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Abstract—Many IoT applications from diverse domains rely on
real-time, online analytics workflow execution to timely support
decision making procedures. The efficient execution of analytics
workflows requires the utilization of the processing power avail-
able across the cloud to edge continuum. Nonetheless, suggesting
the optimal workflow execution over a large network of hetero-
geneous devices is a challenging task. The increased IoT network
size increases the complexity of the optimization problem at hand.
The ingested data streams exhibit highly volatile properties. The
population of network devices dynamically changes. We introduce
DAG#*, an A*-alike algorithm that prunes large amounts of the
search space explored for suggesting the most efficient workflow
execution with formal optimality guarantees. We provide an
incremental version of DAG™* retaining the optimality property.
Our experimentation in real-world scenarios shows that DAG*
suggests the optimal workflow execution with 3 to 31 orders of
magnitude fewer iterations compared to the entire search space
size, outperforming heuristics employed in prior state of the art
up to x4.5 wrt the goodness of the suggested workflow.

Index Terms—IoT, Optimization, Data Streams, A* Algorithm

1. INTRODUCTION

Many diverse applications from the smart city, smart
grid [1], [2], smart factory [3], and various other domains oper-
ate over geo-distributed infrastructures, composed of powerful
clouds, intermediate fog and edge devices. In such Internet-
of-Things (IoT) settings, devices continuously monitor their
operational realm and produce unbounded streams of data at
a high rate [4]. These data need to be processed in an online,
real-time fashion in the scope of analytics workflows so as
to continuously deliver useful output supporting reactive and
proactive decision making procedures [5], [6]. IoT networks
use hierarchical organizations [2], [7] to reduce latency, en-
hance scalability, and manage bandwidth efficiently. Optimized
data flow and resource allocation stems from delegating tasks
across the edge, fog, and cloud layers. This allows lower
layers (edge and fog) to handle preliminary data processing,
filtering, and aggregation close to the devices, reducing raw
data volume sent to the cloud and lowering transmission costs.
By processing data closer to the source, the network mini-
mizes cloud dependencies, conserves resources and improves
response times for real-time applications.
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Consider a smart city infrastructure and an analytics work-
flow, as the one in Figure 1, which performs higher order
aggregation and stores generated plots [1]. Such analytics
workflows are composed of various operators for machine
learning, stream transformation or user defined functions, each
processing data ingested from various devices [1]. Having IoT
devices naively relay sensed data to the cloud side is severely
suboptimal since the processing capacity of the devices is
never exploited. To fully exploit the processing power of the
entire cloud-to-edge continuum, some of the operators of the
workflow can be assigned for execution on the fog or edge
devices so that, aggregative results can be extracted early, and
only more compact data representations will be delivered to
the cloud side. In that, network and processing latencies can
be diminished [8], [9]. In turn, reduced latency is important for
the real-time, continuous delivery of the analytics outcomes.
Nonetheless, the problem of optimal operator assignment to
network devices, represented as disks in Figure 1, is NP-
hard [10], [11]. In Figure 1 we can see that each operator may
be assigned for execution to different devices (disks), while
the possible combinations for all operators of the workflow, is
difficult to track. In IoT settings, optimizing the execution of a
workflow introduces further challenges related to the volatility
of ingested stream statistical properties (such as rapidly chang-
ing skews, frequencies), the increased network size, which
increases the complexity of the optimization problem, and the
fact that new devices may enter or depart [11] at any time.

The problem of efficient analytics workflow execution has
been extensively studied under several setups in prior research.
From traditional optimization in centralized streaming set-
tings [12], [13], to networked architectures [10], [14]-[16],
cross-platform optimization scenarios [17]—-[21], elastic stream
processing [22], [23] at the cloud, sensor networks [24], [25]
and recently over IoT platforms [9], [11], [26]. Observing
these approaches and the optimization problems they solve
at a higher level of abstraction [5], the common theme is
that there is an exhaustive search algorithm that explores the
entire search space of possible workflow operator assignments
and guarantees to solve the optimization problem at hand by
outputting an optimal graph (highlighted in green disks and
arrows in Figure 1), prescribing for every operator of the
workflow the device(s) on which it should get executed, so that
aggregate performance measures are optimized. Subsequently,
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Fig. 1: Example of DAG* output on the STATS workflow [1]. Nodes are the operators of the analytics workflow. Disks in
each node are possible configurations, i.e., executing the operator represented by Node i on network device d. Each disk
has a different cost (processing latency). An edge denotes operator dependency with a different cost weight (network latency)
depending on the configurations they connect. Green-colored edges and disks compose the optimal graph returned by DAG*.

each approach comes up with heuristics that reduce the portion
of the explored search space, but end up with suboptimal
(hopefully near-optimal) graphs describing the workflow ex-
ecution suggestions. On the one hand, limiting the explored
search space of the optimization algorithm is a desired feature
so as to suggest an efficient workflow execution in a timely
manner. On the other hand, relying on heuristics to provide
more rapid suggestions may unpredictably compromise the
goodness of the devised execution graph, since existing heuris-
tics provide no a priori known quality guarantees [5].

In this work, we address this gap of all prior approaches,
introducing an optimization algorithm which both substantially
reduces the amount of search space it needs to explore, and
simultaneously guarantees the optimality of the devised graph
for the execution of the given workflow over the physical IoT
infrastructure. Our algorithm is inspired by the A* path finding
algorithm [27], [28]. A*’s power in efficient path finding stems
from a couple of fundamental properties (Section VI): (a) the
incorporation of a clever heuristic cost function, admissible
only upon being an underestimation of the real cost of each
path, during exploring the available search space; (b) the guar-
antee of optimality under the admissible heuristic precondition.
The classic A* and any other path finding algorithm [28] are
inappropriate in our setup because they would leave entire
workflow operators out of the suggested workflow execution.
For instance, the classic A* algorithm in a workflow graph like
the one in Figure 1, will always output a path, i.e., only one
out of Node 3, {Node 4, Node 6} or Node 5 would be included
in the output solution. Our work is motivated by the intuition
that if one could adapt and convey the aforementioned A*
properties in the context of optimal graph finding, the novel
optimal graph A*-alike algorithm would inherit the ability
to prune large portions of the search space, also retaining
optimality guarantees. Thus, the impact of the new algorithm
for a variety of real scenarios explained above, would be
high given the gap in prior art. In this paper we build a
novel A*-alike algorithm for efficient optimal graph (workflow

execution) discovery. Our contributions are:

« We propose DAG*, a novel A*-alike algorithm, for optimal
workflow execution. DAG* is the first algorithm that guar-
antees the optimality of the suggested workflow execution
graph, dramatically reducing the portion of search space
being explored. To achieve that, in DAG*:

— We redefine the concept of the admissible heuristic in the
new context of optimal graph, instead of path discovery
and we introduce a novel, admissible heuristic function.

— We introduce two novel rules which guarantee that the
new algorithm returns a graph instead of a path.

« We theoretically prove that DAG*, under these rules, always
returns an optimal solution, i.e., the workflow execution
graph that minimizes a user defined cost.

o We introduce d-DAG*, an incremental version of DAG*
that boosts efficiency in dynamic IoT environments where
cost and device population changes can occur unpredictably.
Again, we provide theoretical optimality proof for d-DAG*.

« Our systematic experimental evaluation uses a well known,
highly cited benchmark [1] from the smart city domain.
Our results show that DAG* can provide optimal graphs,
prescribing the execution of workflows over the physical
IoT infrastructure, by exploring only a small fraction of the
search space with 3 to 31 orders of magnitude fewer itera-
tions compared to exhaustive search. We further show that
DAG* outperforms state of the art heuristic paradigms [11],
[26] by providing solutions with up to 4.5x better work-
flow execution performance. Our incremental algorithm, d-
DAG?#*, further halves the amount of search space explored
in volatile settings compared to running DAG* from scratch.

« DAG* has been incorporated in a commercial platform,
namely the streaming extension of RapidMiner Studio [29]
running as part of the Streaming Optimization service.

II. ProBLEM FORMULATION

Consider a workflow as a weighted Directed Acyclic Graph
(DAG) G = (Vg, Eg), where Vg, Eg are the sets of nodes and



edges accordingly. Each node i € Vg has a set of possible
configurations denoted as C;, where each configuration cj( € C;
is related with a cost conf.(c;) = 0. Note that Yi,j € Vg,
where i # j, the sets C; and C; may differ, while if a specific
configuration ¢, exists in both sets, then the corresponding
cost of ¢; may vary for each node, i.e., con fc(c}'{) # con fc(ci).
Moreover, each edge e;,; € Eg has a non-negative weight
that depends on the configurations that have been assigned to
nodes i and j, denoted as edgec(cj;,c{ ). On top of that, each
node i has a set of predecessors Pr(i), i.e., set of nodes that
are connected with i via an edge e;_;, where j € Pr(i); and
a set of successors Su(i), i.e., set of nodes that are connected
with i via an edge e,_,;, where j € Su(i).

Also, given G, we insert two auxiliary nodes, namely the
START and the END nodes, to guide the initial and final steps
of our algorithm (see Sections III-A and III-C). In particular,
we connect the START node with each node i € Vg : Pr(i) =0
via an edge esrarr—i; While we connect the END node with
each node i € Vg : Su(i) = 0 via an edge e;—,gnp- !
Illustrative Example: Consider the workflow graph of Fig-
ure 1. It includes interconnected nodes (workflow operators)
that are executed to accomplish a higher order statistic com-
putation analytic task. The interconnection between operators
are the edges denoting the dependency of an operator on its
previous ones. The workflow continuously ingests input data
from Node 1 which is a Source operator, and each subsequent
operator in the topologically sorted workflow continuously
receives input from one or more other operators. Notably, a
workflow can include both splits (the SenMLParse operator
gives input to more than one other) and merges (the groupBy
sensorID operator receives input from more than one opera-
tor). Each operator should be executed on some, among several
network devices, though it has multiple device choices, termed
configurations, with different costs/processing latencies (conf,
in our problem formulation) represented as disks in Figure 1.
Data can be transferred among the devices via edge. with a
communication cost/latency equal to the weight of edge.. The
optimal graph of DAG* will have assigned each operator at
a device aiming to minimize the entire cost (processing and
communication latency) of the workflow as a whole.

DAG* finds the optimal graph based on some cost function.
The solution that our algorithm will produce must contain Vi €
Vg, which should be assigned at a configuration cj< e C;.

Definition 1 (ANOC (AllNodesOneConfiguration) Graph). A
graph G’ is called ANOC if and only if the following three
conditions hold: (a) Vg = Vg; (b) one configuration is
assigned to each node i € Vg ; and (c) all nodes i € Vg
are chosen to be connected via a unique edge with each node
j € Pr(i).

Simply put, an ANOC graph is one that contains all nodes, one
chosen configuration per node and one edge connecting chosen
configurations of connected nodes. Notably, this definition is

'All edges that begin from START and all edges that arrive at the END
have a zero cost (or weight).

easily extensible to broader scenarios, where, for instance, a
node can be replicated with multiple configurations. In that
case, the said node just needs to be replicated in the graph G.

Definition 2 (Optimization Problem). Given G = (Vg, Eg),
DAG* outputs the optimal graph, G* = (V},, E*g') such that:

0
Minimize: Real(G") + WGy 1)

Subject to: G* is an ANOC graph

with the Real(G*) and the heuristic h(G*) costs explained in
Equation 3 and Equation 2, later on.

We further point out that 4(G") is the heuristic cost defined
in Section III. As explained later in Equation 2, this heuristic
cost is zero for the END operator of any given G, i.e. just
at the point when DAG* reaches the optimal solution for the
entire workflow. We superfluously include A(G*) (explicitly
zeroing it out) in the above definition for completeness and
for emphasizing the connection with Section III.

III. Tue ProrPosep DAG* ALGORITHM
A. Nodes’ Heuristic Cost

DAG*#*, similar to the classic A* [27], utilizes a heuristic cost
function for each node in Vg to guide its search. Remarkably,
DAG* contributes with a novel formula for the heuristic cost
of each node i € Vg, denoted as h(i). This new formula is
a prerequisite in order to operate aiming for optimal graphs
instead of optimal paths. For a given workflow, the heuristic
cost should be an optimistic estimation on what is the cost
(aggregate network and processing latency) from a given
node/operator (see Figure 1) to reach the END. For a heuristic
to be admissible, i.e., guarantee optimality of DAG*, h(i)
should always be an underestimation of the real cost from a
given node/operator to reach the END. The novel, admissible
heuristic introduced by DAG* for optimal graph discovery is
given by the following formula:

i = {0 if i € {Pr(END), END}

max jes up{h(j) + mingec,{conf(c))}}  else

2

We stress that the computation of the heuristics is performed
in a reverse topological sort of the nodes; it starts with the
END node,? proceeds with the Pr(END) set, then the nodes in
Pr(Pr(END)) and so on. This process terminates by computing
the heuristic of the START. Note also that Equation 2 leads to
an admissible (heuristic) function since it never overestimates
the real cost from any node i € Vg. This holds because,
for each node i, Equation 2 computes the sum of the min-
imum configuration costs and the heuristics for each j, where
Jj € Su(i). Then, in case of a node with multiple successors
(e.g. Node 2 in Figure 1) we set the heuristic of i as the
maximum computed sum of the minimums of its successors.
This guarantees that our heuristic never overestimates the
actual cost, since our approach attempts to discover the optimal

2Since the END node is a ‘goal-node’, its heuristic cost is equal to zero.
Since it is a virtual node, it has a zero configuration cost as well.



graph, so all nodes are always contained in the solution.
We highlight that we select the maximum of the minimums
instead of the minimum of the minimums, which could also
be used, since it offers a less (but still) optimistic and more
realistic estimation of the actual cost. As such, the maximum
of minimums gives an admissible heuristic simultaneously
guiding our algorithm faster to the optimal solution. Now, for
num__conf possible configurations per node, the A(i) values
can be precomputed using O(|Vg| - (num_conf + B)) time,
where B is the maximum number of successors Su(i) of any
node, by first computing the quantities minec,{con fc(cé)} in
O(num__conf) time per node.

Illustrative Example: Consider that we want to compute
the heuristic of Node 2, i.e., A(2). We have that Su(2) =
{Node 3,Node 4,Node 5} with assumed heuristics 4(3) = 10,
h(4) = 8 and A(5) = 12. Moreover, for ease of exposition,
assume that Node 3 and Node 5 have only one valid configura-
tion with costs 5 and 1 accordingly, while Node 4 has two valid
configurations with costs 5 and 7. Thus, from Equation 2 we
get that 2(2) = max{{h(3) + 5}, {{h(4) + min{5, 7}, {h(5) + 1}} =
max{{15}, {13}, {13}} = 15.

DAG* also accounts for a real cost for each (partial or
complete) graph of G that it has examined at any given point
in time. This real cost, formally defined in the next section,
for each operator of a given workflow, measures the cost from
the START to the said node/operator. The real cost depends
on (a) employed configurations for the visited nodes; (b) the
weight of the edges that connect these configurations and (c)
a chosen aggregation function.

B. Partial Graphs’ Cost

Since our goal is to return the optimal graph, our algorithm
extends partial graphs instead of just nodes. As we explain in
Section III-C, DAG* maintains a priority queue where partial
graphs are stored along with their corresponding costs. Each
partial graph g contains the so far visited nodes and used edges
of G and has some cost based on the configurations that have
been assigned to its nodes. The estimated cost of a partial
graph g is the sum of the real and the heuristic costs, formally:

f(g) = conf.(c) + aggr {Real(g ) + edge.(c,, ci,)}
i€Ty|ch
JEPr(i)eg™
teC;

3)

Real(g)
+ miner, {h(i)}
N——

h(g)

where T, is the set of the terminal nodes of partial graph g,
i.e., those nodes with empty Su() sets. The real cost Real(g)
is computed from the cost of g, which is a dequeued, visited
partial graph. We add the cost of a new configuration for
i € Vg and we also add the weight of the edges that connect
this configuration (disk in Figure 1) to the configurations
of its predecessors in g~. We aggregate across all these
edges using any function, e.g., sum, max, etc., depending on

the application, i.e., serial execution may imply sum, while
parallel execution may imply max.

Ilustrative Example: Consider the scenario where aggr =
max and we just dequeued g~ which contains all Nodes 1 to
6 with a cost of Real(g™) = 56. Now, we can extend g~ by
inserting Node 7, which has a heuristic 4(7) = 8, into one of its
valid configurations. Assume that we generate g by selecting
CZ which has a cost of 4. Moreover, we assume that based
on their applied configurations the communication costs from
Nodes 3, 5, and 6 to 7 are equal to 3, 1, and 2 accordingly.
Thus from Equation 3 we get that f(g) = 4+max{{56+3}, {56+
1L,{56+2}}+8=4+59+8="71.

C. Extending a Partial Graph

DAG* uses an estimated cost-based priority queue to store
partial graphs, during its quest of reaching the optimal graph
it seeks for. Here, we describe the partial graph extension
operation of our approach, as we visit more nodes towards
optimal, complete graph discovery. To extend any partial graph
g, g should be contained in a priority queue, denoted as Q, and
should have the smallest estimated cost (Equation 3). Then g
is selected and removed from Q. DAG* introduces two novel
rules in order to ensure that the algorithm will output a graph
instead of a path. The extension of partial graph g must follow
these two rules:

Rule 1 During an extension, only one node i can be inserted
to g along with the edges that lead to i and exist in G,
ie, Vje Pr(i): e € Eg.

Rule 2 A node i can be selected if and only if all nodes in
Pr(i) have been already inserted in g, i.e., Vj € Pr(i) :
JE Ve

Rule 1 says that we must expand g selecting any, but one at a
time, node i and Rule 2 says that, for a node to be qualified for
selection, all its predecessors must have been included in g.
Once we select i, we should generate |C;| (cardinality of C;)
new partial graphs that differ in the employed configuration
of the newly inserted node i. Subsequently, we compute their
estimated cost and we insert each of them into Q. For each
expansion, the complexity for computing the costs of each of
the |C;| new partial graphs is O(|Pr(i)| - num__conf).

Lemma 1. For any partial graph g that is stored in Q, it
holds that ¥Yi € V, all nodes in sets Pr(i), Pr(Pr(i)),--- also
exist in Vy, i.e., no node i can exist in any partial graph g € Q
without all the nodes j that are connected with i, via an edge
€jsis in Q

Proof. We will prove this lemma by contradiction. Assume
that at some iteration of DAG¥*, the priority queue Q encloses
at least one partial graph g that contains node i and it holds
that there exists at least one node j of i’s predecessors, i.e.,
3j € Pr(i), such that j ¢ V,. Now, since DAG* never removes
a node from a partial graph (once it has been added), this
implies that at some point during the execution of DAG*, node
i was added to a partial graph that did not contain node j.
However, based on Rule 2 we know that DAG* can add node



Algorithm 1 DAG* algorithm for optimal graph discovery

Input: Graph G, Configuration costs conf., Edge costs edge,, Priority queue
Q (default Q = 0)
Output: Optimal graph G*
: Insert the START and END nodes at G
: computeHeuristics(G, conf.)
if O =0 then
Q.enqueue(START)
end if
G =0
: while Q # 0 do
g = Q.dequeue()
if g is ANOC then
10: G =g
11: break
12: end if
13: candidates = nodesMeetingRule2(G, g)
14: newNode = rand(candidates)
15: {Apply Rule 1}

R R TS

16: for all possible confs of newNode do

17: tmpG = insertNode(newNode;, G, g, conf., edge.)
18: computeCost(tmpG)

19: Q.enqueue(tmpG, sortKey = estimated cost)

20: end for

21: end while
22: return G*

i if and only if all nodes in Pr(i) already exist in the partial
graph. As a result, we have a contradiction. O

Ilustrative Example: In the initial iteration, DAG* inserts
to Q a partial graph g( that contains only the START node.
go is then dequeued and extended. In Figure 1, this extension
process will enqueue 3 partial graphs, because Node 1 has 3
possible configurations (disks). These partial graphs will be
prioritized based on their estimated cost (Equation 3). This
process will continue in a similar way. According to Rule 2,
no extension will include Node 7 until a partial graph that
contains all Nodes 3, 5 and 6 is dequeued. DAG* terminates
only when an ANOC graph is dequeued.

Algorithm 1 provides the DAG* pseudocode. Initially, nodes
(START, END) are inserted into the given graph G (Line 1),
and the heuristics of each node are computed (Line 2) based
on Equation 2. In Line 4 we insert a partial graph that contains
the START node. Now, the loop in Line 7 contains the core
idea of DAG*. In detail, the partial graph with the lowest
estimated cost is dequeued. If the dequeued partial graph is an
ANOC graph (Lines 9-12), then we will terminate our search
returning the optimal solution (Line 22). This is because we
will have a complete graph with lower real cost than any of the
estimated (best case) costs of the (partial graphs) remaining
in the queue (see Section III-E). If the dequeued partial graph
was not an ANOC, then in Line 13 we find the nodes that
are qualified for selection in the expansion of the dequeued
partial graph based on Rule 2. In Line 14 we choose, among
these candidates, one candidate node that will be inserted into
the partial graph (Rule 1). Then, once we select the node that
will be inserted, the inner loop (Line 16), for every available
configuration (of the selected node), will (a) insert the node
(assigned to a specific configuration) to the dequeued partial
graph; (b) compute its estimated cost based on Equation 3;

and (c) insert the extended partial graph to the priority queue
in the appropriate index based on its estimated cost. Finally,
the algorithm will proceed to the next iteration.

D. DAG* Search Complexity Analysis

Theorem 2. Based on Rules 1 and 2, consider a topological
order of all operators contained in any graph G. In the worst-
case scenario, the length of the priority queue right before the
insertion of any node i, is equal to num__conf* ) X(i) being
the set of nodes that topologically precede i € G.

Proof. We will prove this theorem by induction.

Base Step i = 1: Before inserting the first operator (non-
auxiliary), based on our theorem the number of partial graphs
that are contained in Q are num_conf’ = 1, which is true
(remember that DAG* starts by inserting the START auxiliary
node).

Inductive hypothesis: We assume that our theorem also
holds when inserting operator k. As such, we take as granted
that before inserting operator k the priority queue has a length
of num_conf*".

Inductive step: Now, before inserting operator k + 1 to the
partial graphs, we will have to expand all partial graphs that
are contained in the priority queue at step k by inserting to
each one of them all possible configurations of operator k + 1.
As such, the length of the queue after inserting operator k + 1
will be equal to num_conf*' - num conf = num_conf*.
Thus, we can see that our theorem also holds for step k + 1.

So, we proved by induction that our theorem holds. O

Thus, in the worst case, the number of iterations—eg& .?nsions
of DAG* is Yy, num__confX® = % =
O(num__conf!Vs). The running time cost of each expansion
was presented in Section III.C. Also, in the worst case
O(num__conf!Vs) partial graphs will be enqueued in the prior-
ity queue, but the memory footprint of each such partial graph
is small, because we do not need to explicitly materialize them.
Each partial graph can instead be represented by the IDs of
the nodes that belong to it, along with a number for each node
i.e., for the selected configuration for that node [21].

E. On DAG* Optimality

Note that due to the way we insert the auxiliary START,
END nodes and since the solution to this optimization problem
is an ANOC graph, it holds that Tg- = END. However, as
described in Section III-A, we know that Z(END) = 0. As
such, we can remove the second term of Equation 1, since it
is always equal to zero due to the existing constraints for all
valid solutions. Now, we prove theoretically that DAG* is able
to discover the optimal graph for our optimization problem.

Theorem 3. The ANOC graph, g, that DAG* returns is the
one with the lowest cost, i.e., it is the optimal graph.

Proof. Assume that some ANOC graph g’ is the best one
and not g, i.e., it holds that Real(g’) < Real(g). Initially,
our approach begins by performing the extension procedure
as described earlier. Now, consider the moment just before g



is chosen from the queue (dequeued). Some part of g’ will
also be on the queue; let’s denote this partial graph as g”.
Because g was “expanded” before g’ it holds that:

f(g) < f(g") © Real(g) + h(g) < Real(g") + h(g"”) (4)

Now, because g is an ANOC graph it holds that T, = END and
thus its heuristic is equal to zero, i(g) = 0. From Equation 4
we get:

Real(g) < Real(g") + h(g"") %)

Moreover, we know that 4 is an admissible function. Thus,
following our algorithm and Rules 1 and 2, we know that for
any partial graph y the following holds:

Real(y) + h(y) < Real(YANOC: Rulel A Rule2 A contains(y)).
Therefore, it holds that:

Real(g") + h(g") < Real(g") (6)
Finally, by combining Equations 5 and 6 we get the following:

Real(g) < Real(g") + h(g") < Real(g")

As a result, we have a contradiction and our hypothesis was
wrong. Thus, ANOC graph g is the optimal graph. O

F. Dynamic Setting

Many real-world scenarios are characterized by dynamic
changes that occur unpredictably over time. In IoT settings
network devices may lose connectivity or new ones may sub-
scribe to the network [9]. In the analytics scenarios considered
in this work, the volume and velocity of continuously ingested
data may vary over time [6]. Therefore, it is crucial for the
employed algorithms to be able to adjust to these challenging
settings by efficiently handling the changes that may alter
configuration cost values. Given this motivation, we introduce
an incremental version of DAG*, called d-DAG*.

To accommodate such dynamic cost changes efficiently,
d-DAG* must undertake the task of updating its already-
computed priority queue, Q, 3, ensuring the removal of nodes
containing outdated information. Thus, given a change, we
have to find the affected nodes and discard them from any
partial graph g € Q. In detail, the occurred change affects
directly the node i, i.e., the node that its configuration(s) cost(s)
just changed. As a result, the node i has to be discarded from
any partial graph g € Q. Moreover, since no partial graph will
contain node i, due to Rule 2 (see Section III-C), d-DAG* has
to also remove the nodes that exist in sets S u(@), S u(S u(i)), - - -
to the END node, from all partial graphs in Q. On top of
that, such change could also affect j’s heuristic function, A(j),
where j € Pr(i) (see Equation 2). In such case, the change
could similarly ‘propagate’ further, affecting the heuristics of
the nodes in sets Pr(Pr(i)), Pr(Pr(Pr(i)))--- to the START
node. Once we check which of these nodes were affected,

3Note that initially the DAG* has been employed in an initial setting,
returning the optimal graph through a priority queue Q that had been created
(see Section III-C).

denoted as Aff, we also ensure that the post-change queue
satisfies Lemma 1. As such, we discard all the nodes that exist
in sets Su(j), Su(Su(j)), - - to the END node, where j € Aff.

Having discarded all the affected nodes from all partial
graphs in O, we compute the partial graphs estimated costs
based on Equation 3. We then sort them with respect to the
updated estimated costs and we remove the potential duplicates
that may have been created. As a result of the aforementioned
process, we have generated an updated priority queue by
exploiting the information that had been already computed
during the execution of DAG* before the change occurrence.
Thus, we achieve the desired incremental version of our
algorithm since our approach can exploit Q without necessarily
starting from scratch to find the post-change optimal solution.

Algorithm 2 provides the d-DAG* pseudocode. Initially,
we insert to the set of the affected nodes, denoted as Aff,
the node i affected by the change (Line 4). In Line 5 we
use a recursive function to find the nodes S u(@), S u(S u(i)), - - -
and update Aff set. Then, if the occurred change affected
the heuristic of node i we utilize a recursive function to find
which of the nodes in Pr(i), Pr(Pr(i)),--- were also affected
and update Af f set (Lines 7 - 10). Now, given the Af f set, we
have to discover the successors of j, where j € Af f, in order
to satisfy Lemma 1 and update the Aff set (Lines 11 - 13).
Next, after the prescribed updates, the Aff set may contain
duplicates which we can remove without affecting the result of
the algorithm. Given the computed Af f set, we iterate through
Q in order to remove from any stored partial graph the nodes
that were affected and re-compute their estimated cost, which
will be used as ‘key’ in order to sort the resulted priority queue
Oy (Lines 15 - 19). Once, we create the 0y we remove any
potential duplicate partial graphs that may have been created
due to the node removal process described earlier. Finally, in
Line 21, using the Q; priority queue we call the Algorithm 1,
i.e., the DAG* algorithm, which will not begin from scratch
(an empty priority queue). In the worst case, d-DAG* will
have to update all the affected partial graphs from the priority
queue which are up to num_conf!Vs! (see Section III-D); and
call DAG* in Line 21 of Algorithm 2 with QO = 0. Thus, the
search will start from scratch and the complexity of d-DAG*
will in the worst case be O(num__confVe!).

G. On d-DAG*Optimality

Here we prove theoretically that d-DAG* is able to discover
the optimal graph. For this section, we denote as Q the priority
queue that DAG* has created in the initial setting, the first time
it runs, and as Qy the priority queue that d-DAG* generated
after a change that occurred in the setting (Algorithm 2).

Lemma 4. For any given partial graph g, if Lemma 1 is
satisfied then we can always construct an ANOC graph, which
contains the configurations of nodes that are already contained
in g with any combination of configurations of the nodes that
have not inserted to g yet.

Proof. 1t is straightforward. m}



Algorithm 2 d-DAG* algorithm

Input: Graph G, Priority queue Q, Configuration costs conf,, change ch;, old
heuristic h, Priority queue Oy = 0

Output: Optimal graph G*

. I’ = computeHeuristics(G, conf.) {Update affected heuristics}
Aff=0

i = ch;.getAffNode()

: Aff.add(i)

su = findSuccessors(i)

. Aff.add(su)

 if h(i)! = ' (i) then

pr = findPredecessors(i)

Aff.add(pr)

10: end if

11: for je Aff do

12: Af f.add(findSuccessors(}))

13: end for

14: Af f.removeDuplicates()

15: for g € O do

16: g.delete(Aff)

17: computeCost(g)

18: Qy.enqueue(g, sortKey = estimated cost)

19: end for

20: Qy.removeDuplicates()

21: G* = DAG*(Qy) (run Algorithm 1 from Line 3)
22: return G*

R R TS

Lemma 5. All partial graphs g € Qy satisfy Lemma 1.
Proof. 1t is straightforward. )

Based on the operation of DAG* (i.e., when it extends a
node j it adds |C}] equal,* partial graphs to the queue, where
each partial graph contains a different configuration of j), we
can guarantee that at timestep ¢, where the optimal graph is
dequeued, for each node i it holds that g € QO : ch{ e C;.

Now, assume that a change occurred in our setting that
affected a set of nodes. Note that this set of nodes is computed
by d-DAG* which creates the Qy. In detail, d-DAG* does not
delete any of the partial graphs stored in Q, but it replaces
some of the partial graphs with one partial graph that does
not contain any affected node. Thus, we cannot have a partial
graph g € (O that contains only a subset of some node’s
configurations, because if a partial graph with a configuration
cf{ € C; was affected, then all the ‘equal’ partial graphs of g
that differ only to i’s configurations will be affected as well.
As a result Vi it holds either (a) dg € O for Vc;; € C;; or (b)
Ag € Oy for V¢, € C;.

Theorem 6. Given Qy there is no ANOC graph that cannot
be reached.

Proof. Assume that there is an ANOC graph g’ which is
unreachable. That means that in g’ at least one pair of
configurations c}'{ € C; and c{ € C; of nodes i and j cannot be
constructed. We have the following three cases.
1) There is dg;, g; € Oy that contains node i (with configura-
tion c};) and node j (with configuration clj ) accordingly.
« If g; = g;. CONTRADICTION.

4We say that partial graphs g and g, are equal if and only if they have
the same heuristics, Vg, = Vg,, E,; = Eg, and all nodes in g; and g> have
the same configuration except one node which has a different configuration
in g1 and g>.

« If g; # gj, then we know from Lemmas 4 and 5 that
given any partial graph g in Oy we can always reach
an ANOC graph. So, by expanding g; at some point we
will reach node j and all of its available configurations.
CONTRADICTION.

2) Agi € Oy and Ag; € Q.

« Given Lemmas 4 and 5 we know that we can reach an
ANOC graph from any partial graph in Q. Thus by
expanding any g € Oy at some point, we will reach
the node i and all of its available configurations. So
consider the partial graph g; that will be produced with
configuration cj( when we expand g with node i. After
some timesteps, by expanding the g, partial graph at
some point, we will reach the node j and all of its
available configurations. CONTRADICTION.

3) dg; € Qf and ﬂgl € Qf

o Given Lemmas 4 and 5 we know that we can reach

an ANOC graph from any partial graph in Qy. Thus by

expanding g; at some point, we will reach the node j and
all of its available configurations. CONTRADICTION.

As a result we have a contradiction in every possible scenario
and as such our hypothesis was wrong. Thus, d-DAG* can
reach any possible ANOC graph. m}

Given Theorems 3 and 6, by employing DAG*, not from
scratch, but from Qy as initial point, we will definitely reach
the optimal solution.

Lemma 7. The ANOC graph, g, that d-DAG* returns is the
one with the lowest cost, i.e., it is the optimal graph.

Proof. 1t is a direct consequence of Theorems 3 and 6. ml

IV. DAG* overR RAPIDMINER STUDIO

DAG* has been incorporated in a commercial platform,
namely the streaming extension of RapidMiner Studio, run-
ning in the Streaming Optimization operator [30]. Cloud and
network devices are registered as Connector objects in Rapid-
Miner Studio, while the Streaming Optimization operator
connects to the Optimization service via a separate connection
object. Within the Streaming Optimization operator there is the
Logical Workflow canvas where users can design their logical
workflows, incorporating all the application logic but, being
deprived from physical execution details. As soon as the user
submits the designed workflow, the Streaming Optimization
operator creates a JSON representation of the logical workflow
and the network of devices and passes them to DAG* via a
WebSocket. The Optimization service parses the JSON inputs
and runs DAG*. It then responds back to the Studio with
a new JSON describing the physical execution plan over
the IoT network. The Studio renders the latter JSON into a
graphical representation of the physical workflow, including
separated workflow parts as Streaming Nest operators. Each
Streaming Nest operator represents a separate job that is
submitted for execution to the cloud or a network device, the
corresponding part of the workflow has been assigned on. The



Network of devices

Workflow num_conf =7 num_conf =15 num_conf = 31
TRAIN (8/4) 2401 50625 923521
PRED (9/4) 16807 759375
STATS (11/5) 117649 11390625
ETL (11/3) 5764801

TABLE I. Overview of setups in our experiments. Row
headers are workflow names and (Total # operators/ # cloud
nodes). Columns show number of devices/configurations in
different networks; cells include # of possible solutions to the
optimization problem.

Fig. 2: The Extraction, Transform & Load (ETL - top),
the Statistical Summarization (STATS - second), the Model
Training (TRAIN - third) and the Predictive Analytics (PRED
— bottom) workflows. The red borders in some operators
represent the cloud nodes of each workflow. See [1] for the
meaning of abbreviated operator names.

execution is monitored by the corresponding dashboard of each
network participant. Remarkably, DAG* is a key enabler for
the Streaming Extension of the Studio, since prior to DAG*
the user had to either manually assign operators for execution
in Streaming Nest operators or rely on the extremely high
response times of an exhaustive search algorithm. Note though
that in our experimental evaluation we choose standard IoT
benchmarks and corresponding operators, instead of custom
scenarios tailored to RapidMiner Studio, since DAG* can
operate in any setting, detached from the Studio.

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

To evaluate DAG* we rely on the recent, highly cited and
well documented RIoT benchmark [1] using four real-world
workflows (termed TRAIN, STATS, ETL, PRED) from the
smart cities domain [1], depicted in Figure 2. Each work-
flow consists of interconnected operators that are executed
to accomplish a specific machine learning training, higher
order statistic extraction, extract-transform-load and predictive
analytics task, respectively. We monitor ground truth statistics

(processing and communication latencies as costs for the
benchmarked algorithms) over various networks of different
sizes (small, medium, large), using the actively updated and
highly cited iFogSim tool [31], [32] over these networks.
We monitor setups consisting of num_conf = {7, 15, 31}
configurations, i.e., devices that support the execution of
an operator that is part of the workflow graph. Each pair
of nodes and configurations has a different cost dependent
on the computational complexity of the operator and the
processing capacity of the network device. Some operators
of each workflow cannot be executed on any device due to
their nature (e.g. heavy duty machine learning operators [1]).
Such operators are termed as cloud nodes since the cloud is
their only valid configuration and they are highlighted via red
border color for each workflow in Figure 2.

Given num__conf, we build corresponding binary tree net-
work topologies. Processing latency statistics are composed of
Raspberry Pi 4 devices running Apache Flink on Docker for
the network side, as well as Apache Flink at the cloud side.
The weights (network latencies) in the network links are in the
interval [1, 10], representing the cost of transmitting data from
one node (or device) to its neighbors as assigned in iFogSim.
The total cost (communication latency) of sending data from
device d; to device d, is computed as the sum of the weights
of the links that connects d; with d, in the network.

Table I summarizes the utilized setups. Rows correspond to
workflows and their characteristics, while columns refer to the
sizes (num__conf) of the used networks. Colored cells in the
table show the number of possible solutions to the respective
optimization problem (Equation 1). As Table I shows, we
stress test DAG* in setups consisting from thousands to
millions to billions and up to 9.9E+35 possible solutions.
We present experiments on the challenging settings where
aggr = sum or aggr = max in Equation 3.

Our comparisons are against the Spring Relaxation algo-
rithm, termed SpringRelax in our plots, employed in state-of-
the-art work of NEMO [11], against the Exhaustive Search
algorithm and versus Governor [26]. DAG* and Exhaustive
Search guarantee the optimality of the suggested workflow,
while SpringRelax and Governor apply best effort heuris-
tics. We choose two performance criteria. Aggregate (end-to-
end) per tuple latency of the prescribed workflow execution
plan devised by each algorithm, quantifying the produced
plan’s quality, and the number of iterations of each algorithm.
Exhaustive Search and DAG* both produce the optimal
plan, but DAG* examines a much smaller number of candidate
plans, so we use the number of iterations to illustrate the
effectiveness of DAG* to search a much smaller fraction of the
search space. In SpringRelax, the number iterations is a pa-
rameter that should be set to define the repeated adjustments of
each node’s coordinates to better match the calculated distance
between nodes (based on their positions in a virtual space)
to the actual measured network distance in terms of latency.
Each iteration calculates forces based on the error between the
euclidean distance calculated from the virtual coordinates and
the actual latency measured in the network. These forces pull
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Fig. 3: DAG* efficiency across workflows and networks. Bars represent total number of iterations per algorithm (B DAG¥*,
B SpringRelax, ® Governor, ® Exhaustive Search). Dots plot the latency of the suggested workflow (@ DAG* and
Exhaustive Search, ® SpringRelax, ® Governor). The left vertical axis is in Log Scale showing the number of iterations

per candidate algorithm. The right vertical axis corresponds to aggregate workflow latency per tuple for the devised plan.

or push operators to network devices to reduce the discrepancy.
With more iterations, the nodes gradually settle into positions
that represent the network’s true layout, where calculated and
actual distances closely align. Thus, iterations also account for
the search space of SpringRelax only this time, the search
space is a continuous one, with the possible positions of virtual
space. Finally, Governor’s iterations account for finding the
routing paths using DFS, based on the low latency policy [26].

B. DAG* Results and Comparative Analysis

In the first series of experiments, for each workflow,
namely the TRAIN, STATS ETL and PRED workflows, we
benchmark the efficiency of DAG* over three different-sized
networks consisting of num_conf = {7, 15, 31} devices,
accordingly. For instance, in the num_conf = 15 scenario,
each of the nodes in a workflow can be executed on 15
different devices with different processing and communication
latencies. Figure 3 presents the efficiency of DAG* compared
to SpringRelax, Governor and Exhaustive Search across
two (vertical in the plots) dimensions. The left vertical axis
is the number of iterations of each algorithm, in Log Scale.
The right vertical axis measures the aggregate (end-to-end)
latency per tuple of the workflow suggested by the respective
algorithm. The horizontal axis refers to the network sizes. We
present scenarios where aggr = sum for the ETL and TRAIN
workflows, while aggr = max for STATS, PRED. The trends
are similar for the rest of the workflow, aggr combinations.

Across all scenarios in Figure 3, DAG* returns the optimal
graph with nearly 3 orders (TRAIN workflow - num_conf
= 7) and up to 31 orders (ETL workflow - num conf =
31) of magnitude fewer iterations compared to Exhaustive
Search. Importantly, DAG* is not only efficient but also
highly scalable since the number of iterations it requires shows
slow incremental trends as the network size increases.

For a fair comparison with SpringRelax, we set its number
of iterations equal to those of DAG* in each setup, therefore
the corresponding bars in the plots are of equal height. The
overall latency of the suggested workflow by DAG* and

SpringRelax are represented as dots, the values of which
correspond to the rightmost vertical axis (green dot for DAG*
and red dot for SpringRelax). We can observe that DAG*
consistently outperforms SpringRelax in terms of the over-
all latency of the suggested workflow, since SpringRelax
outputs workflows that are from 20% (TRAIN workflow -
num__conf = T7) and up to 3.6 times (STATS workflow -
num_conf = 31) worse compared to DAG*. We further
note that these scenarios are in favor of SpringRelax. For
instance, if we increase the number of SpringRelax iterations
in the ETL scenario (Figure 3), the latency of SpringRelax-
suggested workflow never improves. On the other hand, if we
decrease the number of iterations of SpringRelax in the same
scenario, the suggested workflow can exhibit up to -60% worst
overall latency performance. In other words, SpringRelax
seems to achieve its best performance around a number of
iterations that is equivalent with DAG*, but its best effort
heuristic does not accurately approximate the optimal solution.

Governor shows a reduced number of iterations because,
besides the cloud nodes (heavy duty operators executable only
at the cloud) of the workflows, it also manually fixes non-
blocking operators (e.g. filters) close to the data sources and
sinks on the cloud. Governor shows the worst performance
in terms of the latency of its devised plans across competitors,
with only few cases of the STATS, num conf = {7, 31}
and PRED, num_conf = 31 workflows where it outperforms
SpringRelax. Still Governor plans’ latency is considerably
higher compared to the optimal DAG* in all cited scenarios.

C. Varying Network Organizations

We now evaluate DAG* and its competitors under two dif-
ferent, alternative network settings: (i) a Star topology where
the Raspberry Pis are directly connected to the cloud and (ii)
the NES-like topology of [7], where the fog layer connects
Raspberry Pis to routing nodes (switches and routers). Routing
nodes have no data processing capacity (thus, not counted in
num__conf), but offer high-speed data transfer and, therefore,
roughly 10x reduced network latency. We indicatively focus on
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Fig. 7: Results on the dynamic setting for the STATS workflow (see also Figure 1), with aggr = sum and num__conf= 15. The
x-axis indicates cost fluctuations and the name of the operator in which they occur. The y-axis shows cumulative iterations in
Figure 7a and number of iterations per change (Figures 7b, 7c) for DAG* and d-DAG*. DC stands for Distinct Count, AVG
for Average and KF for the Kalman filter operators. Both DAG* and d-DAG* return an execution plan of optimal latency.

the ETL workflow, but the results are analogous for the rest of
the workflows cited in Figure 2. In Figure 4, for num_conf=
15, we observe that DAG* provides 16% to 20% better latency
in the workflow it prescribes for execution, compared to the
one prescribed by SpringRelax. Moreover, Governor has
limited routing path options in the Star topology, therefore,
it requires fewer iterations, as shown in Figure 4. How-
ever, Governor also exhibits the worse latency performance
among all competitors, falling up to ~25% short (both for
aggr = {max, sum}), compared to DAG*. Similarly, in the
NES-like topology of Figure 5 for aggr = max, we observe
that DAG* provides from 2x (num__conf= {7,15}) and up to
4.5x (num__conf = 31) improved latency compared to the
second best approach of SpringRelax, surpassing the 3.5x
improvement observed in Section V-B.

Among the ETL workflow experiments in Figure 4 and
those in Figure 3, we observe that the latency of the plans
devised by each and every competitor are up to four times
higher in the Star topology. This validates the claim made in
the Section I that multilayer IoT organizations delegating tasks
across edge, fog, cloud layers reduces raw data volumes sent to
the cloud and lowers transmission costs, while also exploiting
the processing power across the cloud to edge continuum.

D. d-DAG* and Dynamic Settings

We proceed by studying the increased efficiency of d-DAG*
in the dynamic setting. We stress that DAG* (running from
scratch) and the incremental d-DAG* will always output the
optimized workflow with the optimal latency (Theorem 3 and
Lemma 7), with d-DAG* achieving this outcome in a reduced
number of iterations due to exploiting the priority queue
from prior optimizations. We indicatively provide results on
the STATS workflow with num _conf=15, but the trends
are the same for the other workflows. We examine various
cases of dynamic scenarios. Initially, we have two cases of
dynamic scenarios where network costs change due to volatile
stream properties. In the first scenario, we monitor the cost
of the same (DistinctCount) operator which continuously
fluctuates due to changes in the amount of data we ingest from
Source in Figure 1. The horizontal axis of Figure 7a shows the
series of fluctuations DistinctCount experiences. When the
cost of an operator increases or decreases by a factor of 10 or
more, we rerun our DAG* (red bar) and d-DAG* (green bar).
For instance, the horizontal axis of Figure 7a shows that after
the initial setup, DistinctCount’s cost reduces by a factor
of 100 and then it further decreases by a factor of 10. After
two steps, it recovers its initial cost, before having a 10-fold



cost drop. Finally, its cost increases by a factor of 100. The
vertical axis in Figure 7a shows the total, cumulative number
of iterations DAG* and d-DAG* required to compute the new
optimal graph up to the point the respective change happened,
given the previous ones. Overall, d-DAG* improves DAG* by
~48% (last pair of bars in Figure 7a).

In the second scenario we monitor the changes that happen
in the entire workflow and we rerun d-DAG* and DAG* in
case any operator shows 10-fold cost fluctuations. In Figure 7b
the horizontal axis again shows cost fluctuations and the
operator they occur, but this time the vertical axis does not
show the cumulative, but the individual number of iterations
d-DAG* and DAG* required to compute the new optimal
graph each time. We choose to do so to better illustrate the
effect of a cost change in conjunction with the position of
the operator in the workflow of Figure 1. We highlight that
the equality in the number of iterations when KalmanFilter
costs change is because, due to a change, all operators are
affected (see Section III-F) and thus d-DAG* discards all
partial graphs from the priority queue and practically starts
from scratch. In 5 out of the 7 other cases in Figure 7b, d-
DAG* considerably improves DAG* with median ~43% and
maximum 64% reduction in iterations.

To stress test d-DAG*, in Figure 7c, we change the cost of
an operator on par with devices departing from or registering to
the network. We begin with num_conf=15 and progressively
one device departs causing the cost of the Distinct Count
(DC in the figure) a 5-fold cost reduction. This happens
progressively five times. Thus, when the experiment reaches
the middle bar of Figure 7c, num_conf has been reduced by 5
nodes, i.e., lost 1/3 of its devices. The reverse change happens
with the progressive addition of 5 devices, one by one, and
corresponding 5-fold cost increments for the Distinct Count
operator. Overall, d-DAG* preserves its ability to improve
DAG#*, saving between 24% and 33% iterations.

E. Adversarial Scenarios

Adversarial scenarios involve setups where DAG* needs
more iterations to find the optimal graph. The first adversarial
scenario is when all nodes possess configurations with uniform
cost values. In such cases, the partial graphs in the priority
queue will have similar estimated costs during the iterations
of the algorithm, and many partial graphs will be expanded
one after the other instead of having few promising partial
graphs being prioritized for expansion. This phenomenon, in
turn, delays the extraction of the optimal graph. To attest for
that scenario we create a setup with the STATS workflow
with num_conf=15 and we assign to all configurations of all
nodes uniform cost values U(0, 10), fixing all edge weights
to the middle of that interval, i.e., communication latencies
are fixed to 5. We repeat the experiment 5 times (Rep#1 to
Rep#5) and we measure DAG* iterations. As Table II shows,
DAG* saves 2 orders of magnitude per experiment and on
average compared to Exhaustive Search, instead of 3 or
more orders of magnitude in Figure 3. The SpringRelax
does not change for equivalent number of iterations to those

DAG*  Exhaustive
Rep#l 104893 11 Million
Repi#2 105166 11 Million
Rep#3 43818 11 Million
Rep#4 104960 11 Million
Repi#5 104898 11 Million
Average 92747 11 Million

TABLE II: #lterations, Adversarial Scenario of~U(0,10) costs.

in Figure 3 and becomes worse when we set its number of
iterations equal to DAG*, due to the fact that it tends to
accumulate more operators at the cloud side.

The second adversarial scenario involves d-DAG*. Recall
that cloud nodes have a single configuration. If a new cloud
configuration is added for them and simultaneously entails
reduced cost for every cloud node, then the heuristic cost
and the real cost of the workflow need to be recomputed.
Therefore, d-DAG* will require the same number of iterations
as DAG*, because all partial graphs in the queue will be
affected. We emphasize, though that still DAG* will explore
only a small portion of the search space. Due to space
constraints we omit the corresponding graph, but we note
that d-DAG* and DAG* will coincide in every such scenario,
however, still saving orders of magnitude iterations.

F. DAG* Approximate Versions

One can loosen the optimality requirement and run ap-
proximate versions of DAG* to further reduce the explored
search space. The basic concept of Approximate DAG* is to
restrict the allowed size of the priority queue. Consider that
we have num_conf possible configurations for every node
of the workflow (Figure 1). Further consider a parameter x»
destined to restrict the number of partial graphs that will be
enqueued upon a partial graph expansion (Section III-C). If we
set % = £%, this means that every time we dequeue a partial
graph and we expand it based on Rule 1 and Rule 2, we keep
and choose to enqueue only the resulted [£%-num__conf] new
partial graphs with the lowest estimated cost. For instance,
if we set ¥ = 1% this would mean that upon dequeuing a
partial graph and extend it, only the best among the new,
expanded partial graphs will be enqueued and the rest will
be discarded. Therefore, setting » = 1% reduces DAG* to a
Greedy approach which chooses only the best configuration
per operator. Similarly, for a network of num_conf = 15 and
% = 10%, we have [x% - num__conf] = 2 meaning that upon
dequeuing a partial graph and extend it, only the two best
among the new, expanded partial graphs will be enqueued.

In Figure 6, we plot the number of iterations of DAG*
along with the latency table for the suggested workflow
execution graph, for » € {1%(Greedy), 10%,20%, 50%}. For
our comparative analysis, we further include DAG* in the
bar chart. In Figure 6, we can see that for smaller network
sizes and search spaces (num_conf=7 — also see Table I),
irrespectively of », the quality (latency value in the table under
the plot) of the solution of the Approximate DAG* is 38%
worse compared to the exact DAG*. This is not too great



a deficiency because the exact version of DAG* already has
pruned a large portion of the search space requiring only few
tens of iterations for outputting the optimal graph.

On the contrary, for medium network sizes and search
spaces (num__conf=15 — also see Table I), Figure 6 shows
that all the Approximate DAG* versions provide the optimal
solutions (latency value of 63.65 in the table under the plot).
Based on this, one can utilize the Greedy version of the
Approximate DAG* to reduce the amount of explored search
space to only a dozen of options. For large network sizes and
search spaces (num_conf=31 — also see Table I) only the
Greedy version of DAG* fails to provide a decent solution,
suggesting a workflow execution with more than 2 times worse
latency (111.98ms vs the optimal 50ms in the latency table
under the plot), while all the other approximate versions of
DAG* coincide with the optimal latency of the workflow
devised by DAG*. This means that an approximate version
with % = 10% can further reduce the algorithm iterations
by almost two orders of magnitude compared to the optimal
DAG¥*, without practically compromising the optimality of the
output workflow. In Figure 6, we test Approximate DAG* on
the ETL workflow, but we stress that these trends are exactly
the same for the other (STATS, TRAIN, PRED) workflows.

Approximate DAG* expectedly makes sense for medium
to very large search spaces. This conclusion is drawn from
Figure 6 where num_conf= 7 is more affected by the approx-
imation for » = Greedy and » = 10%, because the latency of
the devised plan (first column, first and second rows of the
table in Figure 6) is higher compared to DAG* Optimal Lat
(first column, last row of the table in Figure 6) for the same
num__conf = 7. In the higher num confs cited in the table,
any approximation with % > 10% achieves the optimal latency,
equal to DAG* Optimal Lat of each column.

VI. RELATED WORK

Workflow Optimization: Early works on optimal operator or
workflow execution arose with the development of the first
stream processing systems [12], [13] aiming at optimizing
query execution over a single server, with no focus on network
performance. Later on, approaches such as Medusa [14] and
SQPR [16] addressed network related metrics on par with effi-
cient execution per host, the focus being to primarily balance
the load and minimize resource usage among networked hosts.
A series of works optimize the execution of streaming
analytics workflows at the cloud over powerful Big Data
frameworks [22], [23], [33]. Such approaches are impractical
for IoT computing applications due to their excessive complex-
ity on large networks and their inability to address changes
through efficient, incremental re-optimizations [11]. DAG*
addresses these issues via the powerful admissible heuristic
and via the incremental nature of d-DAG*. Cross-platform
optimization [5], [6], [17]-[20] accounts for optimizing work-
flows at the cloud side and not necessarily in the scope of a
streaming setting. Relevant frameworks [17]-[20] focus on a
single cloud, running multiple Big Data platforms, thus not
accounting for multiple hosts or efficient re-optimization.

The prominent work of SBON [15] was among the first
to account for network resource utilization for network aware
operator placement. Rizou et al [10] complemented the SBON
approach to multiple operator placements. Both approaches
account only for network performance measures, i.e., network
latency, without examining the processing latency of devices.

The spring relaxation algorithm used in NEMO [11] is also
utilized in SBON and corresponds to the SpringRelax can-
didate in our plots. DAG* outperforms spring relaxation and
does not require specific assumptions on the organization of
the IoT network, while NEMO operates over clustered network
architectures. Tzortzi et al [9] employ machine learning for
operator and network cost estimation. Learning such metrics
requires a daunting training phase which is infeasible for large
scale and volatile environments. In contrast, our experimenta-
tion relied on obtaining cost estimations via a well-established
IoT simulator [31], [32]. The Governor approach [26], used in
our experimental evaluation, plans workflow execution across
IoT via user-defined policies.

Finally, the works of Akili et al [34], [35] explore in network
execution of query patterns for complex event recognition.
A* Algorithm and Variants: The A* [27], [36] inspiring
DAG* conceptualization is a well-known algorithm that stands
out for its efficiency in finding the shortest path between
two nodes in a graph. A plethora of A* variants have
been developed [28]. The Iterative Deepening A* (IDA*)
algorithm [36] is a memory-efficient variant of A*. The D*
algorithm [37] is a variation of A* designed to efficiently find
the shortest path in a dynamic environment where the cost or
availability of edges change over time. The Lifelong Planning
A* (LPA*) algorithm [38] is another incremental version of
A* designed to address changing edge costs or dynamic graph
structures. The, also incremental, D* Lite [38] combines the
virtues of D* and LPA*. All these algorithms return optimal
path instead of optimal graph, therefore not being suitable for
our setting.

VII. ConcLusioNs & FUTURE WORK

We present a novel A*-alike algorithm for optimal workflow
graph discovery. Our algorithm is of high value for task
allocation and operator placement in a variety of streaming
analytics optimization scenarios arising in a wide spectrum
of IoT domains, indicatively including smart city, smart
factory, smart grid and robotics applications. We detail the
new DAG* algorithm and an incremental d-DAG* version
of it for dynamic environments. The novel algorithm prunes
large parts of the search space, from nearly 3 and up to 31
orders of magnitude in our experiments. Importantly, it does
so, simultaneously guaranteeing optimal graph solutions. It
further outperforms heuristics used in recent, state of the art
techniques, in terms of the efficiency of the suggested work-
flow. d-DAG* further boosts the efficiency of DAG* halving
the number of algorithm iterations. Our current focus is on
constant factor approximations of DAG*’s optimal solutions
and on parallel versions of it for enhanced performance.
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