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Abstract—We present a Maritime Situational Awareness
(MSA) framework for detecting and forecasting maritime events
(e.g., illegal fishing) over streams of Big maritime Data. The
architecture of the MSA framework relies on the following
state-of-the-art components: (i) the Maritime Event Detector
which uses data-driven distributed techniques deployed on a
computer cluster to detect maritime events of interest in an
online, real-time fashion, (ii) the Complex Event Forecasting
module, which implements state-of-the-art distributed Complex
Event Forecasting techniques for maritime data, (iii) the Synopses
Data Engine component, that creates synopses of maritime data
improving the scalability of the framework and (iv) the streaming
extension of a popular data science platform, namely RapidMiner
Studio, that integrates all the above, allowing users to graphically
design and rapidly implement Big Data analytics pipelines which
can be deployed transparently on top of distributed architectures.

1. INTRODUCTION

The Maritime Situational Awareness (MSA) involves the
efficient utilisation of maritime surveillance means in order
to assist in the understanding of the global maritime activ-
ities. Since more than 90% of the global trade is carried
by vessels [1], improving the global MSA is crucial. The
development of the Automatic Identification System (AIS)
and its standardisation by IMO in 2018 [2] was disruptive.
AIS transponders transmit AIS messages that contain dynamic,
navigational information about vessels (i.e., location, speed,
heading, course, etc.) that hold for a given timestamp as well
as static information (i.e., identifier, name, vessel type, dimen-
sions, etc.). These messages are collected by AIS receivers
that are installed aboard, ashore or on satellites (SAT-AIS).
Although all passenger ships and ships with more than 300
gross tonnage bear an AIS transceiver, vessels may switch
off their transponders when engaging in illegal activities (e.g.,
smuggling, illegal fishing, trafficking, illegal trans-shipments).

The rapidly increasing availability of multiple sources of
data in the maritime industry, together with the recent advances
in the areas of Big Data and Al have unlocked opportunities to
derive new knowledge, otherwise hidden in the vast maritime
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data silos. This motivation has fueled the development of new
data science techniques for maritime data [3].

However, significant challenges still need to be addressed
in the industrial maritime setting: (i) The increasing availabil-
ity of maritime data sources resulted in Big maritime Data
that have surpassed the limits of centralised data processing
architectures. Maritime data are huge in volume and come
in a streaming fashion, such as high-speed streams of AIS
messages (velocity). Moreover, they are available via a variety
of sources (i.e., AIS, acoustic, satellite image data) that call
for different data cleaning methods (to deal with the lack of
veracity) in order to be usable. MarineTraffic! owns the largest
AIS network worldwide and processes nearly 1 Billion AIS
messages accumulating ~100 GB of AIS data, every day.
This data is complemented by other data sources such as
satellite image data of tens of TBs. (i) Maritime data science
workflows can become very complex and not easy to maintain
or update. (iii) Different technologies/platforms are suitable
for different data science tasks. In turn, data scientists need
to know the specifications of different Big Data platforms,
languages and libraries. (iv) Most MSA applications are bound
to technologies and tightly coupled/monolithic architectures
that often become deprecated and are cumbersome in new
implementations of evolving application information needs.

We present a novel MSA framework for detecting and
forecasting maritime events that addresses the aforementioned
Big maritime Data challenges. Figure 1 illustrates the com-
ponents of our MSA architecture (described in Section II).
Some early efforts on developing individual components of
this architecture have been presented independently, such as
the Synopsis Data Engine in [4], a non-distributed® version
of the Complex Event Processing and Forecasting module
(CEP/CEF) in [S], [6] or part of the Maritime Event Detector
in [7], [8]. In the current work we present for the first time a
full-fledged, scalable, distributed architecture in which the var-

Uhttps://www.marinetraffic.com
2The terms parallel and distributed are used interchangeably.
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Fig. 1: Components of the MSA architecture.

ious components are integrated and interplay in order to tackle
the real-world problem in an industrial MSA environment.
Moreover, this paper contains not previously documented
parallel implementations of all architectural components. With
these components in place, our MSA framework goes beyond
baseline MSA solutions [3] in the following dimensions: (i) it
is the first end-to-end MSA architecture that fully scales out
the computation, since all its modules distribute the processing
load to the machines available in MarineTraffic’s corporate
data centers, (ii) it enables both the real-time detection and
the forecasting of complex maritime events ahead of time,
allowing for proactive decision-making, (iii) it includes pro-
visions for operating on data synopses to boost scalability in
extreme-scale scenarios that truly arise in practice, and (iv)
it enables users to graphically and, thus, rapidly design MSA
related workflows, drastically cutting down time-to-production
for new MSA services. Our MSA framework is currently being
validated operationally in order to significantly enhance the
existing suite of services provided by MarineTraffic.

II. ARCHITECTURE

The architecture realising the Maritime Situational
Awareness framework include the following components that
are displayed in Figure 1:

The Streaming extension of RapidMiner Studio. We
extend a well-known data science platform, RapidMiner
Studio,’ to enable users graphically design and execute data
science workflows over streaming Big Data platforms such
as Apache Flink, Apache Spark and Big Data toolkits such
as Akka, without the need to write custom code. In the case
of the MSA framework, this component is necessary as it
seamlessly incorporates complex stream processing operators,
as the ones described below, while integrating different Big
Data platforms, transparently. Our experience on real-world
MSA scenarios shows that this component reduces the
time-to-production for new MSA workflows, from weeks to
minutes.

The Synopses Data Engine (SDE) is an open source
component* used for maintaining summaries of data,

3https://rapidminer.com/products/studio/
“https://bitbucket.org/infore_research_project/6.1-sde-release/src/master/
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instead of the original input streams, to allow rapid analytic
results delivery. Data summaries are representative views
(samples, expected values, counts, frequency moments) of
important aspects of the incoming data, approximated with
predefined accuracy guarantees. By operating on compact
data summaries, the SDE can boost the horizontal scalability
of MSA workflows, i.e., scaling the computation with the
volume and velocity of incoming streams.

What is more, the SDE significantly enhances vertical
scalability, i.e., scaling the computation to huge numbers
of streams. This is particularly important in MSA scenarios
where thousands of vessels, each producing a separate AIS
data stream, are being concurrently monitored. The SDE [4]
follows a Synopses-as-a-Service (SDEaaS) paradigm: it is
deployed as a service — constantly running job — over one or
more computer clusters. This unique SDEaaS design allows
the SDE to serve on-the-fly requests for maintaining new
synopses, plugging code for new synopses in the SDE Library,
perform ad-hoc and continuous queries and a number of
other important operations, with zero downtime for the MSA
workflows that use summaries. The SDE implements a wide
variety of data summarization techniques which can be applied
in different MSA use cases. An example of MSA-specific
data synopsis is the STSampler synopsis [9], which simplifies
vessel trajectories by keeping only a carefully-crafted sample
of important vessel positions, instead of the original streams.
No or little change of position, heading or direction over time
favors exclusion of a position from the trajectory sample.

To showcase the performance benefits of the SDEaaS,
Figure 2 compares our SDEaaS design to non-SDEaaS
approaches (i.e., simple synopses libraries), using the
STSampler data synopsis. We design an experiment, over
a cluster with 40 CPUs, where we start with maintaining
2 STSampler synopses. Then, we express demands for
monitoring more vessels up to 10000. We do that without
stopping the already running synopses. Figure 2 shows the
sum of throughputs (number of processed tuples/sec) of
all running jobs for non-SDEaaS and the throughput of
SDEaaS. non-SDEaaS does not allow on-the-fly requests to
running jobs for maintaining new synopses. Instead, SDEaaS
starts new jobs for new synopses assigning at least 1/40
threads to each. Hence, the ~40 threads in our cluster are
depleted and x signs in Figure 2 denote that non-SDEaaS
cannot maintain more than 40 synopses. SDEaaS has no



such limit since it initiates new tasks to a single running
service (job) at runtime, with zero downtime. SDEaaS also
exhibits higher throughput than non-SDEaaS due to fine-
grained resource utilization at the task, instead of thread, level.

The Maritime Event Detector. The main goal of a
complex event processing system is to detect interesting
maritime activity patterns occurring within a stream of events,
coming from sensors or other devices. The input to a CEP
system consists of two main components: a stream of events,
also called simple derived events (SDEs), usually in the form
of tuples with numerical and categorical attributes; and a set
of patterns that define relations among the SDEs. Instances
of pattern satisfaction are called Complex Events (CEs). The
output of the system is another stream, composed of the
detected CEs. Typically, CEs must be detected with very low
latency, which, in certain cases, may be in the order of a few
milliseconds.

The Maritime Event Detector [7],[8] is one of the few
distributed CEP engines [10] and, to our knowledge, the
only one of industrial scale in the maritime domain. This
component processes large streams of real-time and historical
maritime data (i.e., AIS data containing the locations of
vessels together with other navigational information) in order
to detect maritime events related to vessel behavior (e.g.,
vessel with AIS transponder switched off for a period of time,
vessels in proximity, deviation from common routes, etc.)
or activities (e.g., ship-to-ship transfer, bunkering, fishing,
vessel entering shallow waters or an area of interest). The
Maritime Event Detector is deployed on an Akka’ cluster
enabling distributed (parallel) processing of vessel tracking
data describing the navigational status of the worldwide fleet.
The actor model employed in Akka is utilized and a ship is
mapped to an actor instance which stores and updates the
latest state for the ship as the stream is consumed.

The Complex Event Processing and Forecasting
Component is the first that exploits the virtues of distributed
processing in the context of Complex Event Forecasting
(CEF). Our CEF Component constitutes an integrated version
of the open source tool Wayeb®. It employs symbolic
automata as a computational model for pattern detection
and Markov models for deriving a probabilistic description
of a symbolic automaton. Wayeb accepts as inputs a set of
patterns defined by analysts in the form of symbolic regular
expressions and a stream of input events. It then attempts to
detect instances of patterns’ satisfaction upon the input stream
with minimal latency. In its forecasting mode, it additionally
produces predictions about when a certain pattern is expected
to occur, thus widening the decision margins for analysts and
users. The Wayeb tool is documented in more detail in [5],
[6], [11], where a detailed empirical analysis on maritime
data is presented.

Shttps://akka.io
Shttps://github.com/ElAlev/Wayeb
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Note that CEP/F systems are generic, domain-independent
solutions for processing real-time streams of events and de-
tecting interesting patterns, defined in a declarative language,
much like SQL in traditional database management systems.
They are thus more expressive tools compared to those
typically employed in fields such as time series process-
ing/forecasting or event sequence detection/prediction.

In the MSA framework, the role of Wayeb is crucial, as it is
able to forecast complex maritime events (e.g., illegal fishing),
i.e., events which are composed of multiple simple events (e.g.,
vessel with its AIS transponder switched off, moving with
decreased speed, etc.). As an example of a pattern which is of
high value to maritime analysts, see the following definition:

illegalFishing := (VesselType = Fishing A
speed > 1.0 A speed < 9.0) ;
(EventType = AISOff) ;
(EventType = AISOn A
speed > 1.0 A speed < 9.0)

The definition described above is a possible definition for
the activity of illegal fishing, where the symbol ; denotes
sequence/concatenation, i.e., events separated by ; are assumed
to follow one another in time. Typically, vessels engaged in
this activity switch off their AIS transponders. Therefore, the
above definition detects behavioral patterns of fishing vessels,
where they have their AIS equipment switched off and their
speed is within the typical speed range of vessels while
they are actually fishing. A high-level overview of the CEF
component is shown in Figure 3.

For the MSA framework, we use a distributed Flink-based
version of Wayeb, as opposed to its previous, centralised
version [5], [6], thus allowing for a distributed implementation
of both its training (learning of the probabilistic model) and
its testing (the online emission of forecasts as events
are consumed) phase. Contrary to FlinkCEP though, the



built-in CEP module of Flink 7, Wayeb offers forecasting
capabilities. It additionally offers an expressive framework for
defining patterns, with formal and compositional semantics
(a feature generally lacking in most CEP solutions [10]),
as it is based on symbolic automata which have nice
closure properties [12]. Wayeb’s performance, in terms
of throughput, is typically above 100K events/second for
a single pattern or multiple patterns using parallelization [11].

The MSA front-end. The MSA user-interface displays
the following information that is available through Kafka
topics: (i) Real-time AIS data provided by MarineTraffic. (ii)
Real-time and past detected events. (iii) Complex maritime
events forecast by the Complex Event Forecasting component.

III. REAL-WORLD WORKFLOW

The MSA framework described in this paper targets to
the following two broad categories of users: (i) the maritime
data scientists that might be working at maritime intelli-
gence companies (like MarineTraffic), who design and deploy
complex maritime workflows involving operators executed on
different Big Data platforms (i.e., Kafka, Akka, and Flink),
and (ii)) MSA end-users (e.g., coast-guard or vessel traffic
officers, shipping companies, defence agencies etc.) that need
to be notified about maritime events in time in order to take
immediate actions and would like to explore the results of
maritime analytics displayed on a map using a user-friendly
UL In the following, we describe a real-world scenario that
corresponds to the two broad categories of end-users described
above. A video demo is also available online®.

First, we explain a procedure followed by a data scientist
working at a maritime intelligence company to design and
deploy a workflow that forecasts complex maritime events
using AIS data (e.g., illegal fishing), as input. The workflow
is shown in Figure 4. The first step is to define the input data
in the RapidMiner Studio. In the example of the video demo
provided above, we use a real-world AIS dataset from Marine-
Traffic of 18GB size, that contains approximately 220 million
positions in the Mediterranean during the time period 1/03/16-
31/8/16. The AIS dataset contains navigational information of
vessels (e.g., speed, location, navigational status, etc). Next,
we use the Synopsis Data Engine to create simplified trajecto-
ries thus reducing the size of the data to be processed, which,
after some pre-processing, are forwarded to the Maritime
Event Detector that runs in distributed mode and is deployed
on an Akka cluster owned by MarineTraffic. The Maritime
Event Detector detects simple events such as ais-off events,
that signify that a vessel has potentially switched off its
transponder or a period of time. Other events that can be
detected using this component are proximity events (i.e.,
when two vessels are too close given a distance threshold),
route deviation events (i.e., when a vessel deviates from
a common route given its port of origin, its destination, and the

"https://ci.apache.org/projects/flink/flink-docs-release- 1.13/docs/libs/cep/
8https://www.youtube.com/watch?v=q2wxlgLjjiQ

vessel category), events indicating that a vessel navigates into
shallow waters, that could prevent potential groundings,
and others. These events can be considered as indicators of
potential illegal activities or accidents. The dataset used in the
demonstration (in the online demo and video) contains over
18K proximity and 3M ais-off events.

These events, together with the simplified trajectories, are
then consumed by the Complex Event Forecasting component.
The CEF component uses this data to identify/forecast patterns
of complex events. For example, once a vessel decreases its
speed, switches off its transponder and then switches it back
on, while being anchored in the meantime (i.e., moving in low
speed), an illegal fishing event is triggered, as explained in the
example of Section II). However, different patterns may exist
for different areas (e.g., fishing vessels may have different
speed in different parts of the sea while fishing). Using
RapidMiner Studio, the user can easily change the parameters
of the CEF component that correspond to different patterns
(e.g., change the certainty threshold, the speed, or change
the whole pattern using for example different illegal fishing
patterns for different areas) and then re-execute the workflow.
The dataset contains over 18K proximity and approximately 3
million ais-off events.

Eventually, the forecast and detected simple and complex
events, together with AIS data are pushed to three separate
Kafka topics. These Kafka topics can then be consumed by
a number of applications. For example, this data could be
consumed by an end-user application for a Defence Agency,
another one for Vessel Traffic officers that monitor traffic in
and around a port, a mobile application designed exclusively
for coast-guard authorities, and many more. We have im-
plemented our own end-user general-purpose application that
incorporates functionalities that meet many of the common
needs of the aforementioned user segments. In the following,
we will describe typical use-case scenarios followed by end-
users that need to monitor the maritime domain and identify
uncommon events on a daily basis.

First of all, the MSA UI supports two views: The historical
data view and the real-time view. The users select (according
to the permissions they have been granted) which mode to
log into. The first mode contains a historical dataset (like
the one described in the demonstration video), allowing users
to perform historical analysis about the simple and complex
events that occurred in an area over a period of time. The
real-time mode performs online maritime event detection and
forecasting following the process described above.

Once a user has logged into the real-time mode of a system,
they are able to zoom into an area of interest and see the
events, simple or complex, occurring in this area. For example,
they can spot the ais-off events that are triggered when a vessel
intentionally or not switches-off its transponder, as shown
in Figure 5. In the example shown in Figure 5, an ais-off
event was detected after its occurrence. For some end-users,
however, especially the ones that work in the maritime security
domain, it is crucial to be able to forecast events, i.e., detect
them before they actually happen. Figure 6 shows a forecast
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fishing event. Then, the end-users are able to inspect further the
events (detected or forecast, simple or complex) by clicking
on the event on the map. In this way, they will be able to see
more information apart from the location of the event, such
as the time, and more importantly the past track of the vessel,
which is the trajectory formed by the locations of the vessel
before the occurrence of the event.

Traditionally, end-users try to process AIS data, using
different tools for processing and visualisation (e.g., GIS,
the MarineTraffic website), while trying to identify common
illegal patterns combining a lot of manual work, possibly semi-
automatic workflows, and expert knowledge. However, this
approach lacks scalability, it highly depends on the skills and
experience of the maritime officer, and it is also limited by
it, as only well-known patterns of events can be identified.
In our approach, we offer data-driven insights to the end
user, being able to (i) detect complex maritime events with
accuracy ranging from 83% to 97% (depending on the event),
(ii) forecast complex maritime events over MarineTraffic AIS
data of high velocity (nearly 12K messages/second) and (iii)
display them in an integrated way via a web-based UI. This
enables end-users to take informed decisions timely and take
actions, such as sending patrolling vessels for inspection,
within a few minutes, instead of hours/days (depending on
the event).
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IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a Maritime Situational Awareness
(MSA) framework for detecting and forecasting maritime
events (e.g., illegal fishing) over streams of big vessel tracking
data. The framework relies on maritime data synopses, that
improve the scalability of maritime data science workflows by
reducing the size of maritime data to be processed, as well as
on techniques for detecting and forecasting maritime events,
such as ais-off, fishing, etc. These components are nicely
integrated via a user-friendly interface by using the Rapid-
Miner Studio with its streaming extension, reducing the time
to design and execute complex maritime workflows that can
be deployed transparently on top of distributed architectures
from days/weeks to minutes. The output of these workflows
can then be consumed by a maritime application. Using the
MSA application described in this paper, the end-user can
inspect the detected/forecast simple and complex events as
well as the involved vessel(s) and the past track of the event,
providing valuable information about a vessel’s movement
around the time of the event. Using this tool, a coast-guard
officer, for example, could easily monitor events and investi-
gate arbitrary information (e.g., past track) of involved vessels,
taking informed decisions, such as sending patrolling vessels



for inspection.

In future work, we plan to extend the presented workflow
with more data sources and operators. More specifically, we
plan to fuse AIS vessel tracking data from AIS with data
coming from non-collaborative maritime reporting systems,
such as satellite imagery, acoustic data, data coming from
surveillance cameras, etc. We also plan to extend the MSA
application to a robotics system that automatically sends
autonomous unmanned vehicles to an area of interest for
inspection (e.g., an area where an event such as illegal fishing
occurred or it is about to occur).

ACKNOWLEDGMENTS

This work was funded by the EU Horizon 2020 Research
and Innovation (RIA) program INFORE (GA No 825070).

REFERENCES

[1] Z. Wan, J. Chen, A. E. Makhloufi, D. Sperling, and Y. Chen, “Four
routes to better maritime governance,” Nature, vol. 540, no. 7631, pp.
27-29, 11 2016.

[2] IMO, “Technical characteristics for an automatic identification system
using time division multiple access in the vhf maritime mobile frequency
band,” ITU, Tech. Rep., 2017. [Online]. Available: https://www.itu.int/
dms\_pubrec/itu-r/rec/m/R-REC-M.1371-5-201402-1!!'PDF-E.pdf

[3] M. Riveiro, G. Pallotta, and M. Vespe, “Maritime anomaly detection: A
review,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 8, p. e1266, 05 2018.

[4] A. Kontaxakis, N. Giatrakos, and A. Deligiannakis, “A synopses data
engine for interactive extreme-scale analytics,” in CIKM °’20: The
29th ACM International Conference on Information and Knowledge
Management, Virtual Event, Ireland, October 19-23, 2020, M. d’Aquin,
S. Dietze, C. Hauff, E. Curry, and P. Cudré-Mauroux, Eds. ACM, 2020,
pp- 2085-2088.

[5] E. Alevizos, A. Artikis, and G. Paliouras, “Event forecasting with pattern
markov chains,” in DEBS. ACM, 2017, pp. 146-157.

, “Wayeb: a tool for complex event forecasting,” in LPAR, ser. EPiC

Series in Computing, vol. 57. EasyChair, 2018, pp. 26-35.

D. Zissis, K. Chatzikokolakis, G. Spiliopoulos, and M. Vodas, “A

distributed spatial method for modeling maritime routes,” IEEE Access,

vol. 8, pp. 4755647568, 2020.

I. Kontopoulos, K. Chatzikokolakis, K. Tserpes, and D. Zissis, “Clas-

sification of vessel activity in streaming data,” in DEBS ’20: The

14th ACM International Conference on Distributed and Event-based

Systems, Montreal, Quebec, Canada, July 13-17, 2020, J. Gascon-

Samson, K. Zhang, K. Daudjee, and B. Kemme, Eds. ~ACM, 2020,

pp. 153-164.

[9] M. Potamias, K. Patroumpas, and T. Sellis, “Sampling trajectory streams
with spatiotemporal criteria,” in /8th International Conference on Sci-
entific and Statistical Database Management (SSDBM’06), 2006, pp.
275-284.

[10] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, and M. N.
Garofalakis, “Complex event recognition in the big data era: a survey,”
VLDB J., vol. 29, no. 1, pp. 313-352, 2020.

[11] E. Ntoulias, E. Alevizos, A. Artikis, and A. Koumparos, “Online
trajectory analysis with scalable event recognition,” in EDBT/ICDT
Workshops, ser. CEUR Workshop Proceedings, vol. 2841.  CEUR-
WS.org, 2021.

[12] L. D’Antoni and M. Veanes, “The power of symbolic automata and
transducers,” in CAV (1), 2017.

(6]

[7

—

[8

—





