
Optimizing Resource Allocation for Tumor
Simulations over HPC Infrastructures

Errikos Streviniotis
Technical University of Crete

Athena Research Center
estreviniotis@tuc.gr

Nikos Giatrakos
Technical University of Crete

Athena Research Center
ngiatrakos@tuc.gr

Yannis Kotidis
Athens University of Economics and Business

kotidis@aueb.gr

Thaleia Ntiniakou
Barcelona Supercomputing Center

thaleia.ntiniakou@bsc.es

Miguel Ponce de Leon
Barcelona Supercomputing Center

miguel.ponce@bsc.es

Abstract—We introduce RATS (Resource Allocator for Tumor
Simulations), the first o ptimizer for t he e xecution o f t umor sim-
ulations over HPC infrastructures. The optimization framework
of RATS incorporates 3 vital performance criteria (i) expected
utility of a simulation in terms of effective drug combination
on the simulated tumor, (ii) simulation execution time and (iii)
number of cores required for achieving that execution time. RATS
is to be used by life scientists at the Barcelona Supercomputing
Center to not only remove the burden of blindly guessing the
core hours we need to reserve from HPC admins to study
various tumor treatment methodologies, but also to help in
more rapidly distinguishing effective drug combinations, thus,
potentially cutting time to market for new cancer therapies.

I. INTRODUCTION & MOTIVATION

In precision medicine scenarios, the use of virtual patients
in in-silico medical trials holds the promise of revolutionizing
the process of novel treatment development by providing an
easy, cost-effective and patient-friendly way to perform pre-
liminary assessment of drug safety and efficacy. In this context,
simulation frameworks incorporating computational models of
incurable diseases are used to explore the effect of various
treatment methodologies towards remedying or improving the
quality of patient life under a wide variety of circumstances.
When a particular treatment shows promising results in-silico,
it is selected to be further investigated, initially in-vitro and,
then, potentially in in-vivo trials. This way, the time-to-market
for effective treatments is considerably cut down.

In the battle against cancer, at the Barcelona Supercom-
puting Center, we develop a “virtual laboratory” for studying
tumor growth and evolution using a prominent, open-source
simulation framework, namely PhysiBoSS 2.0 [1]. For reasons
we explain below, this endeavor entails challenges both for
life- and computer-scientists.

PhysiBoSS incorporates in-silico models of cell systems
found in in-vivo tumors and produces output streams describ-
ing the state of each individual cell agent and the tumor as a
whole, as the simulation process is taking place. Tumor growth
and evolution throughout an individual simulation is affected

by the drugs of a particular treatment that are applied on the
simulated tumor. Effective drug combinations lead tumor cells
to necrosis or apoptosis, while ineffective ones result in cell
proliferation. Figure 1 shows examples of a pair of running
simulations and their visualized output. The simulation shown
at the upper part of Figure 1 corresponds to an effective
treatment methodology because the number of alive (green)
cells is reduced, while the number of cells led to necrosis
(red) or apoptosis (brown) become a majority as time passes.
On the other hand, the simulation at the lower part of Figure 1
illustrates an ineffective treatment methodology since most of
the simulated tumor cells remain alive or are proliferating.

The modeled phenomena throughout the simulation are
subject to the inherent complexity of biological systems and
affected by the interplay between different processes that occur
at different scales. For instance, they depend on the molecular
mechanisms by which individual cells can develop resistance
to a particular drug [2], which are complex in their own right.
Moreover, they depend on various types of dynamic processes
concerning populations of cells. Examples of the latter include
the variability in the gene expression profiles of different cells,
which gives rise to heterogeneous populations, the competition
for resources such as space and nutrients, as well as the inter-
action or cross-talk between different cells [3]. Consequently,
tumor simulations are extremely computationally demanding.
For instance, studying the effect of drug combinations on
simulated tumors of realistic sizes can generate cell state
data of 100 GB/min [4]. These simulations cannot run on
commodity hardware and traditional computer clusters, but
require High Performance Computing (HPC) resources.

A fundamental treatment methodology that is used in such
tumor simulations studies the effect of the Tumor Necrosis
Factor (TNF), a signalling molecule that binds to cell receptors
and can trigger a wide range of different responses [5]. In
particular, TNF can induce death in cancer cells by activating
specific downstream signalling pathways, thus restraining the
growth of a tumor. To simulate the effect of TNF, a sophis-
ticated Boolean network is used for modelling intracellular
signalling and cell fate [6].

ngiatrakos
Text Box
(c) IEEE 2023. This is the authors' version of the work. It is posted here for your personal use only. Not for redistribution. The definitive version of the work is published In Proceedings of the 10th IEEE Interrnational Conference on Data Science and Advanced Analytics (DSAA 2023), DOI: 10.1109/DSAA60987.2023.10302484

To execute a simulation, PhysiBoSS receives as input a
XML file composing a number of values describing the
TNF-based treatment methodology. Each combination of TNF
parameters that compose a particular treatment results in
simulations the utility, in term of killing cancer cells, and the
computational demands of which are impossible to estimate
beforehand. This is due to the complexity of the employed
simulation models and the sensitivity to altering the parameters
from one tested treatment to another. Nonetheless, we need to
apply in advance to HPC administrators in order to reserve
(a) the cores that we will need for in-silico trials and (b) the
time simulations would need to run those trials. For instance,
in PRACE (https://prace-ri.eu/), proposals for granting access
on the provided HPC infrastructure should explicitly declare
the Total Core Hours. In our setup, a core hour refers to the
number of processor units (cores) used to run simulations,
multiplied by the duration of the job in hours. With 24 core
hours one can simulate for 1 day on a 1 core machine, half a
day on a 2 core machine and so on.

In this work, we propose RATS (Resource Allocator for
Tumor Simulations) which is the first, to our knowledge,
resource allocator for optimizing the execution of tumor sim-
ulations over HPC infrastructures. RATS focuses on learning
(i) the trade-offs between execution time simulations require to
complete vs the available number of cores and (ii) the utility of
treatment methodologies on tumor simulations. In particular,
RATS incorporates a novel combination of active learning and
Bayesian Optimization-based estimators to predict the above
performance criteria. RATS optimizes the execution of in-
silico trials solving all the aforementioned practical barriers.
Our contributions are:
1) RATS is the first optimizer that simultaneously (i) dictates
the optimal number of cores for executing any given number of
simulation trials, (ii) reduces the total simulation time under
given core capacity constraints, and (iii) predicts potentially
effective treatment methodologies and prioritizes their sim-
ulated execution higher compared to expectedly ineffective
ones. RATS relieves life scientists from the responsibility of
guessing (and frequently miscalculating) the core hours needed
for simulations. Instead, it allows to focus on effectively
applying field expertise on testing treatment methodologies.
2) We present the novel internal architecture of RATS.
3) We outline lessons learned throughout our endeavor of
developing RATS, as best practices for similar efforts.
4) We provide an elaborate empirical analysis on real perfor-
mance data from tumor simulations executed on the MareNos-
trum 4 supercomputer, one of the most powerful HPC infras-
tructures in the European continent. The results illustrate the
ability of our optimization approach to cherry pick proper sim-
ulation resource allocations and eventually cut down time to
market for new therapies facilitating the transfer of promising
in-silico trials to in-vitro and in-vivo ones.

II. APPLICATION PROBLEM DESCRIPTION

TNF-based treatment methodologies are described by (i) the
TNF Administration Frequency, which shows how often the

12h0h

Treatment: TNF pulse 0.5 ng/ml/10 min

Treatment: TNF pulse 0.5 ng/ml/600 min

...

...

simulated

tumor evolution

Simulation 1

Simulation 2

Fig. 1: Two examples of simulated tumors in PhysiBoSS.
Tumors are visualized in various time instances (left). Green-
colored cells are living tumor cells. Red and brown cells
undergo apoptosis and necrosis, respectively. The number of
cells per category (alive, necrosis, apoptosis) is also plotted
(right). The horizontal axis of each time series is simulation
wall time and the vertical axis the number of cells. Each time
series’ title mentions parameters of the applied drug treatment.

drug is injected and is measured in minute intervals, (ii) the
TNF Duration, dictating for how long the drug is administered,
and (iii) the TNF Concentration each time the drug is applied.
These parameters span continuous value ranges and therefore
the number of possible simulations is infinite.

We first identify value ranges for the involved parameters
that we want to study each time. We then discretize these
parameter value ranges in a fine-tuned way to end up with
a finite set of treatment methodologies under study. This
number of potential treatment methodologies is equivalent to
the total number of simulations that need to run. Hence, we
have a separate [low, high, step] triplet for each of the TNF
Frequency (tnf freq), TNF Duration (tnf dur) and TNF
Concentration (tnf conc) parameters. The whole simulation
set (SS) is described by all possible combinations of:
tnf_freq ∈ [tnf_freq_low, tnf_freq_high, tnf_freq_step]
tnf_dur ∈ [tnf_dur_low, tnf_dur_high, tnf_dur_step]
tnf_conc ∈ [tnf_conc_low, tnf_conc_high, tnf_conc_step]

A. Preamble On Involved Optimization Problems

In Sections II-B and II-C we formulate 2 optimization
problems. The first optimization stage is a prerequisite for
RATS, because it helps in estimating the optimal core number
per simulation, which directly relates to the total, optimal
core number and core hours that are needed to submit the
entire set SS for execution at once. If the first stage shows
that core capacity constraints do not allow simultaneously
submitting all simulations in SS, RATS proceeds to the
second optimization stage which solves a Knapsack problem,
accounting for core capacity constraints. Both the optimization
problems do not directly optimize for core hours but, as we
explain in Sections II-E, III, having derived the solutions of
these stages, core hours can trivially be estimated. Table I
summarizes the main symbols used in the paper.

B. Number of Cores per Simulation

The first optimization problem that we need to solve in-
volves the number of cores that should be devoted to each
individual simulation Si ∈ SS characterized by a specific
{tnf freq, tnf dur, tnf conc} triplet. Practically, we do
not want to over-utilize or under-utilize cores for a simulation,
but justly devote to it as many cores as it needs. Thus, for each
individual simulation Si we need to solve:

argmax THPRatioi(k) =
THPi(k)

THPi(k/2)
(1)

subject to k ∈ V alCor = {2, . . . ,max cores}.

The above problem formulation says that the opti-
mal number of cores, i.e., the optimal value for k for
a given simulation Si ∈ SS representing a single
{tnf freq, tnf dur, tnf conc} combination, is the one that
maximizes the throughput ratio (THPRatio) yielded when
we choose to increase the number of cores from k/2 to k.
Throughput (THP) is defined as the number of tuples being
processed by the PhysiBoSS simulator, per time unit (secs)
and there is an upper bound max cores on the number of
cores we allow to be devoted to a single simulation Si ∈ SS.

This definition is quite intuitive and incorporates the prac-
tical observation that after a certain sweet spot, PhysiBoSS
progressively stops exploiting parallelism since the biological
processes it models commence to certain aggregation points
(similar to AllReduce operations [7]). For instance, consider
the case when a simulation provides a throughput of 10M
tuples/sec with k = 1 core, 20M tuples/sec with k = 2 cores,
30M tuples/sec with k = 4 cores. Then, upon deciding to
switch from 1 to 2 cores, the above throughput ratio is 2 and
upon switching from to 2 to 4 cores, the respective ratio is
1.5. So the optimal core choice for this example is k = 2
because it constitutes the sweet spot where the benefits in
terms of throughput increase are proportional to the increase
in computational resources we devote.

Notice that, if we can derive the optimal number of cores
per simulation, we can also extract the optimal, total number
of cores for SS. As we explain in Section II-E we can also
have an estimation about the execution time of SS. Therefore,
we can compute the total core hours.

Although the above optimization problem is a prerequisite
to have some say on the total, optimal number of cores, if the
cardinality |SS| of SS is high, requesting to reserve the total,
optimal number of cores becomes infeasible. For instance,
HPC technical guidelines pose upper bounds on the allowed
number of cores [8]. In such a case, we need to also solve
a different optimization problem which accounts for an upper
bound on core capacity.

C. Simulation Time under Core Capacity Constraints

In this setup, we want to optimize (minimize) the total
Simulation Time (ST) required for SS under given core
capacity (cap) constraints. Roughly speaking, knowing the

TABLE I: Symbols used throughout the manuscript

Symbol Explanation
tnf freq Frequency of TNF injection in minutes
tnf dur For how long TNF is administered each time
tnf conc TNF concentration each time

SS All combinations of {tnf freq, tnf dur, tnf conc}
|SS| Cardinality of the set SS

SSdone(t) Completed simulations from SS at time t
Si Simulation Si ∈ SS
k Number of cores for a simulation

V alCor Set of possible core configurations{2,. . . ,max cores}
Sk
i Simulation Si ∈ SS being executed using k cores

max cores Maximum allowed number of cores for a simulation

THPi(k) Throughput (number of tuples being processed
per time unit) using k cores for simulation Si

UTLi Utility of simulation Si assigned by the life scientist
STi(k) Simulation Time for Si executed with k cores
ST Total simulation time for all simulations in SS
cap Core capacity constraints
N Sample simulation budget

optimal ST and having cap as input to the problem at hand,
we can then compute the total, optimal number of core hours.

We model this optimization problem as a Multiple-Choice
Knapsack problem [9]. Let us explain why. We have a set
of simulations SS composed of all possible {tnf freq,
tnf dur, tnf conc} triplets and each simulation can be
executed with k ∈ V alCor. The total core capacity con-
straint cap is our knapsack and the multiple choice ver-
sion of it comes from the fact that if we choose to ex-
ecute Si with a certain number of k′ cores, i.e., Sk′

i =
{tnf freq, tnf dur, tnf conc, k′}, we eliminate all other
choices of k for Si, i.e. we would not repeat the same
simulation with different k since we already know the effect
of the respective treatment. Moreover, each possible choice Sk

i

entails a specific simulation time STi(k), which is the value
of that choice and k is its weight.

Simulations run in parallel. Taking that into consider-
ation, we do not seek to optimize the sum of STi(k),
but instead reduce the maximum STi(k) which defines
the future timepoint at which all simulations will have
completed. This optimization problem would be defined as
minimize max

Si∈SS,k∈V alCor
STi(k) · bik, for bik = 1 only if

we choose Sk
i , and zero otherwise. The traditional Knapsack

definition involves a maximization problem and thus, we alter
the above formulation to match a maximization problem, also
negating STi(k)s.

maximize min
Si∈SS\SSdone(t),k∈V alCor

− STi(k) · bik (2)

subject to ∑
k∈V alCor

bik = 1,∀Si ∈ SS,

bik ∈ {0, 1},∀Si ∈ SS,∀k ∈ V alCor,∑
Si∈SS\SSdone(t),k∈V alCor

k · bik ≤ cap(t) ≤ cap

Notice that at time t only a subset of SS can be included in
the knapsack. The rest of the simulations that we need to run
remain in a queue. At any given point t there is a SSdone(t) ⊆

SS with completed simulations. Having SSdone(t), we need
to solve the optimization problem of Equation 2 again, this
time having a Knapsack with capacity cap(t). cap(t) denotes
the number of free/available cores at time t. This explains the
temporal reference (t) in Equation 2.

D. Utility-based Prioritization

In order to abide by our goal of cutting time to market for
new therapies, we want to transform SS into a utility-based
priority queue based on the expected usefulness of a simula-
tion, in terms of killing cancer cells. For this, the simulations
should be ordered by decreasing utility order. UTLi ∈ [0, 1]
denotes the utility of simulation Si ∈ SS (Table I), and every
time SSdone(t) frees resources, simulations will be chosen
from Si ∈ SS \ SSdone(t) using that order.

E. Motivation for Bayesian Optimization

In order to solve the optimization problems we describe
in Section II-B and Section II-C, we need to have accurate
estimations for STi and THPi involved in Equation 1 and
Equation 2. Moreover, we also need UTLi estimations for
Si ∈ SS to transform SS into a utility-based priority queue.

Due to the complexity of the biological processes
that are modeled, simulation studies under different
{tnf freq, tnf dur, tnf conc, k} parameters constitute
a black-box, the behavior of which cannot be described using
some analytic mathematical formula. We therefore resort to
learning that behavior using Machine Learning (ML) tools.

The challenge we face is that for each new study we wish
to conduct on treatment methodologies, we lack any training
data. Therefore, it is necessary to carry out a small set of
simulations and train ML models to learn the variables THPi,
STi, and UTLi. We would like to keep this number of sample
simulations to a minimum for two reasons:

• Simulations are time consuming and occupy system re-
sources.

• UTLi can only be determined by life scientists after a
simulation is completed and vizualized (see Figure 1).
Human experts can have the capacity of manually eval-
uating only few tens of sample simulations on the effect
of respective treatment methodologies.

Note that STi, THPi are system metrics that can be automat-
ically derived using workload managers. In MareNostrum 4,
we use Slurm (https://slurm.schedmd.com/) for that purpose.

To sum up, we have an unknown black-box function that
characterizes the system’s behavior and our objective is to
learn this behavior in terms of THPi, STi, and UTLi using
a limited number of samples, because the number of function
evaluations (simulations in our case) is severely limited by
time, cost and human effort. Bayesian Optimization (BO) is
the most suitable ML approach for this scenario [10], [11].

BO optimizes an objective function f by iteratively eval-
uating the value of f in sampled points and constructing an
estimate for the mean value of f over the set of all feasible
points [11]. BO is composed of two parts: a) a statistical
model used to estimate the objective function; b) an acquisition

Algorithm 1 Bayesian Optimization

1: Provide Sample Simulation Budget N
2: Place a Gaussian Process prior on f .
3: Evaluate f at no initial points. Set n = n0. Update

distribution based on initial evaluations.
4: while n ≤ N do
5: Find xn that maximizes the acquisition function over

X .
6: Observe yn = f(xn).
7: Update posterior distribution of f using all observed

f values.
8: Increment n
9: end while

10: Return trained GPR model to get queried and provide
estimations for f .

function used to efficiently sample the next points to be
evaluated. A Gaussian Process Regression (GPR) approach is
often followed to model the objective function. The Gaussian
Process (GP) model used in the GPR approach serves as the
statistical model of the optimization and provides a probability
distribution that estimates the value of the objective function
over the set of feasible points X [12], [13]. The model consists
of a probability distribution over possible functions that fit the
set of evaluated points. This distribution is updated with each
new evaluation of the objective function. A GP is defined by
a mean function m and a covariance function or kernel:

f(x) ∼ N(m(x), kernel(x, x′))

The kernel of the Gaussian Process describes the smoothness
of the distribution and specifies the covariance between the
values of the objective function at different points. In other
words, it quantifies the similarity of the objective function
evaluations between nearby points. In particular, the kernel
function determines the functions that are most likely under
the GP prior distribution and, thus, incorporate prior beliefs
we have about the objective function. In our study, due to the
discrete nature of {tnf freq, tnf dur, tnf conc, k}, we use
a Rational Quadratic Kernel [12].

The acquisition function allows us to select the next evalu-
ation point in an informative manner, as it serves as a utility
estimate for all feasible points. In particular, the acquisition
function quantifies the contribution of the evaluation of the
objective function to our estimation for each point. Commonly
used acquisition functions are the Expected Improvement
(EI), Probability of Improvement (PI), Lower Confidence
Bound (LCB), Upper Confidence Bound (UCB) and Entropy
Search (ES) [11]. Different acquisition functions estimate the
importance of evaluating the objective function at potential
points, taking into account different perspectives. They strike
a balance between the exploration of unexplored regions and
the exploitation of promising areas, considering the trade-
off between these two aspects. Acquisition functions whose
primary aim is the exploration of the parameter space select
points for which the estimate of the objective function is of

higher uncertainty, while those that aim at the exploitation of
the space, sample points in which the expected mean value of
the objective function is high.

Pseudo-code of the BO algorithm is shown in Algorithm 1.
The initial step involves evaluating the objective function at n0

randomly selected points from the feasible set. Subsequently,
the acquisition function is employed to determine the next
point to evaluate. This is done by selecting the point that
maximizes the acquisition function. Once the next point is
chosen, the objective function is evaluated at that point, and
the posterior distribution is updated using all the observed
values of f . The aforementioned process (sampling of next
point → evaluation of objective function → update of posterior
distribution) is repeated until we reach a declared number of
total evaluated points N .

In our application, function evaluations correspond to runs
of sample simulations. Additionally, we have 3 objective func-
tions, namely throughput (THP), simulation time (ST) and
simulation utility (UTL), while X is composed of Si ∈ SS
for UTL and {Sk

i },∀Si ∈ SS, ∀k ∈ V alCor for ST , THP .
For reasons we explain in Section IV, instead of using 3
acquisition functions for the 3 objective functions, we only use
2. Moreover, we set n0 = 0 for each of them. We found out
that this approach dramatically decreases the required number
of sample simulations and we experimentally prove that this
happens without practically sacrificing the accuracy of GPRs.

III. THE RATS RESOURCE ALLOCATOR

The RATS resource allocator we have developed is com-
posed of two principal components: the RATS Modeler and
the RATS Solver. These components have distinct internal
architectures and serve different objectives.

A. The RATS Modeler

The RATS Modeler is used to build estimators for
THPi(k), STi(k) and UTLi involved in Equations 1 and 2.
The assumption is that RATS already has access to a mini-
mum, small-scale core capacity, which is typically the case
for life scientists employed by organizations hosting HPC
infrastructures. To facilitate the resolution of the optimization
problems stated in Equations 1 and 2, the RATS Modeler
executes sample simulations in order to build GP regressors.
This process iterates in loops, as illustrated in Figure 2.
Step 1: The RATS Modeler takes as input a set SS, which
consists of triplets as described at the beginning of Section II.
Additionally, it receives the budget N for sample simulations
that it can execute to train GPRs using Bayesian Optimiza-
tion. The values of the simulation budget N and the BO
hyperparameters are determined based on the knowledge and
experience gained during the development of RATS, which are
discussed separately in Section IV.
Step 2: The acquisition function for the Throughput Regres-
sor asks for a sample simulation Sk

i to get executed. The
same applies for the acquisition function for the Simulation
Time Regressor. All BO-based Regressors and their acquisition
functions are included in a separate subcomponent termed,

Bayesian Optimization Modeler, on the right of Figure 2.
The BO Modeler interacts with a Benchmarker subcomponent
asking for this pair of simulations to get executed.
Step 3: The Benchmarker subcomponent (bottom of Figure 2)
creates a pair of XML files that configure the respective runs
of the PhysiBoSS simulator and submits each of this pair of
jobs (left of Figure 2).
Step 4: Upon the completion of a submitted simulation there
are two types of outputs: (a) system metrics regarding the
simulation time STi(k) and THPi(k) and (b) visualization of
the simulated tumor under the Si ∈ SS treatment methodol-
ogy used. Simulation visualizations are presented to the life
scientist who assigns a value in [0, 1] for the utility UTLi

of Si ∈ SS. This happens for the simulations, either initially
requested by the Throughput Regressor or the Simulation Time
Regressor.
Step 5: Both system measured and human-assigned metrics
are collected by a Statistics Collector subcomponent (middle
of Figure 2). The Statistics collector feeds system metrics to
the Simulation Time and Throughput Regressors, respectively.
It also feeds the utility value to the Utility Regressor which, on
the one hand, does not have its own acquisition function, on
the other hand receives utility value input for all simulations
requested by either of the other 2 acquisition functions.
The above steps are repeated until the available simulation
budget N is depleted. One could potentially train the Through-
put Regressor and then proceed with training the Simulation
Time Regressor. Moreover, sample simulations that are asked
by one acquisition function and have already been requested
and executed due to the other can be directly fed to the BO
Modeler by having the Benchmarker and Statistics collector
subcomponents keeping a recent history of Sk

i s and statistics,
respectively. In that case, we do not increase the counter at
Line 7 of Algorithm 1. All these optimizations are orthogonal
to the procedure we describe above.

B. The RATS Solver

The RATS Solver component comes into play after the
RATS Modeler has built its estimators. The RATS Solver
focuses on (a) prioritizing simulations based on their expected
utility, (b) solving the optimization problems defined in Equa-
tions 1 and 2 using predictions provided by the regressors
of the RATS Modeler. It is important to highlight that the
RATS Solver solely relies on the RATS Modeler to obtain
estimations of THPi, STi and UTLi. It does not utilize any
HPC resources whatsoever. The Solver operates as follows:
Part 1: The RATS Solver receives as input the set SS in text
format as the RATS Modeler does. It also receives the core
capacity constraint cap. It then converts SS into a priority
queue by sorting the text tuples based on the expected utility
of each Si. For that purpose, the Solver derives the expected
utility of each Si ∈ SS by querying the Utility Regressor
previously built by the RATS Modeler. This is illustrated
on the left-hand side of Figure 3. Then, it replicates the
sorted tuples adding possible core numbers k, the throughput
THPRatioi(k) of which we want to estimate (not shown in

Statistics
Collector

Si
k = {tnf_freq, tnf_dur, tnf_conc, k}

Benchmarker Prescribed Si
k for Simulation Time Regressor

and Si
k for Throughput Regressor as next

micro-benchmarks

If nST+nTHP<N
run micro-benchmark

else stop and return Regressors

Bayesian Optimization Modeler

PhysiBoSS Simulator

Supercomputer

Life Scientist
evaluates
simulation
Utility in [0,1]

System
Metrics

T
h

r
o
u

g
h

p
u

t

Completed micro-
benchmarks

Next micro-benchmark

L
C

B
 A

c
q

.
fu

n
c
.

v
a
lu

e

U
T

L
i

LCB Acquisition FunctionThroughput Regressor

Simulation Time Regressor

S
im

u
la

ti
o

n
 T

im
e

∀Si
k

EI Acquisition Function

E
I
 A

c
q

.
F
u

n
c

V
a
lu

e

Completed micro-
benchmarks Next micro-benchmark

∀Si
k

∀Si
k ∀Si

k

U
ti

li
ty

Utility Regressor

∀Si ∈ SS

UTLi No Acquisition

Function for

Utility

Fig. 2: Overview of the RATS Modeler.

the figure for readability purposes). These are also the items
we consider in our Knapsack (if needed).
Part 2: The RATS Solver solves Equation 1 deriving the
optimal number of cores for each and every Si ∈ SS. To
compute THPRatioi(k) for Si ∈ SS, it queries the Through-
put Regressor of the RATS Modeler (middle of Figure 3).
The optimal number of cores per simulation is summed up to
compute the total, optimal number of cores for SS.
Part 3: If this total number is smaller than cap, all simula-
tions can be submitted at once. Then, the RATS Solver queries
the Simulation Time Regressor of the RATS Modeler to find
out the estimated total simulation time, based on which it
computes the total core hours and returns it to the life scientist.
In that case, the RATS Solver stops. This is shown in Figure 3
using red-colored arrows. Otherwise it proceeds to Part 4.
Part 4: If the capacity (cap) constraint prevents the sub-
mission of the set SS with the optimal number of cores
all at once, the RATS Solver may continue to solving the
optimization problem in Equation 2 as shown with the blue-
colored arrows and icons in Figure 3. Recall that this problem
is solved in rounds. In each round, as described in Section II-C
some Sk

i s from the utility-based priority queue are selected
to be included in the Knapsack so that the minimum value
of the included simulations (negated simulation times STi)
is maximized. In that case, the RATS Solver queries the
Simulation Time Regressor of the RATS Modeler to obtain
estimations about STi(k) at the beginning of this step, but also
at any subsequent time t upon there are simulations entering
SSdone(t) and freeing resources to cap(t).
Final Part: If the priority queue is empty at some point, the

execution of the RATS Solver concludes and the number of
core hours is returned as the product of cap and the aggregated
minimum execution time from solving the Knapsack at the
various timepoints t.

IV. INSIGHTS AND LESSONS LEARNED

Based on the experience gained from performing hyperpa-
rameter tuning of RATS, we have learned several valuable
lessons. These lessons can be summarized as follows:
Kernel Selection: The kernel that provides the best estimation
performance is the Rational Quadratic kernel parameterized
by a length scale of 1.0 and α parameter of 2.5. Please refer
to [12] for further details on these parameters.
Simulation Budget: The total simulation budget N for train-
ing the involved regressors can be set to a value between 5%
and 10% of the cardinality of SS. In other words, the sample
simulations are 10 to 20 times fewer compared to |SS|.
No initial set n0: Although the traditional BO, as described
in Algorithm 1, entails a number of simulations n0 in a
warmup phase, our practical experience says that having set
the kernel function as described above, this n0 does not aid
significantly in improving the final accuracy of the regressors.
Therefore, we advise that the whole experimental budget
is used with sample simulations driven by the respective
acquisition functions.
Acquisition Function Choice: For training the Throughput
Regressor of the RATS Modeler, an LCB acquisition function
should be used. LCB favors exploration vs exploitation (Sec-
tion II-E) and better captures trends in throughput instead of
absolute values [14]. This seems to favor accurate estimations
of a ratio, such as THPRatioi(k). The acquisition function

RATS Modeler (Condensed View)

T
h

r
o
u

g
h

p
u

t

Completed micro-
benchmarks

Throughput Regressor Simulation Time Regressor

S
im

u
la

ti
o

n
 T

im
e

∀Si
k

Completed micro-
benchmarks

∀Si
k

U
ti

li
ty

Utility Regressor

∀Si ∈ SS

RATS Solver

SS

…Sort

Queue of Decreasing

Utility

Utility Estimations

Knapsack of cap(t)≤cap
capacity

Solve

Equation 1

Throughput Estimations

Total Optimal Cores

Calculation < cap?

→ Estimate Total Core Hours

Total

Core

Hours

Solve Equation 2

& Pop from Utility Queue

Queue
Empty

cap too small?

Simulation Time Estimations

Fig. 3: RATS Architecture - RATS Solver and Built RATS Modeler.

of choice for the Simulation Time Regressor is EI instead,
because now we are interested in absolute values. In both
functions, the ξi and κ parameters respectively, should be set to
a high value above 100 tuning the exploration vs exploitation
trade-off. Please refer to [11] for further details.

V. RELATED WORK

There is a line of work that focuses on pruning the size
of SS by predicting and distinguishing treatment parameters
that yield useful simulations [15]–[19]. All these approaches
are orthogonal to RATS and can be used in order to prune
simulations of expected low utility from the set SS, thus
reducing the size of the priority queue. RATS stands out from
these approaches by effectively providing the necessary core
hours to life scientists, which cannot be achieved by any of
the alternative methods.

A different, relevant line of work comes from workload
optimization over cluster, database and Big Data infrastruc-
tures [20]. EasyFlinkCEP [14] employs Bayesian Optimiza-
tion to auto-tune the optimal parallelism of FlinkCEP pro-
grams. Wayeb [21] applies BO to find (near-)optimal training
configurations for the Complex Event Forecasting Engine.
Seagull [22] uses machine learning models to predict cus-
tomer load per server, and optimize service operations for
database systems in the cloud. CBTune [23] uses reinforce-
ment learning and utilizes a deep deterministic policy gradient
method to find the optimal database instance configurations in
high-dimensional continuous spaces adopting a try-and-error
strategy to learn knob settings. While all these approaches
primarily emphasize Big Data and data management analytics,
RATS sets itself apart by specifically catering to the more
complex case of modelling and predicting simulated biological

processes. RATS effectively synthesizes multiple BO models
and builds them side-by-side leveraging shared samples. It also
incorporates the RATS Solver, which allows life scientists to
observe the entire lifespan of the study on the desired treatment
methodology set SS, in advance.

Finally, Kunjir and Babu [24] compare black box methods,
including BO and Deep Distributed Policy Gradient, against a
proposed white-box algorithm to determine close-to-optimal
tuning for memory-based analytics. Such an approach is
orthogonal to RATS to make it also account for memory
consumption.

VI. EXPERIMENTAL EVALUATION

RATS is implemented in Python also exploiting scikit-
optimize (https://scikit-optimize.github.io/) for the RATS
Modeler. The code of the PhysiBoSS 2.0 simulator is available
online (https://github.com/PhysiBoSS/PhysiBoSS). To test the
performance of RATS, we collect real data by executing 2560
simulations on the MareNostrum 4 supercomputer, one of
the most powerful supercomputers at the European continent
level. These simulations are composed of |SS| = 512 TNF
combinations with [low, high, step] triplets (see Section II):
tnf_freq ∈ [100, 450, 50]
tnf_dur ∈ [10, 45, 5]
tnf_conc ∈ [0.01, 0.045, 0.005]
and core configurations per simulation up to max core = 32.
We emphasize that we do not use all 2560 simulations to train
the RATS Modeler. We utilize the complete set of simula-
tions as the ground truth dataset, encompassing all possible
simulations and core configurations. This dataset serves as a
benchmark to evaluate and compare the performance of RATS
against the ground truth system and simulation utility statistics.

Fig. 4: Determining the Total Number of Cores applying Part 1
and Part 2 of the RAT Solver, having trained the RAT Modeler
using 5% and 10% of all possible simulation configurations
{tnf freq, tnf dur, tnf conc, k}. Naive assignment using
only 4, 8, 16, 32 cores to each simulation are included.

RATS is configured according to the best practices we
outline in Section IV and we test two different versions
of RATS operating with simulation budgets of N = 5%
and N = 10%, respectively. These are labeled as “RATS
(N=5%)” and “RATS (N=10%)” in our graphs. We compare
RATS against a series of competitors which we term “only4”,
“only8”, “only16”, “only32” which constitute manual simula-
tion core configurations by having the life scientist executing
each and every simulation with 4,8,16,32 cores, respectively.
We begin our search with “only4” because this is what we
would use as the default number of cores per simulation,
before the development of RATS. There is also the “Optimal”
competitor in our graphs which computes the optimal number
of cores, simulation time and utility based on the entire, ground
truth dataset. In our graphs we note the “previously default”
property of “only4” just once in Figure 4 and omit it from
the rest of the graphs, for readability purposes. To speed up
the execution of the RATS Solver, we limit the number of
Knapsack solutions that are explored, each time cap(t) cores
are available, to 100K.
Main Findings: Before presenting our experimental evalua-
tion in detail, we outline our main findings. When the entire
simulation set can be submitted at once to the supercomputer
(red-colored path in Figure 3), “RATS (N=10%)” approxi-
mates the optimal core hours within a 9% error in the worst
case and below 3% in the best. When the RATS Modeler is
trained with fewer samples (N = 5%) this error increases
reaching 10% to 18%. Under core capacity constraints (blue-
colored path in Figure 3) RATS coincides with the “Optimal”
approach in all the cited cases: (i) when severe capacity
constraints exist, which we model by setting cap = 10%|SS|,
RATS reduces the total simulation time by up to 4 days and

TABLE II: Error in Core Hours under No Capacity Constraints
(−/+ stands for under-/over- estimation respectively)

#Simulations RATS (N=5%) RATS (N=10%)
100 -10.33% -8.78%
200 -14.48% -8.36%
300 -17.12% 2.26%
400 -13.08% 4.10%
500 -13.32% 2.53%

the total core hours by up to 15% compared to the second best
(manual configuration) competitor. RATS behavior coincides
with what “Optimal” does, (ii) when capacity constraints are
looser (cap = 50%|SS|), RATS reduces the total simulation
time by up to 10 hours and the total core hours by up to
12% compared to the second best (manual configuration)
competitor, again coinciding with the “Optimal”. Furthermore,
in both scenarios (i) and (ii), RATS holds an advantage by
prioritizing simulations according to their utility, which is the
value assigned by the life scientist within the range [0, 1].
Over the entire lifespan of the simulation, RATS achieves
an aggregate utility that is up to 36% higher compared to
the closest competitor, making it the superior choice. As a
result, RATS not only accurately assigns near-optimal values
to the required core hours for a treatment methodology study,
but also substantially accelerates the completion of useful
simulations. This gives life scientists the important option to
conclude the study before the execution of the entire SS.

A. Total Optimal Number of Core Hours for the entire SS

In this first set of experiments we evaluate the performance
of RATS when the entire set SS can be submitted for execu-
tion simultaneously (red-colored path in Figure 3). Figure 4
plots the number of cores devised by RATS vs the number
of simulations one may submit to the supercomputer. RATS is
tested under two different configurations: one that spends a 5%
budget on training the RATS Modeler and a second one with
N set to 10% (green and red lines in the figure, respectively).
RATS is compared with manual competitors, as we discussed
above, and the blue-colored line corresponds to the “Optimal”
total number of cores across various numbers of simulations.
As illustrated in Figure 4, “RATS (N=10%)” almost perfectly
fits on the “Optimal” plot line, while “RATS (N=5%)” emerges
as the second-best alternative, slightly under-estimating the
necessary number of cores. The best manual configuration
approach is “only 8” which often under-utilizes more than
500 and up to 700 cores. All other manual approaches are
impractical since they excessively over-utilize thousands of
cores (for “only 16” and “only 32”) or severely under-utilize
resources (for “only 4”).

Now, following the process in the red-colored path of
Figure 3, we use the number of cores devised by “RATS
(N=10%)” or “RATS (N=5%)” to derive an accurate estimation
about the total core hours required for SS. As can be deduced
by Table II, “RATS (N=10%)” approximates the optimal core
hours within a 3% to 9% error in the worst case. When the
RATS Modeler is trained with fewer samples (N = 5%) this

(a) Number of Simulations vs Time (Hours), cap = 10% |SS|. (b) Aggregate utility vs Time (Hours), cap = 10% |SS|.

(c) Number of Simulations vs Time (Hours), cap = 50% |SS|. (d) Aggregate Utility vs Time (Hours), cap = 50% |SS|.

Fig. 5: RATS Solver Performance in Simulation Time and Aggregate Utility. Comparison against various Competitor Strategies
under various Constraint and Sample Simulation Budget N Configurations.

error increases reaching 10% to 18%. An interesting obser-
vation arises from the scenario where the simulation set can
be submitted at once. In such cases, it becomes advantageous
for the life scientist to dedicate additional effort to train the
RATS Modeler. This upfront investment in training pays off
as evidenced by the performance of “RATS (N=10%)”, which
achieves highly accurate optimization results. As we show in
the next plots, if capacity constraints do not allow to submit
|SS| at once, “RATS (N=5%)” may be preferable instead.

B. RATS under Capacity Constraints

When the entire set of SS cannot be submitted at once, the
RATS solver follows the blue-colored path in Figure 3. In such
cases, simulations are retrieved from the utility-based priority
queue and the Knapsack problem is solved at any given time
t so that the number of simulations that run at t satisfies
the constraint cap ≥ cap(t). The process concludes when
the priority queue becomes empty, unless the life scientist
chooses to halt the Solver before completion for reasons we

explain below. It is important to recall that the RATS Solver
itself does not perform the actual execution of simulations.
Instead, it relies on the estimations provided by the trained
RATS Modeler to predict simulation times and utility metrics.
The manual approaches in this experiment simply execute
simulations without prioritizing them.

Figure 5 plots the number of completed simulations and
the aggregate utility as more simulations are completed vs
the total simulation time in hours. Each row of plots should
be examined side by side since they offer complementary
information that enhances understanding. In the first row,
Figure 5a illustrates the progression of completed simulations
over time, while Figure 5b displays the aggregate utility of
the simulations that have been completed up to each specific
timestamp. It provides a visualization of how the aggregate
utility evolves over time as more simulations are executed and
completed. Both figures are generated under the scenario of
severe core capacity constraints, modeled by setting cap =
10%|SS|. Figure 5c and Figure 5d repeat this experiment, but

this time under loose core capacity constraints modeled by
setting cap = 50%|SS|. By examining each row of the plot,
one can deduce not only the speed at which a specific number
of simulations is completed but also the level of usefulness in
terms of their effectiveness in killing cancer cells.

Throughout the entire set of experiments depicted in Fig-
ure 5, both the “RATS(N=10%)” and “RATS(N=5%)” lines
align perfectly with the “Optimal” one. The second best
competitor is the “only4” manual configuration approach,
which practically means that it may be more preferable to ex-
ecute more simulations with fewer cores under given capacity
constraints, than few simulations with more cores attributed
to each. Still, both versions of RATS in Figure 5a, reduce the
total simulation time by up to 4 days and therefore the total
core hours (as the total simulation time across the horizontal
axis multiplied by cap) by 15% compared to “only 4” for
cap = 10%|SS|. This is because RATS, at any given time
across the horizontal time axis, elects for execution the set
of simulations that minimize the maximum execution time by
solving the Knapsack problem at time t. The simulations that
are completed at any given time, based on RATS’s prioritiza-
tion, exhibit significantly higher aggregate utility as illustrated
in Figure 5b. Similarly, under looser capacity constraints,
cap = 50%|SS|, RATS reduces the total simulation time by
up to 10 hours and the total core hours by up to 12% compared
to “only4” also providing higher aggregate utility up to 36%.
Therefore, based on the results of Figure 5b and Figure 5d, the
life scientists may decide not to execute the entire set SS, but
restrict themselves to the top-K most useful simulations. Based
on the graphs of Figure 5, RATS will dictate the nearly-optimal
number of core hours in every such case. When capacity
constraints are in place, both “RATS (N=5%)” and “RATS
(N=10%)” demonstrate comparable performance in terms of
total simulation time. As a result, if the life scientist is willing
to accept a slightly lower aggregate utility, we may utilize
fewer samples for training the RATS Modeler.

VII. CONCLUSIONS & FUTURE WORK

RATS takes away from life scientists the burden of de-
termining the total core hours for in-silico studies on tumor
treatment methodologies and automates the system configura-
tions for such trials. This fact, combined with the prioritization
of simulations based on their expected utility, helps in more
rapidly distinguishing effective drug combinations, cutting
time to market for new cancer therapies. Our future work is
on extending RATS to more complex treatment methodologies
and on integrating it with relevant frameworks [15].

ACKNOWLEDGMENT

E. Streviniotis, N. Giatrakos and Y. Kotidis were supported
by the EU project EVENFLOW under Horizon Europe agree-
ment No. 101070430. T. Ntiniakou and M. Ponce de Leon
were supported by the EU project CREXDATA under Horizon
Europe agreement No. 101092749.

REFERENCES

[1] M. P. de Leon, A. Montagud, V. Noël, G. Pradas, A. Meert, E. Barillot,
L. Calzone, and A. Valencia, “Physiboss 2.0: a sustainable integration
of stochastic boolean and agent-based modelling frameworks,” bioRxiv,

2023. [Online]. Available: https://www.biorxiv.org/content/early/2023/
03/27/2022.01.06.468363

[2] Y. A. Fouad and C. Aanei, “Revisiting the hallmarks of cancer,” Am J
Cancer Res, vol. 7, no. 5, pp. 1016–1036, May 2017.

[3] S. M. Shaffer, M. C. Dunagin, S. R. Torborg, and et al, “Rare cell
variability and drug-induced reprogramming as a mode of cancer drug
resistance,” Nature, vol. 546, no. 7658, pp. 431–435, Jun 2017.

[4] N. Giatrakos, N. Katzouris, A. Deligiannakis, and et al, “Interactive
extreme: Scale analytics towards battling cancer,” IEEE Technol. Soc.
Mag., vol. 38, no. 2, pp. 54–61, 2019.

[5] J. Li, Q. Yin, and H. Wu, “Chapter five - structural basis of signal trans-
duction in the tnf receptor superfamily,” ser. Advances in Immunology,
F. W. Alt, Ed. Academic Press, 2013, vol. 119, pp. 135–153.

[6] P. Bloomingdale, V. A. Nguyên, J. Niu, and D. E. Mager, “Boolean net-
work modeling in systems pharmacology,” Journal of Pharmacokinetics
and Pharmacodynamics, vol. 45, pp. 159–180, 2018.

[7] “Openmpi software documentation,” (Accessed: 12 May 2023).
[Online]. Available: https://www.open-mpi.org/doc/v4.0/man3/MPI\
Allreduce.3.php

[8] “Regular access call – technical guidelines - prace-ri.eu.” (Accessed: 12
May 2023). [Online]. Available: https://prace-ri.eu/wp-content/uploads/
Technical Guidelines-Regular Access.pdf

[9] K. DudziÅski and S. Walukiewicz, “Exact methods for the knapsack
problem and its generalizations,” European Journal of Operational
Research, vol. 28, no. 1, pp. 3–21, 1987.

[10] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” J. Glob. Optim., vol. 13, no. 4,
pp. 455–492, 1998.

[11] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active user
modeling and hierarchical reinforcement learning,” 2010.

[12] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine
learning, ser. Adaptive Computation and Machine Learning series. MIT
Press, 2005.

[13] J. Wang, “An intuitive tutorial to gaussian processes regression,” CoRR,
vol. abs/2009.10862, 2020. [Online]. Available: https://arxiv.org/abs/
2009.10862

[14] N. Giatrakos, E. Kougioumtzi, A. Kontaxakis, A. Deligiannakis, and
Y. Kotidis, “Easyflinkcep: Big event data analytics for everyone,” in
CIKM, 2021.

[15] C. Akasiadis, M. P. de Leon, A. Montagud, E. Michelioudakis, A. Atsi-
dakou, E. Alevizos, A. Artikis, A. Valencia, and G. Paliouras, “Parallel
model exploration for tumor treatment simulations,” Comput. Intell.,
vol. 38, no. 4, pp. 1379–1401, 2022.

[16] B. K. Lind, P. Mavroidis, S. Hyödynmaa, and C. Kappas, “Optimiza-
tion of the dose level for a given treatment plan to maximize the
complication-free tumor cure.” Acta oncologica, vol. 38 6, pp. 787–98,
1999.

[17] F. S. Lobato, V. S. Machado, and V. Steffen, “Determination of an
optimal control strategy for drug administration in tumor treatment using
multi-objective optimization differential evolution,” Computer methods
and programs in biomedicine, vol. 131, pp. 51–61, 2016.

[18] R. Mohan, G. S. Mageras, B. Baldwin, L. J. Brewster, G. J. Kutcher,
S. A. Leibel, C. Burman, C. C. Ling, and Z. Fuks, “Clinically relevant
optimization of 3-d conformal treatments.” Medical physics, vol. 19 4,
pp. 933–44, 1992.

[19] N. Jagiella, D. Rickert, F. J. Theis, and J. Hasenauer, “Parallelization
and high-performance computing enables automated statistical inference
of multi-scale models.” Cell systems, vol. 4 2, pp. 194–206.e9, 2017.

[20] D. Tsesmelis and A. Simitsis, “Database optimizers in the era of
learning,” in IEEE ICDE, 2022.

[21] V. Stavropoulos, E. Alevizos, N. Giatrakos, and A. Artikis, “Optimizing
complex event forecasting,” in DEBS, 2022.

[22] O. Poppe, T. Amuneke, D. Banda, and et al, “Seagull: An infrastructure
for load prediction and optimized resource allocation,” Proc. VLDB
Endow., vol. 14, no. 2, pp. 154–162, 2020.

[23] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,
T. Cheng, L. Liu, M. Ran, and Z. Li, “An end-to-end automatic cloud
database tuning system using deep reinforcement learning,” in SIGMOD,
2019.

[24] M. Kunjir and S. Babu, “Black or white? how to develop an autotuner for
memory-based analytics,” in SIGMOD, D. Maier, R. Pottinger, A. Doan,
W. Tan, A. Alawini, and H. Q. Ngo, Eds., 2020.

