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Adaptive stabilization of LTI systems with distributed input delay
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SUMMARY

We solve stabilization problems of LTI systems with unknown parameters and distributed input delay.
The key challenge is that the infinite-dimensional input dynamics are distributed, which makes traditional
infinite-dimensional backstepping inapplicable. We resolve this challenge by employing backstepping–
forwarding transformations of the finite-dimensional state of the plant and of the infinite-dimensional
actuator state. These transformations enable us to design Lyapunov-based update laws. We also design an
adaptive controller for rejecting a constant disturbance in the input of the LTI plant, in the case where the
parameters of the plant are known. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Infinite-dimensional backstepping has been very successful in designing stabilizing controllers for
systems that have infinite-dimensional actuator and sensor dynamics [1]. Such actuator or sensor
dynamics arise in various engineering applications such as population dynamics, traffic flows,
chemical reactors, and heat exchangers [1].

Although there is rich literature on the compensation of input and state delays [2–13], and on
the adaptive control through backstepping [14–16], few papers are dealing with the adaptive control
of time-delay systems. In [17–19], the finite spectrum assignment technique is employed to design
adaptive controllers for linear plants with unknown parameters and known, lumped input delays.
References [20, 21] dealt with the adaptive control of linear and nonlinear systems, respectively,
which have lumped state delays. The problem of stabilization of linear systems with unknown
lumped input delays and unknown plant parameters has been solved recently in [22, 23], using
tools coming from the adaptive control of parabolic PDEs [24–26].

However, the results from [22, 23] are not applicable to the case of distributed input delay,
as the finite-dimensional state of the plant and the infinite-dimensional actuator state are not in
the strict-feedback form [27]. Yet, compensation of distributed infinite-dimensional input dynam-
ics of convection type is achieved by combining infinite-dimensional backstepping and infinite-
dimensional forwarding [27, 28]. In the present case, we generalize the backstepping–forwarding
transformations from [27, 28] to the case where the parameters of the plant are unknown and to
the case where the parameters of the plant are known but there is a matched, constant disturbance
in the input. One of the main challenges of this generalization in the former case is that one has
to deal, in the case of the B matrix, with a vector of unknown functions, rather than just with a
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vector of unknown parameters. We resolve this challenge by constructing a Lyapunov functional
with normalization and by employing an update law using projection on a projection set, which can
be either spherical or an infinite-dimensional hyper-rectangle. In addition, the gain kernels of these
transformations are time varying, as they incorporate the estimations of the unknown parameters,
and hence, various technical difficulties arise when one proves that these kernels are bounded (which
we need in our Lyapunov analysis). In the latter case, one has to appropriately incorporate into the
backstepping–forwarding transformations the estimation of the unknown disturbance, in order to
account for its effect.

We introduce backstepping–forwarding transformations, of certainty equivalence type, of the
finite-dimensional plant state and of the infinite-dimensional actuator state that transform the system
to a ‘target system’. By constructing a Lyapunov function for the target system, we design update
laws for the parameters of the plant, which in the case of the input matrix B is infinite dimen-
sional. With the help of the available Lyapunov function, we prove stability and regulation of the
closed-loop system (Section 2).

For linear systems with distributed input delay and assuming that the plant’s parameters are
known, we design a control law that stabilizes the closed-loop system and achieves compensa-
tion of a constant disturbance in the input of the plant. With the available infinite-dimensional
backstepping–forwarding transformations and treating the disturbance as an unknown parameter,
we design an update law with the aid of a Lyapunov function that we construct (Section 3).

Notation: The set Rn is the set of all real vectors of dimension n. For a vector x 2 Rn, we
denote by jxj its Euclidean norm. The set RC denotes the set of non-negative real numbers. With
f 2 C l.AI�/, we denote a function that is defined in A � Rn, and it takes values in � � Rn and
has continuous derivatives of order l on A.

2. ADAPTIVE CONTROL FOR LTI PLANTS WITH UNKNOWN PARAMETERS

We consider the system

PX.t/D AX.t/C

Z D

0

B.D � �/U.t � �/d� , (1)

where X 2 Rn is the state of plant, U 2 R is the input, and D > 0 is the delay. For notational
simplicity, we assume that our system is single input. However, the results of this section can be
extended to the multi-input case, when the delays are the same in each individual input channel. We
are concerned here with the case where the matrices B.x/, x 2 Œ0,D�, and A are unknown and of
the form

AD A0C

pX
iD1

�iAi (2)

B.x/D B0.x/C

pX
iD1

bi .x/Bi , (3)

where the bi .x/, i D 1, 2, : : : ,p are unknown, scalar continuous functions of x, and �i , i D
1, 2, : : : ,p are unknown constants.

In order to help better understand the structure of system (1)–(3), we derive its transfer function,
namely G.s/, from the input U.t/ to the state X.t/. We first re-write system (1) in the following
equivalent form using transport PDE representation for the actuator state U.�/, � 2 Œt �D, t � as

PX.t/D AX.t/C

Z D

0

B.x/u.x, t /dx (4)

ut .x, t /D ux.x, t /, x 2 Œ0,D� (5)
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u.D, t /D U.t/. (6)

Taking the Laplace transform of (5), we obtain the following boundary value problem with respect
to the spatial variable x

su.s, x/D u0.s, x/ (7)

u.s,D/D U.s/. (8)

Solving the preceding boundary value problem, we obtain

u.s, x/D es.x�D/U.s/. (9)

Taking the Laplace transform of (4) and using (9), we obtain

G.s/D .sI �A/�1
Z D

0

B.x/es.x�D/dx. (10)

Our adaptive controller is based on infinite-dimensional update laws for the estimation of the
unknown functions bi .x/, i D 1, 2, : : : ,p for all x 2 Œ0,D� and on finite-dimensional update laws
for the estimation of the constant parameters �i , i D 1, 2, : : : ,p. We employ the update laws using
projector operators (see [26] for the use of projector operators in PDEs). Consequently, we make
the following assumption.

Assumption 1
There exist known constants � i , � i , �i and known continuous functions bni .x/, i D 1, 2, : : : ,p
such that Z D

0

�
bi .x/� b

n
i .x/

�2
dx 6 �i (11)

� i 6 �i 6 � i , (12)

for all i D 1, 2, � � � ,p.

Furthermore, we have to make an assumption regarding the controllability of a specific pair of
matrices (this fact becomes clear later on) for all B.x/ such that

RD
0

�
bi .x/� b

n
i .x/

�2
dx 6 �i ,

i D 1, 2, � � � ,p and for all A such that � i 6 �i 6 � i , i D 1, 2, � � � ,p. We thus make the
following assumption.

Assumption 2

We assume that the pair
�
A,
RD
0
e�A.D�x/B.x/dx

�
is uniformly completely controllable for all

� i 6 �i 6 � i , i D 1, 2, � � � ,p and for all
RD
0

�
bi .x/� b

n
i .x/

�2
dx 6 �i , i D 1, 2, � � � ,p, and that

there exist a vector valued function K.�/ : C 1.ƒIRn/ and matrices P.�/ : C 1
�
ƒIRn�nC

�
, Q.�/ :

C
�
ƒIRn�nC

�
, where

ƒD

(
.ˇ, �/ 2RnCp j ˇ D

Z D

0

e�A.D�x/B.x/dx,

for all
Z D

0

�
bi .x/� b

n
i .x/

�2
dx 6 �i and � i 6 �i 6 � i , i D 1, 2, � � � ,p

)
, (13)
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symmetric and positive definite such that 
AC

Z D

0

e�A.D�x/B.x/dxK.ˇ, �/

!T

P.ˇ, �/

CP.ˇ, �/

 
AC

Z D

0

e�A.D�x/B.x/dxK.ˇ, �/

!
D�Q.ˇ, �/. (14)

We make next our final assumption that is used in our stability analysis (see also [22]).

Assumption 3
The quantities � D inf.ˇ ,�/2ƒ min f�min .Q.ˇ, �// ,�min .P.ˇ, �//g and � D sup.ˇ ,�/2ƒ �max

.P.ˇ, �// exist and are known.

The controller for system (1) is

U.t/DK
�
Ǒ, O�
�
OZ.t/, (15)

where

OZ.t/DX.t/C

Z D

0

Z x

0

e�
OA.t/.x�y/ OB.y, t /dyu.x, t /dx. (16)

The update laws are given by

PObi .x, t /D �bProj
n
	bi ,
Obi , b

n
i , �i

o
.x/ (17)

PO�i .t/D ��ProjŒ� i ,� i �

n
	�i ,
O�i

o
, (18)

where the projector operators are defined as

Proj
n
	 , O
, 
n, �

o
.x/D

8̂<
:̂
	.x/�

�
O
.x/� 
n.x/

�
h O���n,�i

k O���nk2
, if kO
 � 
nk2 D � and

h O
 � 
n, 	i> 0
	.x/, otherwise

(19)

where

kO
 � 
nk2 D

Z D

0

�
O
.x/� 
n.x/

�2
dx (20)

D
O
 � 
n, 	

E
D

Z D

0

�
O
.x/� 
n.x/

�
	.x/dx, (21)

and

ProjŒr ,r�

n
	 , O�

o
D

8̂<
:̂
0, if O� D r and 	 < 0

0, if O� D r and 	 > 0

	 , otherwise

(22)

where

	bi .x/D

OZ.t/TP
�
Ǒ, O�
�
�
RD
0 .1C y/g.y, t /w.y, t /dy

1C„.t/
Biu.x, t / (23)
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	�i D

RD
0 .1C x/w.x, t /g.x, t /dx � OZ.t/TP

�
Ǒ, O�
�

1C„.t/

�Ai

 Z D

0

Z x

0

e�
OA.x�y/ OB.y, t /dyu.x, t /dx � OZ.t/

!
(24)

w.x, t /D u.x, t /� g.x, t / OZ.t/ (25)

„.t/D OZ.t/TP
�
Ǒ, O�
�
OZ.t/C

Z D

0

.1C x/w.x, t /2dx (26)

gt .x, t /D�g.x, t /Acl

�
Ǒ.t/, O�.t/

�
C gx.x, t / (27)

g.D, t /DK
�
Ǒ.t/, O�.t/

�
(28)

Acl

�
Ǒ.t/, O�.t/

�
D OAC Ǒ.t/K

�
Ǒ.t/, O�.t/

�
(29)

Ǒ.t/D

Z D

0

e�
OA.D�x/ OB.x, t /dx. (30)

We now state our main result.

Theorem 1
Consider the closed-loop systems consisting of the plant (1) together with the adaptive controller
(15)–(30). Let Assumptions 1–3 be satisfied and choose �� and �b such that

�� C �b <
min f�, 1g2

M
, (31)

where M is a sufficiently large constant. Then there exist positive constants R and � such that

�.t/6R
�
e��.0/ � 1

�
, (32)

where

�.t/D jX.t/j2Cku.t/k2C
��� Qb.t/���2C ˇ̌̌ Q�.t/ˇ̌̌2 , (33)

and

ku.t/k2 D

Z D

0

u2.x, t /dx (34)

��� Qb.t/���2 D Z D

0

ˇ̌̌
Qb.x, t /

ˇ̌̌2
dx (35)

Qb.x, t /D b.x/� Ob.x, t / (36)

Q�.t/D � � O�.t/. (37)
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Furthermore,

lim
t!1

X.t/D 0 (38)

lim
t!1

U.t/D 0. (39)

We start proving the preceding theorem by first noting that relations (16) and (25) define two
transformations, namely OZ.t/ and w.x, t /, of the form

.X.t/,u.x, t //!
�
OZ.t/,w.x, t /

�
. (40)

With these transformations, system (4)–(6) is mapped to the target system. Differentiating (16) with
respect to time, we obtain that

POZ.t/D OA OZ.t/C QA OZ.t/C

Z D

0

e�
OA.D�x/ OB.x, t /dxU.t/C

Z D

0

QB.x, t /u.x, t /dx

C

Z D

0

Z x

0

e�
OA.x�y/ POB.y, t /dyu.x, t /dx � QA

Z D

0

Z x

0

e�
OA.x�y/ OB.y, t /dy

� u.x, t /dx � POA
Z D

0

Z x

0

.x � y/e�
OA.x�y/ OB.y, t /dyu.x, t /dx, (41)

where we also used (4)–(6). Using (15), we obtain

POZ.t/D Acl

�
Ǒ, O�
�
OZ.t/C QA OZ.t/C

Z D

0

QB.x, t /u.x, t /dx

C

Z D

0

Z x

0

e�
OA.x�y/ POB.y, t /dyu.x, t /dx � QA

Z D

0

Z x

0

e�
OA.x�y/ OB.y, t /dy

� u.x, t /dx � POA
Z D

0

Z x

0

.x � y/e�
OA.x�y/ OB.y, t /dyu.x, t /dx. (42)

Moreover, differentiating (25) with respect to time and with respect to the spatial variable x,
we obtain

wt .x, t /D ux.x, t /�
�
gt .x, t /C g.x, t /Acl

�
Ǒ, O�
��
OZ.t/� g.x, t /

 Z D

0

QB.x, t /u.x, t /dx

C

Z D

0

Z x

0

e�
OA.x�y/ POB.y, t /dyu.x, t /dx

!
� g.x, t /

 
� QA

Z D

0

Z x

0

e�
OA.x�y/ OB.y, t /

�dyu.x, t /dx � POA
Z D

0

Z x

0

.x � y/e�
OA.x�y/ OB.y, t /dyu.x, t /dxC QA OZ.t/

!
, (43)

and

wx.x, t /D ux.x, t /� gx.x, t / OZ.t/, (44)

respectively. As g.x, t / satisfies (27)–(28), we have that

wt .x, t /D wx.x, t /

� g.x, t /

 Z D

0

QB.x, t /u.x, t /dxC
Z D

0

Z x

0

e�
OA.x�y/ POB.y, t /dyu.x, t /dx

!

C g.x, t /

 
QA

Z D

0

Z x

0

e�
OA.x�y/ OB.y, t /dyu.x, t /dx

C
POA

Z D

0

Z x

0

.x � y/e�
OA.x�y/ OB.y, t /dyu.x, t /dx � QA OZ.t/

!
(45)
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w.D, t /D 0. (46)

From relation (16), one should notice that OZ is given explicitly in terms of .X ,u/. Substituting
this explicit relation for OZ (in terms of .X ,u/) into (25), one can observe that w.x, t / is also written

in terms of .X ,u/. Hence, the state
�
OZ,w

�
defines a transformation of the state .X ,u/. We define

now the inverse of the transformation in (25) as

u.x, t /D w.x, t /C g.x, t / OZ.t/. (47)

Consequently, we can write (45)–(46) only in terms of the transformed variables, that is, in terms of
w.x, t / and OZ.t/. Using (16) and (47), we define the inverse transformation of OZ.t/ as

X.t/D

 
I �

Z D

0

Z x

0

e�
OA.x�y/ OB.y, t /dyg.x, t /dx

!
OZ.t/

�

Z D

0

Z x

0

e�
OA.x�y/ OB.y, t /dyw.x, t /dx. (48)

Thus now, system (4)–(6) with state .X ,u/ is mapped into the target system, which is composed of

relations (42) and (45)–(46) and has state
�
OZ,w

�
. The target system is obtained from the original

system through a direct transformation of the form .X ,u/!
�
OZ,w

�
, which is defined in relations

(16) and (25). With the inverse of this transformation, which is of the form
�
OZ,w

�
! .X ,u/ and is

given in (47) and (48), one obtains the original system from the target system.
We state now a lemma that is concerned with the uniform boundness of the original and

transformed variables.

Lemma 1
There exist constants Mu, Mw , MX , and M OZ such that

ku.t/k2 6Mu

�
kw.t/k2C j OZ.t/j2

�
(49)

jX.t/j2 6MX

�
j OZ.t/j2Ckw.t/k2

�
(50)

kw.t/k2 6Mw

�
ku.t/k2C jX.t/j2

�
(51)

j OZ.t/j2 6M OZ
�
jX.t/j2Cku.t/k2

�
. (52)

Proof

First, observe that the signals A
�
O�
�

, K
�
Ǒ, O�
�

, and P
�
Ǒ, O�
�

are continuously differentiable with

respect to
�
Ǒ, O�
�

. Hence, as
�
Ǒ, O�
�

is uniformly bounded, the signals A
�
O�
�

, K
�
Ǒ, O�
�

, P
�
Ǒ, O�
�

,

and their derivatives are also uniformly bounded. Denote by MA, MK , MP the bounds of A
�
O�
�

,

K
�
Ǒ, O�
�

, P
�
Ǒ, O�
�

, respectively, and with M 0A, M 0K , M 0P the bound of their derivatives. We first

prove that g satisfying (27)–(28) is uniformly bounded, that is, there exists a � > 0 such thatZ D

0

jg.x, t /j2dx 6 �2, for all t > 0. (53)

Taking the time derivative of

V.t/D

Z D

0

emxjg.x, t /j2dx, (54)
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where m> 0 is arbitrary, and using (27)–(30), we obtain that

PV .t/6 emDM 2
K �

�
m� 2

�
MAC e

MAD
p
DM2MK

��
V.t/, (55)

where we also used integration by parts and the fact that Acl in (29) satisfies jAclj 6 MA C
eMAD

p
DM2MK , where

M2 D .pC 1/

 
DjB0j

2C 2

pX
iD1

jBi j
2
�
�i Ckb

n
i k
2
�!

. (56)

ChoosingmD 2
�
MAC e

MAD
p
DM2MK

�
C1, with the comparison principle, we obtain (53) with

�2 D emD

 Z D

0

jg.x, 0/j2dxCM 2
K

!
. (57)

Note that because from (28) g.D, 0/DK. Ǒ.0/, O�.0//, a possible choice for the initial condition of
g is g.x, 0/DK. Ǒ.0/, O�.0// for all x 2 Œ0,D�, such that the boundary condition (28) is compatible
with the initial condition g.x, 0/. In this case, (57) becomes �2 D emDM 2

K.1CD/. From relations
(16)–(30) and (48) and using Young’s and Cauchy–Schwartz’s inequalities [29], one can show that
bounds (49)–(52) hold with

Mu D 2
�
1C�2

�
(58)

MX D 5
�
De2MADjM2j�

2C 1
�

(59)

Mw D 2
�
1C�2

� �
1CM OZ

�
(60)

M OZ D 2
�
1CD2e2MADjM2j

�
. (61)

�

Before we construct a Lyapunov functional for proving stability of the closed-loop system, we
state the following lemma, which is concerned with an important property of the projector operator
defined in (19).

Lemma 2
The following holds for (19)

�

Z D

0

Q
.x/Proj
n
	 , O
, 
n, �

o
.x/dx 6 �

Z D

0

Q
.x/	.x/dx. (62)

Proof
From (19), it follows that

�

Z D

0

Q
.x/Proj
n
	 , O
, 
n, �

o
.x/dx D�

Z D

0

Q
.x/	.x/dx

C

8̂̂
<
ˆ̂:

D
O
 � 
n, Q


E
h O���n,�i

k O���nk2
, if kO
 � 
nk2 D � andD

O
 � 
n, 	
E
> 0

0, otherwise

(63)
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We prove now that the second term in (63) is always nonpositive. Assume that kO
 � 
nk2 D � and
h O
 � 
n, 	i> 0. Then it is sufficient to show that

Z D

0

Q
.x/
�
O
.x/� 
n.x/

�
dx 6 0. (64)

It holds that

Z D

0

Q
.x/
�
O
.x/� 
n.x/

�
dx D

Z D

0

.
.x/� 
n.x//
�
O
.x/� 
n.x/

�
dx

�

Z D

0

�
O
.x/� 
n.x/

�2
dx. (65)

Using the fact that kO
 � 
nk2 D � and the Cauchy–Schwartz inequality, we obtain

Z D

0

Q
.x/
�
O
.x/� 
n.x/

�
dx 6

sZ D

0

.
.x/� 
n.x//2 dx
p
�� �. (66)

With (11) we obtain (64). �

Remark 1
Instead of assuming in Assumption 1 (and respectively in the controllability condition of
Assumption 2) that the bi .x/ satisfy (11), one can assume that the bi .x/ satisfy

Rlow,i .x/6 bi .x/6Rhigh,i .x/, (67)

for some known, continuous functions Rlow,i .x/ and Rhigh,i .x/. The new projection operator is

Projf	 , O
,Rlow,Rhighg.x/D

8̂̂<
ˆ̂:

0, if O
.x/DRlow.x/ and 	.x/ < 0

0, if O
.x/DRhigh.x/ and 	.x/ > 0

	.x/, otherwise

(68)

Note that the projection set of the operator (68) is an infinite-dimensional hyper-rectangle, whereas
the projection set of (19) is spherical. We show now that (68) satisfies

�

Z D

0

Q
.x/Proj
n
	 , O
,Rlow,Rhigh

o
.x/dx 6 �

Z D

0

Q
.x/	.x/dx. (69)

Using (68), we obtain

�

Z D

0

Q
.x/Proj
n
	 , O
,Rlow,Rhigh

o
.x/dx D�

Z D

0

Q
.x/	.x/dx

C

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

if O
.x/DRlow.x/ and 	.x/ < 0RD
0
Q
.x/	.x/dx, or

if O
.x/DRhigh.x/ and 	.x/ > 0

0, otherwise
(70)
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Assume first that O
.x/DRlow.x/ and 	.x/ < 0. As O
.x/DRlow.x/6 
.x/, we obtain that

Q
.x/	.x/D
�

.x/� O
.x/

�
	.x/6 0, (71)

and hence,
RD
0
Q
.x/	.x/dx 6 0. The case O
.x/DRhigh.x/ and 	.x/ > 0 can be proved analogously.

Lemma 3
Let �� and �b be as in (31). Then for the Lyapunov function

V.t/D log .1C„.t//C
1

�b

Z D

0

Qb.x, t /T Qb.x, t /dxC
1

��
Q�.t/T Q�.t/, (72)

the following holds

V.t/6 V.0/. (73)

Proof
Differentiating V.t/ with respect to time and using (2), (3) and (42), (45) we obtain

PV .t/6 1

1C„.t/

 
��

ˇ̌̌
OZ.t/

ˇ̌̌2
C 2 OZ.t/TP

�
Ǒ, O�
� Z D

0

Z x

0

e�
OA.x�y/

pX
iD1

Bi
PObi .y, t /dyu.x, t /dx

C

 ˇ̌̌
PO�.t/

ˇ̌̌
C

Z D

0

ˇ̌̌
ˇ̌e� OA.D�x/ pX

iD1

Bi
PObi .x, t /

ˇ̌̌
ˇ̌dx

!
M 0P

ˇ̌̌
OZ.t/

ˇ̌̌2
� 2 OZ.t/TP

�
Ǒ, O�
�

�

pX
iD1

PO�i .t/Ai

Z D

0

Z x

0

.x � y/e�
OA.x�y/ OB.y, t /dyu.x, t /dx �w.0, t /2 �

Z D

0

w.x, t /2dx

� 2

Z D

0

.1C x/w.x, t /g.x, t /dx

 Z D

0

Z x

0

e�
OA.x�y/

pX
iD1

Bi
PObi .y, t /dyu.x, t /dx

�

pX
iD1

PO�i .t/Ai

Z D

0

Z x

0

.x � y/e�
OA.x�y/ OB.y, t /dyu.x, t /dx

!
C 2 OZ.t/TP

�
Ǒ, O�
�

�

pX
iD1

Ai OZ.t/ Q�i .t/� 2 OZ.t/
TP

�
Ǒ, O�
� pX
iD1

Ai

Z D

0

Z x

0

e�
OA.x�y/ OB.y, t /dyu.x, t /dx Q�i

C 2 OZ.t/TP
�
Ǒ, O�
� Z D

0

pX
iD1

Bi Qbi .x/u.x, t /dx � 2
Z D

0

.1C x/w.x, t /g.x, t /dx

�

Z D

0

pX
iD1

Bi Qbi .x/u.x, t /dxC 2
Z D

0

.1C x/w.x, t /g.x, t /dx

�

pX
iD1

Ai

 Z D

0

Z x

0

e�
OA.x�y/ OB.y, t /dyu.x, t /dx � OZ.t/

!
Q�i

!

�
2

�b

Z D

0

pX
iD1

Qbi .x, t / PObi .x, t /dx �
2

��

pX
iD1

Q�i .t/
PO�i .t/. (74)
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With (17)–(18), (47), and (62), we obtain

PV .t/6 1

1C„.t/

 
��

ˇ̌̌
OZ.t/

ˇ̌̌2
C

 ˇ̌̌
PO�.t/

ˇ̌̌
C

Z D

0

ˇ̌̌
ˇ̌e� OA.D�x/ pX

iD1

Bi
PObi .x, t /

ˇ̌̌
ˇ̌ dx

!
M 0P

ˇ̌̌
OZ.t/

ˇ̌̌2

C 2 OZ.t/TP
�
Ǒ, O�
� Z D

0

Z x

0

e�
OA.x�y/

pX
iD1

Bi
PObi .y, t /dy

�
w.x, t /C g.x, t / OZ.t/

�
dx

� 2 OZ.t/TP
�
Ǒ, O�
� pX
iD1

PO�i .t/Ai

Z D

0

Z x

0

.x � y/e�
OA.x�y/ OB.y, t /dy

�
�
w.x, t /C g.x, t / OZ.t/

�
dx �w.0, t /2 �

Z D

0

w.x, t /2dx � 2
Z D

0

.1C x/w.x, t /

� g.x, t /dx

 Z D

0

Z x

0

e�
OA.x�y/

pX
iD1

Bi
PObi .y, t /dy

�
w.x, t /C g.x, t / OZ.t/

�
dx

�

pX
iD1

PO�i .t/Ai

Z D

0

Z x

0

.x � y/e�
OA.x�y/ OB.y, t /dy

�
w.x, t /C g.x, t / OZ.t/

�
dx

!!
. (75)

We now estimate
RD
0

ˇ̌̌
PObi .x/

ˇ̌̌
dx. Using (17), (19), and the Cauchy–Schwartz’s inequality, we

obtain that

Z D

0

ˇ̌̌
PObi .x/

ˇ̌̌
dx 6 �b2

p
D

sZ D

0

	bi .x/
2dx. (76)

We now estimate
RD
0
	bi .x/

2dx. Using (23), (49), and (53) together with Young’s and Cauchy–
Schwartz’s inequalities [29], we obtain

Z D

0

	bi .x/
2dx 6 2Mu

�
M 2
P jBi j

2C .1CD/2�2
�0B@

ˇ̌̌
OZ.t/

ˇ̌̌2
Ckw.t/k2

1C„.t/

1
CA
2

. (77)

With (76), we arrive at

Z D

0

ˇ̌̌
PObi .x/

ˇ̌̌
dx 6 �bM�bi

ˇ̌̌
OZ.t/

ˇ̌̌2
Ckw.t/k2

1C„.t/
, (78)

where

M�bi
D 2

r
2DMu

�
M 2
P jBi j

2C .1CD/2�2
�

. (79)

With similar arguments, one can prove that

ˇ̌̌
P�i .t/

ˇ̌̌
6 ��M�i

ˇ̌̌
OZ.t/

ˇ̌̌2
Ckw.t/k2

1C„.t/
, (80)

where

M�i D 2jAi j
�p

1CD�CMP

� �
DeMAD

p
M2.1C�/C 1

�
. (81)
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Using (78) and (80) together with Young’s inequality [29], one can prove that there exists a positive
constant M such that the following holds

PV .t/6 1

1C„.t/

 
��

ˇ̌̌
OZ.t/

ˇ̌̌2
�w.0, t /2 �

Z D

0

w.x, t /2dx

C
.�� C �b/M

1C„.t/

 Z D

0

w.x, t /2dxC
ˇ̌̌
OZ.t/

ˇ̌̌2!21A , (82)

where

M DM 0P

 
eMAD

pX
iD1

jBi jM�bi
CM�i

pX
iD1

!
C 2MPDe

MAD

pX
iD1

jBi jM�bi
.1C�/C 2MPD

� eMAD
pX
iD1

jAi jM�i

p
M2 .1C�/C 2.1CD/�e

MAD

pX
iD1

jBi jM�bi
.DC 1C�/

2D.1CD/
p
M2�e

MAD

pX
iD1

jAi jM�i .DC 1C�/ . (83)

As from the definition of „.t/ in (26), we have

1C„.t/>min f�, 1g

 ˇ̌̌
OZ.t/

ˇ̌̌2
C

Z D

0

w.x, t /2dx

!
, (84)

we conclude that

PV .t/6 1

1C„.t/

 
��

ˇ̌̌
OZ.t/

ˇ̌̌2
�w.0, t /2 �

Z D

0

w.x, t /2dx

C .�� C �b/
M

min f�, 1g

 Z D

0

w.x, t /2dxC
ˇ̌̌
OZ.t/

ˇ̌̌2!!
. (85)

Choosing �� and �b as in (31), the proof of the lemma is complete. �

Lemma 4
There exist constants M and M such that

M„.t/6….t/6M„.t/, (86)

where

….t/D jX.t/j2Cku.t/k2. (87)

Proof
Immediate, using (49)–(52) and the definition of „.t/ in (26). �

We are now ready to derive the stability estimate of Theorem 1. Using (72), it follows that

„.t/6
�
eV.t/ � 1

�
(88)

��� Qb.t/���2C ˇ̌̌ Q�.t/ˇ̌̌2 6 .�� C �b/ V .t/6 .�� C �b/ �eV.t/ � 1� . (89)

Consequently,

�.t/6
�
M C .�� C �b/

� �
eV.t/ � 1

�
. (90)
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Moreover, from (72), we take

V.0/6max
n
�, 1

o �
j OZ.0/j2Ckw.0/k2

�
C
1

�b

��� Qb.0/���2C 1

��

ˇ̌̌
Q�.0/

ˇ̌̌2
. (91)

Thus, by setting

RDM C �� C �b (92)

�Dmax

�
�, 1,

1

��
,
1

�b

�
, (93)

we obtain the stability result in Theorem 1.
We now turn our attention to proving the convergence of X.t/ and U.t/ to zero. We use here an

alternative to Barbalat’s lemma from Appendix A (which is proved in [30]). We first point out that

from (73) it follows that j OZ.t/j, kw.t/k,
��� Ob.t/���, and

ˇ̌̌
O�.t/

ˇ̌̌
are uniformly bounded. From (15), it

follows that U.t/ is uniformly bounded. From (4) and (49)–(50), we conclude that dX2.t/
dt

is uni-

formly bounded. Finally, as from (85) it turns out that j OZ.t/j and kw.t/k are square integrable, using
(50) and the alternative to Barbalat’s lemma from Appendix A, we conclude that lim

t!1
X.t/D 0. We

now turn our attention to proving convergence of U.t/. With the help of (49) and by the square inte-
grability of j OZ.t/j, we conclude using (15) that U.t/ is square integrable. It only remains to show

that dU 2.t/
dt

is uniformly bounded. Hence, it is sufficient to show that PU .t/ is uniformly bounded.

From (15) and with (42), as k POb.t/k, k Qb.t/k and j PO�.t/j, j Q�.t/j are uniformly bounded, we conclude

the uniform boundness of dU 2.t/
dt

.

3. DISTURBANCE REJECTION FOR LTI PLANTS WITH KNOWN PARAMETERS

We consider the system

PX.t/D AX.t/C

Z D

0

B.x/ .u.x, t /C d/dx (94)

ut .x, t /D ux.x, t /, x 2 Œ0,D� (95)

u.D, t /D U.t/, (96)

where we assume that d is an unknown nonzero constant, and the matrices A and B.x/ for all
x 2 Œ0,D� are known. We also assume that the state X.t/ and the infinite-dimensional actuator state
U.�/, for all � 2 Œt �D, t � are measured.

Assumption 4

The pair
�
A,
RD
0
e�A.D�x/B.x/dx

�
is completely controllable, and there exist a vector K and

matrices P , Q symmetric and positive definite such that 
AC

Z D

0

eA.D�x/B.x/dxK

!T

P CP

 
AC

Z D

0

eA.D�x/B.x/dxK

!
D�Q. (97)

The controller for system (94)–(96) is

U.t/DK OZ.t/� Od.t/ (98)
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OZ.t/DX.t/C

Z D

0

Z x

0

e�A.x�y/B.y/dy
�
u.x, t /C Od.t/

�
dx. (99)

The update law for the disturbance is given by

POd.t/D �

 
OZ.t/TP � ˛

Z D

0

.1C x/w.x, t /KeAcl.x�D/dx

!

1, (100)

where

w.x, t /D u.x, t /�KeAcl.x�D/ OZ.t/C Od.t/ (101)

Acl D AC

Z D

0

eA.D�x/B.x/dxK (102)


1 D

Z D

0

B.x/dx (103)

˛ D �min.Q/. (104)

Theorem 2
Consider the closed-loop systems consisting of the plant (94)–(96) together with the adaptive
controller (98)–(103). Let Assumption 4 be satisfied and choose � such that

� 6 �min.Q/

8j
1j
�
jP j C ˛.1CD/jKjejAcljD

� �
jP
2j C ˛.1CD/

�
1C jKjejAcljDj
2j

�� . (105)

Then there exists a positive constant R such that

jX.t/j2Cku.t/k2C Qd.t/2 6R
�
jX.0/j2Cku.0/k2C Qd.0/2C d2

�
, (106)

where

Qd.t/D d � Od.t/. (107)

Furthermore,

lim
t!1

X.t/D 0 (108)

lim
t!1

U.t/D�d . (109)

We employ here similar arguments as in Section 2. Differentiating (99) with respect to time and
using (94)–(96) together with (98), we obtain that

POZ.t/D Acl OZ.t/C 
1 Qd.t/C 
2
POd.t/, (110)

where


2 D

Z D

0

Z x

0

e�A.x�y/B.y/dydx, (111)

and we used also the fact that �A
2 D �
1 C
RD
0 e�A.D�x/B.x/dx (which follows from the fact

that F 0.x/D B.x/�AF.x/, with F.x/D
R x
0 e
�A.x�y/B.y/dy). Differentiating (101) with respect

to time and with respect to the spatial variable x and by using (95)–(96), (98) and (110), we obtain

wt .x, t /D wx.x, t /�KeAcl.x�D/
1 Qd.t/C
�
1�KeAcl.x�D/
2

�
POd.t/ (112)
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w.D, t /D 0. (113)

Analogously with Lemma 1, we have the following lemma.

Lemma 5
There exist constants Fu, Fw , FX , and F OZ such that

ku.t/k2 6 Fu
�
kw.t/k2C j OZ.t/j2C j Od.t/j2

�
(114)

jX.t/j2 6 FX
�
j OZ.t/j2Ckw.t/k2

�
(115)

kw.t/k2 6 Fw
�
ku.t/k2C jX.t/j2C j Od.t/j2

�
(116)

j OZ.t/j2 6 F OZ
�
jX.t/j2Cku.t/k2C j Od.t/j2

�
. (117)

Proof
Using relation (101) together with Young’s and Cauchy–Schwartz’s inequalities [29], we obtain
bound (114) with

Fu D 3.1CD/
�
2C jKj2e2jAcljD

�
. (118)

Substituting u.x, t /C Od.t/D w.x, t /CKeAcl.x�D/ OZ.t/ into (99) and solving for X.t/, we obtain
bound (115) with

FX D 2

0
@�1C j
2jjKjejAcljD

�2
CD2e2jAjD

 Z D

0

jB.x/jdx

!21A . (119)

From (99) and with Young’s and Cauchy–Schwartz’s inequalities [29], we obtain bound (117) with

F OZ D 2

0
@.1C j
2j/2CD2e2jAjD

 Z D

0

jB.x/jdx

!21A . (120)

From (101) and (117), we obtain bound (116) with

Fw D 3
�
1CDC jKj2e2jAcljDF OZ

�
. (121)

�

Lemma 6
Let � and ˛ be as in (105). Then for the Lyapunov function

V.t/D OZ.t/TP OZ.t/C ˛

Z D

0

.1C x/w.x, t /2dxC
1

�
Qd.t/2, (122)

the following holds

V.t/6 V.0/. (123)
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Proof
Differentiating V.t/ with respect to time and using (110), (112), and (113) and integrating by parts
the w integral, we obtain

PV .t/6 ��min.Q/j OZ.t/j
2 � ˛w.0, t /2 � ˛

Z D

0

w.x, t /2dx �
2

�

POd Qd

C 2

 
OZ.t/TP � ˛

Z D

0

.1C x/w.x, t /KeAcl.x�D/dx

!

1 Qd

C 2

 
OZ.t/TP
2C ˛

Z D

0

.1C x/w.x, t /
�
1�KeAcl.x�D/
2

�
dx

!
POd .

(124)

With (100) and using the fact that j POd j 6 �ı1

�
j OZj C

RD
0 jw.x, t /jdx

�
where ı1 D jP
1j C ˛

.1CD/jKejAcljD
1j, we obtain

PV .t/6 ��min.Q/j OZ.t/j
2 � ˛

Z D

0

w.x, t /2dx � ˛w.0, t /2

C �ı1ı2

 
j OZ.t/j2C

Z D

0

w.x, t /2dx

!
, (125)

where we used the fact that .pCr/2 6 2.p2Cr2/ and ı2 D 4jP
2jC4˛.1CD/
�
1C jKejAcljD
2j

�
.

Choosing � and ˛ as in (105)–(104), we have that

PV .t/6 ��min.Q/

2
j OZ.t/j2 �

˛

2

Z D

0

w.x, t /2dx � ˛w.0, t /2. (126)

�

We are now ready to derive the stability estimate of Theorem 2. Using relations (118), (119) and
(122), (123), it follows that

jX.t/j2Cku.t/k2C Qd.t/2 6 2 .FX CFu/
�
kw.t/k2C j OZ.t/j2C j Qd.t/j2C d2

�

6 2 .FX CFu/

0
@ 1

min
n
�min.P /,˛, 1

�

o C 1
1
A�V.0/C d2� . (127)

Moreover, using (122) and the bounds (120) and (121), we obtain

jX.t/j2Cku.t/k2C Qd.t/2 6 2M1

�
ku.0/k2C jX.0/j2C j Qd.0/j2C d2

�
(128)

where M1 D .FX CFu/
�
�max.P /C ˛.1CD/C

1
�
C 1

� �
F OZ CFw C 1

� 
1

min
n
	min.P /,˛, 1�

o C 1
!

.

Thus, by setting RD 2M1, we obtain the stability result in Theorem 1.
We now turn our attention to proving the convergence of X.t/ and U.t/. We first point out

that from (123), it follows that j OZ.t/j, kw.t/k and
ˇ̌̌
Od.t/

ˇ̌̌
are uniformly bounded. From (98), we

obtain that jU.t/j is uniformly bounded for all t > 0, and hence, ju.0, t /j is uniformly bounded

for all t > D. From (100), we obtain the uniform boundness of j POd.t/j. Using the fact that
d
RD
0 w.x,t/2dx

dt
D 2

RD
0
w.x, t /wt .x, t /dx, integration by parts and relation (112), we conclude that

dkw.t/k2

dt
is uniformly bounded if jw.0, t /j is uniformly bounded. This fact follows from (101) and

the uniform boundness of ju.0, t /j for all t >D. As from (126) it turns out that j OZ.t/j and kw.t/k
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are square integrable and using the uniform boundness of dj OZ.t/j2

dt
which follows from (110), using

an alternative to Barbalat’s lemma in Appendix A, we conclude that lim
t!1
j OZ.t/j D 0 and that

lim
t!1
kw.t/k D 0. Using (115), we obtain the regulation of jX.t/j to zero. We prove now the con-

vergence of U . As
R1
0
POZ.t/dt D OZ.1/ � OZ.0/ exists and is bounded and as ROZ.t/ is uniformly

bounded from (110), (100), and (112), we obtain that POZ.t/ is uniformly continuous, and hence, with

Barbalat’s lemma, we obtain that lim
t!1

POZ.t/ D 0. From (100), we obtain that lim
t!1

POd.t/ D 0, and

hence, using (110) and the fact that not all components of 
1 are zero (because in this case from
(94) one can observe that d has no influence on the plant, and one can simply choose Od D 0), we
obtain that lim

t!1

Qd.t/ D 0. Therefore, from (98), we obtain that lim
t!1

U.t/ D �d , which completes

the proof.

4. SIMULATIONS

The method that is used to discretize (130) and (133) in space is the finite-difference method.
The resulting finite-dimensional ODEs are solved using Euler’s method. The integro-differential
equations (129) and (132) are solved using Euler’s method, where the integrals are computed using
the left-endpoint rule for numerical integration.

4.1. Adaptive control

We consider the following scalar plant

PX.t/D �X.t/C

Z 1

0

.1.5C sin.5x// u.x, t /dx (129)

ut .x, t /D ux.x, t / (130)

u.1, t /D U.t/, (131)

where AD � D 1 and B0.x/D 0, B1 D 1, b1.x/D 1.5C sin.5x/. We choose the initial condition
of the system as X.0/ D 1 and U.�/ D 0 for all �D 6 � 6 0. We choose the parameters for

the controller as K D Acl� O�.t/RD
0 e� O�.t/.D�x/ Ob1.x,t/dx

, Acl D �0.7, �b D 0.003, �� D 0.001 and �1 D 2,

bni .x/D 1 for all x 2 Œ0, 1�, � D 0.4� , � D 2� . We choose O�.0/D � and Ob1.x, 0/D
p
�1C 1 for all

x 2 Œ0, 1�. Note that with this choice of initial estimates for b1 and � , Acl is unstable (Acl D 0.2698)
when �b D �� D 0. In Figure 1, we show the response of the system and in Figure 2 the estimates
of � and b1.x/. Finally, in Figure 3, we show the final profile of the estimate Ob1.x, t / versus the real
b1.x/, as well as the estimation of the norm kb1.t/� bn1k

2.

4.2. Disturbance rejection

We consider the following scalar plant

PX.t/D �X.t/C b1

Z 1

0

.u.x, t /C d/dx (132)

ut .x, t /D ux.x, t / (133)

u.1, t /D U.t/, (134)
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where � D 1 and b1 D 0.5. We choose the initial condition of the system as X.0/D 1 and U.�/D 0
for all �D 6 � 6 0. The parameters of the control law (98)–(103) are chosen as � D 0.001,
Acl D �2, and K D � Acl��

b1.1�e��/
. We assume initially that a constant disturbance of magnitude

d D 0.5 perturbs the closed-loop system at time t D 10 s. In Figure 4, we show the response of
the system and the control effort, and in Figure 5 the estimation of the unknown disturbance. The
control law compensates the disturbance and brings the state of the plant to zero.
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Figure 1. Response of the plant (129)–(131) with the adaptive control algorithm (15)–(30), for initial
conditions X.0/D 1, U.�/D 0 for all �D 6 � 6 0 and Ob1.x, 0/D

p
�1C 1 for all x 2 Œ0, 1�, O�.0/D � .
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Figure 2. The estimation of the parameters b1 (left) and � (right), for initial conditions X.0/D 1, U.�/D 0
for all �D 6 � 6 0 and Ob1.x, 0/D

p
�1C 1 for all x 2 Œ0, 1�, O�.0/D � .
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Figure 3. Left: The final profile of the estimate Ob1.x, t / (solid) versus true b1.x/ (dashed). Right: The

estimate
RD
0

�
Ob1.x, t /� bn

1
.x/
�2

dx.
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Figure 4. Response of the plant (132)–(134) with the disturbance rejection control algorithm (98)–(103),
for initial conditions X.0/D 1 and U.�/D 0 for all �D 6 � 6 0 under a step disturbance d D 0.5 applied

at t D 10 s.
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Figure 5. Estimation of the disturbance d , for initial conditionsX.0/D 1 and U.�/D 0 for all �D 6 � 6 0
under a step disturbance d D 0.5 applied at t D 10 s.

5. CONCLUSIONS

We present an approach for stabilizing linear systems with distributed input delay and unknown
plant parameters. We employ update laws on the basis of the construction of a Lyapunov function
with normalization. For linear systems with distributed input delay and an unknown constant distur-
bance in the input, we design an adaptive controller that compensates the disturbance and achieves
regulation, when the plant parameters are known.

APPENDIX A: AN ALTERNATIVE TO BARBALAT’S LEMMA

Let the function f .t/ WRC!RC be differentiable and such that

f 0.t/6 Bf , for all t > 0 (A.1)

Z 1
0

f .t/dt <1, (A.2)

for some positive constant Bf . Then

lim
t!1

f .t/D 0. (A.3)
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