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ABSTRACT

We demonstrate NeuroFlinkCEP, the first framework that inte-
grates neural and symbolic Complex Event Recognition (CER) over
a state-of-the-art Big Data platform, also optimizing neurosymbolic
CER upon operating over IoT settings. NeuroFlinkCEP receives ex-
pressed patterns as extended regular expressions and automatically
transforms them to FlinkCEP jobs per device. To enable detection
of simple events involved in CER patterns, NeuroFlinkCEP can
integrate any neural model in FlinkCEP jobs. To optimally assign
operator execution in-network, we incorporate and extend a state-
of-the-art IoT optimizer.
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1 INTRODUCTION

Complex Event Recognition (CER) [6] differentiates itself from con-
ventional stream processing. Instead of leaving to client applications
the responsibility of assigning a meaning to the raw outputs of a
query, CER Engines ingest streams of Simple Events (SEs) and a set
of patterns corresponding to Complex Events (CEs), i.e., interesting
phenomena that should be tracked by the application; and monitor
if such CEs are progressively revealed by combining ingested SEs.
Consider the following pattern, stemming from a smart factory
scenario, where raw robot navigation data are monitored:

Ruccessful_delivery = (—StationDetected)” - (=StationDetected)-
(StationDetected A ~DeliveryManeuver)*-
(StationDetected A DeliveryManeuver)

The SE StationDetected occurs when a robot detects a station in
the smart factory. The DeliveryManeuver SE occurs when the robot
is moving at a certain speed, changing directions while maneuver-
ing to approach the detected factory station. The CE Ryyccessul_delivery
is satisfied when initially a robot has not detected a station, then
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it detects one and — having detected the station — it attains the
required speed and repeated change of movement direction to ap-
proach it. The CER system continuously evaluates the rapidly in-
gested robot streams, converts them to the aforementioned SEs and
deduces a successful delivery CE.

In such a scenario, each SE represents the detection of a be-
havior that can only be deduced by a machine or neural learn-
ing model. The role of the neural model is to receive streams of
frames (e.g., from vision, LIDAR, or other contextual cues) and the
maneuvering behavior for delivery (which can be quite nuanced
to deduce only from positional streams) and provide classifica-
tion outcomes, i.e., class/symbol A = StationDectected and symbol
B = DeliveryManeuver, for CER to be possible. Then, a CER engine
will ingest the aforementioned SEs (symbols A, B) and evaluate the
occurence of the involved CEs. Evidently, such scenarios call for
both neural inference and symbolic CER to operate synergistically.

FlinkCEP is the CER API of a state-of-the-art Big Data platform,
namely Apache Flink. FlinkCEP focuses on scaling-out the com-
putation to a number of machines in a computer cluster/cloud,
working in parallel on partitions of the streams, to speed up contin-
uous analytic outcomes. FlinkCEP provides a CER language of high
expressive power [1, 6] in terms of formulating patterns for CEs.
However, there are certain barriers to the adoption of FlinkCEP.
First, FlinkCEP requires business analysts, who are not necessarily
expert programmers, to write functional programming code. Sec-
ond, pattern expression and parameterization involve cumbersome
notation, making the whole code writing process error-prone [6, 7].
Third, with the proliferation of IoT devices as SE producers, the
classic paradigm in which we first accumulate raw data at the cloud
and then submit a FlinkCEP job is severely suboptimal [8]. For in-
stance, in our running example, sending video frames from robots
to the cloud and then performing CER would deplete the avail-
able bandwidth, causing network latencies that would prevent the
real-time character of the involved applications. What should be
done instead, is to ship trained neural models and FlinkCEP jobs to
network devices, assign parts of the SE and/or CER process directly
on them (e.g. with Raspberry Pi boards which nowadays have both
GPU and CPU capacity), and only a subset of SEs and/or CEs should
be delivered to the cloud, alerting for the occurred events.

Despite the fact that few previous efforts have integrated neural
and symbolic CER [9], no existing approach has enabled neither par-
allel processing of neurosymbolic CER nor optimized, distributed
neurosymbolic CER over IoT settings. This work contributes ad-
vancing the state-of-the-art by tackling all the aforementioned
challenges. We demonstrate NeuroFlinkCEP, the first framework
that integrates neural (aka sub-symbolic) and symbolic CER over
a state-of-the art Big Data platform for parallel processing that is
also optimized to operate distributedly over IoT settings composed
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Figure 1: Anatomy of a NeuroFlink-
CEP Operator.

of various devices. To alleviate business analysts from the burden
of writing FlinkCEP programs, NeuroFlinkCEP receives expressed
patterns in the form of extended regular expressions (RegEx) and
transforms them to FlinkCEP jobs. To enable detection of SEs and
CEs, NeuroFlinkCEP integrates any chosen, domain-specific neural
model inside the FlinkCEP job deployed per device. To optimally
decide whether operators of the CER workflow should be executed
at the cloud or the device network side, NeuroFlinkCEP enhances
a state-of-the-art IoT optimizer [8] with CER-specific optimiza-
tions [4].

2 ARCHITECTURE

NeuroFlinkCEP’s key architectural components are: (i) the RegEx2-
NeuroFlinkCEP operator, (ii) the synapSEflow operator and (iii) the
DAG*4CER Optimizer. RegEx2NeuroFlink CEP and synapSEflow op-
erators are nested into a newly introduced NeuroFlinkCEP operator.
We have developed a NeuroFlinkCEP GUI for graphical workflow
design using NeuroFlinkCEP operators and we have incorporated
it as an extension to a commercial platform, RapidMiner Studio.
The RegEx2NeuroFlinkCEP operator: receives as input Ex-
tended Regular Expressions describing the pattern based on which
a CE would be detected, i.e. this nested operator describes the sym-
bolic part of a NeuroFlinkCEP operator. As shown in Figure 1, each
such pattern can be parameterized with time windowing constraints
as well as selection strategies and consumption policies supported
by FlinkCEP. FlinkCEP supports the following SE selection strate-
gies (i) Strict Contiguity: where matching events appear strictly one
after the other, (ii) Relaxed Contiguity: where non-matching events
appearing in-between the matching ones are ignored, and (iii) Non-
Deterministic Relaxed Contiguity: that allows non-deterministic
actions between matching events. For event consumption policies,
FlinkCEP provides the options: (i) NO_SKIP: produce all matches (ii)
SKIP_TO_NEXT: discard partial matches that started with the same
CE event (iii) SKIP_PAST_LAST_EVENT: discard partial matches
after CE match started but before it ends. SKIP_TO_FIRST[p] and
SKIP_TO_LAST][p] are similar to SKIP_TO_NEXT and SKIP_PAST -
LAST_EVENT, respectively, but they use a pattern p to dictate the
start (resp. last) event in the CE.

RapidMiner Studio GUI 4\ -

c|s @ Logical Workflow Parser o
o|e g >
n |t Device &
s |e .pb pat Logical Plan Registry
vt @ { NeuralNetRepo | _DAG*4CEP__| Statistics

; Collector
p |l >
t|o -pbfile Physical Plan 2y
1) " @ Job Dispatcher
n|s

t
Pr
o |a
Lt =
i|e i ?;’3 \

° 8 = o I
v |y A, ® e
\ A ;"

=

. «::;,fﬂ : g i )
e = e TR
- el ;‘sz;x

Figure 2: NeuroFlinkCEP Workflow Design, IoT Optimization & Distributed Execution.

The synapSEflow operator: nests the TensorFlow Java API within
the NeuroFlinkCEP operator. It receives as input the Tensorflow
(.pb) file with a trained neural model for the neural prediction part
of the NeuroFlinkCEP operator. The synapSEflow operator loads
the trained neural model prescribed and undertakes the respon-
sibility of ingesting the incoming raw streams (e.g, video frames,
positional streams in our running example) composing feature vec-
tors. It then feeds these features through the loaded neural model
and derives corresponding labels/symbols. synapSEflow also has
two more important responsibilities: (i) it directs the simple event
outputs of the neural model (depicted as geometric shapes in Fig-
ure 1) to the core of FlinkCEP for the pattern matching process to
proceed based on the pinpointed SEs, (ii) it listens to a broadcast
stream for model updates through Kafka. When a new model is
received, it is recorded in that cloud or device side, local Broadcast
State. synapSEflow ensures that local Flink tasks on the cloud or
device receive the model and install it, so that all predictions of
synapSEflow use the latest version of the trained neural network.
An important observation is that, in case no . pb file is specified, the
input to a downstream NeuroFlinkCEP operator should be another,
upstream NeuroFlinkCEP operator feeding SEs readily available
for pattern matching.

The DAG*4CER Optimizer: incorporates a state-of-the-art IoT op-
timization algorithm, namely DAG* [8] and extends it to DAG*4CER,
a variation with plausible CER, FlinkCEP-specific optimizations [4].
We choose to integrate and extend DAG” because it prunes large
amount of the operator placement search space, guarantees optimal-
ity of the IoT execution plan and has been shown to outperform [8]
recent, relevant approaches in the field [2, 3].

The DAG*4CER Optimizer receives as input a logical workflow
designed in RapidMiner Studio. This logical workflow incorporates
the application logic, but it is deprived of any physical execution
details engaging the network of devices. It is composed of various
NeuroFlinkCEP operators (each potentially equipped with a differ-
ent synapSEflow neural model, valid for the SEs of the involved
pattern) expressing the rules/patterns to be monitored. The output
of the DAG*4CER Optimizer is a physical plan prescribing the net-
work site (cloud or network device) each NeuroFlinkCEP operator
should be assigned for execution.



DAG* [8] is an A*-alike algorithm that swiftly outputs a phys-
ical execution plan that is guaranteed to be optimal, without ex-
haustively examining the entire search space. To achieve that, it
topologically sorts the logical workflow and progressively exam-
ines physical instantiations to network devices for the involved
operators. At each step n, the algorithm adds a new operator to the
partial physical plan that has been built so far and computes an
estimated cost computed as g(n) = f(n) + h(n), where f(n) is the
current cost of the partial physical plan and h(n) is a heuristic cost
expressing an under-estimation of how much cost will be added to
the partial plan to make a full plan, i.e, with all operators assigned
to devices. Then, the partial plan is inserted into a priority queue,
sorted on g(n). The first partial plan in the queue is then dequeued
and the algorithm attempts to expand it by adding a new operator
as described above. When the dequeued plan is a full physical plan,
the algorithm concludes and outputs the optimal plan found. To
output a physical workflow execution graph, instead of a path (that
is the output of the original A* algorithm), DAG* imposes two im-
portant rules: (i) at each step, only one operator can be examined
for physical instantiations to expand a dequeued partial plan, and
(ii) no logical operator can be instantiated to any physical imple-
mentation unless all of its upstream operators have been included
in the currently examined partial plan. Please refer to [8] for details.

However efficient DAG” is in pruning the search space of possible
NeuroFlinkCEP operator assignments, it is designed for generic
IoT stream processing scenarios. Therefore, it does not incorporate
CER-oriented query rewritings that can boost the performance
of candidate physical CER plans. In the DAG*4CER Optimizer we
extend DAG” with the following CER, FlinkCEP-specific query
rewritings:

o Pattern Decomposition. In case a CE involves SEs sensed on dif-
ferent devices, the existing DAG* would assign the entire pattern
evaluation at one device. This may be suboptimal when all other
devices will have to communicate their raw data to that device.
Our DAG™4CEP provides, to the optimization process, the option
to decompose a pattern to its SEs and assign the evaluation of SEs
at different devices rather than assigning the evaluation of an en-
tire pattern to one single device. Consider, for instance a pattern
AB™C. Instead of deploying a NeuroFlinkCEP operator for AB*C
at one device, DAG*4CEP may decide to assign a NeuroFlinkCEP
operator at Device 0 with a neural net at the synapSEflow spe-
cialized to detect SEs of type A and a NeuroFlinkCEP operator at
Device 1, with a neural net at synapSEflow specialized to detect
SEs of type B and C.

o Early Filtering employs selective criteria using the Flink opera-
tor DataStream. filter(), right after SEs labeled by synapSE-
Flow become available in Flink, but before they are used in Flink-
CEP for pattern matching. It thereby optimizes resource usage by
reducing irrelevant event volume, before reaching CER operators
like CEP.pattern(), if allowed by the pattern.

e Reordering involves rearranging pattern evaluation conditions
(.where() operands) within the CER pattern definition in Flink-
CEP itself. This reordering checks less complex, very selective
predicates first to promptly rule out non-matching events within
the CER engine. Unlike Early Filtering, Reordering does not prune
events before they enter FlinkCEP, but optimizes the processing
sequence in FlinkCEP. This reduces computational overhead and

state complexity in PatternStream of FlinkCEP and improves
matching performance.

e Pushing Predicates Upstream operates like Early Filtering, but
for connected NeuroFlinkCEP operators assigned to different de-
vices, i.e., one upstream’s operator CEs at one device are the SEs
of a connected downstream NeuroFlinkCEP operator at another
site. To reduce network communication costs, pushing predicates
upstream moves filtering logic directly to source connectors like
KafkaSource at the upstream operators. It thus eliminates ir-
relevant events from going downstream, saving considerable
network resources and latencies.

3 USER EXPERIENCE AND DEMO SCENARIOS

Smart Factory, Robotic Scenario: This scenario involves robots
moving in a smart factory terrain including physical obstacles and
10 production stations. The mission of the robots is to deliver par-
ticles from one production station to the other till full product
item compilation. Several GBs of data are provided by DFKI Kaiser-
lautern in the scope of the EVENFLOW project acknowledged in
this work. Neural models are trained via ROS simulations. Exam-
ples of Complex Events of interest include: (i) Successful Delivery
CE: as in the example of Section 1., (ii) Collision Recovery CE:
for collisions occurring between robots or between a robot and
physical obstacles, where the robot manages to recover and make
its way to a production station, (iii) Station Skipping CE: a robot
detects and moves towards a station, but then heads to another
station, missing delivery (iii) Prolonged Stop at a Station CE: a ro-
bot detects a station and maneuvers to approach it, but it takes too
much time without delivering, therefore aborting the approach, (iv)
Round-Trip Completion CE: a robot successfully performs a round
trip detecting, approaching and successfully delivering production
particles across all production stations.
Telecom Scenario: we will use Call Detail Record (CDR) [5] data.
A site in the network is either a corporate data center or edge com-
puting nodes (Raspberry Pi, Jetson Nano, Mobile Edge Computing
server) at BTS (Base Transceiver Station) near the communication
antennas. These capture call metadata from Radio Access Network
(RAN) logs and can process event data locally before forwarding it
to the core network. Examples of relevant CEs include: (i) Long Call
At Night CE: reports long calls to premium locations during night
hours, (ii) Frequent Long Calls At Night CE: raises an alarm upon
the occurrence of a number of long-lasting calls made to premium
locations during night hours per CallerID, (iii) Frequent Long Calls
CE: triggers an alarm when multiple calls made to a premium loca-
tion sum up to a prolonged duration in a day, (iv) Frequent Each
Long Call CE: Notifies for a high number of long-lasting calls made
to a premium location in a day. Notice that these do not involve
predefined values or ranges for "premium locations”, "long-lasting”,
"night hours", "prolonged duration" which depend on various fac-
tors such as caller location and past calling behavior. Therefore,
involved SEs should be attributed by synapSEflow neural models.
Also note that some of the CEs in the above scenarios ingest
other CEs as their own SEs, i.e., interconnecting NeuroFlinkCEP
operators, in CER workflows. The DAG*4CER optimizer will have
to decide whether each NeuroFlinkCEP operator for the above CER
workflows will be placed at some edge device or at the cloud side.
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Figure 4: Dashboard for the Smart Factory, Robotic Scenario.

User Experience: During the demonstration, users will be able to
choose either scenario and perform the numbered tasks in Figure 2:
@ The user interacts with the NeuroFlinkCEP GUI in Rapidminer
Studio to design and parameterize their own logical workflows,
besides some prebuild ones provided by us, for each application
scenario. The user drags and drops each NeuroFlinkCEP operator
on a canvas and connects NeuroFlinkCEP operators and Kafka
Source/Sinks to define the data flow as shown on the upper right
part of Figure 2. As shown in Figure 3, for each NeuroFLinkCEP
operator, the user graphically defines the pattern of interest, se-
lection strategy, consumption policy, time window for the nested
RegEx2NeuroFlinkCEP operator. Also they specify the . pb filepath
for the nested synapSEflow operator.

(2 When the user submits the logical workflow, a Logical Workflow
Parser checks its validity. It then converts this logical plan to a JSON
file that is fed to DAG*4CEP optimizer and to a Neural Net Repo.
(3 The DAG*4CER optimizer detects the available network devices
via a Device Registry and examines physical assignments to devices
for each NeuroFLinkCEP operator, outputting the optimal physical
plan. It also projects the optimized physical plan back to the GUI
of RapidMiner Studio. There are 3 options for the user to interact
with the DAG*4CER Optimizer: (a) optimize and deploy: which
instructs the Optimizer to directly feed the optimal plan to the Job
Dispatcher, (b) only optimize: which instructs the Optimizer to
show the suggested physical plan in the GUI for the user to inspect
it or change it, before deploying it, (c) only deploy: which will
feed the workflow, after (b), to the Dispatcher.

@ In B)(a), B)(c), the DAG*4CEP optimizer feeds the physical plan
to the Job Dispatcher, while the Neural Net Repo provides the . pb
files for the neural nets engaged in the CER workflow.

() The Job Dispatcher submits Flink jobs to the network sites based
on the assignment of NeuroFlinkCEP operators by DAG*4CEP.

® Detected CEs are continuously visualized in an interactive dash-
board. Figure 4 shows the dashboard for the robotic scenario.

(@ The deployed plan is monitored and statistics including process-
ing and network latency, throughput and other relevant metrics
are collected for future DAG*4CEP plan cost estimations.

The user will also be able to bypass DAG*4CER and manually
assign operators to network sites (e.g. assign all NeuroFLinkCEP
operators at the cloud side) so that the audience can experience the
difference between the high latency CE delivery upon centralized
processing, versus the optimal execution suggested by DAG*4CER.

Finally, the user will be able to train a neural model and deploy
it on currently running NeuroFlinkCEP operators (in their corre-
sponding synapSEflow nested operators, in particular) at runtime.
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