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systems with delays that depend on the delayed state of the plant, that is, the delay is defined implicitly
as a nonlinear function of the state at a past time which depends on the delay itself. Since the prediction
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We recently introduced a design methodology for the stabilization of nonlinear systems with input and
state delays that depend on the current state of the plant. In the present paper we consider nonlinear

horizon and the delay depend on the state of the plant, the key design challenges are how to compute
the predictor state and the delay (since the delay needs to be available in order to compute the
predictor). We resolve these challenges and we establish closed-loop stability with the aid of a strict
Lyapunov functional that we construct. We also design a predictor feedback law for systems with state
delays that depend on delayed states. We present an example of a strict-feedforward nonlinear system
with input delay.

& 2013 European Control Association. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The time that is required for a relativistic particle to feel the
electromagnetic force of another particle depends on the position
of the particles at a past time instant [29]. The round trip time of a
signal in a network is a past value of the queuing delay at a time
that depends on past values of the queuing delay itself [7,8]. The
common attribute of these two time periods is that they depend
on past values of the state of the system itself. In other words,
these two time periods are examples of state-dependent delays
that depend on delayed states.

Input delay compensation for nonlinear systems is achieved
using predictor feedback [13–15,20]. Alternative control designs
for nonlinear systems with constant delays can be found in
[10,11,21–26]. Predictor feedback has been also successful in
compensation of time-varying delays [2,19]. An alternative design
for nonlinear systems with time-varying delays is the one in [12].
The predictor feedback design for nonlinear systems with state-
dependent delays was provided recently [3]. Results dealing with
the robustness of predictor feedback to time-varying [16,4], state-
dependent [4] or input-dependent delays [5,6] also exist.

In [3] we developed a systematic methodology for the com-
pensation of input delays that depend on the current state of the
plant. In this paper we consider a different problem in which the
delay depends on past values of the state, at a time that depends
trol Association. Published by Elsev

Liberis),
on the delay itself. Since the delay is needed for computing the
predictor state the first design challenge that we resolve is
computing the delay through this implicit relation. Since the
prediction horizon, over which we design the predictor, depends
on the state of the system, the second design challenge that we
resolve is computing the predictor state. We then present the
predictor feedback law for general nonlinear systems (Section 2).
The real complexity of the problem is in the stability analysis of
the closed-loop system. Due to an inherent limitation that the
delay rate is larger than −1 (which ensures that the delay function
is uniquely defined, and hence, that the dynamical system which
describes the dynamics of the plant is uniquely defined) and since
the delay depends on the state, only local results are possible. We
prove local asymptotic stability of the closed-loop system with the
aid of a Lyapunov functional that we construct by introducing a
backstepping transformation of the actuator state (Section 3). We
present a numerical example of a second-order strict-feedforward
system with a state-dependent input delay (Section 4). We also
consider nonlinear systems in the strict-feedback form with a
delay on the virtual input that depends on past values of the state
of the system at which the control input enters. For this class of
systems we design the predictor feedback law and prove asymp-
totic stability of the closed-loop system (Section 5).

Notation: We use the common definition of class K, K∞ and KL
functions from [17]. For an n-vector, the norm j � j denotes the
usual Euclidean norm. We say that a function ρ : Rþ � ð0;1Þ↦Rþ
belongs to class KC if it is of class K with respect to its first
argument for each value of its second argument and continuous
with respect to its second argument. It belongs to class KC∞ if it is
in KC and also in K∞ with respect to its first argument.
ier Ltd. All rights reserved.
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2. Predictor feedback under input delays

2.1. Problem formulation

We consider the following plant:

_X ðtÞ ¼ f ðXðtÞ;UðϕðtÞÞÞ; ð1Þ
where t≥ϕð0Þ, U∈R, f : Rn � R-Rn is locally Lipschitz with
f ð0;0Þ ¼ 0 and ϕ satisfies

t ¼ ϕðtÞ þ DðXðϕðtÞÞÞ: ð2Þ
We impose the following assumptions on the delay function D and
the plant (1).

Assumption 1. D∈C1ðRn;RþÞ and ∇D is locally Lipschitz.1

Assumption 2. The plant _X ¼ f ðX;ωÞ is strongly forward complete,
that is, there exist a smooth positive definite function R and class
K∞ functions α1, α2 and α3 such that

α1ðjXjÞ≤RðXÞ≤α2ðjXjÞ ð3Þ

∂RðXÞ
∂X

f ðX;ωÞ≤RðXÞ þ α3ð ω Þ;
���� ð4Þ

for all X∈Rn and for all ω∈R.

This property differs from the standard forward completeness
[1] in that we assume that f ð0;0Þ ¼ 0 and hence, Rð�Þ is positive
definite. Assumption 2 guarantees that system (1) does not exhibit
finite escape time, that is, for every initial condition and every
locally bounded input signal the corresponding solution is defined
for all times.

Assumption 3. The plant _X ¼ f ðX; κðXÞ þ ωÞ is input-to-state stable
with respect to ω and the function κ is locally Lipschitz with
κð0Þ ¼ 0.

2.2. Predictor feedback design

We refer to the quantity t−ϕðtÞ ¼DðXðϕðtÞÞÞ as “delay”. This is
the time interval that indicates how long ago the control signal
that currently affects the plant was actually applied. Consequently,
the delay D depends on the value of the state at the time the
control was applied. The goal of our predictor-based design is to
completely compensate this input delay, that is, after the control
signal reaches the plant, i.e., when ϕðtÞ≥0 (which happens for first
time at tn ¼DðXð0ÞÞ), to make the closed-loop system to behave as
if there were no delay at all. To achieve this we first have to
appropriately define the predictor of the state X, that is, the signal
that satisfies

PðϕðtÞÞ ¼ XðtÞ for all t≥0: ð5Þ
Assume for the moment that ϕ′ðtÞ40, for all t≥0 (we show later on
that under a sufficient condition, which incorporates the delay
function D and the initial conditions and solutions of the system,
that this is true), which in particular implies that ϕ is invertible.
Denoting

sðθÞ ¼ ϕ−1ðθÞ for all ϕðtÞ≤θ≤t; ð6Þ
the predictor state P is PðθÞ ¼ XðsðθÞÞ for all ϕðtÞ≤θ≤t. With the
help of (2) we have

sðθÞ ¼ θ þ DðXðθÞÞ for all ϕðtÞ≤θ≤t: ð7Þ
Therefore, the predictor of X, PðtÞ ¼ XðsðtÞÞ is
PðtÞ ¼ Xðt þ DðXðtÞÞÞ for all t≥0: ð8Þ
1 To ensure uniqueness of solutions.
Having defined the predictor of X we now need to compute this
signal. This is not an easy task since P cannot be directly computed
from relation (8), because P depends on the future values of X
which are not available. In addition to that, the quantity
sðtÞ−t ¼DðXðtÞÞ, which from now on we refer to as the prediction
horizon (this is the time interval which indicates after how long an
input signal that is currently applied affects the plant), depends on
the state X(t). Note here that the delay time DðXðϕðtÞÞÞ is not equal
to the prediction horizon DðXðtÞÞ.

We are now ready to compute P. Since the predictor state PðθÞ,
ϕðtÞ≤θ≤t satisfies PðθÞ ¼ XðsðθÞÞ we perform a change of variables
t ¼ sðθÞ in (1) and using definition sðθÞ ¼ θ þ DðXðθÞÞ we get that

dPðθÞ
dθ

¼ ð1þ ∇DðXðθÞÞf ðXðθÞ;UðϕðθÞÞÞÞf ðPðθÞ;UðθÞÞ: ð9Þ

Integrating this relation from ϕðtÞ to t and using the fact that
PðϕðtÞÞ ¼ XðtÞ we get for all ϕðtÞ≤θ≤t

PðθÞ ¼ XðtÞ þ
Z θ

ϕðtÞ
ð1þ ∇DðXðsÞÞf ðXðsÞ;UðϕðsÞÞÞÞf ðPðsÞ;UðsÞÞ ds: ð10Þ

From relation (10) one can observe that for computing P(t), besides
having available X(t) and the history of the signals XðsÞ, UðsÞ,
UðϕðsÞÞ, PðsÞ on the interval ½ϕðtÞ; tÞ one needs to know the
function ϕðtÞ. We compute next ϕðtÞ, which is defined implicitly
through relation (2). We proceed analogously with the derivation
of relation (10). We define the change of variables t ¼ θ, for all
t ≤θ≤t þ DðXðtÞÞ and differentiate (2) to get

1¼ ϕ′ðθÞ þ∇DðXðϕðθÞÞÞf ðXðϕðθÞÞ;UðϕðϕðθÞÞÞÞϕ′ðθÞ: ð11Þ

Solving for ϕ′ and integrating backward the resulting relation
starting at the known value ϕðt þ DðXðtÞÞÞ ¼ t, which follows from
(6) and (7), we arrive for all t ≤θ≤t þ DðXðtÞÞ at

ϕðθÞ ¼ t−
Z tþDðXðtÞÞ

θ

ds
1þ∇DðXðϕðsÞÞÞf ðXðϕðsÞÞ;UðϕðϕðsÞÞÞÞ : ð12Þ

The predictor-based controller is now derived based on the delay-
free design (see Assumption 3) as

UðtÞ ¼ κðPðtÞÞ: ð13Þ

One can observe from (12) that the denominator has to be
nonzero. What is more, ϕðθÞ has to be invertible for all
t ≤θ≤t þ DðXðtÞÞ. A sufficient condition, on the initial conditions
and the solutions of the system, for these two facts to hold
simultaneously is

F c : c þ∇DðXðϕðsÞÞÞf ðXðϕðsÞÞ;UðϕðϕðsÞÞÞÞ40 for all s≥0; ð14Þ

for some c∈ð0;1�. We refer to F 1 as the feasibility condition of the
controller (10), (12), (13). Although the actual feasibility region of
the controller is given by the initial conditions and solutions of the
system satisfying the feasibility condition F 1 in (14), it turns out
that the stability analysis is simplified if one imposes a more
restrictive condition (which guarantees the satisfaction of condi-
tion (14)). In the subsequent development we impose the follow-
ing condition on the initial conditions and solutions of the system

F n

c : j∇DðXðϕðsÞÞÞf ðXðϕðsÞÞ;UðϕðϕðsÞÞÞÞjoc for all s≥0; ð15Þ

for some 0oco1. It is evident that if F n

c is satisfied then F c is also
satisfied.

Note that the requirement _D ¼ ∇Df 4−1 is an inherent limita-
tion of the plant and not a restriction of the control design. This
condition guarantees that 0oϕ′o∞, that is, it guarantees that ϕ is
a single-valued function, which in turn ensures that the dynamical
system which describes the dynamics of the plant is uniquely
defined.
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2.3. Implementation

In an actual implementation of the predictor-based control law
(13), at each time step one has to compute the predictor P using
relation (10) for θ¼ t. The integral in (10) is computed from the
history of X(s), for all s∈½ϕðtÞ; tÞ, and of U(s), for all s∈½ϕðϕðtÞÞ; tÞ,
using a method of numerical integration, with a total number of
NPðtÞ ¼DðXðϕðtÞÞÞ=h points, where h is the discretization step.
However, for computing P one has to first compute ϕ. This
computation is performed by calculating the integral in (12) from
the history of X(s), for all s∈ðϕðtÞ; t�, and of U(s), for all
s∈ðϕðϕðtÞÞ;ϕðtÞ�,2 using a method of numerical integration with
NϕðtÞ ¼DðXðtÞÞ=h points. Alternatively, one could compute ϕ by
numerically solving relation (2) with respect to ϕ.
3. Stability analysis under input delays
Theorem 1. Consider the closed-loop system consisting of the plant
(1) and the control law (10), (12), (13). Under Assumptions1–3 there
exist a class K function ψRoA, a class KC∞ function ρ and a class KL
function β such that for all initial conditions for which Xð�Þ, Uð�Þ,
Uðϕð�ÞÞ are locally Lipschitz on the interval ½ϕð0Þ;0Þ, and which satisfy

Ωð0ÞoψRoAðcÞ; ð16Þ
for some 0oco1, where

ΩðtÞ ¼ jXðtÞj þ sup
ϕðtÞ ≤θ ≤ t

jXðθÞj þ sup
ϕðϕðtÞÞ ≤s ≤ t

jUðsÞj; ð17Þ

there exists a unique solution to the closed-loop system with X
Lipschitz on ½0; ∞Þ, U Lipschitz on ð0; ∞Þ, and
ΩðtÞ≤βðρðΩð0Þ; cÞ; tÞ; ð18Þ
for all t≥0. Furthermore, there exists a class K function δn such that,
for all t≥0,

sup
ϕðtÞ ≤θ ≤ t

DðXðθÞÞ≤Dð0Þ þ δnðcÞ ð19Þ

sup
ϕðtÞ ≤θ ≤ t

j _DðXðθÞÞj≤c: ð20Þ

The proof of Theorem 1 is based on a series of technical lemmas
which are presented next.

Lemma 1. The infinite-dimensional backstepping transformation of
the actuator state defined for all ϕðϕðtÞÞ≤θ≤t by
WðθÞ ¼ UðθÞ−κðPðθÞÞ; ð21Þ
together with the control law (13) transform the plant (1) to the
“target system” given by

_X ðtÞ ¼ f ðXðtÞ; κðXðtÞÞ þWðϕðtÞÞÞ for all t≥ϕð0Þ ð22Þ

WðtÞ ¼ 0 for all t≥0: ð23Þ

Proof. Using (13) we get (23). Noting that for all t≥0, PðϕðtÞÞ ¼ XðtÞ
and defining PðϕðtÞÞ ¼ XðtÞ also for ϕð0Þ≤t ≤0, from (21) we get
WðϕðtÞÞ ¼UðϕðtÞÞ−κðXðtÞÞ, for all t≥ϕð0Þ, and hence, from (1) we get
(22). □

Lemma 2. The inverse transformation of (21) is given for all
ϕðϕðtÞÞ≤θ≤t by
UðθÞ ¼WðθÞ þ κðΠðθÞÞ; ð24Þ
2 For computing the first value of ϕðθÞ, i.e., ϕðt þ DðXðtÞÞ−hÞ, one needs the value
of U(s) at s¼ ϕðtÞ. Since ϕðtÞ is yet to be computed one could apply a one-
discretization step delay h to U and employ the value U(s) at s¼ ϕðt−hÞ instead.
where for all ϕðtÞ≤θ≤t

ΠðθÞ ¼ XðtÞ þ
Z θ

ϕðtÞ
ð1þ ∇DðXðsÞÞf ðXðsÞ; κðXðsÞÞ þWðϕðsÞÞÞÞ

�f ðΠðsÞ; κðΠðsÞÞ þWðsÞÞ ds: ð25Þ

Proof. By direct verification we get that ΠðtÞ ¼ PðtÞ3 for all t≥ϕð0Þ.
Defining ΠðϕðtÞÞ ¼ XðtÞ, for all ϕð0Þ≤t ≤0 we conclude that
ΠðsÞ ¼ PðsÞ for all ϕðϕðtÞÞ≤s≤t, and hence, using (21) we get
(24). □

Lemma 3. There exist a class KL function βn and a class KC∞
function ρn such that for all solutions of the system satisfying (15)
for 0oco1, the following holds:

ΞðtÞ≤βnðρnðΞð0Þ; cÞ; tÞ; ð26Þ
for all t≥0, where

ΞðtÞ ¼ jXðtÞj þ jXðϕðtÞÞj þ sup
ϕðϕðtÞÞ ≤θ ≤ t

jWðθÞj: ð27Þ

Proof. Based on Assumption 3 and [28], there exist a smooth
function S : Rn-Rþ and class K∞ functions α4, α5, α6 and α7 such
that for all X∈Rn and for all ω∈R the following hold:

α4ðjXðθÞjÞ≤SðXðθÞÞ≤α5ðjXðθÞjÞ ð28Þ

∂SðXðθÞÞ
∂X

f ðXðθÞ; κðXðθÞÞ þ ωðθÞÞ≤−α6ð XðθÞ Þ þ α7ð ωðθÞ Þ:
�������� ð29Þ

Consider now the following Lyapunov functional for the “target
system” given in (22)–(23)

VðtÞ ¼ SðXðtÞÞ þ SðXðϕðtÞÞÞ þ
2þ 1

1−c
g

Z LðtÞ

0

α7ðrÞ
r

dr; ð30Þ

where

LðtÞ ¼ sup
ϕðtÞ ≤θ ≤sðtÞ

jegðsðθÞ−tÞWðϕðθÞÞj

¼ lim
n-∞

Z sðtÞ

ϕðtÞ
e2ngðsðθÞ−tÞWðϕðθÞÞ2n dθ

� �1=2n

; ð31Þ

with g40. We now upper- and lower-bound L(t) in terms of
supϕðϕðtÞÞ ≤θ ≤ t jWðθÞj. From (6), (12) and (15) for 0oco1 we get for
all ϕðtÞ≤θ≤sðtÞ that dsðθÞ=dθ¼ 1=ϕ′ðsðθÞÞ≤2. Integrating this rela-
tion from ϕðtÞ to θ and, since sðϕðtÞÞ ¼ t and θ≤sðtÞ, we have

sðθÞ−t≤2ðsðtÞ−ϕðtÞÞ; ϕðtÞ≤θ≤sðtÞ: ð32Þ
Since D∈C1ðRn;RþÞ there exists a function δ1∈K∞∩C1 such that

DðXÞ≤Dð0Þ þ δ1ðjXjÞ: ð33Þ
Therefore, using (2) and (7) we arrive at

LðtÞ≤e4gDð0Þe4gδ1ðjXðtÞjþjXðϕðtÞÞjÞ sup
ϕðϕðtÞÞ ≤θ ≤ t

jWðθÞj: ð34Þ

Moreover, since s is increasing with sðϕðtÞÞ ¼ t, based on (6) and
(15), we get for all ϕðtÞ≤θ≤sðtÞ
0≤sðθÞ−t: ð35Þ
Therefore, with the help of (35) we have that

LðtÞ≥ sup
ϕðϕðtÞÞ ≤θ ≤ t

jWðθÞj: ð36Þ
3 The quantities P and Π are identical. However, we use two distinct symbols
for the same quantity because, in one case, P is expressed in terms of X and U, for
the direct backstepping transformation, while, in the other case, Π is expressed in
terms of X and W , for the inverse backstepping transformation.
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Taking the time derivative of L(t), with (23) we get

_LðtÞ ¼ lim
n-∞

1
2n

Z sðtÞ

ϕðtÞ
e2ngðsðθÞ−tÞWðϕðθÞÞ2n dθ

� �1=2n−1

� −ϕ′ðtÞWðϕðϕðtÞÞÞ2n−2ng
Z sðtÞ

ϕðtÞ
e2ngðsðθÞ−tÞWðϕðθÞÞ2n dθ

� �
:

ð37Þ
Using (15) we have ϕ′ðtÞ40 and hence _LðtÞ≤−gLðtÞ. With this
inequality and (29), taking the derivative of (30) we get with the
help of (15)

_V ðtÞ≤−α6ðjXðtÞjÞ−
1
2
α6ð XðϕðtÞÞ Þ

����
þ 1
1−c

α7ð WðϕðtÞÞ Þ þ α7ð WðϕðϕðtÞÞÞ Þ
��������

− 2þ 1
1−c

� �
α7ðLðtÞÞ: ð38Þ

With the help of (36) we get _V ðtÞ≤−α6ð XðtÞ Þ− 1
2 α6ð XðϕðtÞÞ Þ

��������
−α7ðLðtÞÞ. Using (28), the definition of L(t) in (31) and (30) we
conclude that there exists a class K function γ1 such that
_V ðtÞ≤−γ1ðVðtÞÞ. Using the comparison principle and Lemma 4.4 in
[17], there exists a class KL function β1 such that V ðtÞ≤β1ðV ð0Þ; tÞ.
Using (28), the definition of V(t) in (30) and the properties of class
K functions we arrive at jXðtÞj þ jXðϕðtÞÞj þ LðtÞ≤βnðρ1ðjXð0Þj þ
jXðϕð0ÞÞj þ Lð0Þ; cÞ; tÞ for some class KL function βn and some class
KC∞ function ρ1. Using relations (34) and (36) the lemma is
proved. □

Lemma 4. There exists a class K∞ function α8 such that for all solutions
of the system satisfying (15) for 0oco1, the following holds:

jXðθÞj

þ jPðθÞj≤α8 jXðtÞj þ jXðϕðtÞÞj þ sup
ϕðϕðtÞÞ ≤ s ≤ t

jUðsÞj
 !

; ϕðtÞ≤θ≤t:

ð39Þ

Proof. Setting in (4) ω¼UðθÞ, we get for all ϕðtÞ≤θ≤t that
dRðPðθÞÞ

dP
f ðPðθÞ;UðθÞÞ≤RðPðθÞÞ þ α3ð UðθÞ Þ:

���� ð40Þ

Using (7) and (9), by multiplying (40) with dsðθÞ=dθ and using (15)
we get

dRðPðθÞÞ
dθ

≤2ðRðPðθÞÞ þ α3ð UðθÞ ÞÞ; ϕðtÞ≤θ≤t:
���� ð41Þ

Using the comparison principle and (33) one gets

RðPðθÞÞ≤e2ðDð0Þþδ1ðjXðϕðtÞÞjÞÞ RðXðtÞÞ þ sup
ϕðtÞ ≤ s ≤ t

α3ðjUðsÞjÞ
 !

; ϕðtÞ≤θ≤t:

ð42Þ
Similarly, setting ω¼UðϕðθÞÞ in (4) we get for all ϕðtÞ≤θ≤t
dRðXðθÞÞ

dX
f ðXðθÞ;UðϕðθÞÞÞ≤RðXðθÞÞ þ α3ð UðϕðθÞÞ Þ:

���� ð43Þ

Since dXðθÞ=dθ¼ f ðXðθÞ;UðϕðθÞÞÞ, for all ϕðtÞ≤θ≤t, with the com-
parison principle, (43) and the fact that t−ϕðtÞ ¼DðXðϕðtÞÞÞ we get

RðXðθÞÞ≤eDð0Þþδ1ðjXðϕðtÞÞjÞ RðXðϕðtÞÞÞ þ sup
ϕðϕðtÞÞ ≤ s ≤ϕðtÞ

α3ðjUðsÞjÞ
 !

: ð44Þ

With standard properties of class K∞ functions we get (39), where
the class K∞ function α8 is given as

α8ðsÞ ¼ 2α−11 ððα2ðsÞ þ α3ðsÞÞe2ðDð0Þþδ1ðsÞÞÞ: □ ð45Þ

Lemma 5. There exists a class K function γn such that for all
solutions of the system satisfying (15) for 0oco1, the following
holds:

jXðθÞj þ jΠðθÞj≤γnðjXðtÞj þ jXðϕðtÞÞj þ sup
ϕðϕðtÞÞ ≤ s ≤ t

jWðsÞjÞ;

ϕðtÞ≤θ≤t: ð46Þ

Proof. Under Assumption 3 and [28], there exists class KL
function β2 and class K function γ1 such that

jYðτÞj≤β2ðjYðt0Þj; τ−t0Þ þ γ1 sup
t0 ≤ s ≤ τ

jωðsÞj
 !

; τ≥t0; ð47Þ

where YðτÞ is the solution of _Y ðτÞ ¼ f ðYðτÞ; κðYðτÞÞ þ ωðτÞÞ. Using the
change of variables y¼ sðθÞ and (7), (25), we have that

dΠðϕðyÞÞ
dy

¼ f ðΠðϕðyÞÞ; κðy;ΠðϕðyÞÞÞ þWðϕðyÞÞÞ: ð48Þ

Using (47) we have

jΠðθÞj≤γ2ðjXðtÞjÞ þ γ1 sup
ϕðtÞ ≤ s≤ t

jWðsÞj
 !

; ϕðtÞ≤θ≤t; ð49Þ

where the class K function γ2 is defined as γ2ðsÞ ¼ β2ðs;0Þ. Analo-
gously, since XðθÞ satisfies dXðθÞ=dθ¼ f ðXðθÞ; κðXðθÞÞ þWðϕðθÞÞÞ, for
all ϕðtÞ≤θ≤t, we get

jXðθÞj≤γ2ðjXðϕðtÞÞjÞ þ γ1 sup
ϕðϕðtÞÞ ≤ s ≤ϕðtÞ

jWðsÞj
 !

; ϕðtÞ≤θ≤t: ð50Þ

With the properties of class K functions we get (46), where
γnðsÞ ¼ 2γ1ðsÞ þ 2γ2ðsÞ is of class K. □

Lemma 6. There exist class K∞ functions α9 and α10 such that for all
solutions of the system satisfying (15) for 0oco1, the following
hold:

ΩðtÞ≤α9ðΞðtÞÞ ð51Þ

ΞðtÞ≤α10ðΩðtÞÞ; ð52Þ
for all t≥0 where Ω is defined in (17) and Ξ is defined in (27).

Proof. Using (46) we have that

sup
ϕðtÞ ≤ θ ≤ t

jXðθÞj≤γn jXðtÞj þ jXðϕðtÞÞj þ sup
ϕðϕðtÞÞ ≤ s ≤ t

jWðsÞj
 !

: ð53Þ

Under Assumption 3 (Lipschitzness of κ and κð0Þ ¼ 0) there exists a
class K∞ function α̂ such that

jκðXÞj≤ α̂ðjXjÞ: ð54Þ
With the inverse backstepping transformation (24) and relation
(54) we arrive at

sup
ϕðϕðtÞÞ ≤θ ≤ t

jUðθÞj≤ sup
ϕðϕðtÞÞ ≤θ ≤ t

jWðθÞj

þ α̂ sup
ϕðϕðtÞÞ ≤ θ ≤ϕðtÞ

jΠðθÞj þ sup
ϕðtÞ ≤θ ≤ t

jΠðθÞj
 !

: ð55Þ

Using relation (46) and definition ΠðϕðθÞÞ ¼ XðθÞ, ϕðtÞ≤θ≤t we get
(51) with

α9ðsÞ ¼ sþ γnðsÞ þ α̂ð2γnðsÞÞ: ð56Þ
Analogously, using the direct backstepping transformation (21),
relation (39) and definition PðϕðθÞÞ ¼ XðθÞ, ϕðtÞ≤θ≤t we get (52)
with α10ðsÞ ¼ sþ α̂ð2α8ðsÞÞ. □

Lemma 7. There exists a function αn of class K∞ such that all the
solutions that satisfy

ΩðtÞoαn−1ðcÞ; t≥0; ð57Þ
for 0oco1 also satisfy (15) where Ω is defined in (17).
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Proof. Since D∈C1ðRn;RþÞ and f : Rn � R-Rn is locally Lipschitz
with f ð0;0Þ ¼ 0, there exist class K∞ functions δ2 and α11 such that

j∇DðXÞj≤ j∇Dð0Þj þ δ2ðjXjÞ ð58Þ

jf ðX;ωÞj≤α11ðjXj þ jωjÞ: ð59Þ
If a solution satisfies for all t≥0

ðj∇Dð0Þj þ δ2ðjXðθÞjÞÞα11ðjXðθÞj þ jUðϕðθÞÞjÞoc; ϕðtÞ≤θ≤t; ð60Þ
for 0oco1, then it also satisfies (15). With the trivial inequalities
jXðθÞj≤supϕðtÞ ≤ τ ≤ t jXðτÞj and jUðϕðθÞÞj≤supϕðϕðtÞÞ ≤ s ≤ϕðtÞjUðsÞj, for all
ϕðtÞ≤θ≤t, relation (60) is satisfied for 0oco1, for all t≥0, as long
as (57) holds, where the class K∞ function αn is defined as

αnðsÞ ¼ ðj∇Dð0Þj þ δ2ðsÞÞα11ðsÞ: □ ð61Þ

Lemma 8. There exists a class K function ψRoA such that for all initial
conditions of the closed-loop system (1), (10), (12), (13) that satisfy
relation (16) the solutions of the system satisfy (57) for 0oco1 and
hence satisfy (15).

Proof. Using Lemma 6, with the help of (26) we have that

ΩðtÞ≤α9ðβnðρnðα10ðΩð0ÞÞ; cÞ; tÞÞ: ð62Þ
By defining the class K∞ function α12 as α12ðsÞ ¼ α9ðβnðs;0ÞÞ, we get

ΩðtÞ≤α12ðρnðα10ðΩð0ÞÞ; cÞÞ: ð63Þ
Hence, for all initial conditions that satisfy the bound (16) with any

choice of a class K function ψRoAðcÞ≤ψn
RoAðαn−1ðcÞ; cÞ, where

ψn
RoAðs; cÞ is the inverse of the class KC∞ function

ψn

RoAðs; cÞ ¼ α12ðρnðα10ðsÞ; cÞÞ with respect to ψn

RoA 's first argument,
the solutions satisfy (57). Furthermore, for all those initial condi-
tions, the solutions verify (15) for all s≥0. □

Proof of Theorem 1. Using (62) we get (18) with
βðs; tÞ ¼ α9ðβnðs; tÞÞ and ρðs; cÞ ¼ ρnðα10ðsÞ; cÞ. System (22), (23) guar-
antees the existence and uniqueness of X∈C1ðsn; ∞Þ, where
sn ¼DðXð0ÞÞ. Consider now the case t∈½0; snÞ. From (1) and (11)
we have for all t∈½0; snÞ that
_X ðtÞ ¼ f ðXðtÞ; gUðϕðtÞÞÞ ð64Þ

_ϕðtÞ ¼ 1
1þ ∇DðgXðϕðtÞÞÞf ðgXðϕðtÞÞ; gUd

ðϕðtÞÞÞ ; ð65Þ

where the initial conditions for X, U and UðϕÞ are defined as
XðsÞ ¼ gXðsÞ, UðsÞ ¼ gUðsÞ and UðϕðsÞÞ ¼ gUd

ðsÞ for all ϕð0Þ≤so0.
Lipschitzness of gX, gU, gUd

on ½ϕð0Þ;0Þ, Lipschitzness of f and
Assumption 1 (Lipschitzness of ∇D) guarantee that the right-hand
side of (64) and of (65) is Lipschitz with respect to ðX;ϕÞ, which
Fig. 1. The response of the closed-loop system (66), (67) with the predictor feedback law
as X1ð0Þ ¼ 1:3, X2ðsÞ ¼ 0 for all ϕð0Þ≤s≤0 and UðsÞ ¼UðϕðsÞÞ ¼ 0 for all ϕð0Þ≤s≤0. For th
immediately compensated, resulting to identical, to the delay-free case, responses for X
guarantees, together with bound (15), the existence and unique-

ness of X∈C1½0; snÞ. The boundedness of W and (22) guarantee that
X is continuous at t ¼ sn. By integrating (22) between any two time
instants it is shown that X is Lipschitz on ½0; ∞Þ with a Lipschitz
constant given by a uniform bound on the right-hand side of (22).
The fact that ΠðtÞ ¼ Xðt þ DðXðtÞÞÞ for all t≥0 and Assumption 1

ðD∈C1ðRn;RþÞÞ guarantee that Π is Lipschitz for all t≥0. Since
UðtÞ ¼ κðΠðtÞÞ, Assumption 3 (Lipschitzness of κ in both arguments)
guarantees that U is Lipschitz in t on ð0; ∞Þ. Using (15) and (33), we

get (19), (20) with any class K function δnðcÞ≥δ1ðαn−1ðcÞÞ. □

4. Example

In this example we consider the following system in the
feedforward form taken from [18]

_X1ðtÞ ¼ X2ðtÞ−X2ðtÞ2Uðt−DðXðϕðtÞÞÞÞ ð66Þ

_X2ðtÞ ¼ Uðt−DðXðϕðtÞÞÞÞ; ð67Þ
where

ϕðtÞ ¼ t−DðXðϕðtÞÞÞ; ð68Þ

DðXðϕðtÞÞÞ ¼ 1
2 sin ð5X2ðϕðtÞÞÞ2; ð69Þ

and hence,

sðtÞ ¼ t þ 1
2 sin ð5X2ðtÞÞ2: ð70Þ

A nominal design for the delay-free plant is given in [18] as

UðtÞ ¼−X1ðtÞ−2X2ðtÞ−1
3X2ðtÞ2: ð71Þ

The predictor-based design is

UðtÞ ¼−P1ðtÞ−2P2ðtÞ−1
3P2ðtÞ2; ð72Þ

where

P1ðtÞ ¼ X1ðtÞ þ
Z t

ϕðtÞ
ð1þ 5 cos ð5X2ðsÞÞ sin ð5X2ðsÞÞUðϕðsÞÞÞðP2ðθÞ

−P2ðθÞ2UðθÞÞ dθ ð73Þ

P2ðtÞ ¼ X2ðtÞ þ
Z t

ϕðtÞ
ð1þ 5 cos ð5X2ðsÞÞ sin ð5X2ðsÞÞUðϕðsÞÞÞUðθÞ dθ; ð74Þ

where

ϕðtÞ ¼ t−
Z tþ1=2 sin ð5X2ðtÞÞ2

t

dθ
1þ 5 cos ð5X2ðϕðsÞÞÞ sin ð5X2ðϕðsÞÞÞUðϕðϕðsÞÞÞ

:

ð75Þ
(72)–(75) (left) and the control effort (72) (right). The initial conditions are chosen
ese initial conditions the control signal “kicks in” at t¼0, and hence, the delay is
1, X2. The control signal oscillates to compensate the oscillatory delay.



Fig. 2. The delayed time (68) and the prediction time (70) (left), and the delay (69) (right), of the closed-loop system (66), (67) with the predictor feedback law (72)–(75). The
initial conditions are chosen as X1ð0Þ ¼ 1:3, X2ðsÞ ¼ 0 for all ϕð0Þ≤s≤0 and UðsÞ ¼UðϕðsÞÞ ¼ 0 for all ϕð0Þ≤s≤0. For these initial conditions ϕð0Þ ¼ sð0Þ ¼ 0.
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We consider the initial conditions for the plant as X1ð0Þ ¼ 1:3,
X2ðsÞ ¼ 0 for all ϕð0Þ≤s≤0, and the initial conditions for the actuator
state as UðsÞ ¼ UðϕðsÞÞ ¼ 0 for all ϕð0Þ≤s≤0. With such an initial
condition we get ϕð0Þ ¼ 0. Therefore, the control signal “kicks in”
immediately, i.e., at t¼0. In Fig. 1 we show the response of the
closed-loop system. As one can observe that the delay is immediately
compensated and the responses of X1 and X2 are as there were no
delay at all. Yet, the oscillations are evident in the control signal. The
control signal oscillates in order to compensate the oscillatory delay.
In Fig. 2 we show the delayed time ϕ and the prediction time s.
5. Stabilization under state delays

In the present section we consider the following plant:

_X ðtÞ ¼ f ðXðtÞ; ζðϕðtÞÞÞ ð76Þ

_ζðtÞ ¼UðtÞ; ð77Þ
where t≥0, U; ζ∈R, f : Rn � R-Rn is locally Lipschitz with
f ð0;0Þ ¼ 0 and ϕ satisfies

t ¼ ϕðtÞ þ DðζðϕðtÞÞÞ: ð78Þ

Remark 1. Let us highlight the importance of considering the class
of nonlinear systems that satisfy (76)–(78). Firstly, this is a class of
systems with state delay that depends on the past state of the
system. This is different than system (1) which has an input rather a
state delay. Secondly, and more importantly, when one stabilizes
system (76)–(78) then one can stabilize nonlinear systems with
input delays that depends on the past input rather than the past
state. To see this consider a nonlinear system with input delay that
depends on past values of the input, i.e., consider the system

_X ðtÞ ¼ f ðXðtÞ;VðϕðtÞÞÞ; ð79Þ
where t ¼ ϕðtÞ þ DðVðϕðtÞÞÞ. Then, by adding an integrator, one gets
exactly Eqs. (76)–(78) with ζ ¼ V and _V ¼U, where U is designed in
order to stabilize the system _X ðtÞ ¼ f ðXðtÞ;VðϕðtÞÞÞ, _V ðtÞ ¼UðtÞ.
Hence, stabilization of system (76), (77), (78) implies stabilization
of system (79).

We make now the following assumption regarding system (76).

Assumption 4. There exists a function μ∈C1ðRn;RÞ, with μð0Þ ¼ 0
and ∇μ locally Lipschitz,4 such that the plant _X ðtÞ ¼ f ðXðtÞ; μðXðtÞÞ þ
ωðtÞÞ is input-to-state stable with respect to ω.
4 To ensure uniqueness of solutions.
Note that we still assume that the delay function D (which is
now defined in R rather than in Rn) and the vector field f satisfy
Assumptions 1 and 2 respectively. Assumption 4 is similar to
Assumption 3 with the difference that in the present case the
feedback law μ is assumed continuously differentiable rather than
just locally Lipschitz (this regularity requirement for μ is a result of
the backstepping procedure). Finally, note that the results of this
section can be extended to the case at which the delay (78)
depends also on XðϕðtÞÞ. However, in order to keep the formulae of
our design as simple as possible we do not consider this case.

From plant (76), (77) one can observe that the input signal
reaches the state ζ at t¼0. However, it reaches X through a delayed
integrator. Therefore, we need to define and derive an implemen-
table form for the predictor of the state X, i.e., the signal that
satisfies PðϕðtÞÞ ¼ XðtÞ for all t≥0. From relation (78) we get that

ϕ−1ðθÞ ¼ sðθÞ
¼ θ þ DðζðθÞÞ for all ϕðtÞ≤θ≤t: ð80Þ

Setting t ¼ sðθÞ in (76), differentiating with respect to θ and
integrating the resulting expression from ϕðtÞ to θ, with the help
of the fact that PðϕðtÞÞ ¼ XðtÞ we get

PðθÞ ¼ XðtÞ þ
Z θ

ϕðtÞ
ð1þ D′ðζðsÞÞUðsÞÞf ðPðsÞ; ζðsÞÞÞ ds

for all ϕðtÞ≤θ≤t: ð81Þ

We compute next ϕ. Differentiating (78) and since ϕðt þ
DðζðtÞÞÞ ¼ ϕðsðtÞÞ ¼ t we get that

ϕðθÞ ¼ t−
Z tþDðζðtÞÞ

θ

ds
1þ D′ðζðϕðsÞÞÞUðϕðsÞÞ for all t≤θ≤sðtÞ: ð82Þ

The predictor-based control law is based on a backstepping
design on the delay plant and is given by

UðtÞ ¼ ∇μðPðtÞÞf ðPðtÞ; ζðtÞÞ−cZ ðζðtÞ−μðPðtÞÞÞ
1−∇μðPðtÞÞf ðPðtÞ; ζðtÞÞD′ðζðtÞÞ ; ð83Þ

where cZ40 is arbitrary. Analogously to case of input delay, in an
actual implementation of the control law (83), (81), (82) one has to
compute, at each time step, ϕðtÞ, by numerically computing the
integral in (82) and using the history of ζ and U. Then, one
computes P(t) using ϕðtÞ and the history of ζ, P and U. Finally,
one calculates U(t) from (83). However, in order to compute ϕðtÞ
one starts the integration at sðtÞ ¼ t þ DðζðtÞÞ. Yet, the function
inside the integral evaluated at s¼ sðtÞ depends on U(t), i.e., on the
current value of the input, which is yet to be computed. Therefore,
since sðtÞ is strictly increasing one can compute ϕðtÞ by integrating
(82) up to s¼ sðt−hÞ, where h is the discetization step.
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From (83) one can observe that besides a restriction that the
denominator in (82) is positive, one has an additional condition
that the denominator in (83) is also positive. Both conditions are
satisfied when the following condition holds:

Gc : jD′ðζðθÞÞUðθÞj þ j∇μðPðθÞÞf ðPðθÞ; ζðθÞÞD′ðζðθÞÞjoc
for all θ≥ϕð0Þ; ð84Þ

for some 0oco1.

Theorem 2. Consider the plant (76)–(78) together with the control
law (83), (81), (82). Under Assumptions 1, 2 and 4 there exist a class
K function ξRoA, a class KL function β̂ and a class K∞ function s1 such
that for all initial conditions for which ζ is locally Lipschitz on the
interval ½ϕð0Þ;0�, U is locally Lipschitz on the interval ½ϕð0Þ;0Þ, and
they satisfy (77) and

Ω̂ð0ÞoξRoAðcÞ; ð85Þ
where

Ω̂ðtÞ ¼ jXðtÞj þ sup
ϕðtÞ ≤θ ≤ t

jζðθÞj þ sup
ϕðtÞ ≤ θ ≤ t

jUðθÞj; ð86Þ

for some 0oco1, there exists a unique solution to the closed-loop
system with X∈C1½0; ∞Þ, ζ Lipschitz on ½0; ∞Þ, U Lipschitz on ð0; ∞Þ and

Ω̂ðtÞ≤s1 1þ 1
1−c

� �
β̂ðΩ̂ð0Þ; tÞ; ð87Þ

for all t≥0. Furthermore, there exists a class K function δ̂
n
, such that

for all t≥0 the following hold:

sup
ϕðtÞ ≤θ ≤ t

DðζðθÞÞ≤Dð0Þ þ δ̂
nðcÞ ð88Þ

sup
ϕðtÞ ≤θ ≤ t

j _DðζðθÞÞj≤c: ð89Þ

The proof of Theorem 2 is based on Lemmas 9–16 which are
presented next.

Lemma 9. The infinite-dimensional backstepping transformation of
the state ζ defined by

ZðθÞ ¼ ζðθÞ−μðPðθÞÞ; ϕðtÞ≤θ≤t; ð90Þ
together with the predictor-based control law (83), (81), (82) trans-
form the system (76)–(77) to the “target system” given by

_X ðtÞ ¼ f ðXðtÞ; μðXðtÞÞ þ ZðϕðtÞÞÞ ð91Þ

_Z ðtÞ ¼−cZZðtÞ: ð92Þ

Proof. Using (76) and the fact that PðϕðtÞÞ ¼ XðtÞ we get (91).
Setting θ¼ t in (90) and taking the derivative with respect to t of
the resulting equation we get (92) using (77), (81) and (83). □

Lemma 10. The inverse of the infinite-dimensional backstepping
transformation defined in (90) is

ζðθÞ ¼ ZðθÞ þ μðΠðθÞÞ; ϕðtÞ≤θ≤t; ð93Þ
where

ΠðθÞ ¼ XðtÞ þ
Z θ

ϕðtÞ
ð1þ D′ðμðΠðsÞÞ þ ZðsÞÞUðsÞÞ

�f ðΠðsÞ; μðΠðsÞÞ þ ZðsÞÞ ds; ϕðtÞ≤θ≤t: ð94Þ

Proof. By direct verification, noting also that ΠðθÞ ¼ PðθÞ for all
ϕðtÞ≤θ≤t, where ΠðθÞ is driven by the transformed state ZðθÞ,
whereas PðθÞ is driven by the state ζðθÞ for ϕðtÞ≤θ≤t. □

Lemma 11. There exists a class KL function β̂
n
such that for all

solutions of the system satisfying (84) for 0oco1, the following
holds for all t≥0:

Ξ̂ ðtÞ≤ 1þ 1
1−c

� �
ðβ̂nðΞ̂ ð0Þ; tÞ þ β̂4ðΞ̂ ð0Þ;maxff0; t−sð0ÞggÞÞ; ð95Þ

where

Ξ̂ ðtÞ ¼ jXðtÞj þ sup
ϕðtÞ ≤θ ≤ t

jZðθÞj þ sup
ϕðtÞ ≤ θ ≤ t

jUðθÞj: ð96Þ

Proof. Solving (92), we have that ZðtÞ ¼ Zð0Þe−cZ ðtÞ for all t≥0. Since
ϕðtÞ is increasing for all t≥0 we get

sup
ϕðtÞ ≤ θ ≤ t

jZðθÞj≤ jZð0Þje−cZϕðtÞ for all t≥sð0Þ: ð97Þ

Similarly, for all 0≤t ≤sð0Þ we get

sup
ϕðtÞ ≤ θ ≤ t

jZðθÞj≤ sup
ϕð0Þ ≤θ ≤0

jZðθÞj þ sup
0 ≤ θ ≤ t ≤sð0Þ

jZðθÞj; ð98Þ

and hence, combining (98) with (92), we get

sup
ϕðtÞ ≤ θ ≤ t

jZðθÞj≤2 sup
ϕðt0Þ ≤θ ≤ t0

jZðθÞj for all 0≤t≤sð0Þ: ð99Þ

Therefore, using (97), (99) and the fact that for all t ≤sð0Þ, ϕðtÞ≤0
we get

sup
ϕðtÞ ≤ θ ≤ t

jZðθÞj≤2 sup
ϕð0Þ ≤θ ≤0

jZðθÞje−cZϕðtÞ for all t≥0: ð100Þ

Using (90) we get that ϕðtÞ ¼ t−DðζðϕðtÞÞÞ ¼ t−DðZðϕðtÞÞ þ μðXðtÞÞÞ,
and hence,

sup
ϕðtÞ ≤ θ ≤ t

jZðθÞj≤2 sup
ϕð0Þ ≤θ ≤0

jZðθÞje−cZ tecZDðZðϕðtÞÞþμðXðtÞÞÞ for all t≥0:

ð101Þ
Using (33) we get that DðZðϕðtÞÞ þ μðXðtÞÞÞ≤Dð0Þ þ δ1ð2jZðϕðtÞÞjÞ
þδ1ð2jXðtÞjÞ. Since for all t≥sð0Þ, ϕðtÞ≥0, from (92) we get that
jZðϕðtÞÞj≤ jZð0Þj for all t≥sð0Þ. Moreover, for all t ≤sð0Þ, ϕð0Þ≤ϕðtÞ≤0.
Hence, for all t≥0, jZðϕðtÞÞj≤supϕð0Þ ≤θ ≤0jZðθÞj. Therefore, (101) gives
sup

ϕðtÞ ≤ θ ≤ t
jZðθÞj≤2 sup

ϕð0Þ ≤θ ≤0
jZðθÞjecZ ðDð0Þþδ1ð2 supϕð0Þ ≤ θ ≤ 0jZðθÞjÞþδ1ð2jXðtÞjÞÞe−cZ t

for all t≥0: ð102Þ

Let Y(s) be the solution of dYðsÞ=ds¼ f ðYðsÞ; μðYðsÞÞ þ ωðsÞÞ for
s≥s0≥0. Under Assumption 4 and [28], there exist class KL function
β̂2 and class K function γ̂1 such that

jYðsÞj≤ β̂2ðjYðs0Þj; s−s0Þ þ γ̂1 sup
s0 ≤ r ≤ s

jωðrÞj
� �

for all s≥s0; ð103Þ

and hence, with (91) we get

jXðtÞj≤ β̂2ðjXðsÞj; t−sÞ þ γ̂1 sup
s ≤ τ ≤ t

jZðϕðτÞÞj
� �

for all t≥s≥0: ð104Þ

Setting s¼0 we have that

jXðtÞj≤ β̂2ðjXð0Þj; tÞ þ γ̂1 sup
ϕð0Þ ≤θ ≤ϕðtÞ

jZðθÞj
 !

for all t≥0; ð105Þ

and hence, from (92)

jXðtÞj≤ β̂2ðjXð0Þj;0Þ þ γ̂1 2 sup
ϕð0Þ ≤θ ≤0

jZðθÞj
 !

for all t≥0: ð106Þ

Therefore, with (102) we arrive at

sup
ϕðtÞ ≤ θ ≤ t

jZðθÞj≤ α̂12 jXð0Þj þ sup
ϕð0Þ ≤ θ ≤0

jZðθÞj
 !

e−cZ t for all t≥0; ð107Þ

where the class K∞ function α̂12 is defined as

α̂12ðsÞ ¼ 2ecZDð0ÞsecZ ðδ1ðsÞþδ1ð2β̂2ðs;0Þþ2γ̂ 1ðsÞÞÞ: ð108Þ
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Setting in (104) s¼ t=2 we get

XðtÞ
�� ��≤ β̂2 jXð0Þj; t

2

� �
þ γ̂1 sup

ϕðt2Þ ≤θ ≤ϕðtÞ
jZðθÞj

 !
for all t≥0: ð109Þ

We estimate now supϕðt=2Þ ≤θ ≤ϕðtÞjZðθÞj. Solving (92) we get

sup
ϕðt=2Þ ≤ θ ≤ϕðtÞ

jZðθÞj≤2 sup
ϕð0Þ ≤θ ≤0

jZðθÞje−cZϕðt=2Þ for all t≥2sð0Þ: ð110Þ

With the help of relations (92) and (110) we get

sup
ϕðt=2Þ ≤ θ ≤ϕðtÞ

jZðθÞj≤ sup
ϕðt=2Þ ≤θ ≤0

jZðθÞj þ sup
0 ≤θ ≤ϕðtÞ

jZðθÞj≤2 sup
ϕð0Þ ≤ θ ≤0

jZðθÞj

for all 0≤t≤2sð0Þ: ð111Þ
Hence, using the fact that ϕðt=2Þ ¼ t=2−Dðζðϕðt=2ÞÞÞ we get from
(90)

sup
ϕðt=2Þ ≤ θ ≤ϕðtÞ

jZðθÞj≤2 sup
ϕð0Þ ≤θ ≤0

jZðθÞjecZ ðDð0Þþδ1ð2jXðt=2ÞjÞþδ1ð2jZðϕðt=2ÞÞjÞÞe−ðcZ=2Þt ;

ð112Þ
for all t≥0. Setting s¼0 and replacing t by t=2 we get from (104)
that

���X t
2

� ����≤ β̂2 jX1ð0Þj;
t
2

� �
þ γ̂1 sup

ϕð0Þ ≤θ ≤ϕðt=2Þ
jZðθÞj

 !
: ð113Þ

Since, supϕð0Þ ≤θ ≤ϕðt=2ÞjZðθÞj≤supϕð0Þ ≤θ ≤0jZðθÞj þ sup0 ≤θ ≤ϕðtÞ jZðθÞj≤
2 supϕð0Þ ≤θ ≤0jZðθÞj, we get

���X t
2

� ����≤ β̂2ðjXð0Þj;0Þ þ γ̂1 2 sup
ϕð0Þ ≤θ ≤0

jZðθÞj
 !

for all t≥0: ð114Þ

Using also the fact that jZðϕðt=2ÞÞj≤supϕð0Þ ≤θ ≤0jZðθÞj, combining
(112), (114) we get from (109) that

jXðtÞj≤ β̂3 jXð0Þj þ sup
ϕð0Þ ≤θ ≤0

jZðθÞj; t
 !

for all t≥0 ð115Þ

where the class KL function β̂3 is defined as

β̂3ðs; tÞ ¼ β̂2 s;
t
2

� �
þ γ̂1ð2secZDð0ÞecZ ðδ1ð2sÞþδ1ð2β̂2ðs;0Þþ2γ̂ 1ðsÞÞÞe−cZ t=2Þ:

ð116Þ

Using (83), (84) we get for all θ≥0

UðθÞ
�� ��≤ 1

1−c
j∇μðPðθÞÞf ðPðθÞ; ζðθÞÞj þ 1

1−c
cZ jZðθÞj: ð117Þ

Since f : Rn � R-Rn is locally Lipschitz with f ð0;0Þ ¼ 0 and
μ∈C1ðRn;RÞ with μð0Þ ¼ 0, there exist class K∞ functions α̂11 and
α̂n

11 such that for all ðX;ωÞ∈Rnþ1

jμðXÞj≤ α̂11ðjXjÞ ð118Þ

j∇μðXÞj≤ j∇μð0Þj þ α̂11ðjXjÞ ð119Þ

jf ðX;ωÞj≤ α̂n

11ðjXj þ jωjÞ: ð120Þ
Therefore, using (33), (90) and the fact that PðθÞ ¼ΠðθÞ ¼ XðsðθÞÞ
we get for all θ≥0 that

UðθÞ
�� ��≤ 1

1−c
ðj∇μð0Þj þ α̂11ðjXðsðθÞÞjÞÞα̂n

11ðjXðsðθÞÞj þ jZðθÞj

þα̂11ðjXðsðθÞÞjÞÞ þ
1

1−c
cZ ZðθÞ :j
�� ð121Þ

Hence, with the help of (107), (115)

sup
ϕðtÞ ≤θ ≤ t

UðθÞ
�� ��≤ 1

1−c
β̂4 jXð0Þj þ sup

ϕð0Þ ≤θ ≤0
jZðθÞj; t

 !
for all t≥sð0Þ;

ð122Þ
where the class KL function β̂4 is defined as

β̂4ðs; tÞ ¼ ðj∇μð0Þj þ α̂11ðβ̂3ðs; tÞÞÞα̂n

11ðβ̂3ðs; tÞ þ α̂12ðsÞe−cZ t

þ α̂11ðβ̂3ðs; tÞÞÞ þ cZ α̂12ðsÞe−cZ t : ð123Þ

Moreover, supϕðtÞ ≤θ ≤ t jUðθÞj≤supϕð0Þ ≤θ ≤0jUðθÞj þ sup0 ≤θ ≤ t jUðθÞj, for
all t ≤sð0Þ, and hence,

sup
ϕðtÞ ≤ θ ≤ t

UðθÞ
�� ��≤ sup

ϕð0Þ ≤θ ≤0
jUðθÞj

þ 1
1−c

β̂4 jXð0Þj þ sup
ϕð0Þ ≤θ ≤0

jZðθÞj;0
 !

for all t≤sð0Þ: ð124Þ

Combining (122), (124) and assuming without loss of generality
that β̂4ðs;0Þ4s we arrive at

sup
ϕðtÞ ≤ θ ≤ t

UðθÞ
�� ��≤ 1þ 1

1−c

� �
β̂4ðΞ̂ ð0Þ;maxff0; t−sð0ÞggÞ for all t≥0:

ð125Þ
Combining (107), (115), (125) we get (95) with β̂

nðs; tÞ ¼
α̂12ðsÞe−cZ t þ β̂3ðs; tÞ. □

Lemma 12. There exists a class K∞ function α̂8 such that for all
solutions of the system satisfying (84) for 0oco1, the following
holds:

jPðθÞj≤ α̂8 jXðtÞj þ sup
ϕðtÞ ≤ τ ≤ t

jζðτÞj
 !

; ϕðtÞ≤θ≤t: ð126Þ

Proof. Under Assumption 2 we have that

dRðPðθÞÞ
dP

f ðPðθÞ; ζðθÞÞ≤RðPðθÞÞ þ α3ð ζðθÞ Þ; ϕðtÞ≤θ≤t:
���� ð127Þ

Multiplying both sides of (127) with _sðθÞ ¼ 1þ D′ðζðθÞÞUðθÞ40,
with (84) we get that

dRðPðθÞÞ
dθ

≤2ðRðPðθÞÞ þ α3ð ζðθÞ ÞÞ; ϕðtÞ≤θ≤t:
���� ð128Þ

Using relation (33) and the comparison principle we have from
(127) for all ϕðtÞ≤θ≤t that

RðPðθÞÞ≤e2ðDð0Þþδ1ðjζðϕðtÞÞjÞÞ RðXðtÞÞ þ sup
ϕðtÞ ≤ τ ≤ t

α3ðjζðτÞjÞ
 !

: ð129Þ

With standard properties of class K∞ functions we get the state-
ment of the lemma with α̂8∈K∞ as α̂8ðsÞ ¼ α−11 ððα2ðsÞþ
α3ðsÞÞe2ðDð0Þþδ1ðsÞÞÞ. □

Lemma 13. There exists a class K function γ̂n such that for all
solutions of the system satisfying (84) for 0oco1, the following
holds:

jΠðθÞj≤ γ̂n jXðtÞj þ sup
ϕðtÞ ≤ τ ≤ t

jZðτÞj
 !

; ϕðtÞ≤θ≤t: ð130Þ

Proof. Using the change of variable θ¼ ϕðyÞ and (94), we have that

dΠðϕðyÞÞ
dy

¼ f ðΠðϕðyÞÞ; μðΠðϕðyÞÞÞ þ ZðϕðyÞÞÞ; t≤y≤sðtÞ: ð131Þ

Since ΠðϕðyÞÞ satisfies the same ODE in y as the ODE for Y(s) in s
given by the relation dYðsÞ=ds¼ f ðYðsÞ; μðYðsÞÞ þ ωðsÞÞ, it follows
from (103) that

jΠðϕðyÞÞj≤ β̂2ðjXðtÞj; y−tÞ þ γ̂1 sup
t ≤y ≤sðtÞ

jZðϕðyÞÞj
 !

for all t≤y≤sðtÞ: ð132Þ
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With the fact that β̂ðs; rÞ≤ β̂ðs;0Þ for all r≥0, we get from (132)

jΠðθÞj≤ β̂2ðjXðtÞj;0Þ þ γ̂1 sup
ϕðtÞ ≤ τ ≤ t

jZðτÞj
 !

; ϕðtÞ≤θ≤t: ð133Þ

With the properties of class K functions we get (130), where
γðsÞ ¼ β̂2ðs;0Þ þ γ̂1ðsÞ. □

Lemma 14. There exist class K∞ functions α̂9, α̂10 such that for all
solutions of the system satisfying (84) for 0oco1, the following
hold:

Ω̂ðtÞ≤ α̂9ðΞ̂ ðtÞÞ; ð134Þ

Ξ̂ ðtÞ≤ α̂10ðΩ̂ðtÞÞ; ð135Þ
for all t≥0, where Ω̂ is defined in (86) and Ξ̂ is defined in (96).

Proof. Using the direct backstepping transformation (90) and
bounds (126), (118) we get the bound (135) with
α̂10ðsÞ ¼ sþ α̂11ðα̂8ðsÞÞ. Using the inverse backstepping transforma-
tion (93) and the bounds (130), (118) we get the bound (134) with
α̂9ðsÞ ¼ sþ α̂11ðγ̂nðsÞÞ. □

Lemma 15. There exists a function δ̂ of class K∞ such that for all
solutions of the system that satisfy

Ω̂ðtÞo δ̂
−1ðcÞ for all t≥0 ð136Þ

for 0oco1, they also satisfy (84).

Proof. Using (58), (118) one can conclude that if a solution
satisfies for all t≥0

ðjD′ð0Þj þ δ2ðjζðθÞjÞÞðjUðθÞj þ ðj∇μð0Þj þ α̂11ðjPðθÞjÞÞα̂n

11ðjPðθÞj
þjζðθÞjÞÞoc; ϕðtÞ≤θ≤t ð137Þ

for 0oco1, then it also satisfies (84). Using Lemma 12, (137) is
satisfied for 0oco1 as long as the bound (136) holds, where the
class K∞ function δ̂ is given by

δ̂ðsÞ ¼ ðjD′ð0Þj þ δ2ðsÞÞðsþ ðj∇μð0Þj þ α̂11ðα̂8ðsÞÞÞα̂n

11ðα̂8ðsÞ þ sÞÞ: □
ð138Þ

Lemma 16. There exists a class K function ξRoA such that for all
initial conditions of the closed-loop system (76)–(78), (83), (81), (82)
that satisfy (85), the solutions of the system satisfy (136) for 0oco1
and hence satisfy (84).

Proof. Using Lemma 14, with the help of (95) we have that

Ω̂ðtÞ≤ α̂9 1þ 1
1−c

� �
ðβ̂nðα̂10ðΩ̂ð0ÞÞ; tÞ þ β̂4ðα̂10ðΩ̂ð0ÞÞ;maxff0; t−sð0ÞggÞÞ

� �
ð139Þ

Hence, for all initial conditions that satisfy the bound (85) with
any choice of a class K function ξRoAðcÞ≤ξnRoAðδ̂

−1ðcÞ; cÞ, where
ξ
n

RoAðs; cÞ is the inverse of the class KC∞ function

ξnRoAðs; cÞ ¼ α̂9 1þ 1
1−c

� �
ðβ̂nðα̂10ðsÞ;0Þ þ β̂4ðα̂10ðsÞ;0ÞÞ

� �
; ð140Þ

with respect to ξnRoA 's first argument, the solutions satisfy (136).
Moreover, for all those initial conditions, the solutions verify (84)
for all θ≥ϕð0Þ. □

Proof of Theorem 2. Using (33), (85) and 0oco1 we conclude
that sð0Þ ¼Dðζð0ÞÞ≤Dð0Þ þ δ1ðξRoAð1ÞÞ ¼ ξn. Hence, using Corollary
10 in [27] and relation (139) we get (87) with some class K∞

function s1 where β̂ðs; tÞ ¼ s1ðβ̂
nðα̂10ðsÞ; tÞ þ β̂4ðα̂10ðsÞ; maxff0;

t−ξnggÞÞ. Using relations (83), (94) and that fact that P ¼Π we get
for all t≥0 that

dΠðtÞ
dt

¼ ð1−D′ðμðΠðtÞÞ þ ZðtÞÞcZZðtÞÞf ðΠðtÞ; μðΠðtÞÞ þ ZðtÞÞ
1−∇μðΠðtÞÞf ðΠðtÞ; μðΠðtÞÞ þ ZðtÞÞÞD′ðμðΠðtÞÞ þ ZðtÞÞ : ð141Þ
Under Assumption 1 (Lipschitzness of D′), Assumption 4
(Lipschitzness of ∇μ) and relation (92) we conclude that the
right-hand side of (92), (141) is Lipschitz with respect to ðZ;ΠÞ
and hence, using also bound (130) there exists a unique solution
ðZðtÞ;ΠðtÞÞ∈C1ð0; ∞Þ. Using (93) we get the existence and unique-
ness of ζðtÞ∈C1ð0; ∞Þ. The boundedness of U and (77) guarantee that
ζ is continuous at t¼0. By integrating (77) between any two time
instants it is shown that ζ is Lipschitz on ½0; ∞Þ with a Lipschitz
constant given by a uniform bound on U. With the fact that Π ¼ P,
relations (83), (84) and the Lipschitzness of D′ and ∇μ we get the
existence and uniqueness of U∈ð0; ∞Þ and that U is locally Lipschitz
in ð0; ∞Þ. From (76) and (82) we have for all t4sð0Þ that
_X ðtÞ ¼ f ðXðtÞ; ζðϕðtÞÞÞ ð142Þ

_ϕðtÞ ¼ 1
1þ D′ðζðϕðtÞÞÞUðϕðtÞÞ : ð143Þ

Since ζ is Lipschitz on ½0; ∞Þ, U is Lipschitz on ð0;∞Þ and D′ is locally
Lipschitz, one can conclude that the right hand-side of system
(142)–(143) is Lipschitz with respect to ðX;ϕÞ, and hence, there
exists a unique solution ðXðtÞ;ϕðtÞÞ∈C1ðsð0Þ; ∞Þ. Similarly, the
Lipschitzness of the initial conditions ζðsÞ and U(s) for ϕð0Þ≤so0
guarantees the existence and uniqueness of ðXðtÞ;ϕðtÞÞ∈C1½0; sð0ÞÞ.
The boundness of the right-hand side of (142)–(143) guarantees
that ðX;ϕÞ are continuous at sð0Þ, and hence, the Lipschitzness of ζ
at 0 guarantees that the right-hand side of (142) is continuous at
sð0Þ. Therefore X is continuously differentiable also at sð0Þ. With
(84) we get bound (89) and with (33), (136) we get (88) with any
class K function δ̂

nðcÞ≥δ1ðδ̂
−1ðcÞÞ. □

6. Conclusions

We present a methodology for the compensation of state-
dependent delays that depend on delayed states, by designing a
predictor feedback law. We prove asymptotic stability of the
closed-loop system with the aid of a Lyapunov functional that
we construct by introducing a backstepping transformation.
The results of this paper can be directly extended to the case in
which the delay is explicitly defined as a function of past values of
the state, at a time instant that is a priori given. The present
results seem also extendable to the case in which the delay
might depend on past values of the state, but at a time instant
that may be a function of the delay (rather than just identical to
the delay).

Since in this paper we deal with delays that depend on delayed
states, whereas in [3] we deal with delays that depends on current
states, it is reasonable to ask whether this methodology can be
extended to the case in which the delay function depends both on
delayed and current states. For designing the predictor feedback
law for such a delay function one has first to show the well-
posedness of both the prediction and delay times (namely s and ϕ
respectively). To show this one has to study the existence and
uniqueness of a two-point boundary value problem for the
prediction and the delay times. For studying the existence and
uniqueness of this problem one has to use fixed-point theory
incorporating the properties of the dynamics of these two times
and the properties of the solutions of the system. This study is far
from trivial and can be pursued in the future.
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