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We recently introduced a design methodology for the stabilization of nonlinear systems with input and
state delays that depend on the current state of the plant. In the present paper we consider nonlinear
systems with delays that depend on the delayed state of the plant, that is, the delay is defined implicitly
as a nonlinear function of the state at a past time which depends on the delay itself. Since the prediction
horizon and the delay depend on the state of the plant, the key design challenges are how to compute

the predictor state and the delay (since the delay needs to be available in order to compute the
predictor). We resolve these challenges and we establish closed-loop stability with the aid of a strict
Lyapunov functional that we construct. We also design a predictor feedback law for systems with state
delays that depend on delayed states. We present an example of a strict-feedforward nonlinear system

with input delay.

© 2013 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The time that is required for a relativistic particle to feel the
electromagnetic force of another particle depends on the position
of the particles at a past time instant [29]. The round trip time of a
signal in a network is a past value of the queuing delay at a time
that depends on past values of the queuing delay itself [7,8]. The
common attribute of these two time periods is that they depend
on past values of the state of the system itself. In other words,
these two time periods are examples of state-dependent delays
that depend on delayed states.

Input delay compensation for nonlinear systems is achieved
using predictor feedback [13-15,20]. Alternative control designs
for nonlinear systems with constant delays can be found in
[10,11,21-26]. Predictor feedback has been also successful in
compensation of time-varying delays [2,19]. An alternative design
for nonlinear systems with time-varying delays is the one in [12].
The predictor feedback design for nonlinear systems with state-
dependent delays was provided recently [3]. Results dealing with
the robustness of predictor feedback to time-varying [16,4], state-
dependent [4] or input-dependent delays [5,6] also exist.

In [3] we developed a systematic methodology for the com-
pensation of input delays that depend on the current state of the
plant. In this paper we consider a different problem in which the
delay depends on past values of the state, at a time that depends
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on the delay itself. Since the delay is needed for computing the
predictor state the first design challenge that we resolve is
computing the delay through this implicit relation. Since the
prediction horizon, over which we design the predictor, depends
on the state of the system, the second design challenge that we
resolve is computing the predictor state. We then present the
predictor feedback law for general nonlinear systems (Section 2).
The real complexity of the problem is in the stability analysis of
the closed-loop system. Due to an inherent limitation that the
delay rate is larger than -1 (which ensures that the delay function
is uniquely defined, and hence, that the dynamical system which
describes the dynamics of the plant is uniquely defined) and since
the delay depends on the state, only local results are possible. We
prove local asymptotic stability of the closed-loop system with the
aid of a Lyapunov functional that we construct by introducing a
backstepping transformation of the actuator state (Section 3). We
present a numerical example of a second-order strict-feedforward
system with a state-dependent input delay (Section 4). We also
consider nonlinear systems in the strict-feedback form with a
delay on the virtual input that depends on past values of the state
of the system at which the control input enters. For this class of
systems we design the predictor feedback law and prove asymp-
totic stability of the closed-loop system (Section 5).

Notation: We use the common definition of class K, K.. and X2
functions from [17]. For an n-vector, the norm |-| denotes the
usual Euclidean norm. We say that a function p: Ry x (0, 1)~»R,
belongs to class KC if it is of class K with respect to its first
argument for each value of its second argument and continuous
with respect to its second argument. It belongs to class KC.. if it is
in KC and also in X, with respect to its first argument.
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2. Predictor feedback under input delays
2.1. Problem formulation

We consider the following plant:

X(t) = fX(1), U(g(1))), M

where t2¢(0), UeR, f:R" x R—>R" is locally Lipschitz with
f(0,0)=0 and ¢ satisfies

t = ¢(t) + DX(#(1))). )
We impose the following assumptions on the delay function D and
the plant (1).

Assumption 1. DeC'(R"; R,) and VD is locally Lipschitz.!

Assumption 2. The plant X = f(X, w) is strongly forward complete,
that is, there exist a smooth positive definite function R and class
K., functions a1, a; and a3 such that

a1(IX]) <RX) <az(1X]) 3

OR(X)
oX > @

for all XeR" and for all weR.

fX, w) <RX) + a3(|w

This property differs from the standard forward completeness
[1] in that we assume that f(0,0)=0 and hence, R(-) is positive
definite. Assumption 2 guarantees that system (1) does not exhibit
finite escape time, that is, for every initial condition and every
locally bounded input signal the corresponding solution is defined
for all times.

Assumption 3. The plant X = f(X, x(X) + w) is input-to-state stable
with respect to w and the function « is locally Lipschitz with
x(0)=0.

2.2. Predictor feedback design

We refer to the quantity t—¢(t) = D(X(4(t))) as “delay”. This is
the time interval that indicates how long ago the control signal
that currently affects the plant was actually applied. Consequently,
the delay D depends on the value of the state at the time the
control was applied. The goal of our predictor-based design is to
completely compensate this input delay, that is, after the control
signal reaches the plant, i.e., when ¢(t)20 (which happens for first
time at t* = D(X(0))), to make the closed-loop system to behave as
if there were no delay at all. To achieve this we first have to
appropriately define the predictor of the state X, that is, the signal
that satisfies

P(4(t)) =X(t) forall t>0. 5)

Assume for the moment that ¢'(t) > 0, for all t=0 (we show later on
that under a sufficient condition, which incorporates the delay
function D and the initial conditions and solutions of the system,
that this is true), which in particular implies that ¢ is invertible.
Denoting

o0)=¢1(0) forall g(t)<o<t, ©®)

the predictor state P is P(9) = X(a(9)) for all ¢(t)<@<t. With the
help of (2) we have

o(0) =6+ D(X(0)) forall p(t)<o<t. (7
Therefore, the predictor of X, P(t) = X(a(t)) is
P(t) = X(t + D(X(t))) forall t>0. 8)

1 To ensure uniqueness of solutions.

Having defined the predictor of X we now need to compute this
signal. This is not an easy task since P cannot be directly computed
from relation (8), because P depends on the future values of X
which are not available. In addition to that, the quantity
a(t)-t = D(X(t)), which from now on we refer to as the prediction
horizon (this is the time interval which indicates after how long an
input signal that is currently applied affects the plant), depends on
the state X(t). Note here that the delay time D(X(¢(t))) is not equal
to the prediction horizon D(X(t)).

We are now ready to compute P. Since the predictor state P(9),
¢(t)s@st satisfies P(9) = X(a(9)) we perform a change of variables
t=0(0) in (1) and using definition ¢(8) = 6 + D(X(9)) we get that

dP
PO — (14 VDOX@)FX(O), U@ (P0), UO)) ©

Integrating this relation from ¢(t) to t and using the fact that
P(gp(t)) = X(t) we get for all ¢p(t)<so<t

4
P@o) =X(t) + /¢ ([)(1 + VDX ) X(S), Ups)f (P(s), U(s)) ds. (10)

From relation (10) one can observe that for computing P(t), besides
having available X(t) and the history of the signals X(s), U(o),
U(¢(0)), P(c) on the interval [¢(t),t) one needs to know the
function ¢(t). We compute next ¢(t), which is defined implicitly
through relation (2). We proceed analogously with the derivation
of relation (10). We define the change of variables t =9, for all
t<@s<t+ DX(t)) and differentiate (2) to get

1=¢'(0) + VDX(¢@O))f (X((9)), U(#($(0)))'(6). amn

Solving for ¢' and integrating backward the resulting relation
starting at the known value ¢(t + D(X(t))) = t, which follows from
(6) and (7), we arrive for all t<@<t + D(X(t)) at

0 ; t+D(X(t)) ds 12
#0)= _./0 T+ VDX XS, UE)) (12

The predictor-based controller is now derived based on the delay-
free design (see Assumption 3) as

U(t) = x(P(t)). (13)

One can observe from (12) that the denominator has to be
nonzero. What is more, ¢(@) has to be invertible for all
t<0<t+ D(X(t)). A sufficient condition, on the initial conditions
and the solutions of the system, for these two facts to hold
simultaneously is

Fe 1€+ VDX(P))f X(@(5)), Ulg(g(5))) > 0 for all 520, (14)

for some ce(0, 1]. We refer to F; as the feasibility condition of the
controller (10), (12), (13). Although the actual feasibility region of
the controller is given by the initial conditions and solutions of the
system satisfying the feasibility condition 4 in (14), it turns out
that the stability analysis is simplified if one imposes a more
restrictive condition (which guarantees the satisfaction of condi-
tion (14)). In the subsequent development we impose the follow-
ing condition on the initial conditions and solutions of the system

Fe  IVDX(p())f (X((9)), U(p(@(s))))| < ¢ for all s>0, (15)

for some 0 < ¢ < 1. It is evident that if 7} is satisfied then F is also
satisfied.

Note that the requirement D = VDf > -1 is an inherent limita-
tion of the plant and not a restriction of the control design. This
condition guarantees that 0 < ¢’ < =, that is, it guarantees that ¢ is
a single-valued function, which in turn ensures that the dynamical
system which describes the dynamics of the plant is uniquely
defined.
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2.3. Implementation

In an actual implementation of the predictor-based control law
(13), at each time step one has to compute the predictor P using
relation (10) for § =t. The integral in (10) is computed from the
history of X(s), for all se[¢(t),t), and of U(s), for all se[¢(¢(t)),t),
using a method of numerical integration, with a total number of
Np(t) = D(X(¢(t)))/h points, where h is the discretization step.
However, for computing P one has to first compute ¢. This
computation is performed by calculating the integral in (12) from
the history of X(s), for all se(¢(t),t], and of U(s), for all
se(@p(p(b)), p(H)),? using a method of numerical integration with
N,(t)=D(X(t))/h points. Alternatively, one could compute ¢ by
numerically solving relation (2) with respect to ¢.

3. Stability analysis under input delays

Theorem 1. Consider the closed-loop system consisting of the plant
(1) and the control law (10), (12), (13). Under Assumptions1-3 there
exist a class K function wgep, a class KC.. function p and a class KL
function p such that for all initial conditions for which X(-), U(-),
U(¢(-)) are locally Lipschitz on the interval [¢(0), 0), and which satisfy

2(0) <yroa(C), (16)
for some 0 < c <1, where

Q) =|X(@)|+ sup |X@)|+ sup
Pp(t) <6<t P(p(t) <o <t

[U(o)l, a7

there exists a unique solution to the closed-loop system with X
Lipschitz on [0, ), U Lipschitz on (0, =), and
Q) <p(p(£2(0), 0), 1), (18)

for all t20. Furthermore, there exists a class K function §* such that,
for all t=0,

sup D(X(9)) <D(0) + 5*(c) (19)
Ppt)<O<t

sup |DX(@)) <c. (20)
pt) <Ot

The proof of Theorem 1 is based on a series of technical lemmas
which are presented next.

Lemma 1. The infinite-dimensional backstepping transformation of
the actuator state defined for all ¢(¢(t))s@<t by
W(©) = U(@)-«(P(©)), (21)

together with the control law (13) transform the plant (1) to the
“target system” given by

X(t) =fX(t), k(X(1)) + W((t))) for all t>¢(0) (22)
W(t)=0 for all t>0. 23)

Proof. Using (13) we get (23). Noting that for all t20, P(¢(t)) = X(t)
and defining P(¢(t)) =X(t) also for ¢(0)<t<0, from (21) we get
W (g(t)) = U(g(t))-x(X(t)), for all t2¢(0), and hence, from (1) we get
(22). o©

Lemma 2. The inverse transformation of (21) is given for all
P(P(t))<O<t by
U@ =W(@) + x(11(9)), (24)

2 For computing the first value of ¢(6), i.e., ¢(t + D(X(t))-h), one needs the value
of U(s) at s=¢(t). Since ¢(t) is yet to be computed one could apply a one-
discretization step delay h to U and employ the value U(s) at s = ¢(t—h) instead.

where for all ¢p(t)<O<t

0
) =X() + /M)U + VDX (0))f (X(0), k(X(0)) + W(¢(0))))
xf(I(0), k(I1(c)) + W(0)) do. (25)

Proof. By direct verification we get that 77(t) = P(t)* for all t2¢(0).
Defining I1(¢(t)) =X(t), for all ¢(0)<t<0 we conclude that
I1(c) = P(c) for all ¢(4(t))<o<t, and hence, using (21) we get
(24). ©

Lemma 3. There exist a class KL function p* and a class KC.
function p* such that for all solutions of the system satisfying (15)
for 0 < c<1, the following holds:

E(H) < (p"(5(0),0), 1), (26)
for all t=20, where

E()=1X®! + X(#)|+ sup
Hg0) <0<t

(W(@)!. 27)

Proof. Based on Assumption 3 and [28], there exist a smooth
function S : R" - R, and class k.. functions a4, as, ag and a7 such
that for all XeR" and for all weR the following hold:

aa(IX(O)) <SX(0) <as(X(@)) @8)
BOOD fx0), /(X(0) + (0) <o XO + ar(|ox®)). 29)

Consider now the following Lyapunov functional for the “target
system” given in (22)—(23)

1
24+— (L
V(t) = SOX(0) + Sxen + — =< [ @) g, (30)
g 0 r
where
Ly= sup [e8COOW(g(9))
P(t) <0 <a(t)
a(t) 1/2n
= lim < / e2n8eO-D W (p(9))*" de> , 31
n=eo \Jgp(t)

with g>0. We now upper- and lower-bound L(t) in terms of
SUD ey <0 <¢|W(9)|. From (6), (12) and (15) for 0 < c <1 we get for
all ¢(t)<0<a(t) that do(0)/d0 =1/¢'(6(9)) <2. Integrating this rela-
tion from ¢(t) to 6 and, since a(¢(t)) =t and §<qs(t), we have

a(0)-t <2(a(t)-¢(1)), P(t)<O=a(l). (32)

Since DeC!(R"; R.) there exists a function ;e/.nC! such that

D(X) <D(0) + 61(IX]). (33)

Therefore, using (2) and (7) we arrive at

L(t) <8P0 (XOHXGOD  sup  |W(H)). (34)
() SOt

Moreover, since ¢ is increasing with o(¢(t)) =t, based on (6) and
(15), we get for all ¢p(t)<@<a(t)

0<a(0)-t. (35)

Therefore, with the help of (35) we have that

L= sup [W(O)I. (36)
Hp) <0<t

3 The quantities P and 17 are identical. However, we use two distinct symbols
for the same quantity because, in one case, P is expressed in terms of X and U, for
the direct backstepping transformation, while, in the other case, 17 is expressed in
terms of X and W, for the inverse backstepping transformation.
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Taking the time derivative of L(t), with (23) we get
' 1 () 1/2n-1
L(ty=lim — ( / e2"8CO-DW ((9))*" da)
n=eo 20\ /ey
~a(t)
x (—¢'(0W<¢<¢(t)))2”—2ng / N (O de)).
()
(37)
Using (15) we have ¢'(t)>0 and hence L(t)<-gL(t). With this

inequality and (29), taking the derivative of (30) we get with the
help of (15)

V(0 <-as(X(O)- 3 as(X@HO)
1
(WO + ar (W)

- (2 + %) az(L(t)). (38)
With the help of (36) we get V(t)<-ag(|X(t))-as(|X(¢()))
—a7(L(t)). Using (28), the definition of L(t) in (31) and (30) we
conclude that there exists a class K function y; such that
V(t)<-y;(V(1)). Using the comparison principle and Lemma 4.4 in
[17], there exists a class KL function g; such that V(t)<;(V(0),t).
Using (28), the definition of V(t) in (30) and the properties of class
K functions we arrive at |X(t)| + [X(¢(t)| + L(t) <5*(p1(1X(0)] +
1X(¢(0))| + L(0), ¢), t) for some class KL function g* and some class
KC. function p,. Using relations (34) and (36) the lemma is
proved. ©

Lemma 4. There exists a class K.. function ag such that for all solutions
of the system satisfying (15) for 0 < ¢ < 1, the following holds:

1X(0)]

+|P(0)|Sas<lx(t)+IX(¢(f))I+ sup IU(S)I>, P <H<t.

) <s <t
(39)
Proof. Setting in (4) o = U(0), we get for all ¢(t)<d<t that
dR(P(9
O (b0), U@) <RPO) + a3V (40)

Using (7) and (9), by multiplying (40) with do(6)/d0 and using (15)
we get

% <2(R(P(9)) + a3(|U®)

), P <O<t. 41)

Using the comparison principle and (33) one gets

R(P(6)) < e2PO+e(X@O)) <R<X(t)>+ sup (l3(|U(5)|)>, H(O)<o<t.
P(t) <s <t

(42)
Similarly, setting o = U(¢(9)) in (4) we get for all ¢(t)<o<t
R(X
d (dx(g)) FX©0), U(0))) <RX(©)) + a(|Up©))]). 43)

Since dX(9)/do = f(X(0), U(¢(9))), for all ¢(t)<ost, with the com-
parison principle, (43) and the fact that t—¢(t) = D(X(¢(t))) we get

RX(0) < ePO)+31(X(#O)) <R(X((/)(l‘))) + sup

a3(|U(S)|)> .49
HHO) <5 <hO)

With standard properties of class K., functions we get (39), where
the class K., function ag is given as

ag(s) = 207 ((az(s) + az(s)e2PO+6N) O (45)

Lemma 5. There exists a class K function y* such that for all
solutions of the system satisfying (15) for 0 <c <1, the following

holds:
X + [HO)| <y* (XD + 1X(@t)| + sup |[W(S)),
Hp(D) <s <t

p(H<o<t. (46)

Proof. Under Assumption 3 and [28], there exists class KL
function g, and class K function y; such that

Y@ <p2(1Y (to)l, 7—to) + 71 <[5UP |w(5)|>= >to, (47)

0<S<7

where Y(z) is the solution of Y(z) = f(Y(z), x(Y(z)) + w(z)). Using the
change of variables y = ¢(#) and (7), (25), we have that

dri(¢(y))
dy
Using (47) we have

=f1(¢W)), xy, 1Y) + W(pW))). (48)

[1(O)| <r2(1X(O) + 71 <¢(ts)lil3<t|W(S)|>, PO <O, (49)

where the class K function y, is defined as y,(s) = $,(s, 0). Analo-
gously, since X(0) satisfies dX(0)/d0 = f(X(0), x(X(0)) + W(¢(0))), for
all p(t)sost, we get

|X(0)|5y2(IX(¢(t)))+y1< sup

W)l |, e<o<t. (50)
P(p(t)) <5 <P(t)

With the properties of class K functions we get (46), where
7¥(S) = 271(S) + 2y,(s) is of class K. ©

Lemma 6. There exist class K., functions ag and a1g such that for all
solutions of the system satisfying (15) for 0 <c <1, the following
hold:

Q(t) <ag(Z(D)) (51

E(t) <a10((1)), (52)
for all t=0 where 2 is defined in (17) and = is defined in (27).

Proof. Using (46) we have that

sup |X(0)| <y* (IX(f)I + IX(@O) + ,

Py <0<t

sup IW(S)I>- (33)
($() <s<t

Under Assumption 3 (Lipschitzness of x and x(0) = 0) there exists a
class K, function & such that

KX <a(1X]). (54

With the inverse backstepping transformation (24) and relation
(54) we arrive at

sup |U@)|< sup
P(P(t) <6<t P(P(t) <0<t

W)

[71(6)l + sup IH(0)|>- (35

Pty <o <t

+a sup
HH(D) <0 <p(0)

Using relation (46) and definition 17(¢(0)) = X(0), ¢(t)<O<t we get
(51) with

ag(s) =S+ r*(s) + a2r*(s)). (56)

Analogously, using the direct backstepping transformation (21),
relation (39) and definition P(¢(9)) =X(9), ¢(t)<d<t we get (52)
with a19(s) =5 + @(2ag(s)). O

Lemma 7. There exists a function o* of class K. such that all the
solutions that satisfy

Q) <a* (), t20, (57)
for 0 <c <1 also satisfy (15) where Q is defined in (17).
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Proof. Since DeC!(R"%;R,) and f : R" x R—>R" is locally Lipschitz
with f(0,0) = 0, there exist class k.. functions &, and a7 such that

[VDX)I <IVD(O)] + &2(1XD) (58)

X, @) <an1(IX] + |@)). (59)
If a solution satisfies for all t=0

(IVD(0)| + 82(1X(0) )11 (1X(O)| + [U(p(O))]) <,
for 0 < c < 1, then it also satisfies (15). With the trivial inequalities
IX(0)| =supy <. < 1X (@) and |U(¢(9))| SSUPy 4t <s < UG for all

P(t)so<t, relation (60) is satisfied for 0 < c < 1, for all =0, as long
as (57) holds, where the class K., function o* is defined as

a*($) = (IVD(O)| + 62(s)er1(s). O (61)

p(H) <Ot (60)

Lemma 8. There exists a class K function ygoa such that for all initial
conditions of the closed-loop system (1), (10), (12), (13) that satisfy
relation (16) the solutions of the system satisfy (57) for 0 <c <1 and
hence satisfy (15).

Proof. Using Lemma 6, with the help of (26) we have that

Qt) Lag(F*(p*(a10(2(0)), ©), 1)). (62)
By defining the class K. function a1z as aq2(S) = ag(f*(s, 0)), we get
Q(t) <apz(p*(a10(€2(0)), ). (63)

Hence, for all initial conditions that satisfy the bound (16) with any
choice of a class K function WROA(C)SFROA(a*'](C), c), where
Y¥roa(S,€) is  the inverse of the class KC. function
Wioa(S, ©) = aa(p*(a10(s), €)) with respect to y} ,'s first argument,
the solutions satisfy (57). Furthermore, for all those initial condi-
tions, the solutions verify (15) for all ¢20. ©

Proof of Theorem 1. Using (62) we get (18) with
B(S, t) = ag(F*(s, t)) and p(s, €) = p*(a10(S), €). System (22), (23) guar-
antees the existence and uniqueness of XeCl(c* «), where
* = D(X(0)). Consider now the case te[0,s*). From (1) and (11)
we have for all t€[0, ¢*) that

X(t) =fX(t), 8y (¢(1))) (64)

1
14 VD(Ex(HONf(Ex(h(1)). 8, (#(1)

where the initial conditions for X, U and U(¢) are defined as
X(s) =gx(s), U(s)=gy(s) and U(¢(s)) =gy, (s) for all ¢0)<s<0.
Lipschitzness of gx, gu, gy, on [¢(0),0), Lipschitzness of f and
Assumption 1 (Lipschitzness of VD) guarantee that the right-hand
side of (64) and of (65) is Lipschitz with respect to (X, ¢), which

OE (65)

1.5
— Xa(t)
1 - - - Xa(t)
0.5
oR L aaeee=F
A -
. -
\‘ ”"
-05 R
-1 .
0 1 2 3 4 5

guarantees, together with bound (15), the existence and unique-
ness of XeC'[0, 6*). The boundedness of W and (22) guarantee that
X is continuous at t = ¢*. By integrating (22) between any two time
instants it is shown that X is Lipschitz on [0,») with a Lipschitz
constant given by a uniform bound on the right-hand side of (22).
The fact that 71(t) = X(t + D(X(t))) for all t=0 and Assumption 1
(DeC/(R"; R, )) guarantee that I7 is Lipschitz for all t=0. Since
U(t) = x(11(t)), Assumption 3 (Lipschitzness of x in both arguments)
guarantees that U is Lipschitz in ¢t on (0, »). Using (15) and (33), we

get (19), (20) with any class K function §%(c)26;(a*"'(c)). ©
4. Example

In this example we consider the following system in the
feedforward form taken from [18]

X1(t) = Xa(t)-Xa(t) U(t-D(X(¢(1)))) (66)
X2(t) = U(t-DX((D)). (67)
where

#(t) = t—-DX((1))), (68)
DX(@(t)) = 3sin (5X2(¢(t)%, (69)
and hence,

a(t) =t + Lsin (5X,(0))*. (70)
A nominal design for the delay-free plant is given in [18] as

U(b) = =X1(-2X2(D—3X2(6). (1)
The predictor-based design is

U(t) = =P1(t)-2P2()-3P2 ()%, (72)
where

t
Py(t) =X1(D) + /¢ (t)(l +5 €05 (5X3(5)) sin(5X2(sHU(#(5))(P2(0)

—P,(0)%U(9)) do (73)

t
Po(t) =X,(t) + /d)m(l + 5 cos (5X5(s)) sin(5X,(s))U(g(s))U(9) do, (74)

where
t+1/2 sin(5Xz(t))? do
O =t= [ T+5 cos (5X2(#(5)) sin GX2(pE)UBH()
(75)
0.5
0
-1
-1.5
0 1 2 3 4 >

t

Fig. 1. The response of the closed-loop system (66), (67) with the predictor feedback law (72)-(75) (left) and the control effort (72) (right). The initial conditions are chosen
as X1(0)=1.3, X3(s) =0 for all $(0)<s<0 and U(s) = U(¢(s)) =0 for all ¢(0)<s<0. For these initial conditions the control signal “kicks in” at t=0, and hence, the delay is
immediately compensated, resulting to identical, to the delay-free case, responses for X;, X,. The control signal oscillates to compensate the oscillatory delay.
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Fig. 2. The delayed time (68) and the prediction time (70) (left), and the delay (69) (right), of the closed-loop system (66), (67) with the predictor feedback law (72)~(75). The
initial conditions are chosen as X;(0) = 1.3, X5(s) =0 for all ¢(0)<s<0 and U(s) = U(¢(s)) = 0 for all ¢(0)<s<0. For these initial conditions ¢(0) = ¢(0) = 0.

We consider the initial conditions for the plant as X;(0)=1.3,
X5(s) =0 for all ¢(0)<s<0, and the initial conditions for the actuator
state as U(s) = U(¢(s)) =0 for all 4#(0)<s<0. With such an initial
condition we get ¢(0)=0. Therefore, the control signal “kicks in”
immediately, i.e., at t=0. In Fig. 1 we show the response of the
closed-loop system. As one can observe that the delay is immediately
compensated and the responses of X; and X5 are as there were no
delay at all. Yet, the oscillations are evident in the control signal. The
control signal oscillates in order to compensate the oscillatory delay.
In Fig. 2 we show the delayed time ¢ and the prediction time o.

5. Stabilization under state delays

In the present section we consider the following plant:

X(0) = fX(1), L(g(1))) (76)

¢ =U(),

where t20, U,leR, f:R" x R—>R"
f(0,0)=0 and ¢ satisfies

t=¢(t) + D (D).

77)
is locally Lipschitz with

(78)

Remark 1. Let us highlight the importance of considering the class
of nonlinear systems that satisfy (76)-78). Firstly, this is a class of
systems with state delay that depends on the past state of the
system. This is different than system (1) which has an input rather a
state delay. Secondly, and more importantly, when one stabilizes
system (76)-(78) then one can stabilize nonlinear systems with
input delays that depends on the past input rather than the past
state. To see this consider a nonlinear system with input delay that
depends on past values of the input, i.e., consider the system

X(t) =fX(t), V(g(1)),

where t = ¢(t) + D(V(¢(t))). Then, by adding an integrator, one gets
exactly Egs. (76)«78) with ¢ =V and V = U, where U is designed in
order to stabilize the system X(t)=f(X(t), V(¢(1)), V(t)=U(t).
Hence, stabilization of system (76), (77), (78) implies stabilization
of system (79).

79

We make now the following assumption regarding system (76).

Assumption 4. There exists a function ueC 1(_[R“; R), with x4(0)=0
and Vu locally Lipschitz,* such that the plant X(t) = f(X(t), u(X(t)) +
w(t)) is input-to-state stable with respect to .

4 To ensure uniqueness of solutions.

Note that we still assume that the delay function D (which is
now defined in R rather than in R") and the vector field f satisfy
Assumptions 1 and 2 respectively. Assumption 4 is similar to
Assumption 3 with the difference that in the present case the
feedback law x is assumed continuously differentiable rather than
just locally Lipschitz (this regularity requirement for x is a result of
the backstepping procedure). Finally, note that the results of this
section can be extended to the case at which the delay (78)
depends also on X(¢(t)). However, in order to keep the formulae of
our design as simple as possible we do not consider this case.

From plant (76), (77) one can observe that the input signal
reaches the state ¢ at t=0. However, it reaches X through a delayed
integrator. Therefore, we need to define and derive an implemen-
table form for the predictor of the state X, i.e., the signal that
satisfies P(¢(t)) = X(t) for all t=0. From relation (78) we get that

71 (O) =a(0)

=0+ D((©®) forall gp(t)<o<t. (80)

Setting t=0(0) in (76), differentiating with respect to ¢ and
integrating the resulting expression from ¢(t) to 9, with the help
of the fact that P(¢(t)) = X(t) we get

4
P@©) =X(®) + /¢ m(1 + D'EENUE)f(P(s), £(5))) ds

for all p(t) <o <t. 81

We compute next ¢. Differentiating (78) and since ¢(t+
D((t)) = ¢(a(t)) =t we get that
t+D((E) ds

0)=t—
e R e (SLTC)

The predictor-based control law is based on a backstepping
design on the delay plant and is given by

Vu(PO)F (P(), L) —Cz(S(O—p(P(t)))
1=Vu(PO)F(P®), CEND' () 7

where ¢z > 0 is arbitrary. Analogously to case of input delay, in an
actual implementation of the control law (83), (81), (82) one has to
compute, at each time step, ¢(t), by numerically computing the
integral in (82) and using the history of ¢ and U. Then, one
computes P(t) using ¢(t) and the history of ¢, P and U. Finally,
one calculates U(t) from (83). However, in order to compute ¢(t)
one starts the integration at o(t) =t + D({(t)). Yet, the function
inside the integral evaluated at s = o(t) depends on U(t), i.e., on the
current value of the input, which is yet to be computed. Therefore,
since a(t) is strictly increasing one can compute ¢(t) by integrating
(82) up to s =a(t-h), where h is the discetization step.

for all t <0 <a(t). (82)

Uut) = (83)
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From (83) one can observe that besides a restriction that the
denominator in (82) is positive, one has an additional condition
that the denominator in (83) is also positive. Both conditions are
satisfied when the following condition holds:

Ge 1 ID'(CO)HUO)| + [VuP©O)f (P©), {0)D'((0)| < €
for all 62¢(0), (84)

for some 0<c<1.

Theorem 2. Consider the plant (76)~(78) together with the control
law (83), (81), (82). Under Assumptions 1, 2 and 4 there exist a class
K function &gop, a class KL function g and a class K., function ¢ such
that for all initial conditions for which ¢ is locally Lipschitz on the
interval [¢(0),0], U is locally Lipschitz on the interval [¢(0),0), and
they satisfy (77) and

2(0) < &goal0), (85)

where

QM =1X@®)+ sup [£@)+ sup U@, (86)
Pt) <O<t P(t) <O<t

for some 0 < c < 1, there exists a unique solution to the closed-loop
system with XeC'[0, »), ¢ Lipschitz on [0,«), U Lipschitz on (0, =) and

S <oy (1 + %)ﬁ(é(ox b, 87)

for all t=0. Furthermore, there exists a class K function 5", such that
for all t=0 the following hold:

sup D(£(6)) <D(0) + 5" (c) (88)
P(t) <O <t

sup D)) <c. (89)
P(t)<O<t

The proof of Theorem 2 is based on Lemmas 9-16 which are
presented next.

Lemma 9. The infinite-dimensional backstepping transformation of
the state ¢ defined by

Z(0) =LO0)—uP©)), Pt)<O<t, (90)

together with the predictor-based control law (83), (81), (82) trans-
form the system (76)—(77) to the “target system” given by

X(6) = FX(©), w(X(0) + Z((£))) (ChY)

Z(t) = —czZ(1). (92)

Proof. Using (76) and the fact that P(¢(t)) =X(t) we get (91).
Setting @ =t in (90) and taking the derivative with respect to t of
the resulting equation we get (92) using (77), (81) and (83). ©

Lemma 10. The inverse of the infinite-dimensional backstepping
transformation defined in (90) is
C0)=Z(0) + u1(9)), P(t)<O<L, (93)

where

]
11(0) = X(t) + /¢ (1 Ds) + Z6)Uis)

xfUI(S), pI(5)) + Z(5)) ds, () <O<E. 94
Proof. By direct verification, noting also that 77(9) = P(9) for all
¢(t)sdst, where I1(9) is driven by the transformed state Z(9),
whereas P(0) is driven by the state () for ¢(t)<sf<t. ©

Lemma 11. There exists a class KL function ﬁ* such that for all
solutions of the system satisfying (84) for 0 <c <1, the following

holds for all t=0:
2% (14 1) G000+ By G0, max(i0,c-a @), 95)

where

E@M) =X+ sup |1Z@O)|+ sup |UWO) (96)
Pp(t) <0<t Ppt)<O<t

Proof. Solving (92), we have that Z(t) = Z(0)e~z® for all t=0. Since
¢(t) is increasing for all t=0 we get

sup |Z(0)| <|Z(0)|e~ 2
pH) <6<t

for all t>4(0). 97)

Similarly, for all 0<t<q(0) we get

sup |Z(0)|< sup
#O<o<t $(0)<0<0

IZ@)]+  sup
0<0<t<a(0)

1Z(©)1, (93)

and hence, combining (98) with (92), we get

sup |Z(#)|<2 sup |Z@®)| forall 0<t<a(0). (99)

pt)<o<t ¢(to) <O <t

Therefore, using (97), (99) and the fact that for all t<a(0), ¢(t)<0
we get

sup |Z(0)|<2 sup |Z(#)|e O for all t>0. (100)
$(0)<0<0

PpH) <6<t

Using (90) we get that ¢(t) = t-D(((¢(1))) = t=DZ((t)) + uX(1))),
and hence,

sup |Z(9)|<2 sup ‘Z(g)le*szeCzD(Z(tﬁ(f))Jru(X(f)))
pty<o<t #0)<0<0

for all t>0.

(101)

Using (33) we get that D(Z(¢p(t)) + u(X(t))) <D(0) + 61(21Z(p(t)))
+61(21X(t)]). Since for all t=26(0), ¢(t)=0, from (92) we get that
|Z(p(1))| <1Z(0)| for all t=a(0). Moreover, for all t <6(0), $(0) <¢p(t)<0.
Hence, for all t20, |Z(¢(t))| =Sup, ) <o <01Z(0)|. Therefore, (101) gives

sup |Z(0)|<2 sup |Z(9)|ezPO+512 subyo <o <0lZON+01IXDON) gzt
Pty <o<t $(0)<0<0

for all t>0. (102)

Let Y(s) be the solution of dY(s)/ds=f(Y(s),u(Y(s)) + w(s)) for
s25920. Under Assumption 4 and [28], there exist class K££ function
B, and class K function 7, such that

YO <Pa¥(so)s—50)+ 71 sup jorrl ) forall sssa,  (103)
So <T'<s
and hence, with (91) we get
IX(0)] <Br(1X(S)]. t=5) + 71 ( sup IZ(¢(T))|> for all t>s>0. (104)
sS<r<t
Setting s=0 we have that
IX(D)] <B2(1X(0)], 1) + 74 ( sup |Z(©®)| | forall t>0, (105)
H(0) <O <(t)
and hence, from (92)
IX(6)] <B,(1X(0)],0) + 7 <2 sup |Z(9)|> for all t>0. (106)
$(0)<6<0
Therefore, with (102) we arrive at
sup |Z(0)| <aqz (X(0)| + sup |Z(6)|> e %t forall t>0, (107)
MO <o<t #0)<6<0
where the class K, function a1, is defined as
@12(5) = 2e2PO)5eez(G1(S)+512F2(5.0+271(5) (108)
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Setting in (104) s=t/2 we get

[X(®)| <3, <|X(0)|,£> +71 ( sup Z(9)|> for all £>0. (109)
2 HE) <O <g(t)
We estimate Now sup, 2)<g<aZ(0)|. Solving (92) we get
sup  |Z6)|<2 sup |Z(@)e D for all t>24(0). (110)

B(£/2) <O <) H0)<0<0
With the help of relations (92) and (110) we get

IZ@©) + sup |Z()|<2 sup |Z(0)]
#(t/2)<0<0 0<0 <) #0)<0<0

sup |Z(@)|< sup
B(t/2) <O <g(t)
for all 0<t<2q4(0). (111)

Hence, using the fact that ¢(t/2) =t/2-D({(¢(t/2))) we get from
(90)

sup |Z(0)| <2 sup |Z(9)|eCZ(D(0)+51(Z\X(f/z)\)+51(2\Z(fll(f/2))|))e—(cz/2)f

P(t/2) <0 <g(t) $(0)<0<0

(112)

for all t=0. Setting s=0 and replacing t by t/2 we get from (104)
that

x(3)] <2 (1005 )w]( sup |Z<e>|>.
$(0) <0 <p(t/2)

Since, SUp,)<g<pi/2)|Z(0) SSUP40)<9<01Z(O)] + SUPg<g< 4y 1Z(O) <
2 supy)<e<0lZ(0)l, we get

(113)

\x( )\sﬂz(\xmn 0)+ 74 (2 sup

0)<6<0

|Z(6)|> for all t>0. (114)

Using also the fact that |Z(¢(t/2))| <sup,)<p<0lZ(0)|, combining
(112), (114) we get from (109) that

1X(t)] <3 (lX(O)l + sup |Z©O)l, r) for all £>0 (115)
#H0)<0<0
where the class £ function j3, is defined as
/}3 s.t)= ﬁZ ( ) +74 (ZseCzD(O)eCz(bl(25)+f51(2/3z(3 0)+2V1(5)))e—czf/2)
(116)
Using (83), (84) we get for all 620
1 1
|U@)| < 1= IVu(P@O)f (P(6), £(9))] + 1% 1Z(O)I. (117)
Since f:R" x R—R" is locally Lipschitz with f(0,0)=0 and

ueCH(R"; R) with u(0)=0, there exist class K. functions a;; and
&%, such that for all (X, w)eR™!

O] <a11(1X1) (118)
[VuX)| IVu0)| + a11(1X1) (119)
X, o) <aT;(1X] + |ol). (120)

Therefore, using (33), (90) and the fact that P(9) =
we get for all 620 that

11(0) = X(a(0))

|U@©)|< (IVﬂ(O)\ + a11(1X(a(@))a7; (IX(a(@))] + 1Z(0)]

1
+an(XEO) + 1 cZ|ZO). (121)

Hence, with the help of (107), (115)

pt)y<O<t

sup {U(9)|_ B4 IX(O) + sup |Z®),t| forall t>0(0),
1-c #0)<0<0

(122)

where the class K. function j, is defined as

Ba(s.t) = (IVu(0)| + a11(B3(s, 0)a%; (B3(s, t) + ara(s)e™ 2
+ a11(B3(s, 1)) + czar(s)e™ . (123)

Moreover, sup,)<g<¢IUO)ISSUP40)<o<0lUO)] + SUPg << IUO), for
all t<4(0), and hence,

sup |[U@®)|< sup U@
P <o<t $(0)<6<0
<|X(O)|+ sup |Z(9),0> for all t <4(0). (124)
(( )<6<0

Combining (122), (124) and assuming without loss of generality
that 3,(s,0) > s we arrive at

sup [U(O)| <

p<o<t

(1 + %) $4(5(0), max{{0, t—a(0)}}) for all t>0.
(125)

Combining (107), (115), (125) we get (95) with 7(s,t)=

a12(8)e™2t + Ba(s,t). O

Lemma 12. There exists a class K. function ag such that for all
solutions of the system satisfying (84) for 0 <c <1, the following
holds:

IPO)<as (lX(t)l + (tsup tl{(r)l) p(t)<O<t. (126)
pt)<t<

Proof. Under Assumption 2 we have that

AR O <o<t. (127)

Multiplying both sides of (127) with ¢(0) =1 + D'(¢(6))U(9) > 0,

with (84) we get that

dR(P(9))
do ~

Using relation (33) and the comparison principle we have from
(127) for all ¢(t)<@<t that

P <O<t. (128)

R(P(0)) <e*PO+211E@O1) <R<X<t)) + sup a3(|c(r)|)> : (129)
Pty <z <t

With standard properties of class K. functions we get the state-
ment of the lemma with asek. as as(s)=a; ((a2(S)+
a3(5))e2PO+a16)y - o

Lemma 13. There exists a class K function 7* such that for all
solutions of the system satisfying (84) for 0 <c <1, the following
holds:

(130)

Pty <t <t

IH(H)ISJ?*<IX(t)I+ sup IZ(T)> p(t)<o<t.

Proof. Using the change of variable = ¢(y) and (94), we have that

dri(¢y))

dy
Since I1(¢(y)) satisfies the same ODE in y as the ODE for Y(s) in s
given by the relation dY(s)/ds=f(Y(s),u(Y(s)) + w(s)), it follows
from (103) that

=fU1(@W), pI1 (W) + Z(HY)), <y <a(h). (131

(W) <B2(XWO)Ly—1) + 71 (t SUD(UIZ((PO’))I)
<y <ol

forall t<y<a(t). (132)
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With the fact that 3(s, r)<3(s, 0) for all r=0, we get from (132)

11(0)] <B(IX(D)1,0) + 74 ( sup [|Z(r)>, p(<o<t. (133)

VIGESES

With the properties of class K functions we get (130), where
y(8) =2(5,0) +74(5). ©

Lemma 14. There exist class K, functions ag, a9 Such that for all
solutions of the system satisfying (84) for 0 <c <1, the following
hold:

Qb <ag(E(L), (134

E(t) <ér0(Q2(1)), (135)
for all t20, where & is defined in (86) and £ is defined in (96).

Proof. Using the direct backstepping transformation (90) and
bounds (126), (118) we get the bound (135) with
a10(S) =S + a11(ag(s)). Using the inverse backstepping transforma-
tion (93) and the bounds (130), (118) we get the bound (134) with
ag(S)=5s+an(7*(s). ©

Lemma 15. There exists a function 5 of class K. such that for all
solutions of the system that satisfy

Q)< () forall t=0
for 0 <c <1, they also satisfy (84).

(136)

Proof. Using (58), (118) one can conclude that if a solution
satisfies for all t=0

(ID'O)] + 82(1E@OMAUO)] + (IVuO)] + a11(IP©@)))aT, (IP©)]
+iE@D) <c,  pO)<O<t
for 0 <c<1, then it also satisfies (84). Using Lemma 12, (137) is

satisfied for 0 < c <1 as long as the bound (136) holds, where the
class K., function 5 is given by

5(5) = (ID'(0)] + 82())(S + (IVu(0)] + a11(as(9)))at;(Gs(s) +5). O
(138)

(137)

Lemma 16. There exists a class K function &g such that for all
initial conditions of the closed-loop system (76)-(78), (83), (81), (82)
that satisfy (85), the solutions of the system satisfy (136) for0 <c <1
and hence satisfy (84).

Proof. Using Lemma 14, with the help of (95) we have that

A~ 1 A A~ ~ ~
Q(t)<ag ( <1 + E) (B (a10(£2(0)), t) + p4(a10(£2(0)), max{{0, f—U(O)}})))
(139)

Hence, for all initial conditions that satisfy the bqgmd (85) with
any choice of a class K function §R0A(C)SE;:0A(3 (c),c), where
Eroa(s,0) is the inverse of the class KC. function
. 1\~ PN

cton(s:0) = s (1412 ) 07(0109.0)+ hano©).00). (140)
with respect to & ,'s first argument, the solutions satisfy (136).
Moreover, for all those initial conditions, the solutions verify (84)
for all 92¢(0). ©

Proof of Theorem 2. Using (33), (85) and 0 <c <1 we conclude
that ¢(0) = D(¢(0)) <D(0) + 81(Eroa(1)) = &*. Hence, using Corollary
10 in [27] and relation (139) we get (87) with some class K.
function o; where (s, t)=01(3" (G10(s),t) + Ba(G10(s), max{{0,
t-£*}})). Using relations (83), (94) and that fact that P =17 we get
for all t=0 that

dr(t) _ (A-=D'(uUI(t)) + Z(O)CzZO) T (6), u(I1(1) + Z(1))
dt 1=VuI@O)f (), p1(1)) + ZOND (I (1) + Z(1))

(141)

Under Assumption 1 (Lipschitzness of D’), Assumption 4
(Lipschitzness of Vu) and relation (92) we conclude that the
right-hand side of (92), (141) is Lipschitz with respect to (Z, 1)
and hence, using also bound (130) there exists a unique solution
(Z(t), I1(t))eC' (0, »). Using (93) we get the existence and unique-
ness of ¢(t)eC'(0,«). The boundedness of U and (77) guarantee that
¢ is continuous at t=0. By integrating (77) between any two time
instants it is shown that ¢ is Lipschitz on [0,~) with a Lipschitz
constant given by a uniform bound on U. With the fact that 77 =P,
relations (83), (84) and the Lipschitzness of D' and Vi we get the
existence and uniqueness of Ue(0, ») and that U is locally Lipschitz
in (0, ). From (76) and (82) we have for all t > ¢(0) that

X(6) = fX(0), S(g(1))) (142)

1
1+ D'((pONU@O)

Since ¢ is Lipschitz on [0, ), U is Lipschitz on (0, ~) and D' is locally
Lipschitz, one can conclude that the right hand-side of system
(142)-(143) is Lipschitz with respect to (X,¢), and hence, there
exists a unique solution (X(t),¢(t))eC!(a(0),«). Similarly, the
Lipschitzness of the initial conditions ¢(s) and U(s) for ¢(0)<s <0
guarantees the existence and uniqueness of (X(t), 4(t))C'[0, 5(0)).
The boundness of the right-hand side of (142)-(143) guarantees
that (X, ¢) are continuous at ¢(0), and hence, the Lipschitzness of ¢
at 0 guarantees that the right-hand side of (142) is continuous at
a(0). Therefore X is continuously differentiable also at ¢(0). With
(84) we get bound (89) and with (33), (136) we get (88) with any
class K function §*(¢)=6;(3” (c)). ©

()=

(143)

6. Conclusions

We present a methodology for the compensation of state-
dependent delays that depend on delayed states, by designing a
predictor feedback law. We prove asymptotic stability of the
closed-loop system with the aid of a Lyapunov functional that
we construct by introducing a backstepping transformation.
The results of this paper can be directly extended to the case in
which the delay is explicitly defined as a function of past values of
the state, at a time instant that is a priori given. The present
results seem also extendable to the case in which the delay
might depend on past values of the state, but at a time instant
that may be a function of the delay (rather than just identical to
the delay).

Since in this paper we deal with delays that depend on delayed
states, whereas in [3] we deal with delays that depends on current
states, it is reasonable to ask whether this methodology can be
extended to the case in which the delay function depends both on
delayed and current states. For designing the predictor feedback
law for such a delay function one has first to show the well-
posedness of both the prediction and delay times (namely ¢ and ¢
respectively). To show this one has to study the existence and
uniqueness of a two-point boundary value problem for the
prediction and the delay times. For studying the existence and
uniqueness of this problem one has to use fixed-point theory
incorporating the properties of the dynamics of these two times
and the properties of the solutions of the system. This study is far
from trivial and can be pursued in the future.
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