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Abstract—In this work we introduce a novel, reversible data
summarization technique, namely the Reverse Random Hyper-
plane Projection (RRHP) scheme. RRHP is particularly useful
in Wireless Sensor Network (WSN) settings because it enables
individual sensors to compress their local data streams before
transmitting them across the WSN. In that, RRHP saves com-
munication and, thus, the residual energy of battery-powered
sensors. Then, when the compressed sensor data streams reach a
base station, the reversibility property of RRHP can be used to
regain approximations of the original sensor streams to perform
all kinds of data mining tasks. We provide formal theoretic
guarantees on how RRHP directly trades the amount of compres-
sion for the approximation of original sensor streams’ desired
properties. We experimentally prove that RRHP is useful for
performing various kinds of data mining tasks, over sensor data
streams, by dramatically reducing the amount of communicated
data, simultaneously achieving high accuracy.

Index Terms—sensor networks, data streams, compression,
data mining, locality sensitive hashing

I. INTRODUCTION

Reversible data summaries [1]–[6] have the property of
reducing the dimensionality of an initial vector ui, from a
ω-dimensional origin space Oω , to a target vector vi in an d-
dimensional space T d with d ≪ ω, simultaneously retaining
the property of the reverse transformation. That is, given the
transformed representation of vi ∈ T d, one can get back a
vector ûi ∈ Oω with some quality guarantees on the relative
distances, i.e., distance(ui, uj) ≈ distance(ûi, ûj) for some
distance metric.

The reversibility property is particularly useful in Wireless
Sensor Networks (WSNs). This is because it enables individual
sensors continuously compress their data streams, partitioned
over windows, communicate them in a multi-hop fashion in the
WSN and regain an approximation of the original windowed
data stream, per sensor, at a base station. On the one hand,
the importance of the compression property Oω → T d in
WSNs lies in the fact that communication is by far the biggest
culprit in energy drain for battery powered sensors (motes) [7],
[8]. Via compression, individual motes transmit less data and,
therefore, the sensor network’s lifetime is prolonged. On the
other hand, the importance of the reverse transformation T d

This work was supported by the EU project EVENFLOW under Horizon
Europe agreement No. 101070430.

→ Oω is due to the fact that approximations of the original
sensor measurements can be used to perform a variety of data
mining tasks after reaching the base station.

The Random Hyperplane Plane (RHP) projection, Locality
Sensitive Hashing (LSH) scheme [9], has been used in prior
work [7], [8] for outlier detection [10], [11]. The TACO and
Omnibus frameworks [7], [8] are the first in the literature
that proposed a RHP-based outlier detection scheme with the
unique advantage, among all other alternative techniques [10],
[11], to straightforwardly trade bandwidth consumption for
outlier detection accuracy.

However effective the bare RHP has been proven in outlier
detection over WSNs, it is restricted to that and only that
particular task. The reason for this limitation is that the bare
RHP scheme converts original windows of sensor measure-
ments from an ω-dimensional real space Rω , to a bitmap
representation in the {0, 1}d Hamming space. The outlier
detection process is performed judging sensor measurement
similarity based on these bitmaps. But the bitmaps in {0, 1}d
cannot be used for anything else, because most meaningful
mining tasks operate on non-binary features.

Other reversible data summaries do exist in the litera-
ture [12]–[16]. But given the distributed setting and the limited
processing power and memory capacity of the motes, not all
reversible data summaries are applicable in WSN settings due
to high time and memory complexity or due to requiring first
all data to be centrally available. Established and prominent
reversible summaries such as the Discrete (and the Fast)
Fourier Transform (DFT) [3], the Discrete Wavelet Transform
(DWT) [4], the Discrete Cosine Transform (DCT) [1] or the
Piecewise Aggregate Approximation (PAA) [2] have linear or
quasi-linear time and space complexity, but also loose deter-
ministic quality guarantees based on Parseval’s theorem [17].

In this work, we fill this gap. We propose a new Reverse
Random Hyperplane Projection (RRHP) scheme which en-
ables sensors to communicate compressed bitmaps in the WSN
to save communication and gives to the base station the ability
to reverse these bitmaps as approximations of the original
sensor measurements, i.e. from {0, 1}d to Rω , with predefined,
probabilistic, tight quality guarantees on the relative distances
between sensor data. Thus, any data mining task can be
accurately performed on the reversed representations.
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II. THE NEW REVERSIBLE DATA SUMMARY SCHEME

A. Background on the Random Hyperplane Projection Scheme

LSH [9] schemes have the property of compression via
dimensionality reduction while preserving similarity between
vectors, based on some distance metric. The Random Hy-
perplane Projection (RHP) LSH scheme is the basis of our
reversible version. RHP is formally presented in Theorem 1.

Theorem 1. [Random Hyperplane Projection [9]]
Assume we are given a collection of vectors defined on an ω-
dimensional space. We choose a family of hash functions as
follows: We produce a spherically symmetric random vector
r of unit length from this ω-dimensional space. We define a
hash function hr as:

hr(ui) =

{
1 ,if r · ui ≥ 0
0 ,if r · ui < 0

For any two vectors ui, uj ∈ Rω and their angle θ(ui, uj):

P = P [hr(ui) = hr(uj)] = 1− θ(ui, uj)

π
(1)

Equation 1 can be rewritten as:

θ(ui, uj) = π · (1− P ) (2)

Note that Equation 2 expresses angle similarity as the product
of the potential range of the angle between the two vectors
(π), with the probability of equality in the result of the hash
function application (P ).

Thus, after repeating a stochastic procedure using d random
vectors r and, thus d hash functions, we have:

ui ·R = ξi
hr1,hr2,···hrd−→ Xui ∈ {0, 1}d

where R ∈ Rω×d a matrix composed of the d random vectors.
The ui ∈ Rω is multiplied by R producing a vector ξi and,
then, the d hash functions are applied on ξi transforming it into
a bitmap Xui ∈ {0, 1}d depending on whether the respective
coordinate is positive or not, based on Theorem 1. The final
embodiment in the hamming cube for ui, uj ∈ Rω results
in [7], [8]:

Dh(Xui
, Xuj

) = d · (1− P ) (3)

where Dh(Xui , Xuj ) =

d∑
ℓ=1

|Xuiℓ
− Xujℓ

| is the hamming

distance of the respective bitmaps. Hence, from Equalities 2
and 3, we finally derive that, on expectation:

θ(ui, uj)

π
=

Dh(Xui
, Xuj

)

d
(4)

Based on Equation 4, we can see that the angle and, thus,
the cosine similarity distance is preserved between the original
vectors in Rω and the produced bitmaps in {0, 1}d. Later on
in Section II-D we are going to elaborate on how Equation 4
can accommodate other similarity metrics as well.

TABLE I: RRHP supported similarity metrics. Vectors
ui, u

j
j ∈ Rω . E(.), σ, cov refer to the mean, standard deviation

and covariance. u′
i, u

′
j refer to normalized versions of ui, uj .

Similarity Metric Calculation of Similarity

Cosine/Angle Similarity cos(θ(ui, uj)) =
ui·uj

||ui||·||uj ||
⇔ θ(ui, uj) = arccos

ui·uj

||ui||·||uj ||

Correlation Coefficient corr(ui, uj) =
cov(ui,uj)

σui
σuj

=

=
E(uiuj)−E(ui)E(uj)√

E(u2
i )−E2(ui)

√
E(u2

j )−E2(uj)

Euclidean Distance dist(u′
i, u

′
j) = ||u′

i − u′
j ||

B. The New Reverse Random Hyperplane Projection Scheme

Note that we consider a setting where w < d. This may
seem counter intuitive given the discussion about compression
and reversible data summaries in the intro, but it is not. The
reason is that when we refer to compression in this work,
we do not simply refer to the number of values between the
original Rω and the target {0, 1}d but, instead, we refer to
the size of values. To understand why, consider the following
simple example of a vector ui ∈ Rω consisting of 16 double
precision numbers. The size of its values (for 8 bytes per
number of double precision) is 1024 bits. Therefore, we can
set, for instance, d = 128 > 16 = ω and compress original
values to bitmaps with a compression ratio of 8.

Having clarified that, we progressively introduce the newly
proposed Reverse Random Hyperplane Projection (RRHP)
scheme in the following propositions.

Proposition 1. For R ∈ Rω×d, ω < d, composed of spher-
ically symmetric random column vectors of unit length, the
right inverse R† ∈ Rd×ω exists almost surely and R ·R† = Iω .

Proof. Omitted due to space considerations.

Proposition 2. For sufficiently large ω, the spherically sym-
metric random vectors of unit length in R ∈ Rω×d, ω < d,
are approximately orthogonal and, thus, R† ·R ≈ Id.

Proof. Omitted due to space considerations.

Proposition 3. For Xui
, Xuj

∈ {0, 1}d produced from
ui, uj ∈ Rω via the RHP scheme, and for vectors ûi, ûj ∈ Rω

computed by Xui
· R† = ûi and Xuj

· R† = ûj , due to
Proposition 2, ûi·R =Xui

, ûj ·R =Xuj
is also an application

of the RHP scheme. Therefore:

θ(ûi, ûj)

π
=

Dh(Xui , Xuj )

d
(5)

Proof. Omitted due to space considerations.
The multiplication leads directly to bitmaps, having started

the computation from Xui ·R† = ûi and Xuj ·R† = ûj . These
bitmaps are expectedly identical to those of ui and uj ; notice
that based on the computation Xui

, Xuj
(without the hat (̂.)

notation on ui
, uj

) are on the right hand side of Equations 4
and 5. Finally, based on the above discussion, we formally
present our Reverse Random Hyperplane Projection scheme.



Theorem 2. [New Reverse Random Hyperplane Projection]
Given R ∈ Rω×d composed of spherically symmetric random
column vectors of unit length and for ω < d, with sufficiently
large ω, from Equation 4 and Equation 5 we expectedly have:

θ(ûi, ûj)

π
=

θ(ui, uj)

π
(6)

Our Reverse RHP scheme is composed of two phases:
Compression Phase: A vector ui ∈ Rω is compressed by
multiplying it with the R ∈ Rω×d matrix:

ui ·R = ξi
hr1,hr2,···hrd−→ Xui

Reverse/Decompression Phase: The produced bitmap is mul-
tiplied by the right inverse of R deriving an estimation vector
ûi of the original ui:

ûi = Xui
·R†

For any pair of vectors ui, uj ∈ Rω that have been
compressed and decompressed in the above phases, their angle
similarity is preserved as per Theorem 2. Obviously, RRHP
has time and space complexity that is linear to ω and d.

C. On the Quality Guarantees of the New Scheme

RRHP provides probabilistic guarantees and directly trades
the size of the constructed bitmaps d to the quality of the
approximation of θ(ui,uj)

π in θ(ûi,ûj)
π . The following theorem

prescribes the way the size of the bitmaps d should be set.

Theorem 3. To estimate θ(ui,uj)
π with precision ϵ and prob-

ability at least 1 − δ (0 < ϵ, δ < 1) using Equation 6, the
bitmap size d should be set to O(ℓog(4/δ)/(2ϵ2)) length.

Proof. Omitted due to space considerations.
The lower the allowed error ϵ, the greater the bitmap size

d should be set, for fixed probability δ.

D. A Note on Distance Metrics and Multiple Dimensions

RRHP is not limited to the Angle Similarity. Table I
presents some of relevant, RRHP- supported similarity metrics
including the Cosine Similarity, the Correlation Coefficient
and the Euclidean Distance. All these measures are supported
commutatively via their relationship with Cosine and Angle
similarity. Please see [18] for further details. Finally, one can
use the new RRHP on matrices of multiple features instead of
a single feature, preserving their similarity [8].

III. RRHP FOR MINING SENSOR DATA STREAMS

We outline the application of RRHP over a WSN setting
composed of sensor nodes (also termed motes) organized in a
clustered network architecture [19] ( Figure 1). Nonetheless,
RRHP can be applied in any hierarchical WSN such as tree-
like networks [20]. The goal is to use RRHP to continuously
perform one or more data mining tasks (clustering, classi-
fication, regression) over disjoint windows (tumbles) of ω
measurements, as time passes and new such measurements

TABLE II: RRHP Performance vs ω for Compression Ratio 8

Window ω = 16 32 64 128 Average per Metric
Clustering 0.95 0.96 0.975 1.0 ARI
Regression 0.12 0.12 0.12 0.07 RMSE

SVM/Neural Net 0.92 0.97 0.98 0.99 Accuracy
KNN 0.83 0.96 0.98 0.99 Accuracy

are obtained. The way RRHP is applied on each window is
not affected by the data mining task.
RRHP at the Sensor Level: Each one of the motes
S1, S2, · · · , SN in the WSN collects a window (tumble) of
ω local measurements obtained from their operational realm,
where ω is specified by the application. For a vector ui ∈ Rω

formed by the latest ω measurements of mote Si, Si applies
the Compression Phase as described in Section II-B. Si com-
presses ui producing a bitmap of d ≪ ω ·B(uik) bits, where
B(uik) is the size of the binary representation of the k-th
measurement. d is set by the application based on Theorem 3.

The matrix R should be common among all motes, but can
change between windows. For S1, S2, · · · , SN to be able to
independently compute the common matrices R per window
and apply the Compression Phase of RRHP, the application
must broadcast a common seed parameter at the beginning
of the monitoring operation. Then, each mote Si is able to
produce the same d random vectors r in the R matrix used
for each window, determine the d signs of r ·ui inner products
as devised in the Compression Phase of Section II-B and come
up with a bitmap Xui ∈ [0, 1]d for the current ui window.
Intracluster Communication: Compressed bitmaps of all
motes are then transmitted to the clusterhead that each Si

belongs (Figure 1a). Clusterheads receive the measurements of
multiple motes (dotted circles in Figure 1) of the same cluster.
If motes transmit their original, uncompressed measurements,
the transmission time is greater. Therefore, the probability of
message collisions and the need for retransmissions increases.
By applying the Compression Phase of RRHP we not only
reduce the amount of the communicated data, but we also
reduce the probability of retransmissions (see Section IV).
Inter-cluster Communication: Setting each clusterhead as
the starting node and the base station as the destination,
the intercluster communication is modeled as a shortest path
problem. The compressed bitmaps are exchanged between
clusterheads participating in the shortest path (Figure 1b) [7],
[8], computed based on geographic aware routing [21].
RRHP at the Base Station: The base station uses the said
common seed to produce the R matrix. Based on R, the
base station performs the Decompression Phase of the RRHP
scheme (Section II-B –not shown in Figure 1) on each bitmap,
obtaining approximations of the original vectors with their
preserved distance and uses them as the feature vectors to
perform the involved data mining task(s).

IV. EXPERIMENTAL EVALUATION

Datasets. We utilize 2 real-world, publicly available datasets.
The Intel Lab Data (https://db.csail.mit.edu/labdata/labdata.
html) also used in [7], [8] with 48 sensors, and the Pump

https://db.csail.mit.edu/labdata/labdata.html
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(a) RRHP Compression Phase at each mote and Intracluster Communication (b) Intercluster Communication

Fig. 1: Main Stages of the RRHP Application
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(a) ARI Comparison for Compression Ratio C = 4
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(b) Silhouette Score Comparison for Compression Ratio C=4
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(c) ARI Comparison for Compression Ratio C=8

Fig. 2: DBSCAN Comparative Analysis ARI & Silhouette Scores (Vertical – The higher the better) vs Window Index
(Horizontal) for ω = 16 with compression ratio C=4 and C=8. At the top of each subplot 95% Confidence Intervals.



Sensor Data (https://www.kaggle.com/datasets/nphantawee/
pump-sensor-data) with 50 motes measuring pump pressure.
From the Intel Lab Data, we utilize the challenging (due to
abrupt fluctuations) case of light measurements.
Data Mining Tasks. We build scenarios for a variety of data
mining tasks carried out as per Section III. We use the
unlabeled Intel data for DBSCAN clustering. The labeled
Pump data (NORMAL, BROKEN, RECOVERING classes)
are used for regression and classification tasks.
Candidates. We compare the new RRHP scheme against
DFT [3], [22], DCT [1], DWT [4] and PAA [2]. For these
comparisons, we develop Python code in Scikit Learn 1.5.1,
Scipy 1.14.0, PyWavelets 1.6.0 and pyts 0.13.0. For the
communication and energy savings of RRHP we develop sim-
ulations in TOSSIM [23] operating as described in Section III.
Preprocessing. To set the hyper-parameters for each mining
algorithm, we analyzed the raw datasets, partitioned over the
specified normalized windows each time, in an offline fashion
without any compression, using grid search. Based on this, for
DBSCAN eps = 0.3, for KNN k = 4. The default values for
the rest of the hyper-parameters in the aforementioned Python
libraries, were used. Our Neural Net includes 2 LSTM (42
neurons each) + 2 Dense Layers (32 – 3 neurons) trained for
50 epochs, with each window ω of each sensor being a batch.
Metrics. To judge the accuracy of each reversible data sum-
mary in each task versus performing the same task on the raw
sensor data, we use the following metrics. For clustering, we
use the Adjusted Rand Index (ARI) to quantify the similarity
between the clusters formed upon using the raw data, versus
the clusters formed upon using the reversible data summaries.
We also use the Silhouette Score for measuring point
distances within each and between clusters. We use the Root
Mean Square Error (RMSE) for Linear Regression. In clas-
sification (KNN, SVM, Neural Net) we use the Accuracy
score, i.e., percentage of instances each approach assigned the
correct label/class per window.
RRHP Performance across Mining Tasks. Due to Theo-
rem 2, RRHP becomes more accurate for larger ω values (note
that the theorem holds for sufficiently high ω). Additionally,
due to Theorem 3, the higher the bitmap absolute size d, the
greater the performance of RRHP. Instead of giving the d
parameter in each experiment, we provide the compression
ratio. That is the ratio between the binary representation of
the raw window ω, in each experiment, over the bitmap
size d. We utilize compression ratios of 4 and 8. The fact
that high ω and d values favor the new RRHP scheme is
experimentally validated. In Table II, we show that, for RRHP
with a compression ratio of 8, all the performance metrics
per data mining task receive their best values for ω = 128,
the highest of the cited windows. The RRHP performance is
always high across mining tasks and respective metrics and
progressively further improves upon increasing the window
size from ω = 16 to ω = 128 (Table II). To stress test RRHP
against other competitors, we next set a default ω = 16.
Comparative Analysis. In Figure 2a and Figure 2c, we
compare RRHP against DFT, DCT, DWT and PAA, indica-

tively, in a clustering task. We plot performance results of
clustering, in terms of the ARI score for all candidates.
RRHP clearly outperforms all other candidates with, on
average, 20% improvement in ARI for compression ratios
4 and 8. Simultaneously, Figure 2b shows RRHP’s 60%
average improvement in Silhouette score versus the sec-
ond best approach, indicatively for a compression ratio of
4. This performance comes with the tightest 95% confi-
dence intervals (top of each subplot) among all candidates.
RRHP Simulation, Communication & Energy Savings.
In Figure 3, we plot the communication and energy savings
achieved by RRHP in our TOSSIM simulations. We utilized a
clustered WSN architecture [19] composed of 4 sensor clusters
with the same number of motes. Data are communicated in
the network as described in Section III. We use the default
packet size of TOSSIM equal to 29 bytes. In Figure 3(a) and
Figure 3(c), we can see that for compression ratios of 4 and
8, both the (min, max, average) number of communicated
bytes in the network and the consumed energy are reduced
by 5 and 10 times, respectively, exceeding RRHP theoretic
benefits (of 4 and 8). This is because RRHP reduces the size of
messages and, consequently, the transmission time. Therefore,
as mentioned in Section III, RRHP reduces the probability
of message collisions in the intracluster (multiple motes send
to their clusterhead – C2C communication) and intercluster
phases (C2Base station communication). This fact is validated
in Figure 3(b) which provides the transmitted bits categoriza-
tion. C2C and C2Base communication keeps the ratio of 4
and 8. C2C Nacks (Negative acknowledgements) and C2Base
Nacks are much higher when no compression is applied (black
bars). Therefore, when these Nacks add up to the overall
RRHP communication, they yield 5 instead of 4 times and 10
instead of 8 times reduced communication and lower energy
for compression ratios of 4 and 8, correspondingly.

V. RELATED WORK

Outlier detection is the most studied mining task [7],
[8], [10], [11], [24] over WSNs. Approaches for performing
broader data mining tasks over sensor data are surveyed in [25]
with techniques tailored for specific sensor data mining tasks.
RRHP differs by not being tailored to a specific mining
task. Besides, it is orthogonal to such techniques which can
use RRHP to compress transmitted data and decompress
for mining sensor streams. The candidates we used in our
experimental evaluation [1]–[5] are lightweight, reversible,
time series data compression techniques, falling in the non
data-adaptive category [26], as RRHP does. RRHP provides
tight probabilistic error bounds, while the rest of the candidates
rely on looser deterministic error bounds based on Parseval’s
theorem [17]. Plato [27] provides tight deterministic bounds
only for specific queries over historical, centrally available
sensor data, instead of mining tasks. Hung et al [16] compares
another category, that of model based sensor data compression
techniques. Some recently proposed time series compression
techniques are not applicable on sensor networks due to either
requiring first all data to be centralized [13]–[15], [28]–[31] or

https://www.kaggle.com/datasets/nphantawee/pump-sensor-data
https://www.kaggle.com/datasets/nphantawee/pump-sensor-data


(a) Total Comm. Cost (b) Comm. Cost Categories (c) Energy Consumption

Fig. 3: RRHP Communication Savings in TOSSIM Simulation. Sensors equally assgined to 4 WSN clusters. ω = 16

due to high time/space complexity [12], [16]. RRHP is based
on the RHP LSH [9] scheme. Wang et al [32] provides a
comprehensive survey on relevant techniques.

VI. CONCLUSIONS

We introduced a novel Reversible Random Hyperplane
Projection (RRHP) LSH scheme and presented its probabilistic
quality guarantees on preserving relative vector distances,
based on popular similarity metrics. Our experiments showed
that RRHP can carry out data mining tasks with excellent accu-
racy, also exceeding its theoretically computed communication
savings significantly. Our future work is on extending RRHP
to matrices of multiple features, to different sliding window
definitions and on representative bitmap election, to further
reduce communication.
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aware compression of massive time series using sparse dictionary
coding,” in IEEE Big Data, 2019.

[15] S. Lin, W. Lin, K. Wu, S. Wang, M. Xu, and J. Z. Wang, “Cocv: A
compression algorithm for time-series data with continuous constant
values in iot-based monitoring systems,” Internet of Things, vol. 25,
p. 101049, 2024.

[16] N. Q. V. Hung, H. Jeung, and K. Aberer, “An evaluation of model-based
approaches to sensor data compression,” IEEE Trans. Knowl. Data Eng.,
vol. 25, no. 11, pp. 2434–2447, 2013.

[17] D. Rafiei and A. Mendelzon, “Similarity-based queries for time series
data,” SIGMOD Rec., vol. 26, no. 2, p. 13–25, jun 1997.

[18] N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos, and Y. Theodor-
idis, “In-network approximate computation of outliers with quality
guarantees,” Inf. Syst., vol. 38, no. 8, pp. 1285–1308, 2013.

[19] O. Younis and S. Fahmy, “Distributed clustering in ad-hoc sensor
networks: A hybrid, energy-efficient approach,” in INFOCOM, 2004.

[20] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: A
tiny aggregation service for ad-hoc sensor networks,” in OSDI, 2002.

[21] G. Tan, M. Bertier, and A. Kermarrec, “Visibility-graph-based shortest-
path geographic routing in sensor networks,” in INFOCOM, 2009.

[22] A. Kontaxakis, N. Giatrakos, and A. Deligiannakis, “A synopses data
engine for interactive extreme-scale analytics,” in CIKM, 2020.

[23] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable
simulation of entire tinyos applications,” in SenSys, 2003.

[24] N. Giatrakos, Y. Kotidis, and A. Deligiannakis, “PAO: power-efficient
attribution of outliers in wireless sensor networks,” in DMSN, 2010.

[25] C. C. Aggarwal, Mining Sensor Data Streams. Springer, 2013.
[26] E. J. Keogh, “A decade of progress in indexing and mining large time

series databases,” in VLDB, 2006.
[27] C. Lin, E. Boursier, and Y. Papakonstantinou, “Approximate analytics

system over compressed time series with tight deterministic error guar-
antees,” VLDB, 2020.

[28] X. Kitsios, P. Liakos, K. Papakonstantinopoulou, and Y. Kotidis, “Sim-
piece: Highly accurate piecewise linear approximation through similar
segment merging,” Proc. VLDB Endow., vol. 16, no. 8, 2023.

[29] P. Liakos, K. Papakonstantinopoulou, and Y. Kotidis, “Chimp: Efficient
lossless floating point compression for time series databases,” Proc.
VLDB Endow., vol. 15, no. 11, pp. 3058–3070, 2022.

[30] C. M. Yeh, Y. Zheng, M. Pan, H. Chen, Z. Zhuang, J. Wang, L. Wang,
W. Zhang, J. M. Phillips, and E. J. Keogh, “Sketching multidimensional
time series for fast discord mining,” in IEEE Big Data, 2023.

[31] S. J. Rotman, B. Cule, and L. Feremans, “Efficiently mining frequent
representative motifs in large collections of time series,” in IEEE Big
Data, 2023.

[32] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search:
A survey,” 2014. [Online]. Available: https://arxiv.org/abs/1408.2927

https://arxiv.org/abs/1408.2927

	Introduction
	The New Reversible Data Summary Scheme
	Background on the Random Hyperplane Projection Scheme
	The New Reverse Random Hyperplane Projection Scheme
	On the Quality Guarantees of the New Scheme
	A Note on Distance Metrics and Multiple Dimensions

	RRHP for Mining Sensor Data Streams
	Experimental Evaluation
	Related Work
	Conclusions
	References



