FERARI: A Prototype for Complex Event Processing over
Streaming Multi-cloud Platforms:

Vasiliki Manikaki*
Michael Mocke

Marko Stajcer

loannis Flouris*
Minos Garofalakis*

Fabiana Fournier:

Nikos Giatrakos*
Sebastian Bothe*

Tomislav Krizant

Antonios Deligiannakis*
Inna Skarbovsky?

Jonathan Yom-Tov$

Taji Curin

*Technical University of Crete

{gflouris, manikaki, ngiatrakos, adeli, minos}@softner.tuc.gr

°Fraunhofer IAIS

{michael.mock, sebastian.bothe}@iais.fraunhofer.de

TPoslovna Inteligencija

{marko.stajcer, tomislav.krizan}@inteligencija.com

ABSTRACT

In this demo, we present FERARI, a prototype that enables real-
time Complex Event Processing (CEP) for large volume event data
streams over distributed topologies. Our prototype constitutes, to
our knowledge, the first complete, multi-cloud based end-to-end
CEP solution incorporating: a) a user-friendly, web-based query
authoring tool, (b) a powerful CEP engine implemented on top of a
streaming cloud platform, (c) a CEP optimizer that chooses the best
query execution plan with respect to low latency and/or reduced
inter-cloud communication burden, and (d) a query analytics dash-
board encompassing graph and map visualization tools to provide a
holistic picture with respect to the detected complex events to final
stakeholders. As a proof-of-concept, we apply FERARI to enable
mobile fraud detection over real, properly anonymized, telecom-
munication data from T-Hrvatski Telekom network in Croatia.

1. INTRODUCTION

Machine-to-Machine (M2M) synergies generate event data in
high frequency in every modern Big Data system, from network
health monitoring and mobile or sensor network deployments to
computer clusters and smart energy grids. Besides M2M interac-
tions, Internet-of-Things (IoT) platforms can offer advanced con-
nectivity of devices and services that cover a variety of domains
and applications, generating high volumes of event data streams
and patterns of interest subjected to further study.

*This work was supported by the European Commission under
ICT-FP7- FERARI-619491 (Flexible Event pRocessing for big
dAta aRchltectures).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

“IBM Research - Haifa
{fabiana, inna}@il.ibm.com

$Technion, Israel Institute of Technology
jonyomtov@cs.technion.ac.il

+T-Hrvatski Telekom
Taji.Curin@t.ht.hr

Complex Event Processing (CEP) Engines [4, 7] aim at process-
ing such event data streams efficiently and immediately recogniz-
ing interesting situations in real-time. Primitive events are atomic
(i.e., non-decomposable) occurrences that stream into a CEP sys-
tem, while complex events (CEs) are derived by the CEP Engine
based on application-defined event patterns (rules) engaging other
primitive and/or CE combinations. For instance, consider a number
of telecommunication antennas in a simplified mobile fraud detec-
tion scenario. A mobile device exiting the realm of an antenna trig-
gers the report of a corresponding primitive event with the duration
of the ongoing call maintained by that particular cellular device as
an attribute. The CE of a potential fraud case apparition may in-
volve summing up the overall call duration for a certain cell phone
number across visited antennas and assessing whether it exceeds a
given threshold within a recent time window.

In large scale distributed CEP systems, centralizing all raw events
is not possible, as this would create a bottleneck at the central
site/cloud. Streaming event data arriving at multiple, potentially
geographically dispersed, cloud platforms should be efficiently pro-
cessed in situ (if possible) and then combined to provide holistic
answers to global application queries. Efficient inter-cloud CEP
is tightly coupled with the requirement for reduced communication
since conventional communication links interconnect sites with dis-
tinct cloud deployments. Towards that end, proper query plans
should be generated exploiting the potential for in-situ processing.

One step further, enabling CEP at vast scale involves scaling
the amount of local processing performed within each site/cloud.
With the emergence of streaming cloud platforms (such as Apache
Storm [2]), CEP systems need to be adapted and redesigned to ex-
ploit intra-cloud parallelization and elastic resource consumption.

In this demo, we present FERARI, a prototype that enables real-
time CEP for large volume event data streams over distributed topolo-
gies. The key characteristics that distinguish FERARI from con-
ventional competitors that operate over cloud platforms (such as
Esper [6]), is that FERARI takes advantage of both inter-cloud CEP
by distributing the load over a set of streaming cloud platforms and
parallelized, intra-cloud CEP where appropriate. However, FER-
ARI’s breakthrough is not limited to the above important charac-
teristic. Our prototype constitutes, to our knowledge, the first com-

FERARI Optimizer

. EEE

‘."’ Event Stream >
e === | HUE

. Physical Plans

_ Runtime Statistics . .

FERARI : 4
. Inter-cloud Execution Plan
Authoring Tool FERARI
Dashboard

Push 171 %7)'E\/\\»\ Pull

Intra-Cloud CEP

“{inteactioud CEPY @
25 =5

Figure 1: FERARI Architecture - The Big Picture

plete, multi-cloud based, end-to-end CEP solution incorporating:

e a user-friendly, web-based query authoring tool,

e a powerful engine for efficient intra-cloud CEP, implemented
on top of a state-of-the-art streaming cloud platform, namely
Apache Storm [2],

e a CEP optimizer that orchestrates interactions among CEP En-
gines in different clouds, and chooses the best execution plan
balancing requirements for both low latency and reduced inter-
cloud communication,

e an analytics dashboard encompassing time series analysis, graph
and map visualization tools to provide a holistic picture with re-
spect to the detected CEs to final stakeholders.

As a proof-of-concept, we apply FERARI to enable mobile fraud

detection using real rules and over real, properly anonymized, telecom-

munication data from T-Hrvatski Telekom network in Croatia.

2. FERARI ARCHITECTURE

The overall architecture of FERARI is illustrated is Figure 1,
while Figure 2 and Figure 3 present intra-cloud processing modules
in detail. Below, we present the main components of FERARI,
along with our contributions.

CE Query Authoring Tool: In FERARI queries are formed using

a web-based graphical user interface. A primitive version of FER-

ARI ’s query authoring tool, deprived of advanced user-friendly,

graphical features has been made available in [5], for exploratory

purposes. Our event query modeling approach is inspired by the

CEP concepts discussed in [10, 11]. According to [10, 11], the ba-

sic notions that need to be defined during query formation and are

supported by FERARI ’s authoring tool involve:

e Event types - the events that are expected to be received as input
or to be generated as CEs. An event type definition includes the
event name and a list of its attributes.

e Producers - event sources and the way the CEP Engine gets
events from them.

e Consumers - event consumers and the way they get derived events
from the CEP Engine.

e Event Processing Agents (EPAs) - patterns of incoming events

with specific context (see below) that detect situations and gen-

erate derived events.

Temporal contexts - time windows in which EPAs are active.

Segmentation contexts - semantic groupings of events.

Composite contexts - synthesis of different contexts.

Complex Event Definitions - Definition of the above concepts

for CEs that are produced by EPAs.

| Install Plan for Site i |

CEP Engine l

Pushed Push/Pull Event
Events Requests

Figure 2: Intra-cloud FERARI Topology

An Event Processing Network (EPN), a conceptual query model
describing the event processing flow execution, is then created. An
EPN comprises a collection of EPAs, event producers and con-
sumers. The network describes the flow of events originating at
event producers and flowing through various event processing agents
to eventually reach event consumers. The created query (EPN) is
automatically transformed into a JSON file and is forwarded to
FERARI’s CEP optimizer upon query submission. It can easily
be observed that directly coding a proper JSON file tailoring the
above concepts to the desired query is a painful task. Therefore,
our web-based authoring tool facilitates and speeds up this process.
Query formulation using the authoring tool is oblivious to the de-
tails of the underlying multi-cloud setup. Users pose queries in a
way that abstracts the details of the network of sites running cloud
deployments. The EPN produced by the authoring tool may con-
tain annotations, which are hints provided to the query optimizer,
such as the optimization metric (i.e., minimize the inter-site com-
munication (default metric), maximum detection latency, etc).
FERARI Query Optimizer & Inter-cloud CEP: In our multi-
cloud, distributed setup, different sites may observe only a subset
of the event types that participate in the posed query. Therefore,
the EPN received by the FERARI optimizer must be broken down
into pieces involving different portions of the query. These parts
of the EPN should be installed in, potentially overlapping, subsets
of sites where relevant event types arrive. Furthermore, in order to
enable the detection of CE pattern matches that encompass infor-
mation across various sites, primitive or complex events need to be
exchanged among the sites. For each EPA (part of the EPN) that
needs to be installed in a subset of sites in the network, a single
site must be picked as the special one, responsible for synthesizing
event information from other sites in the same subset to determine
matches of event patterns.

In order to optimize the choice of EPA placement and orches-
trate event information exchange between sites, our prototype’s op-
timizer utilizes statistics of the frequency of each event type per
site as well as latency measurements for inter-cloud communica-
tion links. Our optimization approach uses the push/pull paradigm
discussed in [8], but significantly extends these concepts by allow-
ing the potential for EPAs to be installed at different clouds and
by loosening the restricting assumption of having all sites in the
network observe exactly the same event types. Given a complex
event, FERARI ’s optimizer generates a cost-based multi-step de-
tection plan. Each step of the plan involves pull requests for event
instances belonging to a certain event type, from the site that is re-

Output
Boits

D —— (=
\ (Y
——\
Parallel Active [—
queues Context EPA sunc»z
Partitions: ‘

Figure 3: Intra-cloud FERARI - The CEP Engine

sponsible for that EPA to the sites in its subset. These sites are to
respond with respective push messages, so that each EPA can per-
form partial or full match checks. The main optimization goal is to
produce Pareto optimal plans with respect to communication and
latency. This is to appropriately balance reduced communication
due to the transmission of the higher frequency events conditional
upon the occurrence of lower frequency ones and event detection
latency due to the postponed transmissions.

As shown in the middle top of Figure 1, the optimizer initially
produces a set of logical plans. During logical plan generation,
query rewriting procedures are applied on the posed query and sub-
sets of sites where portions of the posed query need to be installed
are determined. Furthermore, topological orderings of event types
are created to later represent all possible sequences of push/pull
activity during pattern matching checks. Based on the gathered
statistics, physical plans are generated which include the best, in
terms of Pareto optimality, EPA placement choice and the best or-
der by which event tuples will be pulled from sites for each query
portion and site subset. As soon as, our optimizer comes up with
the best possible plan, respective information is disseminated and
properly transformed portions of the EPN are installed in each site
running respective cloud platform deployments. To our knowledge,
the FERARI optimizer is the only one incorporating the above ad-
vanced features for efficient plans in inter-cloud CEP processes.
FERARLI Intra-cloud CEP: FERARI s intra-cloud processing is
built on top of a state-of-the-art streaming cloud platform, namely
Apache Storm [2]. In other words, each site is assumed to run a
Storm installation on which FERARI intra-cloud topology is cre-
ated. A site’s Storm topology, shown in Figure 2, is comprised of
the following components [9]:

e Input Spout: A Storm spout where streaming tuples arrive or
pushed events from other sites are fed into the CEP Engine.

o CEP Engine: Receives the input events from the Input Spout and
having processed them according to the locally installed EPAs,
emits derived events towards the Time Machine component. De-
tails of our CEP Engine follow shortly.

e Time Machine: A Storm Bolt that buffers derived events from
the CEP Engine.

o Gatekeeper: A Storm Bolt responsible for advanced calculations
and distributed CE resolution procedures.

o Communicator: A Storm Bolt responsible for the push/pull based
communication to/from sites in the same subsets, according to
the parts of the query plan that are processed.

The CEP Engine module of our prototype, namely ProtonOn-
Storm [4], was built by IBM Research - Haifa within the scope of
the FERARI project [3] and is an open source CEP Engine that
extends the IBM Proactive Technology Online (Proton) standalone
platform [4]. ProtonOnStorm’s architecture is distributed across

a number of Storm bolts (see Fig. 3) which allows for different
degrees of parallelization in different modules. In that, ProtonOn-
Storm is a more elastic intra-cloud processing solution maximizing
the potential for efficient intra-cloud CEP. Upon the reception of
an incoming event, multiple independent parallel instances of the
routing bolt of ProtonOnStorm, determine the metadata that should
be assigned to the received event, the EPA name and the context
name, which are added to the event tuple. ProtonOnStorm uses
the STORM field grouping option on the metadata routing fields
- the agent name and the context name- to route the information
to the the context processing bolt (see Fig. 3). After queuing the
event instance in order to solve issues of out of order reception
and parallelize processing of the same instance where possible by
different EPAs, the event tuple is processed by the context service
and the relevant context partition id is added to it. At this point,
ProtonOnStorm uses the field grouping on context partition and
agent name fields to route the event to specific instances of the
relevant EPA, this way performing data segmentation. If a CE is
detected that needs to be transmitted to a remote cloud, it will be
routed to the Time Machine component of FERARI ’s intra-cloud
topology (Fig. 2) and it will be pushed to the site responsible for
synthesizing events from other sites in the same subset upon re-
quest, according to the inter-cloud execution plan.

FERARI Dashboard: The web-based dashboard of our prototype
is generic enough to produce a wide variety of reports and analytic
results that are useful from an application viewpoint, irrespectively
of the actual details of the CEs, context or EPAs. It simply needs
to be defined as an event consumer using a RESTful API [4]. FER-
ARI Analytics come both in numerical, tabular format and graph-
ical representations, while map visualization combines aggregate
event statistics with their spatial reference, i.e., regarding the site
of the multi-cloud platform where interesting situations occur.

3. DEMO SPECIFICATIONS

For the purposes of the demonstration, we will use a real, prop-

erly anonymized, dataset of call data coming from HT’s network.
HT data include around 2 TB of Call Detail Records (CDR), 600
GB of Postpaid usage and more than 1.5 TB of Prepaid CDR. In
a simulated multi-cloud deployment, each site will be fed with a
distinct local stream that comprises a set of calls recorded by a
group of HT’s telecommunication antennas, where groups are non-
overlapping i.e., they share no antennas. During the demonstration
scenario, users will be able to interact and test all the components of
FERARI architecture in a real use case scenario involving mobile
fraud detection CEs.
CE Query Formation: we target at enabling both quick exploratory
interaction with FERARI, as well as provide the potential for allow-
ing users dig further into our prototype’s querying and CEP capa-
bilities. To achieve that, we use real (properly masked to comply
with company policies) fraud detection rules from HT to a priori
build a set of EPAs. In the pre-built scenario users will be able
to express their queries by combining the already available EPAs,
defining event producers and consumers and visualizing the cre-
ated EPN in FERARI ’s authoring tool. A version of the pre-build
scenario, deprived of visualization tooling, can be found in [5] un-
der OpenProject > MobileFraud. Event patterns expressing the
properly masked HT’s rules for mobile fraud detection involve:

e LongCallAtNight: Report long calls (defined as longer than X
minutes) to premium locations during night hours (limited by a
pair of timestamps).

o FrequentLongCallsAtNight: Raise alarm upon the occurrence of
at least Y calls made to premium locations during night hours,
lasting longer than X minutes per calling number.

Mr. Fraud
fraud@mail.com Last 4 hours

ANALYTICS

Last 4 days

Dashboard

B Teble

o Ve

Total events Today events In 4 hours

M Grevhs

DAILY ANALYSIS
Management

My Events 50
200
* Settings
250

@ New Users

@ Returing Users |48

In4 days
ACTIVITY

INCIDENT LOGS DURATION

Just now

EVENTS

<

Name Call Start Date > Calling Nur

LongCallAtNight | 1399003543000 385984MBY~
{
LongCallAtNight 1399003543000

LongCallAtNight | 1399003543000 3859920YCI

Event a1 finished #features 4.

11:30
User@Tomica generates Fraudulent event

10:30
Call from user Adi

USER DETAILS

PEAK / OFFPEAK ZONES

3500000

000000

2500000

2000000

1500000

1000000

v | items per page

Wl ke fe

Current page: 1 of 1

W units M duration

Figure 4: Screenshots of FERARI Dashboard

o FrequentLongCalls: Notify when at least Z calls made to a pre-
mium location sum up to at least X minutes duration in a day.

o FrequentEachLongCall: Notify when at least Z long, at least X
minutes each, calls are made to a premium location in a day.

e ExpensiveCall: Every X minutes provide notifications in case
calls dialed to premium locations sum up to more than a pre-
defined cost per calling number.

Using the pre-built EPAs as a guide, users will also be able via the
authoring tool to build their own, fraud detection related, queries
modifying existing or define from scratch CEs, Contexts (tempo-
ral, segmentation or composite), EPAs and finalize their queries by
graphically exploring the EPN that will be submitted to FERARI.
Assessing Inter- and Inter-cloud Internals: In order to fully as-
sess the details of FERARI’s deployment and the function of indi-
vidual components beyond the application’s viewpoint, interested
users will be able to have access to logging information presented
in a user-friendly way, which includes:

e FERARI optimizer’s steps in choosing the best query plan as
well as logical (including query rewriting in terms of the pro-
duced JSON file), physical plans and corresponding execution
costs of other alternatives,

e real-time logs of inter-cloud push/pull communication according
to the plan that has been prescribed by FERARI ’s optimizer,

e real-time logs of intra-cloud activity via ProtonOnStorm’s rout-
ing and EPA Manager bolts (Fig. 3).

CE Analytics: Real-time CE notifications will be provided via
FERARI ’s analytics platform. Nonetheless, the functionality of
our prototype’s dashboard includes much more than mere notifi-
cations of fraud event reports with detailed feature descriptions.
Users will be able to access reports of numerical and graphical re-
sults about detected mobile fraud CEs as shown in Figure 4. More

precisely, aggregate statistics corresponding to suspicious call and
user records will be provided at different temporal context granu-
larities in an online fashion (Fig 4). Furthermore, map visualization
tools will account for the spatial dimension of the analysis, regard-
ing the position of HT ’s telecommunication antennas where fraud
incidents occur or trajectories (sets of antennas) where suspicious
users span as they commute. A sample video of FERARI Analytics
during the demonstration can be found in [1].

4. REFERENCES
[1] http://recordit.co/4yi6Qpnlo6.

[2] Apache Storm project homepage. http://storm.apache.org/.

[3] Flexible event pRocessing for big dAta aRchltectures. the
FERARI project. http://www.ferari-project.eu/.

[4] IBM Proactive Technology Online on STORM.
https://github.com/ishkin/Proton.

[5] Proton Authoring Tool.
http://130.206.81.23:8080/AuthoringTool/Main.html.

[6] Storm-Esper. https://github.com/tomdz/storm-esper.

[7] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.
Efficient pattern matching over event streams. In
Proceedings of SIGMOD, June 2008.

[8] M. Akdere, U. Cetintemel, and N. Tatbul. Plan-based
complex event detection across distributed sources. PVLDB,
1(1):66-77, 2008.

[9] S. Bothe, V. Manikaki, A. Deligiannakis, and M. Mock.
Towards flexible event processing in distributed data streams.
In Proc. of the Workshops of the EDBT/ICDT, 2015.

[10] O. Etzion and P. Niblett. Event Processing in Action.
Manning Publications Company, 2010.

[11] C. Moxey, M. Edwards, O. Etzion, M. Ibrahim, S. lyer,
H. Lalanne, M. Monze, M. Peters, Y. Rabinovich, G. Sharon,
and K. Stewart. A Conceptual Model for Event Processing
Systems. IBM Redguide publication, 2010.

