(c) IEEE 2024. This is the authors' version of the work. It is posted here for your personal use only. Not for redistribution. The
definitive version of the work is published In Proceedings of the 2024 IEEE International Conference on Big Data (Big Data 2024),
DOI:10.1109/BigData62323.2024.10825830

Data-driven Synchronization Protocols for
Data-parallel Neural Learning over Streaming Data

George Klioumis
School of ECE
Technical University of Crete
Chania, Greece
gklioumis @tuc.gr

Abstract—We introduce EVENFLOW, a novel toolkit of syn-
chronization protocols for data-parallel training of neural nets us-
ing the Parameter Server (PS) paradigm. EVENFLOW achieves
both timely and accurate global model updates in streaming set-
tings. Instead of leaving stragglers out of the global model to avoid
delays (asynchronous protocol) or using laggy synchronizations
of all learners (synchronous protocol), EVENFLOW establishes
data-driven mechanisms that allow the PS paradigm to decide
when a synchronization is necessary, i.e., the global model may
have changed beyond an allowed tolerance value. EVENFLOW
models this problem as a distributed, thresholded function
monitoring task and decomposes it to local filters monitored
independently by each learner. When a learner finds its local
filter violated, only then a synchronization is triggered. Our
experiments show that EVENFLOW combines the virtues of both
the vanilla (synchronous, asynchronous) protocols. EVENFLOW
offers the rapid training times of asynchronous, with mostly equal
or even improved accuracy compared to synchronous.

Index Terms—data-parallel learning, data streams, neural nets

I. BACKGROUND AND MOTIVATION

In neural learning over streaming data, applications receive
unbounded, rapid streams of data in two pipelines, which
operate on par with one another, as shown in Figure 1(a) [1]-
[4]. The training pipeline (blue colored path in Figure 1(a))
continuously ingests training tuples from a stream source, such
as an Apache Kafka Training Topic. These flow through
a Learner into batches devised by a streaming window, for
a number of epochs [5]. The model’s weight are updated and
the process continues as new tuples stream in.

In the prediction pipeline (red colored path in Figure 1(a)),
there is a Predictor. The Predictor reads streaming
tuples from a Prediction Topic and deploys an iden-
tical, to the training pipeline, neural network to use it for
predictions. For instance, in case of a classification task, the
Predictor uses the continuously updated neural network
and deploys it to assign labels to unlabeled streaming tuples
of the Prediction Topic of Figure 1(a).

As time passes and the neural network weights in the
training pipeline get continuously updated, the Predictor
must, also continuously, receive the updated weights of the

This work was supported by the EU project EVENFLOW under Horizon
Europe agreement No. 101070430.

Nikos Giatrakos
School of ECE
Technical University of Crete
Chania, Greece
ngiatrakos @tuc.gr

neural network. To achieve that, as shown in Figure 1(a), there
isaWeights Topic, via which new neural network weights
are continuously transferred to the Predictor.

Let us exemplify this setup in some real application scenar-
ios. Consider a robot navigation scenario in a smart factory
terrain [1]. The goal is to classify segments of the robots
movement operating on the field. Based on this classification,
the application can then predict delays in the production
lines. For instance, a robot which continuously stops due to
obstacles, rotates frequently or collides with other robots, will
probably delay the delivery of production particles between
production lines. The terrain over which robots navigate is not
static. It changes continuously as new obstacles (e.g. pallets)
are added, people and pieces of equipment move and so on.
Thus, at any given time, ROS simulations [6], [7] must produce
classified segments of movement for simulated robots on the
newly formed terrain, which are ingested in the Training
Topic of Figure 1(a). The Learner trains a neural net which
receives simulated robot streams, including features (position,
velocity, direction, etc) and class of movement segment. As
the neural net is trained on the simulated robots’ streams,
the most up-to-date model is passed to the Predictor, via
the Weights Topic, to use it on streams of real robots
operating on the field and classify segments of their movement.

Similarly, in physics, collisions at high-energy particle
colliders are a traditionally fruitful source of exotic particle
discoveries [8]. By looking for discrepancies between the
simulations (training pipeline) and the actual collisions in
the real experiment (prediction pipeline), in an online, real
time fashion, scientists search for signs of disagreement which
could lead to the discovery of new phenomena [9]. Based on
that, they may choose to prolong or stop a running experiment.

The training pipeline does not always involve streams from
simulations. For instance, in Maritime Situation Awareness
applications [4], [10], preceding vessel trajectory segments are
classified based on the actual movement and are then used to
predict future trajectories of vessels following up [4].

It is evident that operating over streaming data means that
in the training pipeline, the neural network should be trained
continuously in an online, real time fashion, while the pre-
diction pipeline should continuously and immediately receive
an up-to-date version of the neural model being trained, upon

ngiatrakos
Text Box
(c) IEEE 2024. This is the authors' version of the work. It is posted here for your personal use only. Not for redistribution. The definitive version of the work is published In Proceedings of the 2024 IEEE International Conference on Big Data (Big Data 2024), DOI:10.1109/BigData62323.2024.10825830

Labeled Training St NN wy
abelet rainin, ream:
B R Weight Wz
“’\ BB bbbt PYTbRCH Updates

Tralnlng rTearner T

Topic opic

‘w PVT ORCH
Prediction Predlctor La beled
Topic Streams —

‘ S & katka

Training Pipeline
— Prediction Pipeline

Unlabeled Application Streams

(a) Non-parallel Neural Learning

Labeled Streams @ Partition 1 |

PYTURCH
[e

NN
Weight
Updates

Labeled Streams @ Partition N ||

M
Topic

Unlabeled Streams @ Partition 1

13
Wi

t
wh

t
W

PVTbRCH
[Predictor 1 |—

[Predlc.t::rZ —
[Predictorp }—
(b) Data-parallel Neural Learning using the PS Paradigm

Unlabeled Streams @ Partition P

Fig. 1: Non-parallel and Parallel Training and Prediction Pipelines in Neural Learning over Streaming Data

weight updates. In that, the Predictor will continuously
base its decisions on new, instead of obsolete, versions of the
trained model. Given these, latency restrictions do apply and
a major challenge comes from the volume and velocity of the
input streams at both pipelines.

To handle these latency requirements, the first step is to
come up with data-parallel versions of both pipelines. In
Figure 1(b), we illustrate a data-parallel version of the architec-
tural scheme of Figure 1(a). In the training pipeline, we have
multiple learners operating in parallel on disjoint partitions of
the training streams, while each of the parallel predictors re-
ceives the up-to-date neural model and performs predictions on
disjoint partitions of streams from the Prediction Topic.
The framework in Figure 1 has been used in [1]-[4]. But
parallelization alone can only solve part of the problem [11],
[12]. There is a major missing part that may render the entire
data-parallel architectural scheme in Figure 1(b) useless. While
the Predictors can operate independently on their par-
titions, the Learners must continuously synchronize their
local models to a global one.

To accomplish this task, the prominent Parameter Server
(PS) paradigm has been proposed in the literature [13]. The PS
paradigm comes with two vanilla synchronization protocols,
namely synchronous and asynchronous synchronization. In the
synchronous protocol, each of the Learners trains on local
data and periodically communicates a version of its locally
trained model to the PS side. The PS, awaits to receive local
models from all Learners, computes the global model by
synthesizing local ones and then sends the current global
model weights back to the Learners. In Figure 1(b), it also
writes the new weights to the respective Kafka topic for the
parallel predictors to update their own model copies. This pro-
cess is periodically repeated in rounds. This protocol enhances
the accuracy of the global model at any given time, but is
prone to delays in training time, because the PS has to wait to
listen from all learners, therefore the protocol is susceptible to
stragglers. In our context, this means that it may sacrifice the
real time, online character of the scheme. The asynchronous
protocol allows every Learner independently communicate
the local model and the PS sends a new global model, with

each such update, back to the Learners, without waiting
for all learners. Due to this, asynchronous synchronization
reduces training time, but any number of Learners may
be missing from the global model computation. Therefore,
the new weights incorporate stale gradients, offering imprecise
approximations of the true global model at any given time.

While a number of variations have been proposed to remedy
the weaknesses of the vanilla protocols [12], [14]-[16], they
have not been designed for streaming setups. For instance,
in streaming setups, using a fully decentralized protocol [16]
would mean that the whole set of learners should be continu-
ously queried to deduce which one holds the global model at
any given time, for the Weights Topic of Figure 1(b) to
get updated with the new weights. Hence, the advantages of
decentralized learning would be diminished by this barrier.

In this work, we introduce EVENFLOW, a novel toolkit of
synchronization protocols for data-parallel training of neural
nets under the PS paradigm. EVENFLOW achieves both
timely and accurate global model updates in streaming set-
tings. Instead of leaving stragglers out of the global model
to avoid delays (asynchronous protocol) or using laggy syn-
chronizations of all learners (synchronous protocol), EVEN-
FLOW establishes data-driven mechanisms that allow the PS
paradigm to decide when a synchronization is necessary,
i.e., the global model may have changed beyond an allowed
tolerance value. EVENFLOW models this problem as a dis-
tributed, thresholded function monitoring task and decomposes
it to local filters monitored independently by each learner.
When a learner finds its local filter violated, only then a
synchronization is triggered. EVENFLOW offers the rapid
training times of asynchronous, with mostly equal or even
improved accuracy compared to synchronous.

II. PARAMETER SERVER AND THE VANILLA PROTOCOLS
A. Preliminaries

We first explicitly define some basic terms used throughout
this paper adapted, when needed, in the streaming setup.
Learner, worker or client: In this work we use the term
learner equivalently to the terms worker or client that are often
used in the literature [5], [13]-[16].

Neural network weights or model parameters: In this
work we use the terms neural network weights and model
parameters, interchangeably. We further use explicit vector
notation w to emphasize that the lot of neural net parameters
is a vector in the R? space.

How deep is the neural network?: In this work, we do
not assume that the neural network is trained offline and then
used only for online inference. Instead, training and prediction
occur simultaneously. The network’s depth and complexity
directly affect training time—larger networks with more layers
increase latency, which is an issue in real-time streaming
setups. To address this, one can apply transfer learning by
adding new layers to a pre-trained, large model and only
train these additional layers over the incoming streams, while
keeping the original pre-trained network frozen. This allows
the model to adapt to new data streams efficiently without
retraining the entire network. Thus, the real-timeliness of the
application is not compromised. This observations holds not
only for the EVENFLOW, but for all protocols in this work.
Problem Definition: The objective of the training process
over a neural network, even in a non-data parallel, setup, is to
minimize a global loss function £(wW(®)) over the stream:

mip £0F)

where £(w(®)) is the global loss function defined as:

IS|

= 5] 2 D ")

o w(®) is the current (at time t) vector of the weights of the
(global) neural model.

e |S] is the number of the streaming tuples.

o £;(Ww") is the loss associated with the j-th data sample.

Gradient Computation: The gradient of the global loss func-

tion with respect to the model parameters w(*) is:

gV = Vao £Lw")

Update Rule: The model weights are updated using the com-
puted gradient, for example, using Stochastic Gradient Descent
(SGD) [17], where 7 is the learning rate:

witth g — pg®
Iteration: Repeat the gradient computation and update steps
for an application defined number of times.

In the Parameter Server (PS) paradigm, the synchronization
protocol determines how the local updates from the learners
are aggregated to update the global model weights. When the
data distribution is non-i.i.d., meaning that different learners
may observe different distributions of streams, the synchro-
nization protocols must account for this heterogeneity.

The notion of epoch in a streaming setting: In the tradi-
tional PS paradigm [13] which focuses on batch processing,
local training at each learner involves passing each local batch
through the local copy of the neural network. After processing
each batch, the local model updates the global model based on

the synchronization protocol (synchronous or asynchronous).
Once the entire dataset has been processed by all learners,
a new iteration, i.e., epoch begins, where training continues
starting from the updated global model. In streaming settings,
the training dataset is virtually unbounded, making traditional
batch processing techniques unsuitable in their original form.
Therefore, in all the protocols described in this work, when
we refer to local training, we mean a process similar to the
one outlined in [5]. Parallel learners perform local training by
receiving a batch size, a streaming window size (composed of
a number of batches), and a number of epochs at the beginning
of the training process. They use this window to perform local
training for the specified number of epochs. After completing
this, a new window is formed, and local training continues,
with or without synchronization, depending on the protocol.
The notion of a round: A single round in PS training
consists of (a) local training and local model computation by
the learners, (b) communication of gradients to the PS, (c)
aggregation and updating of the global model by the server,
and (d) communication of updated parameters back to the
learners. The number of rounds in training can impact the
training speed and the accuracy of the model. In the vanilla
protocols described next, synchronous rounds might lead to
more accurate training, while asynchronous rounds could
allow for faster, though potentially less accurate, updates.

B. Parameter Server Paradigm - Synchronous Protocol

In the synchronous protocol, all learners update their local
weights and then synchronize their updates with the PS at the
same time. The process is sketched as follows:

Local Update: Each learner ¢ € {1,--- ,n} processes its local

tuples at time ¢ and computes local model parameters w(),

Wit = WO Vg £(w0) = wO — gl (1)
Here, £;(w(®)) represents the local loss function and & _'(t) is the
gradient computed at learner i, which may differ 51gn1ﬁcantly
across learners due to non-i.i.d. data distributions.
Synchronization: After all learners have completed their local
updates, they send their local models’ weights W(tH) € R¢
to the parameter server.

Global Update: The parameter server aggregates the local
models to form the new global model. Given the not neces-
sarily i.i.d. nature of the updates, the aggregation may involve
weighted averaging due to differences in stream distributions:

Z LW —'(t-‘rl)

= (t+1) _
A% =
Zi:l Yi

2

where v; > 0 represents the importance assigned to the update
from learner ¢, potentially based on factors like the size or
importance of the local stream partitions.

Broadcast: The updated global model w(t1) is then sent

back to all learners, replacing the local weights/parameters
v?rl(t“) — witth),

C. Asynchronous Protocol

In the asynchronous protocol, learners do not wait for
each other to complete their updates. Instead, they send their
local updates to the parameter server as soon as they are
computed, and the parameter server updates the global model
immediately upon receiving an update from any learner. The
process can be described as follows:

Local Update: Each learner ¢ computes its local model pa-

rameters w(1) after processing its local data at time ¢t. The

local update computation is identical to Equation 1, though
we repeat it here for clarity:

=w —pVgLi(w®) =w®) —

The local gradient g "() again reflects the potentially diverse
data distributions across learners.

Synchronization: As soon as a learner ¢ computes its local

model vTIEtH), it sends the update to the parameter server.

Global Update: Upon receiving an update from any learner
i, the PS immediately updates the global model. Due to the
non-i.i.d. nature of updates, the global update function must
account for the differing contributions of each learner’s update:

5(t)

— 1
wi ng,

t+1 -
witt) — §® 4 %W() - YiW;

Z;L:1 Vi

w; is the local vector, learner 7 communicated the last time it
contacted the PS. By subtracting w;, we compensate for stale
updates, removing the previous contribution of learner <.
Broadcast: The updated global model w1 is sent back to
learner i, leading to potentially different versions of the global
model being used by different learners at any time.

III. EVENFLOW PROTOCOLS

The EVENFLOW synchronization protocol toolkit pro-
vides data-driven mechanisms which allow each learner to
independently check, and inform the parameter server, if
a full sync should take place. In order to do that, in
all our protocols, the application must provide one, any,
function f(w(tt>+1) w®) R? — R along with a
threshold 7'. The function together with the threshold ex-
press how much the global model weights can deviate
before having the PS call for a synchronization. When
f(wtt=tD) w®) > T a synchronization must take place.
Otherwise, if f(w(*+*+t1) W) < T, learners can keep
performing the training process only locally, i.e., without
a synchronization. In that, EVENFLOW combines explicit
accuracy guarantees based on f(w(t*+1) w(®)) < T, while
avoiding the effect of stragglers due to synchronizing only at
times when it is absolutely needed.

In the EVENFLOW protocols, consecutive local updates do
not necessarily lead to the completion of a round, since no sync
may take place if f(w(T*+1) w(®)) < T. Therefore, we use
t to denote the last time a round was completed (i.e, a sync
took place) and t+ s+ 1, instead of simply (t+1), to express
current time. w(*) stays the same in between synchronizations.

But the function f receives as input the entire vector of
neural model weights, i.e. the global model. The crucial
question is on how one can monitor f, without having learners
communicate all the time with the PS to compute w(**+1)
and check if the function exceeds the posed threshold. The
EVENFLOW protocols we present in this section provide
mechanisms for decomposing f(w(*+1) w(®)) < T to local
filters that each learner can check independently, in order to
decide whether to request a synchronization or not.

A. The Basic EVENFLOW Protocol

We will first present the operation of the Basic protocol
and then explain why it is correct to perform synchronization
like this, given the application defined f(w(+*+1) w(®)) < T
tolerance on model weight vector change.

Local Update: Each learner i € {1,2,---
local model parameters v"s}EH”)

stream at time t + s¢:

v—6§t+%+1) _ W’Et—&-%) T]V [: (—,(t-‘,-%))

,n} computes its
after processing its local

Z(t-‘r%) _ n§§t+%)

(3)
Note that for s = 0, i.e., immediately after a synchronization

and, thus, round completion, Equation 3 reduces to Equation 1.
Equation 3 can then be rewritten using a recursive formula:

Wgt+%+l) _ WZ@) B nz Ve, Li (wgtw)) _ WZ@ _p Z ggwr)
= r=0

(C))
Distributively Determine if a Synchronization is needed:
Each learner independently constructs a d-dimensional sphere

B(7]2 ng(t+7’) 1anr OH(H)||) i.e. a sphere

centered at w() — Ip>7 Ogl(t'”) of FIn>r & gt
radius. Let A be the area of the d-dimensional input
domain containing all possible weight vectors for which
f(v_\?(t+”+1) w®) > T. If for the sphere of learner i

B(w0 — Iy & Lo g l) Na =

the learner does not contact the PS. Otherwise, it contacts
the PS asking for a synchronization. If no learner asks for
a sync, no round completion and no communication takes
place. Thus, all learners keep performing local updates as
described above. This situation is illustrated in Figure 2 in 3
dimensions and n = 5 learners. Since no sphere intersects A,
where f(w(*+t) w(®) > T, no learner calls for a sync.
If at least one learner finds its locally constructed sphere
intersecting the A area, a synchronization takes place and a
global update is performed (see below).

Global Update: In case the sphere of at least one learner ¢ does
intersect A, the learner contacts the PS and a synchronization
takes place. The parameter server aggregates the local models
and the aggregation to a new global model gives (V; > 0):

S ﬂ(t+%+1)
Zizr Vi
Broadcast: The updated global model w(**+1) (setting » = 0

reflects this last synchronization) is then sent back to all
learners, setting w(tﬂ) +— w1 ag in the synchronous

w(t+x+1) _

(&)

protocol. Note that, at the beginning of the training, the PS
also broadcasts f(.) and T. Furthermore, A does not need to
get broadcast to the learners. The local learner filter check
can be performed by checking if argmin f (@), argmaz f(@)

st 7= %0+ S g < 3n 3 €047 e on
different sides of T.

Why the Basic EVENFLOW Protocol is correct: The key
point in accommodating any function f(w(T*+1) w())
in the Basic EVENFLOW synchronization protocol is to
perform the monitoring in the input domain, rather than
monitoring the function value. The question is, why the

local filter B (w(t) — iy ngt“ S Oggt“ ||)
(A = (0 performed by each learner ensures that
f(wtt=t) w®) < T and, therefore, if the local filter
holds for all learners, no synchronization is needed. In other
words, why the protocol is correct given the posed tolerance
function and threshold. Starting from Equation 5, we add and
subtract w(*):

n o o(t+setl)
Z’L 1

o (t4aetl) _ 2ui=1 iV, .
W - =
E:‘L:1 Vi
_ XY S
- n +w - —n =
2im1 Vi Dim1 Vi
—w® 4 Doy (W Wit _ _'Et)) Equation 4
Zi:1 Vi
—(t+r
—w® 4 S S g -
Zi:l Vi
t+r
= (t4se+1) _ Zz 1'71(W() — ’l’]Z)) 6
v = (6)
Zi—l i

Given that Vy; > 0and >_." ﬁ = 1, Equation 6 says
that, at any given time (¢ + s+ 1), the global vector of model
welghts w(t+>+1) can be expressed as a convex combination
of wi)—n>>7 th+ ") vectors. And as a convex combination
of these vectors, it lies in their convex hull, i.e., w(tT>+1) ¢
Conv (W —n 2o ggtw)’ e, w® Yoo gSzH_T)

The convex hull formed by such vectors is illustrated in
yellow in Figure 2. Now then, it has been proven [18]-[20]
that for any convex hull of vectors having a common starting
point (in our case the starting point is w(*)), it holds:

Conv (- WZ Hr e -1 Z _‘(Hr))

n . 1 P4 . 1 x . .
Us <w<t> SEUDBE-N U) - ’)
=1 r=0 r=0

Summing up, because at any given time the global vector
of model weights, w(***1 lies in the said convex hull, it
suffices to find a way to distributively monitor this convex
hull. The above inclusion says that the convex hull is a

Fig. 2: Basic EVENFLOW protocol. d-spheres constructed by
n = 5 learners. d = 3 is used just for visualization purposes.

subset of the union of the spheres constructed independently
by each learner. If no such sphere intersects A, as in Fig-
ure 2, no synchronization is necessary because w(/T>*1)
cannot have entered the area of the input domain where
f(wH=D %®) > T. This explains the correctness of
the protocol with respect to the posed tolerance constraint
expressed in f(wW(>+ W) > T The Basic EVENFLOW
protocol, although it synchronizes all learners, keeps such
syncs to only a need-to-happen basis. It, thus, achieves both
model accuracy based on the monitored thresholded function
and reduces the effect of stragglers.

The Basic EVENFLOW protocol is useful for small neural
networks like MultiLayer Perceptrons or, in the context of
transfer learning, for already trained neural nets which we
further refine by training them having added up few hundreds
of neurons. When the dimensionality d increases, checking

it B (WO~ IS & S In S, &) Na =
becomes computationally intensive to an extent that outwelghs
the benefit of omitting unnecessary synchronizations and, thus,
the effect of potential delays due to stragglers. Therefore, we
introduce the Fast EVENFLOW protocol.

B. The Fast EVENFLOW Protocol

Compared to the Basic EVENFLOW, the Fast EVENFLOW
protocol better tackles the computational complexity problem
incurred by the increased dimensionality d of the weight
vectors. It does so by applying a dimensionality reduction
technique, namely Fast Fourier Transforms (FFT) for Discrete
Fourier Transform (DFT) computation, and by providing de-
terministic bounds on the quality of the approximation of the
monitoring problem f(w(**+1) w(®)) > T, at hand. For this,
we apply a transformation that subtracts w(*) (recall that this
latter vector does not change until the next synchronization)
from all the involved vectors. That is, we want to distribu-
tively monitor f(WH*tD) — W™ 0) > Thransformed <
f(VV(t+%+1),V_\?(t)) ST

The phases of local update and, when needed, global
update are exactly the same as in the Basic Protocol. What

changes is the way the protocol distributively determines
if a sync is needed, with vectors of reduced dimensional-
ity, providing respective quality guarantees. Additionally, the
content of the broadcast by the parameter server slightly
differs, as we discuss shortly. We emphasize again that we
do not aim at performing the training, local or global, itself
using vectors of reduced dimensionality. Fast EVENFLOW
uses such reduced vectors only for distributively monitoring
f(wtt=tD) _w®) > Tirans formed Using new versions of
the local filters.

Distributively Determine if a Synchronization is needed:

In the transformed problem, having subtracted
w® the local filter each learner 4 should check
involves the sphere with a modified center, i.e.,

~In & A g N). Note that

subtractlng w(®) does not affect the relative directions of
the sphere centers or magnitudes of radii, but only their
positions and this is the reason the threshold should become
Tiransformed instead of T. However, this does not solve
the dimensionality problem. To reduce the dimensionality of
the problem at hand, each learner 7 utilizes Discrete Fourier
Transforms (DFT) [21]. The DFT of the sum »_ -, QEHT)
vector can be computed exploiting the linearity of DFTs [22]:

» »x d—
Zggt-&-r) _ Z Z (t+r) 7i-27r~§~)\/d7£ =0,1,---,d—1
r=0 r=0 A=0
Here, g\'™") represents the DFT of the vector """, and

the formula sums these DFTs over all » from O to . This

computation can be performed in O(nfogn) time using FFT.

Learners can independently reduce the dimensionality of
g™ by sorting the coefficients in the g™ in descending
order and keep only the m < d largest such Fourier coeffi-
cients. Now, by using the reduced dimensionality of g(t+r)m,

the sphere that each learner should construct and check is

~(t+r ~(t+r
S 8 s il S 8)

Broadcast: If a sync takes place, the parameter server sends
back to the learners the T}y formea threshold, the value of
m (only in the first synchronization) and W(HD w1,

How good is the Fast EVENFLOW Protocol: But how good
is this approximated sphere, compared to the original one?
Let us begin by comparing the sizes of the radii. We stress
that the learners just perform the monitoring the way de-
scribed above; they do not perform the computations we
present below. We do this computations to provide the qual-
ity guarantees, in the form of deterministic error bounds,
of performing the local checks using the vectors of re-
duced dimensionality. The Inverse Discrete Fourier Trans-
form (IDFT) of the gradient vectors is given by [22]:
Z;;ng(t-i'?”)[)\} _ ézi;é(:fzogz(t'i'?”)[)\]) el2mEN/d
According to Parseval’s Theorem [22], for each gradient:
g2 = é||§§t+7ﬂ)H2. Then, the approximation of the
initial gradients, by using only m < d coefficients, is upper

bounded by: \N(HT)[A2

—'(t+r)_~(t+r)mH < \/ Z

The maximum value of each |g(t+r)[AJJ? is ||g(t+T)H2 Thus:

<y /1- H”” (7

Lemma 1. Any learner i € {1,2, ,n}, after » local
updates since the last synchronization, will construct a m-
dimensional hypersphere in the DFT space (m < d) with

radius

g»l(tJrr) t+r

a radius which approximates the H%n > gj(t“)

of the original d-dimensional space, with an error at most

t+r
b JGe+ 1) (1= 2) g
. i g+ L i)
2 r=0 ' 2 r=0 ' "

1 MY | S(t47)
< Z . - — :
< gm0 (1=)1

Proof. Consider the sum of differences between the orig-
inal and DFT gradient vectors over all r from 0 to s,

Z% . (g(t+r) _ ~(t+r)

bound on the norm of this sum HZ

) We iniially want to find an upper
(t+r) ~(t+r) H
m

We apply Jensen’s Inequality to the squared norm function,
which is convex. Jensen’s inequality tells us:

2
L (a(t4r) ~(t40))
E \ — o <
x+1 = (gl &i m -
S(t+r) ~(t4r) HQ
< , (t+r) 8
~x+1 = &i ®)

From Inequality 7 and Inequality 8 we derive:

2
L (gt
»x+1 ;0 (gi

Taking the square root and multiplying by /¢ + 1:

MY\ | o(t+r
< et - (1= 2 1)

©))
Applying the Triangle inequality on the left-hand side of
the above and multiplying by %77 concludes the proof. O

Example 1. Assume we have ResNet-18 [23], with d = 11.7 X
108 (number of parameters/weights), m = 50 (number of
DFT coefficients), n = 0.001 (typlcal learmng rate for Adam)
and relatlvely large gradient norm ||g; (tr) || <10: For »c = 1:

~(t+r My o(t+r
8| < a-Tler e

(t+r)m)

H —»(tJrr’) —g

§77\/ (41 =) |1g" || ~ 0.007071. For > = 10:
%77\/(%—1— 1) . _ m)Hth-‘rT)” ~ 0.016583. For » — 100:
%’7\/(%“L 1) - (1—2) g ~ 0.050249

The following lemma provides a deterministic upper bound
on the position of the new, DFT-based sphere center as a direct
consequence of the analysis in the proof of Lemma 1.

Corollary 1. Any learner i € {1,2,---,n}, after s lo-
cal updates since the last synchronization, will construct
a m-dimensional hypersphere in the DFT space (m <
d) which approximates the position of the sphere center

— %77 > _'EHT)> of the original d-dimensional space, with

an error at most %n\/(%—i- 1)- (1 - %) HQEHT)H-'

1 i 1S
S & oy &
r=0 r=0

1 mY | o(t4r)
< = . R — \
< 277\/(%+1) (1 d)\lgl |

Proof. A direct consequence of Inequality 9. O

<

IV. EXPERIMENTAL EVALUATION

Experimental Setup: In our evaluation we utilize the physics
scenario of Section I over the SUSY dataset [8], split into a
80-20% train-test data stream proportion. The dataset includes
5M tuples and each tuple is composed of 18 features. The
aim is to timely distinguish signal processes which produce
supersymmetric particles and background processes which do
not. Please refer to [8], [24] for further details.

We train 4 different feed forward neural networks of 400
(NN400), 4K (NN4K), 400K (NN40OK) and 4M (NN4M)
weights, respectively, using the maximum stream ingestion
rate supported by Kafka. The problem is modeled as a re-
gression task, where each network outputs a single continuous
value representing the estimated probability of a signal process
occurring. The loss function used is Mean Squared Error
(MSE). To assess model performance, we track the MSE on
the test data stream during training and also measure the total
training time for the entire stream.

We follow a fine tuned streaming setup where the streaming
window size is set to 256 tuples, split into 4 batches and the
number of epochs is set to 8, with a typical learning rate
of 0.001. We report the accuracy and the training time of
each neural net using a default value of 7 learners, but we
also report on scalability experiments varying the number of
learners between 3 and 15. To purely measure the effect of the
EVENFLOW protocols, we do not include in our plots the time
it takes to write the updated Kafka weights to the Weights
Topic of Figure 1(b) before predictors can read it. This is
a time lag common to all methods, but its effect is much
less present in the EVENFLOW protocols due to less frequent
(partial or full) synchronizations. Therefore, the reported times
are actually a worst case scenario for our techniques.

For the Fast EVENFLOW protocol, we set the number of
DFT coefficients to m = 50, but we also report performance
results upon varying this parameter, as well. The monitored
function which expresses the application tolerance value on
weight changes before a synchronization, for the EVENFLOW
protocols, is KL-divergence, while the threshold 7' is set to 0.3.

The EVENFLOW toolkit, as well as the vanilla synchronous
and asynchronous protocols, are implemented in PyTorch
2.4.04cul2l. We use a Google Colab Pro+ subscription and

run our experiments on A100 GPU setup with 83.5GB system
RAM and 40GB GPU RAM.

Analysis on NN400: We begin our experimental evaluation
and comparison of EVENFLOW against the vanilla protocols,
with the NN400 neural net. In Figure 3, we plot the Test
MSE Loss across the training process (Figure 3a) and the
Training Time to complete the training on the entire set of
SUSY data streams (Figure 3b). The Basic and the Fast
EVENFLOW protocols show negligible differences in their
performance for NN4 00, therefore our plots include only Basic
EVENFLOW. As shown in Figure 3a, the Basic EVENFLOW
protocol achieves a Test MSE Loss that lies between the
respective Asynchronous (red) and Synchronous (blue) plot
lines. Basic EVENFLOW improves Asynchronous up to 35%,
while being up to 15-18% worse compared to the Synchronous
protocol. However, the first indication that the EVENFLOW
protocol combines the virtues of both protocols comes when
we combine these MSE Loss results with the Training Time
in Figure 3b. There, the Basic EVENFLOW improves the
Synchronous one by more than 2 times and the Asynchronous
protocol by 33%. Thus, Basic EVENFLOW achieves the best
combination of MSE Loss and Training Time.

It is easy to see why Basic EVENFLOW improves the Syn-
chronous protocol in terms of training time, i.e., by avoiding
superfluous synchronizations; and the Asynchronous protocol
in terms of MSE Loss by avoiding partial updates to some
learners and stale gradients to others. But, the natural question
that arises is how and why it improves the Asynchronous
protocol, which does not introduce synchronization barriers
between learners, in terms of training time. Nevertheless,
the training time is measured as the time it takes for all
learners to process their assigned streams in their entirety. In
an Asynchronous protocol, while there are no synchronization
barriers, the frequent partial updates by some learners engage
unnecessary communication overhead and the frequent trans-
mission of gradients that are only partially informative.

Next, for the NN4K, NN400K and NN4M neural networks,
the Basic EVENFLOW protocol is not present. This is because
the computational complexity of the local sphere intersection
checks by the learners cannot abide by the posed 100ms RPC
(Remote Procedure Calls) timeout, while communicating with
the parameter server. Thus, we only use the Fast EVENFLOW
protocol, which is the reason we invent it in the first place.
Analysis on NN4K: As explained above, we have switched
to the Fast EVENFLOW protocol with m = 50 coefficients.
In Figure 5, the situation does not change a lot, with the
major difference being that, now, Fast EVENFLOW improves
Synchronous in terms of training time by 4, instead of 2
times we observed in NN400. This is due to the increased
dimensionality of the weight vectors which make the training
process and the continuous syncs, of Synchronous, more time
consuming. There are two more observations that we need
to make here. First, in Figure 5b, the Training Time of Fast
EVENFLOW is closer to the Asynchronous protocol. This
is because, before the local check by the learners, there is
also an overhead in computing the DFT coefficients. The

Comparison of MSE Loss vs Number of Learners (NN400)

Training Time Comparison per Protocol - NN400 0.5
Test MSE Loss vs Number of Tuples used in the Training Pipeline - NN400
100 95.49 s = Synchronous .) 4
0.500- — Synchronous . mmm Asynchronous @04] Il .
0.475 —* Asynchronous 5 = Basic EVENFLOW S ¢ s
- —— Basic EVENFLOW S 80+ w .
S 67.29s]
1 0450+ 3 =03
30425 o 607 o e« Synchronous
@ 1 £ 4479 & e Asynchronous
3 040 S a0l g 02 « Basic EVENFLOW
2
80375 £ s
1 o
1 e
0.350 E 2 zo01
0325+
0.300- 0 0.0
00 05 10 15 20 25 30 35 40 Synchronous Asynchronous Basic EVENFLOW 3 6 9 12 15
Processed Tuples @ Training Pipeline (x10°6) B Protocols Number of Learners
(a) NN400 Test MSE Loss (b) NN400 Training Time Fig. 4: LossVs#Learners NN400
Fig. 3: Comparison of NN400 Test MSE Loss and Training Time
ini i - Comparison of Training Times vs Number of Learners (NN400)
Test MSE Loss vs Number of Tuples used in the Training Pipeline - NN4K Tralnlng Time Comparison per Protocol - NN4K 140/
300 303.14 seconds = Synchronous = Synchronous
025 _ = Asynchronous 120! W Asynchronous
m
€ 250 W Fast EVENFLOW (m=50) g WEm Basic EVENFLOW
v 0.20 S g 1007
2 3 200 4
" 3 i
w
@015 £ £
g £ 150 E 60
Boo 2 g
- £ 100 87,96 seconds 75.66 seconds £ 401
—— Synchronous 5 K
0.05| —— Asynchronous = 50 20+
—e— Fast EVENFLOW (m=50)
0
000 o5 10 15 2 X 30 35 40 Synchronous Asynchronous Fast EVENFLOW (m=50)
Processed Tuples @ Training Pipeline (x10~6) Protocols Number of Learners

(a) NN4K Test MSE Loss (b) NN4K Training Time Fig. 6: TrainTimeVs#Learners NN400
Fig. 5: Comparison of NN4K Test MSE Loss and Training Time

Training Time Comparison per Protocol - NN400K

Fast EVENFLOW Sensitivity to Number of DFT Coefficjentsérgla - NN4K
o

o (?t MSE Loss vs Number of Tuples Used in the Training Pipeline - NN40OK

1000 961.96 seconds = Synchronous 80 W Training Time §
— mmm Asynchronous %70 0252
0.25 0 o a
£ 800 W Fast EVENFLOW (m=50) c <
s 8 60 0208
2 0.20 b g I
e o 250 @
S = 600 P 2
w @ g 0152
Qo015 E i 40 %
= 0
% o 400 230 0108
© 0.10 z z —e— Average MSE Loss —
— Ssynchronous ® g 20 a
0.05 = 200 = 0058
.05 —e— Asynchronous 93.42 seconds 91.90 seconds 10 o
—— Fast EVENFLOW (m=50) g

0.00 o 0.00

0.0 05 10 15 2.0 .5 3.0 35 4.0 Synchronous Asynchronous Fast EVENFLOW (m=50) 400 250 50 10
Processed Tuples @ Training Pipeline (x10°6) 10 Protocols Number of DFT Coefficients (m)

(a) NN40OK Test MSE Loss (b) NN400OK

Training Time Fig. 8: #DFT Coefficients Sensitivity

Fig. 7: Comparison of NN40OK Loss and Training Time

o 2[-)est MSE Loss vs Number of Tuples Used in the Training Pipeline - NN4M

e o
= Y
) S

Test MSE Loss
e
i
o

—— Synchronous
—e— Asynchronous
—e— Fast EVENFLOW (m=50)

e
o
&

0.00

00 05 10 15 20 25 30 35 40
Processed Tuples @ Training Pipeline (x10°6) e

(a) NN4M Test MSE Loss

Training Time Comparison per Protocol - NN4M

1600
= Synchronous

mmm Asynchronous
. Fast EVENFLOW (m=50)

1345.40 seconds

_ 1400

,_.
N
o
S

1000

2 «
3 3
S o

IS
]
S

229.75 seconds

Training Time (seconds;

140.13 seconds

~
S
S

o

Synchronous Asynchronous Fast EVENFLOW (m=50)
Protocol

(b) NN4M Training Time

Fig. 9: Comparison of NN4M Test MSE Loss and Training Time

second observation is that, in Figure 5a, the Fast EVEN-
FLOW protocol occasionally shows lower Test MSE Loss
than the Synchronous approach (up to 10% lower MSE for
Fast EVENFLOW). This is due to the reduced frequency of
synchronization points in the Fast EVENFLOW protocol. This
reduction helps prevent the protocol from reacting too strongly
to minor (potentially noisy) gradient fluctuations, unlike the
Synchronous approach, where frequent synchronizations can

cause the global weight vector to update too often in response
to small, potentially insignificant changes.

Analysis on NN40OK and NN4M: Figure 7 and Figure 9
present the respective results for the NN4 00K and NN4M neural
nets. The Fast EVENFLOW protocol proves again that it
combines the virtues of the two vanilla approaches offering
rapid training time, while surpassing the best performance
in terms of Test MSE Loss. In particular, in Figures 7a

and 9a, we can see that Fast EVENFLOW clearly outperforms
Asynchronous, while improving the Synchronous protocol up
to 50% in terms of Test MSE Loss. Here, we have another,
implicit advantage of the EVENFLOW toolkit we observe
in practice. Fast EVENFLOW improves Synchronous due
to the fact that, by synchronizing less frequently, it avoids
temporary overfittings that occur during the streaming training
process. On the other hand, in Figures 7b and 9b, we can
observe that Fast EVENFLOW performs slightly worse than
Asynchronous in term of training time. This is consistent with
our previous observation that the time it takes to compute the
DFT coefficients (besides the local sphere intersection check)
increases with the dimensionality of the weight vectors.

Fast EVENFLOW Sensitivity to the Number of DFT
Coefficients (m): According to Lemma 1 and Corollary 1, the
upper bound on the accuracy of the Fast EVENFLOW depends
on m and d, but the involved squared root /1 — % becomes
1 as d increases. Therefore, in Figure 8, we plot the way the
Training Time and the Test MSE Loss of Fast EVENFLOW
are affected by altering m from 400 to 250, 50 and finally
10 coefficients. The horizontal axis shows the values of m.
The vertical axis on the left-hand side measures the Training
Time, while the vertical axis on the right-hand side measures
the Average Test MSE Loss during the training process. As
Figure 8 illustrates, switching from 400 to 250 coefficients
may improve the total training time of Fast EVENFLOW by 10
seconds. After that point, switching to 50 and 10 coefficients,
gives a negligible improvement. Furthermore, the Average
MSE Loss increases from 0.2 for m = 400 to 0.22 for m = 50
and m = 10. This explains the choice of a moderate m = 50
value in the experiments we previously discussed, to both
decrease training time without favoring Fast EVENFLOW in
terms of MSE loss. In all, for above 250 coefficients, the
protocol shows little sensitivity to the chosen value of m.
Scaling with the Number of Learners (n): In Figure 4 and
Figure 6, we plot the Average MSE Loss and the Training
Time varying the number of learners in our setup. To purely
judge the effect of parallelism in our experiments, we use
the NN400 neural network, because it is less affected by the
computational cost of the training itself, compared to the more
complex NN4K, NN40OK and NN4M neural networks. This
allows us to better understand how the system scales with the
number of learners and how synchronization overhead impacts
performance without the results being overshadowed by the
computational complexity of the neural network itself. Accord-
ing to Figure 4, all protocols seem to simultaneously exhibit
good MSE values upon being trained with 9 learners. On the
other hand, Figure 6 shows that after 6 learners the training
times tend to increase. For Synchronous and EVENFLOW
this happens due to the fact that the synchronization process
becomes more complex and time consuming as more learners
are introduced beyond a certain point, outweighing the benefits
of parallelism. On the other hand, for the Asynchronous
protocol, with more learners communicating asynchronously,
the network and system overhead can increase. The server
must handle more incoming gradient updates, manage com-

munication, and perform frequent updates to the model. This
increased overhead can slow down the overall training process,
as discussed earlier in our analysis in Figure 3b. Combining
the above results for MSE Loss and Training Time, it appears
that the sweet spot, where all protocols show good MSE and
the parallelism favors decreased training times, is between 6
and 9 learners. This explains why we used a default number
of 7 learners in our previous analysis.

V. RELATED WORK

The PS paradigm was introduced in Li et al. [13]. Dean
et al. [25] introduced DistBelief, facilitating asynchronous
stochastic gradient descent (ASGD) to manage communication
overheads. More recent efforts have focused on reducing
the frequency and size of communications. For instance,
Stich [26], [27] proposed a Local SGD method, where each
learner performs multiple local updates before synchronizing
with others. EVENFLOW differs by providing data-driven
decision making mechanisms to distributively prescribe when
a sync is needed. Moreover, these approaches are orthogonal
to EVENFLOW. For instance, EVENFLOW can be used by
learners to perform their local, sphere intersection checks
having performed the local updates as per Stich [26].

Decentralized learning offers an alternative to the central-
ized PS paradigm [14]-[16], [28]. Lian et al. [28] demon-
strated that decentralized SGD (DSGD) could achieve similar
convergence rates to centralized methods while being more
robust to training. As noted in the intro, using such a paradigm
in streaming settings means that the whole set of learners
should be continuously queried to deduce which learner holds
the global model at any given time, for the Weights Topic
of Figure 1(b) to get updated. Hence, the advantages of
decentralized learning are diminished by this barrier.

For Federated Learning, the introduction of Federated Av-
eraging (FedAvg) [5] was pivotal. To further improve the
efficiency, various methods have been developed to address
the issues of model divergence and communication overhead.
Zhao et al. [29] and Reddi et al. [30] highlighted the chal-
lenge of model divergence, where local models drift towards
their own minima, causing slow and unstable convergence.
SCAFFOLD [31] was introduced to correct local updates using
control variates, significantly speeding up convergence in fed-
erated settings. Similarly, FedProx [32] added regularization to
the FedAvg method to keep local models closer to the global
model, reducing divergence. These approaches can be used
on par with EVENFLOW, since they prescribe when and how
gradients or weights are computed or hyper-parameters are
tuned. After that, EVENFLOW determines the need of a sync.

Compression techniques like sparsification and quantization
have been used in neural learning. Alistarh et al. [33] explored
sparsification, while Seide et al. [34] investigated quantization
techniques, both transmitting gradients in a compressed form.
These approaches have been combined with Local-SGD as
well [35]. This is complementary to EVENFLOW. Having
determined when a sync is needed, the actual gradients can
be communicated using the above methods. However, such

approaches cannot replace DFT in EVENFLOW, as they do
not provide a priori known error bounds or may introduce
approximation errors that affect the correctness of the data-
driven sync decision. Sketching methods [36], [37] do preserve
linearity and are suitable for similar tasks, but they provide
probabilistic rather than deterministic error bounds, leading to
monitoring fuzzy instead of fixed convex hulls.

Accelerating the convergence of distributed training is a cru-
cial strategy for reducing training speed. Recent efforts include
FedAdam [30], FedAvgM [38], Mime [39], FedDyn [40].
The sync decision making mechanisms of EVENFLOW are
complementary to these techniques in reducing training time,
simultaneously abiding by the posed weight change tolerance.

VI. CONCLUSION

We present EVENFLOW, a toolkit of data-driven synchro-
nization protocols that achieve highly accurate data-parallel
training with rapid training times under the PS paradigm.
EVENFLOW models the synchronization decision problem as
a distributed functional monitoring problem and solves this
problem from any application-provided function. Our future
work focuses on studying EVENFLOW on federated learning
environments and across the cloud to edge continuum.

REFERENCES

[1] N. Giatrakos, “SSTRESED: scalable semantic trajectory extraction for
simple event detection over streaming movement data,” in TIME, 2023.

[2] A. Deligiannakis, N. Giatrakos, Y. Kotidis, V. Samoladas, and A. Sim-
itsis, “Extreme-scale interactive cross-platform streaming analytics - the
INFORE approach,” in SEA-Data @ VLDB, 2021.

[3] N. Giatrakos and et al, “Infore: Interactive cross-platform analytics for
everyone,” in CIKM, 2020.

[4] N. Giatrakos, A. Deligiannakis, K. Bereta, M. Vodas, D. Zissis, E. Ale-
vizos, C. Akasiadis, and A. Artikis, “Processing big data in motion:
Core components and system architectures with applications to the
maritime domain,” in Technologies and Applications for Big Data Value.
Springer, 2022, pp. 497-518.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[6] S.Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
operating system 2: Design, architecture, and uses in the wild,” Science
Robotics, vol. 7, no. 66, 2022.

[7]1 S. Macenski, A. Soragna, M. Carroll, and Z. Ge, “Impact of ros 2 node
composition in robotic systems,” IEEE Robotics and Autonomous Letters
(RA-L), 2023. [Online]. Available: https://arxiv.org/abs/2305.09933

[8] P.Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles in
high-energy physics with deep learning,” Nature communications, vol. 5,
p. 4308, 07 2014.

[9] “High energy physics simulations,” https://lhcathome.web.cern.ch/

projects/test4theory/high-energy-physics-simulations, accessed: 2024-

10-29.

M. Vodas, K. Bereta, D. Kladis, D. Zissis, E. Alevizos, E. Ntoulias,

A. Artikis, A. Deligiannakis, A. Kontaxakis, N. Giatrakos, D. Arnu,

E. Yaqub, F. Temme, M. Torok, and R. Klinkenberg, “Online distributed

maritime event detection & forecasting over big vessel tracking data,”

in I[EEE Big Data , 2021.

Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang, J. Li, Y. Guo,

and J. Cheng, “Flexps: flexible parallelism control in parameter server

architecture,” Proc. VLDB Endow., vol. 11, no. 5, p. 566-579, jan 2018.

L. Mai, G. Li, M. Wagenldnder, K. Fertakis, A.-O. Brabete, and

P. Pietzuch, “Kungfu: making training in distributed machine learning

adaptive,” in OSDI, 2020.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,

J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine

learning with the parameter server,” in OSDI, 2014.

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in ICML, 2018.

H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized
training over decentralized data,” in ICML, 2018.

I. Hegediis, G. Danner, and M. Jelasity, “Decentralized learning works:
An empirical comparison of gossip learning and federated learning,” J.
Parallel Distributed Comput., vol. 148, pp. 109-124, 2021.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

I. Sharfman, A. Schuster, and D. Keren, “A geometric approach to mon-
itoring threshold functions over distributed data streams,” in SIGMOD,
2006.

N. Giatrakos, A. Deligiannakis, M. N. Garofalakis, I. Sharfman, and
A. Schuster, “Distributed geometric query monitoring using prediction
models,” ACM Trans. Database Syst., vol. 39, no. 2, 2014.

N. Giatrakos, A. Deligiannakis, M. N. Garofalakis, D. Keren, and
V. Samoladas, “Scalable approximate query tracking over highly dis-
tributed data streams with tunable accuracy guarantees,” Inf. Syst.,
vol. 76, pp. 59-87, 2018.

A. Kontaxakis, N. Giatrakos, and A. Deligiannakis, “A synopses data
engine for interactive extreme-scale analytics,” in CIKM, 2020.

D. Rafiei and A. Mendelzon, “Similarity-based queries for time series
data,” SIGMOD Rec., vol. 26, no. 2, p. 13-25, jun 1997.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

D. Whiteson, “SUSY,” UCI Machine Learning Repository, 2014, DOI:
https://doi.org/10.24432/C54606.

J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker ef al., “Large scale distributed
deep networks,” in NIPS, 2012.

S. U. Stich, “Local sgd converges fast and communicates little,” in /CLR,
2018.

——, “Communication-efficient distributed learning with deep networks
on non-idd data,” in NeurIPS, 2019.

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in NIPS, 2017.
Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” CoRR, vol. abs/1806.00582, 2018. [Online].
Available: http://arxiv.org/abs/1806.00582

S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konecny,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” in
ICLR, 2021.

S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” in /CML, 2020.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
in NIPS, 2017.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in INTERSPEECH, 2014.

A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “Qsparse-
local-sgd: Distributed sgd with quantization, sparsification, and local
computations,” in NeurlPS, 2020.

D. P. Woodruff and Q. Zhang, “Sketching as a tool for numerical linear
algebra,” Foundations and Trends in Theoretical Computer Science,
vol. 10, no. 1-2, pp. 1-157, 2014.

N. Ivkin, D. Alistarh, T. Hoefler, P. W. Lo, S. Rouault, D. Tajarov, and
M. Vojnovic, “Communication-efficient distributed sgd with sketching,”
in NeurIPS, 2019.

T. C. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-identical
data distribution for federated visual classification,” in /CLR, 2019.

S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “Mime: Mimicking centralized stochastic algorithms in
federated learning,” in NeurIPS, 2020.

D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and
V. Saligrama, “Federated learning based on dynamic regularization,” in
ICLR, 2021.

https://arxiv.org/abs/2305.09933
https://lhcathome.web.cern.ch/projects/test4theory/high-energy-physics-simulations
https://lhcathome.web.cern.ch/projects/test4theory/high-energy-physics-simulations
http://www.deeplearningbook.org
http://arxiv.org/abs/1806.00582

	Background and Motivation
	Parameter Server and the Vanilla Protocols
	Preliminaries
	Parameter Server Paradigm - Synchronous Protocol
	Asynchronous Protocol

	EVENFLOW protocols
	The Basic EVENFLOW Protocol
	The Fast EVENFLOW Protocol

	Experimental Evaluation
	Related Work
	Conclusion
	References

