jþ sup

/�1
2 ðtÞ�t�h�w�1ðtÞ�t

jp02ð/1ðtþhÞ� tÞj
 !

(190)

where we absorb the finite constant p�0w
into a*. Therefore, using

the fact that /1ðtÞ� t�/1 /�1
2 ðtÞ

� �
� t�/1 hþ tð Þ� t�/�1

2 ðtÞ� t
for all /�1

2 ðtÞ� t�h�w�1ðtÞ� t and (186) the proof is complete.
Lemma 12. There exists a class K1 function â4 such that the

following holds for all t� 0

jg1ðx; tÞj þ jg2ðx; tÞj � â4 Z1ðtÞj j þ Z2ðtÞk k1þ WðtÞk k1
� �

8x 2 ½0; 1�: (191)

Proof. Relations (164)–(165) can be solved explicitly as

g1ðx; tÞ ¼ Z1ðtÞe�c1 w�1ðtÞ�tð Þx þ w�1ðtÞ � t
� � ðx

0

e�c1 w�1ðtÞ�tð Þðx�yÞg2

�
/1 tþ w�1ðtÞ � t

� �
y

� �
� t

/�1
2 ðtÞ � t

; t

 !
dy (192)

g2ðx; tÞ ¼ Z2ðtÞe�c1 /�1
2 ðtÞ�tð Þx

þ /�1
2 ðtÞ � t

� � ðx

0

e�c2 /�1
2 ðtÞ�tð Þðx�yÞwðy; tÞdy (193)

From relation (193) and using the fact that 0 � /�1
2 ðtÞ

�t � 1=p�0/2
we get

g2ðx; tÞj j � Z2ðtÞj j þ 1

p�0/2

sup
x2½0;1�

wðx; tÞj j; 8x 2 ½0; 1� (194)

By changing variables in the integral in Eq. (192) and by using
the fact that g2ðx; tÞ ¼ Z2ðtþ x /�1

2 ðtÞ � t
� �

Þ we write

jg1ðx; tÞj � jZ1ðtÞj þ
ð/�1

1 ðtÞ�t

0

jZ2 /1ðtþ yÞð Þjdy

þ
ðw�1ðtÞ�t

inft�0 /�1
1 ðtÞ�tf g

g2

/1 tþ yð Þ � t

/�1
2 ðtÞ � t

; t

 !�����
�����dy (195)
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Using Eq. (194) and the uniform boundness of the functions
/�1

1 tð Þ � t and w�1(t)� t for all t� 0 the proof of the lemma is
complete.

Proof of Theorem 2: Since f1(X1), f2(X1, X2) and ð@f1ðX1ÞÞ=@X1

are continuous, there exist class K1 functions q1, q2 and d̂ such
that

f1ðX1Þ � q1ð X1j jÞ (196)

f2ðX1;X2Þ � q2ð X1j j þ X2j jÞ (197)

@f1ðX1Þ
@X1

� @f1ðX1Þ
@X1

����
X1¼0

þd̂ð X1j jÞ (198)

Using relations (128),(129), (132) and with the help of Lemma 11,
we have

jZ1ðtÞj ¼ jX1ðtÞj (199)

Z2ðtÞk k1� q3 jX1ðtÞj þ X2ðtÞk k1þ UðtÞk k1
� �

(200)

kWðtÞk1 � q4 jX1ðtÞj þ kX2ðtÞk1 þ kUðtÞk1
� �

(201)

where class K1 functions q3 and q4 are

q3ðsÞ ¼ sþ q	1â1ðsÞ þ c1â1ðsÞ (202)

q4ðsÞ ¼ q	2â1ðsÞ þ c2 ð1þ c1Þâ1ðsÞ þ q	1â1ðsÞ
� �

þ d̂	â1ðsÞ þ c1

� 	
q	1â1ðsÞ þ â1ðsÞ
� � 1

infh�/�1ð0Þ /
0
1ðhÞ

(203)

Hence

jZ1ðtÞj þ kZ2ðtÞk1 þ kWðtÞk1 � q5 jX1ðtÞjð
þkX2ðtÞk1 þ kUðtÞk1

�
(204)

with

q5ðsÞ ¼ sþ q3ðsÞ þ q4ðsÞ (205)

Similarly, using relations (161)–(163) and with the help of
Lemma 12 we have for some class K1 function q6 that

jX1ðtÞj þ kX2ðtÞk1 þ kUðtÞk1 � q6 jX1ðtÞjð
þkZ2ðtÞk1 þ kWðtÞk1

�
(206)

Using Eqs. (204)–(206) and with the help of Lemma 10 the theo-
rem is proved with

jX1ðtÞj þ kX2ðtÞk1 þ kUðtÞk1 � q6 Gq5 jX1ð0Þjðð
þkX2ð0Þk1 þ kUð0Þk1

�
e�gt

�
(207)

5 Examples

Example 1. We consider a special case of system (1)

_X1ðtÞ ¼ X2ðtÞ � X2ðtÞ2Uð/ðtÞÞ (208)

_X2ðtÞ ¼ Uð/ðtÞÞ (209)

System (208) and (209) is forward complete since it is in the
strict-feedforward form. Moreover, a time-invariant controller
that renders the closed loop system input-to-state stable is

UðtÞ ¼ �X1ðtÞ � 2X2ðtÞ �
1

3
X2ðtÞ3 (210)

Assume now a form for the function /(t) as

/ðtÞ ¼ t� 1þ t

1þ 2t
(211)

Consequently

Fig. 1 System’s response for Example 1. Dot-lines: System with /(t) 5 t and the controller
(210). Dash-lines: system with /(t) as in Eq. (211) and the uncompensated controller (210).
Solid-lines: System with /(t) as in Eq. (211) and the delay-compensating controller (214).
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/0ðtÞ ¼ 1þ 1

ð1þ 2tÞ2
(212)

/�1ðtÞ ¼ tþ tþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtþ 1Þ2 þ 1

q
þ t

(213)

From expressions (211)–(213) one can see that the function /(t)
in Eq. (211) satisfies both assumptions 3 and 4. The controller that
compensates the time-varying delay is given by

UðtÞ ¼ �P1ðtÞ � 2P2ðtÞ �
1

3
P2ðtÞ3 (214)

where

P1ðtÞ ¼ /�1ðtÞ � t
� � ð1

0

ðP2 / tþ y /�1ðtÞ � t
� �� �� �

� P2 / tþ y /�1ðtÞ � t
� �� �� �2

� U / tþ y /�1ðtÞ � t
� �� �� �

Þdyþ X1ðtÞ

¼
ðt

/ðtÞ
P2ðhÞ � P2ðhÞ2U hð Þ
� 	 dh

/0 /�1ðhÞ
� �þ X1ðtÞ (215)

P2ðtÞ ¼ /�1ðtÞ � t
� � ð1

0

U / tþ y /�1ðtÞ � t
� �� �� �

dyþ X2ðtÞ

¼
ðt

/ðtÞ
U hð Þ dh

/0 /�1ðhÞ
� �þ X2ðtÞ (216)

and /(t) and /�1(t) are given in Eqs. (211) and (213), respec-
tively. The response of the system for initial conditions X1(0)¼ 0,
X2(0)¼ 1, and U(h)¼ 0 for all h 2 ½/ 0ð Þ; 0� is shown in Fig. 1.
We note here that in the case of a constant delay, i.e., in the case
where /(t)¼ t�D, and hence, /0(t)¼ 1, the control law (214)
remains the same, whereas the predictor states are defined as

P1ðtÞ ¼
ðt

t�D

P2ðhÞ � P2ðhÞ2U hð Þ
� 	

dhþ X1ðtÞ (217)

P2ðtÞ ¼
ðt

t�D

U hð Þdhþ X2ðtÞ (218)

Example 2. We consider the problem of stabilizing a mobile robot
modeled as

_xðtÞ ¼ v /ðtÞð Þ cos hðtÞð Þ (219)

_yðtÞ ¼ v /ðtÞð Þ sin hðtÞð Þ (220)

_hðtÞ ¼ x /ðtÞð Þ (221)

subject to the input delay given by Eq. (211), where (x(t), y(t)) is
position of the robot, h(t) is heading, v(t) is speed and x(t) is turn-
ing rate. When D¼ 0 (i.e., /(t)¼ t) a time-varying stabilizing con-
troller for this system is proposed in Ref. [44] as

xðtÞ ¼ � 5PðtÞ2 cos 3/�1ðtÞ
� �

� PðtÞQðtÞ 1þ 25 cos2 3/�1ðtÞ
� �� �

�HðtÞ (222)

Fig. 2 The trajectory of the robot and the heading h(t) with the compensated controller
(222)–(225), (227)–(229) (solid line), the uncompensated controller (222)–(225), (226) (dashed
line) and the controller (222)–(225), (226) for the delay-free system (dotted line) with initial condi-
tions x(0) 5 y(0) 5 h (0) 5 1 and x(s) 5 v(s) 5 0 for all /(0) £ s £ 0

Fig. 3 The control efforts v(t) and x(t) with the controller (222)–(225), (227)–(229) (solid line),
the controller (222)–(225), (226) (dashed line) and the controller (222)–(225), (226) for the delay-
free system (dotted line) with initial conditions x(0) 5 y(0) 5 h (0) 5 1 and x(s) 5 v(s) 5 0 for all
/(0) £ s £ 0
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vðtÞ ¼ �PðtÞ þ 5QðtÞ sin 3/�1ðtÞ
� �

� cos 3/�1ðtÞ
� �� �

þ QðtÞxðtÞ
(223)

PðtÞ ¼ XðtÞ cos HðtÞð Þ þ YðtÞ sin HðtÞð Þ (224)

QðtÞ ¼ XðtÞ sin HðtÞð Þ � YðtÞ cos HðtÞð Þ (225)

with

X ¼ x; Y ¼ y; H ¼ h; /�1ðtÞ ¼ t (226)

The predictor-based version of Eqs. (222)–(225) is given with

XðtÞ ¼ xðtÞ þ
ðt

/ðtÞ

v sð Þ cos HðsÞð Þds

/0 /�1ðsÞ
� � (227)

YðtÞ ¼ yðtÞ þ
ðt

/ðtÞ

v sð Þ sin HðsÞð Þds

/0 /�1ðsÞ
� � (228)

HðtÞ ¼ hðtÞ þ
ðt

/ðtÞ

xðsÞds

/0 /�1ðsÞ
� � (229)

The initial conditions are chosen as x(0)¼ y(0)¼ h (0)¼ 1 and
x(s)¼ v(s)¼ 0 for all /(0)� s� 0. From the given initial condi-
tions one can verify that the controller “kicks in” at the time
instant t0 ¼ /�1ð0Þ ¼ 1=

ffiffiffi
2
p

. In Fig. 2 we show the trajectory of
the robot in the xy plane and the heading, whereas in Fig. 3 we
show the response of the controls v(t) and x(t). In the case of the
uncompensated controller (222)–(225), (226), the system is
unstable.

Example 3. In this example we consider the following system

_X1ðtÞ ¼ sin X1ðtÞð Þ þ X2 /ðtÞð Þ (230)

_X2ðtÞ ¼ UðtÞ (231)

where the function /(t) is the function of Example 1. We choose
the initial conditions of the plant as X1(0)¼ 1 and X2(s)¼ 0 for all
s 2 ½/ 0ð Þ; 0�. The controller for this system is

UðtÞ ¼ � c2 X2ðtÞ þ c1P1ðtÞ þ sin P1ðtÞð Þð Þ

� c1 þ cos P1ðtÞð Þð Þ sin P1ðtÞð Þ þ X2ðtÞð Þ d/�1ðtÞ
dt

(232)

where we choose c1¼ c2¼ 2 and

P1ðtÞ ¼ X1ðtÞ þ
ðt

/ðtÞ
sin P1 hð Þð Þ þ X2 hð Þð Þ dh

/0 /�1ðhÞ
� � (233)

In Figs. 2 and 4 we show the response of the system in comparison
with the uncompensated controller, i.e., the backstepping control-
ler (232) which assumes /(t)¼ t.

6 Conclusions

We introduce a design methodology for nonlinear systems with
time-varying input and state delays. For systems with input delay
we achieve asymptotic stability based on a time-varying, infinite-
dimensional backstepping transformation of the actuator state. For
the case of simultaneous input and state delays we employ time-
varying, infinite-dimensional backstepping transformations both
in the state of the system and the actuator state. In both cases, we
prove stability in the original variables using the fact that the
backstepping transformations are invertible and using a Lyapunov
function that we construct. Our numerical example illustrates the
effectiveness of the control law.
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