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Abstract. Technological advances in sensing technologies and wireless
telecommunication devices enable novel research fields related to the
management of trajectory data. As it usually happens in the data man-
agement world, the challenge after storing the data is the implementation
of appropriate analytics for extracting useful knowledge. However, tra-
ditional data warehousing systems and techniques were not designed for
analyzing trajectory data. Thus, in this work, we demonstrate a frame-
work that transforms the traditional data cube model into a trajectory
warehouse. As a proof-of-concept, we implemented T-Warehouse, a sys-
tem that incorporates all the required steps for Visual Trajectory Data
Warehousing, from trajectory reconstruction and ETL processing to Vi-
sual OLAP analysis to mobility data.

1 Introduction

The usage of location aware devices, such as mobile phones and GPS-enabled
devices, is widely spread nowadays, allowing access to vast volumes of trajectory
datasets. Effective analysis of such trajectory data on the one hand imposes new
challenges for their efficient management, while on the other hand it raises oppor-
tunities for discovering behavioral patterns that can be exploited in applications
like traffic management and service accessibility.

Data Warehousing and Online Analytical Processing (OLAP) techniques can
be employed in order to convert this vast amount of raw data into useful knowl-
edge. Specifically, the variable number of moving objects in different urban ar-
eas, the average speed of vehicles, the ups and downs of vehicles’ speed can be
analyzed in a Trajectory Data Warehouse (TDW) and provide us with useful
insights, like discovering popular movements. DWs are optimized for OLAP op-
erations that include the aggregation or de-aggregation of information (called
roll-up and drill-down, respectively) along a dimension of analysis, the selec-
tion of specific parts of a cube (slicing and dicing) and the reorientation of the
multidimensional view of the data on the screen (pivoting) [15].

The motivation behind a TDW is to transform raw trajectories into valuable
knowledge that can be used for decision making purposes in ubiquitous applica-
tions, such as Location-Based Services (LBS), traffic control management, etc.
Intuitively, the high volume of raw data produced by sensing and positioning



technologies, the complex nature of data stored in trajectory databases and the
specialized query processing demands make extracting valuable information from
such spatio-temporal data a hard task. For this reason, the idea is to develop
specific traditional aggregation techniques to produce summarized trajectory
information and provide visual OLAP style analyses.

It is worth noticing that visual representations of data are essential for en-
abling a human analyst to understand the data, extract relevant information,
and derive knowledge. One of the objectives of visualization is to aid abstrac-
tion and generalization [23]. With relatively small and simple data, this can be
achieved by appropriate positioning and/or appearance of visual elements repre-
senting individual data items. When the data are large and complex, a common
approach is to apply computational techniques for data abstraction and gen-
eralization, in particular, aggregation. The visualization is then applied to the
resulting aggregates. Trajectory Data Warehouse offers a powerful technological
support to visual analysis of movement data by efficiently aggregating the data
in various ways and at different spatial and temporal scales.

One could mention an abundance of applications that would benefit from
the aforementioned approach. As an example, let us consider an advertising
company which is interested in analyzing mobility data in different areas of a
city in order to decide upon road advertisements (placed on panels on the roads).
More specifically, the analysis concerns the demographical profiles of the people
visiting different urban areas of the city at different times of the day so as to
decide about the proper sequence of advertisements that will be shown on the
panels at different time periods. This knowledge will enable them to execute
more focused marketing campaigns and apply a more effective strategy.

The above analysis can be efficiently offered by a TDW. However, various
issues and challenges have to be considered to develop such a system:

– the presence of a preprocessing phase dealing with the explicit construction
of the trajectories, which are then stored into a Moving Object Database
(MOD) that offers powerful and efficient operations for their manipulation;

– the implementation of an efficient trajectory-oriented Extract-Transform-
Load (ETL) process;

– the incorporation of appropriate aggregation mechanisms suitable for the
trajectory oriented cube model;

– the design of a Visual OLAP interface that allows for multidimensional and
interactive analysis.

Based on our recent results in the field [17, 16] which to the best of our
knowledge are the only works that cope with the problem in all its aspects, as a
proof-of-concept, we propose T-Warehouse, a system for Visual Trajectory Data
Warehousing. Our contribution can be summarized as follows:

– We describe the architectural aspects of our framework as well as various
research challenges that are tackled;

– We suggest the appropriate spatial and temporal visualisation techniques
supporting OLAP analysis of movement data. Among these there is a novel



technique called cross visualisation that we have designed to represent spe-
cific measures of trajectory warehouse, namely numbers of trajectories travers-
ing borders of grid cells.

– We investigate the power, flexibility and efficiency of our framework for ap-
plying OLAP analysis on real world mobility data.

The rest of the paper is organized as follows: Section 2 presents the archi-
tecture of T-Warehouse and its various components. Section 3 illustrates the
functionalities offered by T-Warehouse, by focusing on the visualization tools.
Section 4 describes the case study concerning GPS-equipped cars moving in the
urban area of Milan (Italy). By using this large dataset we provide an experi-
mental evaluation of the accuracy of our method for computing spatio-temporal
aggregates and we demonstrate how different kinds of analysis can be imple-
mented by using T-Warehouse. Section 5 discusses some related work and finally
Section 6 draws some conclusions.

2 System Architecture

The overall architecture of T-Warehouse is illustrated in Fig. 1. More specifi-
cally, mobile devices are transmitting periodically the latest part of their tra-
jectory, according to some user-defined parameters. This vast amount of data
collected by all subscribed users is forwarded to a stream-based module (trajec-
tory reconstruction software), whose purpose is to perform some basic trajectory
preprocessing. This may include parameterized trajectory compression (so as to
discard unnecessary details and concurrently keep informative abstractions of
the portions of the trajectories transmitted so far), as well as techniques to han-
dle missing/erroneous values. These trajectories are stored to Hermes MOD [18]
which addresses the need for representing movements of objects (i.e., trajecto-
ries) in databases in order to perform querying and analysis on them and for
providing efficient indexing, query processing. On Hermes MOD, appropriate
querying and ETL processes are applied (possibly taking into account various
types of infrastructural geodata) so as to derive information about trajectories
(e.g. trajectory content in different granularities, aggregations, motional meta-
data etc.) to feed in the TDW. Finally, incorporating GIS layers (e.g. geographic,
topographic or demographic layers) and combining them with trajectory data
results in a conceptually richer framework providing thus more advanced analysis
capabilities. Below, we thoroughly illustrate the main components accompanied
by our contributions.

2.1 Trajectory Reconstruction

In real-world applications the movement of a spatio-temporal object is often
given by means of a finite set of observations, i.e., time-stamped positions along
with object-ids. The finite set of observations taken from the actual continuous
movement is called a sampling. A first important task consists in grouping and
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Fig. 1. T-Warehouse architecture

filtering these raw points arriving in streaming in order to generate several mean-
ingful trajectories, which are portions of the whole movement of an object [16].
In many situations an (approximate) reconstruction of each trajectory from its
sampling is needed. Among the several possible solutions, in this paper we use
linear local interpolation, i.e., objects are assumed to move straight between two
observed points with constant speed. The linear (local) interpolation seems to
be a quite standard approach to the problem (see, for example, [20]), and yields
a good trade-off between flexibility and simplicity.

The trajectory reconstruction module in Fig. 1 accomplishes this task by
employing an appropriate algorithm [16]. Due to the fact that the notion of tra-
jectory cannot be the same in every application, we define the following generic
trajectory reconstruction parameters:

– Temporal gap between trajectories (gaptime): the maximum allowed time
interval between two consecutive time-stamped positions of the same trajec-
tory for a single moving object. As such, any time-stamped position of object
oi, received after more than gaptime units from its last recorded position, will
cause a new trajectory of the same object to be created (case a in Fig. 2).

– Spatial gap between trajectories (gapspace): the maximum allowed Euclidean
distance in 2D plane between two consecutive time-stamped positions of
the same trajectory. As such, any time-stamped position of object oi, with
distance from the last recorded position of this object greater than gapspace ,
will cause a new trajectory to be created for oi (case b in Fig. 2).
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Fig. 2. Raw locations and reconstructed trajectories.

– Maximum speed (Vmax ): the maximum allowed speed of a moving object.
It is used in order to determine whether a reported time-stamped position
must be considered as noise and consequently discarded from the output
trajectory. When a new time-stamped location of object oi is received, it is
checked with respect to the last known position of that object, and the cor-
responding speed is calculated. If it exceeds Vmax , this location is considered
as noise and (temporarily) it is not considered in the trajectory reconstruc-
tion process (however, it is kept separately as it may turn out to be useful
again - see the parameter that follows) (case c in Fig. 2).

– Maximum noise duration (noisemax ): the maximum duration of a noisy part
of a trajectory. Any sequence of noisy time-stamped positions of the same ob-
ject will result in a new trajectory given that its duration exceeds noisemax .
For example, consider an application recording positions of pedestrians where
the maximum speed set for a pedestrian is Vmax = 3 m/sec. When he/she
picks up a transportation mean (e.g., a bus), the recorded instant speed will
exceed Vmax , flagging the positions on the bus as noise. The maximum noise
length parameter stands for supporting this scenario: when the duration of
this sequence of “noise” exceeds noisemax , a new trajectory containing all
these positions is created (case d in Fig. 2).

– Tolerance distance (Dtol): the tolerance of the transmitted time-stamped
positions. In other words, it is the maximum distance between two consecu-
tive time-stamped positions of the same object in order for the object to be
considered as stationary. When a new time-stamped location of object oi is
received, it is checked with respect to the last known position of that object,
and if the distance of the two locations is smaller than Dtol , it is considered
redundant and consequently discarded (case e in Fig. 2).
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Fig. 3. An example of a MOD.

The algorithm that utilizes the aforementioned parameters is thoroughly pre-
sented and evaluated in [16]. It expects as input a set of observations, and a list
containing the partial trajectories processed so far by the trajectory reconstruc-
tion manager; these partial trajectories are composed by several of the most
recent trajectory points, depending on the values of the algorithm parameters.

As a first step, from each observation the algorithm extracts the object iden-
tifier and checks whether the object has been processed so far. If so, it retrieves
its partial trajectory from the corresponding list, while, in the opposite case,
creates a new trajectory and adds it to the list. Then, it compares the incoming
point with the tail of the partial trajectory by applying the above mentioned
trajectory reconstruction parameters. In this way, the algorithm decides if the
incoming point can be considered as part of an existing trajectory or a new one
has to be created.

2.2 TDW Schema and loading

Let us assume a MOD that stores raw locations of moving objects (e.g. humans);
a typical schema, to be considered as a minimum requirement, for such a MOD
is illustrated in Fig. 3.

Objects includes a unique object identifier (object-id), demographic in-
formation (e.g. description, gender, date of birth, profession) as well as
device-related technographic information (e.g. GPS type). Raw locations
stores object locations at various time stamps (i.e., observations), while
Mod trajectories maintains the trajectories of the objects, after the applica-
tion of the trajectory reconstruction process. Formally, let D = {T1, T2, . . . , TN}
be a collection of trajectories of a set of moving objects stored in the MOD.
Assuming linear interpolation between consecutive observations, the trajectory
Ti = 〈(xi1 , yi1 , ti1), . . . , (xini

, yini
, tini

)〉 consists of a sequence of ni line segments



in a 3D space, where each segment represents the continuous “development” of
the corresponding moving object between consecutive locations (xij

, yij
) sam-

pled at time tij (see the right picture of Fig. 2). Projecting Ti on the spatial
2D plane (temporal 1D line), we get the route ri (the lifespan li, respectively)
of the trajectory. Additional motion parameters can be derived, including the
traversed length len of route ri, average speed, acceleration, etc.

As we mentioned before, our aim is to feed the TDW with aggregate data
so as to offer OLAP analysis. Therefore, we need an appropriate TDW schema
that can handle trajectory data. Following the multidimensional model [1], a
data cube for trajectories consists of a fact table containing keys to dimension
tables and a number of measures. The dimensions of analysis include a spatial
(space dim) and a temporal (time dim) dimension describing geography and
time, respectively. Non spatio-temporal dimensions can be also considered. For
example, the schema in Fig. 4 contains the dimension object profile dim
which collects demographical information, such as gender, age, job, of moving
objects.

Dimensions are organized in hierarchies that favor the data aggregation pro-
cess. In Fig. 4 the spatial hierarchy is rooted in Partition Geometry, which rep-
resents the smallest spatial unit we consider (i.e., a rectangle belonging to a grid
which partitions the spatial domain). Further every Partition Geometry is con-
tained in exactly one district and the remaining levels of the spatial hierarchy
are city, state and country. Similarly, we consider an interval of minutes as the
minimal temporal unit. Such intervals belong to a hour, that can be flagged as
a typical one or a rush hour, and is included in one day. A day is contained in
both a month and it is also a day of week. Finally, the temporal hierarchy is
composed by quarter, year.

Let us now describe the measures of interest for our T-warehouse. We recall
that measures represent aggregated information about trajectories of certain
profiles that intersect the spatio-temporal cells.

The measure Pres for a base cell bc = (R, T, P ) represents the number of
trajectories having profile P lying in the spatial region R in the time interval T .
It is calculated by counting all the distinct trajectory ids belonging to P that
pass through the spatio-temporal cell (R, T ).

The measure Distance, i.e. the average traveled distance of a trajectory in
a cell, for a base cell bc = (R, T, P ) is computed by introducing an auxiliary
measure, called sum distance, defined as follows

sum distance(bc) = Σi∈P,TPi∈(R,T )len(TPi)

where TPi is the portion of the trajectory i which lies within the region R during
the time interval T and len(TPi) is its length. sum distance represents the total
distance travelled by trajectories having profile P in R during T . Then, the
measure Distance can be computed as:

Distance(bc) =
sum distance(bc)

Pres(bc)
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Fig. 4. An example of TDW.

The average travel duration of a trajectory in bc = (R, T, P ), represented by the
measure Time, is computed in an analogous way:

Time(bc) =
sum duration(bc)

Pres(bc)

where, sum duration is also an auxiliary measure defined as the summation of
the duration lifespan(TP) of each portion TP of the trajectories having profile
P inside (R, T ).

sum duration(bc) = Σi∈P,TPi∈(R,T )lifespan(TPi)

The measure Velocity is calculated by dividing the auxiliary measure sum distance
with sum duration:

Velocity(bc) =
sum distance(bc)
sum duration(bc)

In a likewise fashion, we could compute and store acceleration by utilizing
speed and duration. The remaining measures (CrossX, CrossY, CrossT ) are
auxiliary measures that will be defined in the following subsection.

It is worth remarking that for base cells all these measures are computed in an
exact way by using the MOD. This is possible thanks to the fact that our MOD
Hermes [19] provides a rich palette of spatial and temporal operators for handling
trajectories. Unfortunately, rolling-up these measures is not straightforward due
to the count distinct problem [21] as it will be discussed in detail in the next
subsection.



In order to calculate the measures of the data cube, we have to extract the
portions of the trajectories that fit into the base cells of the cube. In [16], we
proposed and evaluated two alternative strategies for computing the measures:
a cell-oriented (COA) and a trajectory-oriented (TOA) one. Fig. 5 illustrates
the application of the COA approach on the two trajectories that lie within
three spatio-temporal cells. First, the procedure searches for the portions of
trajectories under the constraint that they reside inside each spatio-temporal cell
(R, T ) (the start/end of each portion has been marked with a circle containing
a dot). Then, the algorithm proceeds to the decomposition of the portions with
respect to the user profiles they belong to. The efficiency of the above described
COA solution depends on the effective computation of the parts of the moving
object trajectories that reside in the spatio-temporal cells. This step is actually
a spatio-temporal range query that returns not only the identifiers but also the
portions of trajectories that satisfy the range constraints. To efficiently support
this trajectory-based query processing requirement, we employ the TB-tree [20],
a state-of-the-art index for trajectories that can efficiently support trajectory
query processing. On the other hand, the TOA approach discovers the spatio-
temporal cells where each trajectory resides in. The main challenge here is to
avoid checking all cells. This becomes possible by utilizing Minimum Bounding
Rectangles of trajectories as rough approximations of them and by exploiting the
fact that the granularity of cells is fixed in order to detect (possibly) involved
cells in constant time. Further details about the two approaches as well as a
comparison study can be found in [16].

2.3 Aggregation

In order to allow for OLAP processing, T-Warehouse offers aggregation capabil-
ities over measures, i.e., operations for computing measures at some higher level
of the hierarchy starting from those at lower level. The aggregate functions com-
puting the super-aggregates of the measures are categorized by Gray et al. [12]
into three classes according to the complexity required for this computation:

– distributive, the super-aggregates can be computed from the sub-aggregates;
– algebraic, the super-aggregates can be computed from the sub-aggregates

with a finite set of auxiliary measures; and
– holistic, the super-aggregates cannot be computed from sub-aggregates, even

if we employ auxiliary measures.

According to this classification, sum distance and sum duration are distribu-
tive since we can aggregate such measures by using the function sum whereas Ve-
locity is algebraic: we need the auxiliary measures 〈sum distance, sum duration〉.
For a cell C arising as the union of adjacent cells, the aggregate function performs
a component-wise addition, thus producing a pair 〈sum distancef , sum durationf 〉.
Then the average speed in C is given by sum distancef/sum durationf .

The most complex measures are Pres, Distance and Time which are holistic.
In fact, since a trajectory might span multiple base cells, in the aggregation
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Fig. 5. Applying the Cell Oriented Algorithm.

phase we have to cope with the so called distinct count problem [21]: if an object
remains in the query region for several timestamps during the query interval, one
should avoid to count it multiple times in the result. This is problematic since,
once loaded in the TDW, the identifiers of the trajectories are lost. This problem
causes aggregation hindrances in OLAP operations for the above measures.

Notice that once a technique for rolling-up the measure Pres is devised, it is
straightforward to define a roll-up operation for Distance and Time. In fact the
latter can be implemented as the sum of the corresponding auxiliary measures
(sum distance and sum duration) divided by the result of the roll-up of Pres.
Hence, we will focus only on the measure Pres.

In order to implement a roll-up operation over Pres, a first solution is to define
a distributive aggregate function, denoted by PresDistr , which simply obtains the
super-aggregate of a cell C by summing up the measures Pres in the base cells
composing C. In the literature, this is a common approach to aggregate spatio-
temporal data but, as we will show in Section 4.2, it produces a very rough
approximation.

Following the proposal in [17], an alternative solution is to define an algebraic
aggregate function, denoted by PresAlg . More formally, let C(x,y),t,p be a base
cell, which contains, among the others, the following measures:



– C(x,y),t,p.Pres: the number of distinct trajectories of profile p intersecting
the cell.

– C(x,y),t,p.CrossX : the number of distinct trajectories of profile p crossing the
spatial border between C(x−1,y),t,p and C(x,y),t,p, where C(x−1,y),t,p is the
adjacent cell (on the left) along with x-axis.

– C(x,y),t,p.CrossY : the number of distinct trajectories of profile p crossing the
spatial border between C(x,y−1),t,p and C(x,y),t,p, where C(x,y−1),t,p is the
adjacent cell (below) along with y-axis.

– C(x,y),t,p.CrossT : the number of distinct trajectories of profile p crossing the
temporal border between C(x,y),t−1,p and C(x,y),t,p, where C(x,y),t−1,p is the
adjacent cell (below) along with t-axis.

Let C(x′,y′),t′,p′ be a cell consisting of the union of two adjacent cells with respect
to a spatial/temporal dimension, for example C(x′,y′),t′,p′ = C(x,y),t,p∪C(x+1,y),t,p

(when aggregating along x-axis). In order to compute the super-aggregate cor-
responding to C(x′,y′),t′,p′ , we proceed as follows:

C(x′,y′),t′,p′ .Pres = C(x,y),t,p.Pres + C(x+1,y),t,p.Pres − C(x+1,y),t,p.CrossX

The other measures associated with C(x′,y′),t′,p′ can be computed as follows:

C(x′,y′),t′,p′ .CrossX = C(x,y),t,p.CrossX
C(x′,y′),t′,p′ .CrossY = C(x,y),t,p.CrossY + C(x+1,y),t,p.CrossY
C(x′,y′),t′,p′ .CrossT = C(x,y),t,p.CrossT + C(x+1,y),t,p.CrossT

The computation of C(x′,y′),t′,p′ .Pres can be thought of as an application of the
well-known Inclusion/Exclusion principle for sets: |A∪B| = |A|+ |B| − |A∩B|.
Note that in some cases C(x+1,y),t,p.CrossX is not equal to |A ∩ B|, and this
may introduce errors in the values returned by this algebraic function. In fact,
if a trajectory is fast and agile, it can be found in both C(x,y),t,p and C(x+1,y),t,p

without crossing the X border (since it can reach C(x+1,y),t,p by crossing the
Y borders of C(x,y),t,p and C(x+1,y),t,p as shown in Fig. 6(a)). In the following
figures we illustrate the two main kinds of error that the algebraic aggregate
function can introduce in the roll-up phase due to the agility of trajectories. In
Fig. 6(a), if we group together the cells C1 and C2, we obtain that the number
of distinct trajectories is C1.Pres + C2.Pres − C2.CrossX = 1 + 1− 0 = 2. This
is an overestimate of the number of distinct trajectories. On the other hand, in
Fig. 6(b), if we group together C1 and C2 we correctly obtain C1.Pres+C2.Pres−
C2.CrossX = 1 + 1 − 1 = 1, similarly by aggregating C3 and C4. However, if
we group C1 ∪ C2 with C3 ∪ C4 we obtain C1 ∪ C2.Pres + C3 ∪ C4.Pres − C1 ∪
C2.CrossY = 1 + 1− 2 = 0. This is an underestimate of the number of distinct
trajectories.

Note that in order to face the distinct count problem when aggregating cells
with different profiles, analogously to what we did for the spatial and temporal
dimensions, it could be helpful to consider a measure crossP, specifying the
number of distinct trajectories changing their profile from one cell to an adjacent
one. However, since profile changes are rather rare in real-world scenarios and
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Fig. 6. (a) Overestimate of Presence, and (b) underestimate of Presence during the
roll-up.

only appear in long term situations, we omit computing crossP and we simply
use the distributive aggregate function sum for this kind of aggregations. (In any
case, when needed, crossP can be added in our framework without additional
difficulty.)

3 OLAP and Visualisation

A TDW serves two core needs: to provide the appropriate infrastructure for
advanced reporting capabilities and to facilitate the application of trajectory
mining algorithms on the aggregated data. According to their needs, end users
could have access either to basic reports or OLAP-style analysis. What-if sce-
narios and multidimensional analysis are typical examples of analytics that can
be supported by a TDW. Some interesting questions in the context of traffic
monitoring, that an analyst may want to answer via the functionalities offered
by TDW, are “When and in which area of the town does the most intense traf-
fic appear?”, if we consider the road network, “‘which are the most trafficated
roads?”, “Is there any difference in traffic between the working days and the
week-end?, “How does the movement propagate from place to place?”.

Even if standard, table based OLAP operations could be used to answer this
kind of queries, the interpretation of results, and the consequent refinement of
queries and exploration of results, is not immediate. Integrating OLAP tools
with Geographical Information Systems (GISs) provides advanced analysis ca-
pabilities. For instance, trajectory data can be georeferenced in a map, combined
with several layers (such as topographic, demographic, thematic). Finally, per-
forming OLAP operations on TDW specialised measures in a visual way makes
the exploration of the data cube more rapid and intuitive.

We developed OLAP visual operations, by using the Visual Analytics Tool-
kit [3], an interactive Java™ based geographical information system. This toolkit
permits a user to view georeferenced data over a map. It also offers functionalities
to handle temporal data, by using graphs or animations, according to the type
of data to analyse.

By using our system, it is simple to handle and visualise the spatio-temporal
grids of the TDW at various levels of granularities. If the roll-up operation



Fig. 7. Drill-down

involves the spatial dimension, visually this affects the granularity of the grid
which becomes larger. The inverse operation is the drill-down which increases
the level of detail of data; it allows the user to descend into the hierarchies. In
this case, we can select the spatial area we are interested in and if we reduce the
spatial dimension of the cells, a smaller grid is visualised as shown in Fig. 7.

Starting from this visualisation of the space, one can then decide to high-
light some measures, which can be visualised according to several methods. The
unclassified choropleth map technique fills the grid cells with colour shades so
that the degree of darkness is proportional to the value of a selected measure.
For building a classified choropleth map, the value range of the selected measure
is divided into intervals, also called classes. Each class is assigned a particular
color. These colors are then used for filling the grid cells on the map. In the
Triangle visualisation technique, a triangle is drawn in each grid cell at a chosen
level of the TDW hierarchy. The base and the height of such a triangle corre-
spond to the values of two selected measures that the user wants to analyze.
The Line thickness visualisation style draws linear symbols whose thickness is
proportional to the value of a given TDW measure. These visualisation meth-



ods can be used in animated displays, where each frame represents the selected
measure(s) in one time interval from the period of interest.

Cartographic visualization techniques offer limited opportunities for the ex-
amination of the temporal variation of the data. This weakness needs to be
compensated by using additional visualisations appropriately representing the
temporal aspect, such as the composite time series display demonstrated in Fig. 9
and 10. The display consists of two parts with a common horizontal axis rep-
resenting the time period under study divided into intervals. The upper part
is a generalized time graph. The vertical axis represents the value range of the
selected measure. Instead of the lines showing the variation of the measure in
each grid cell at a given granularity over time, there is a polygon enclosing all
the lines. The lower and upper boundaries of the polygon show the ranges of
the values in each time interval. Additional details are provided by dividing the
polygon area into 10 parts. The division is done as follows. For each time in-
terval, the range of values of the measure is divided into deciles, i.e. 10 parts
containing approximately equal number of values. The positions of the corre-
sponding deciles in consecutive time intervals are connected by lines and the
areas between the lines are filled in two different shades of grey. On top of this,
a thick black line represents the temporal variation of the mean value from all
grid cells, which is computed for each interval.

The lower part of the display is a temporal histogram. The vertical dimen-
sion represents the number of cells. Each segmented bar shows the statistical
distribution of the values of the measure in one time interval. For this purpose,
the overall range of the values is divided into intervals, or classes, and each class
is given a particular color. According to the chosen color scale, shades of blue
correspond to low values (the lower, the darker) and shades of red to high values
(the higher, the darker). The division into the classes and the corresponding col-
ors are shown in the upper part of the display by background painting of the time
graph area. Each bar in the time histogram is divided into segments filled with
the colors assigned to the classes. The heights of the segments are proportional
to the numbers of the grid cells whose values belong to the respective classes.
Grey-colored segments stand for the cells where the aggregate values are not
defined. The upper and lower parts of the display provide two complementary
overall views of the temporal variation of the data.

4 Applying T-Warehouse to traffic data

In this section, first, we quantitatively evaluate the roll-up accuracy of our T-
Warehouse. In particular, we show the error in computing Pres since, as discussed
in Section 2.3, it is an approximation of the exact value and this affects also the
measures Distance and Time. Then, we illustrate the use of the visual OLAP
functionalities offered by T-Warehouse through several examples. Both analyses
are based on a large mobility dataset described below.



4.1 Dataset

We used a real world dataset containing the observations of GPS-equipped cars
moving in the urban area of Milan (Italy). The dataset consists of two mil-
lions of raw location records that represent the movement of 17,000 objects (i.e.
about 200,000 trajectories) moving during a week period from Sunday to Satur-
day. As base granularity, we set a grid of rectangles, of size 330m × 440m, and
time intervals of 1 hour. The spatial hierarchy aggregates groups of 10-20-40-
80 spatially adjacent base cells, whereas the temporal hierarchy is hour- 3-hours
interval-day-week. Unfortunately, the dataset does not contain any details about
the demographical profiles of the different objects. However, even in this case
where the schema of the TDW consists just of a spatial and a temporal dimen-
sion, our framework does not loose in expressive power as it is demonstrated in
Section 4.3.

4.2 Accuracy of spatio-temporal aggregates

Before presenting the results of our experiments, we first define the metric that
we use to quantify the overall error for the measure Pres, generated by an aggre-
gation operation. Then we describe the sketches based algorithm adopted in [21]
and used in our experiments.

In order to compare the errors we chose to adopt as an aggregation accuracy
metric the normalized absolute error defined as follows:

Error =

∑
C Error(C)∑

C C.Pres
=

∑
C |C̃.Pres − C.Pres|∑

C C.Pres
(1)

where C are cells at a coarser granularity than the base one, C.Pres is the exact
value of Pres in the cell C whereas C̃.Pres is the approximated value obtained
using one of the discussed methods, i.e. PresFM (sketches), PresDistr or PresAlg .

FM sketches The FM algorithm is a bitmap-based algorithm devised by Fla-
jolet and Martin [8] that can be used to estimate the number of distinct items in
a set using a limited amount of memory. Each entry in the sketch used by FM is
a bitmap of length r = logUB, where UB is an upper bound on the number of
distinct items. A hash function h maps every object ID i (trajectory identifiers
in our case) to a pseudo-random integer h(i) corresponding to a position in the
r-bit sketch that will be set (the whole bitmap is initially unset). The values are
mapped by h according to a geometric distribution, that is, the probability that
a generic ID i will be mapped to a position v is Prob[h(i) = v] = 2−v for v ≥ 1.

After processing all objects, the most simple version of FM approximates the
overall object count with 1.29 × 2k, where k is the position of the leftmost bit
of the sketch that is still unset. Unfortunately, this approach may entail large
errors in the count approximation. For this reason, the authors of [8] propose
the adoption of m sketches that use different and independent hash functions.



Only one randomly selected sketch is modified on update, thus each sketch be-
comes responsible for approximately n/m (distinct) objects. Then, the count is
computed by using all sketches.

Interestingly, FM sketches can be merged in a distributive way. Suppose that
a pair of sketches are updated according to the IDs of the objects contained in
a different set, and that the intersection of those sets is possibly not empty. The
sketch obtained as the bitwise-OR of the corresponding bitmaps in the original
sketches will be identical to the one directly updated using the union of the sets
of items.

Quantitative evaluation In Fig. 8 we compare the accuracy of these different
approximate aggregation methods. The graphs show the normalised absolute
errors as functions of cell granularities. Cell granularities are reported as values
relative to the base one. For example, g = 2 indicates that we are considering
cells having double size w.r.t. the base cells along all dimensions.

Notice that we avoid plotting the error for g = 1, corresponding to base cells,
because here we are interested in the aggregation error (g > 1). Further, we
recall that at the base granularity the measure Pres is exact because by using
the spatio-temporal operators offered by the MOD the base cells are loaded with
the correct values.

As shown by the corresponding curves, the distributive aggregate function
(the top curve) quickly reaches very large errors as the roll-up granularity in-
creases. This is due to the fact that we simply sum the sub-aggregates and as
a consequence trajectories crossing different cells are counted many times: the
number of duplicates becomes higher and higher at coarser granularities. Con-
versely, we obtained very accurate results with our algebraic method, especially
at small granularities where the error is less than 3%. One can observe that the
cumulative error starts increasing when larger granularities g are considered,
since the number of trajectories that visit the various cells several times gets
larger but the error remains always smaller than 10%. Finally, we can remark
that for all granularities the aggregate function PresAlg outperforms sketches
and we also save memory. We highlight that in order to obtain an accuracy
around 10% 40 sketches have to be used, each 32 − bit long, that is ten times
the memory allocated by the four counters used by our algebraic aggregation
method.

4.3 Visual OLAP analysis

In this subsection we present the functionalities and the flexibility of T-Warehouse
for the visual analysis of the Milan dataset.

First of all we want to study how the traffic varies along the week and answer
the query: “When does the most intense traffic appear?” The time series display
in Fig. 9 summarizes the temporal variation of the measure Pres over the whole
territory (i.e. all grid cells). The time period of the data (one week from Sunday
to Saturday) has been divided into hourly intervals. The territory has been
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Fig. 8. Cumulative errors of roll-up phase.

divided into cells of the size 3.3km × 4.4km, i.e. 10 base cells are aggregated
together along the x and y axes. The appearance of the display shows a clear
subdivision of the whole time period into days. We can observe that the presence
is much higher in the day hours than in the night and noticeably higher on the
working days than on Sunday and Saturday. On each of the working days, there
are two peaks of the number of cells with high presence, signified by the shades
of red. These peaks correspond to the morning and afternoon rush hours, which
occur in the intervals 6− 9am and 3− 6pm. Interesting is the increase of traffic
intensity on the Sunday afternoon. It is also visible that the traffic on Friday
was less intense than on the previous working days: there were no cells with the
values lying in the upper two classes of the values of presence.

Comparing the display of the presence with the display of the speed of the
objects at the same granularity, shown in Fig. 10, one can immediately realise
that presence and average speed are inversely proportional. During the early and
late hours of the day the speed is high whereas from 6am up to 6pm the speed
decreases significantly, exhibiting a dual behaviour with respect to the presence.

The composite time series displays representing the temporal evolution of the
measures need to be combined with cartographic visualisations showing the data
in the spatial context. For example, Fig. 11 is a screen-shot of the animation
representing the values of the speed and the presence by triangular symbols.



Fig. 9. The evolution of Pres during the week

The height of the triangle is proportional to the speed and the base to the
presence. One animation frame corresponds to one hourly interval and the whole
animation shows the variation of the presence and speed over the week. This
reveals additional information with respect to the time series displays. Thus, the
image in Fig.11 shows that the presence is higher in the centre and this has a
strong impact on the speed of cars, which is very low. On the other hand, it
highlights that along the ring roads, the speed is higher except in the north-east
zone where the larger number of cars slows down the traffic.

Next, we compare the data of our DW at two different spatial granularities.
We roll-up the data illustrated in Fig. 11 by aggregating two adjacent rectangles
and 3 consecutive hours. Fig. 12(a) and 12(b) show the 8 screenshots of the data
at 0-3am, 3-6am, . . . taken on Tuesday and on Saturday, as representative of
the situation on a working day and on the week-end. We chose an unclassified
choropleth map, that gives us an overall view of the data: the denser is the
traffic in a cell, the darker is its colour. During the working days, we can see
that the traffic is concentrated in the centre and in the north-east areas of Milan
and the rush hours are from 6am to 9am and from 3pm to 6pm, even though
the centre is crowded also from 6pm up to 9pm. On the week-end, the densest
area remains the centre but the peak of the traffic is reached in a different time



Fig. 10. The evolution of Velocity during the week

interval starting later, around 9am instead of 6am but remaining more sensibly
intense for the whole night.

Now we apply to these data a drill-down operation in order to obtain the
data at the base granularity for the spatial dimension. The result is visualised in
Fig. 12(c) and Fig. 12(d) using the technique of classified choropleth map. Like
in Fig.9, the shades of red represent high values of the presence and the shades
of blue low values. At this level of detail, the information about the presence is
strictly connected to the main roads. We can distinguish several rings around
the centre and some radial streets that are used to enter/exit to/from the centre.
This allows us to answer queries about the traffic conditions at the road network
level and their evolution over time. It is interesting to notice that from 0am to
3am on Tuesday there are few cars moving around, and there is no dense area.
Then the outer ring of the town becomes denser and later the inner rings and the
radial roads. It may be concluded that in the morning there is a flow from the
outside to the centre. An opposite pattern can be observed in the second part of
the day (not illustrated in the figure). On Saturday (Fig. 12(d)) the situation is
different. From 0am to 3am (the night from Friday to Saturday) there is traffic
in some radial roads which reveals movement closer to the centre. From 3am
to 9am, however, the traffic is not as intense as on Tuesday. Later it becomes
denser, and there is traffic up to midnight also in the radial roads.



Fig. 11. Relationship between Pres (widths of the triangles) and Velocity (heights of
the triangles).

In order to understand how the traffic flows from one cell to the other ones, we
can use the Cross Visualisation operation which is intended to illustrate the cross
measures, i.e. the number of trajectories traversing the x border and y border of
a cell. The idea is that the thickness of the lines of the grid is proportional to the
values of the cross, thus providing a qualitative representation of these measures.
In Fig. 13 the measure CrossX (crossing of x border) is represented by vertical
lines, whereas the measure CrossY (crossing of y border) by the horizontal lines.

Finally, T-Warehouse provides the user with an operation called Cyclic Time
analysis which allows for a kind of cyclic aggregation. For instance, it is possible
to capture what happens on Mondays, on Tuesdays and so on for the whole
period of analysis, thus aggregating data concerning the same days of the week.

5 Related work

The research in TDW has intersections with two research fields extensively stud-
ied over the last decade, namely spatial data warehouses and moving object
databases. In [11] the authors present a complete survey of both fields, as well



(a) Pres on Tuesday (b) Pres on Saturday

(c) Pres on Tuesday at base granularity (d) Pres on Saturday at base granularity

Fig. 12. Pres at different granularities

as a description of the emerging works on Spatio-Temporal Data Warehouses
(STDW).

The pioneering work by Han et al. [14] introduces the concept of spatial data
warehousing (SDW). The authors extend the idea of cube dimensions so as to in-
clude spatial and non-spatial ones, and of cube measures so as to represent space
regions and/or calculate numerical data. One step further from modeling a SDW
is modeling a STDW. As stated in [25] there is no commonly agreed definition of
what a STDW is and what functionality such a data warehouse should support.
In [25] the authors propose a conceptual framework for defining STDWs and
a taxonomy for spatio-temporal OLAP queries through which they classify the
approaches in literature. According to this classification, T-Warehouse is very
expressive as it succeeds in supporting Spatio-Temporal OLAP queries.



Fig. 13. Visualisation of CrossX and CrossY

Another major research direction concerns the efficient implementation of
aggregate queries. Tao and Papadias [22] propose a technique based on the com-
bined use of specialised indexes and materialisation of aggregate measures. Choi
et al. [5] try to overcome the limitations of multi-tree structures by introducing
a new index structure that combines the benefits of Quadtrees and Grid files.
However, the above frameworks focus on calculating simple measures (e.g. count
customers) and they do not cope with trajectories.

Traffic analysis is a topic that has been largely studied in the past, even if
nowadays the large availability of trajectory data makes it possible to perform
innovative and accurate analyses. To the best of our knowledge, however, this
is the first work that leverages the depth of analyses allowed by a TDW, and
the intuitive interaction obtained thanks to the visual spatio-temporal OLAP
interface to support the decision making of traffic analysts.

Visual analysis of large collections of movement data is one of the research
topics in the area of geographic visualisation. Starting from the work by Fredrik-
son et al. [10], spatial, temporal, and attributive aggregations have been applied
to movement data. Temporally aggregated data are represented, for instance,
by means of a temporal histogram where the bars correspond to time intervals
and their heights are proportional e.g. to the number of locations visited or the



distance traveled [7]. Spatial aggregation produces a statistical surface, which
is visualized on a map. Spatio-temporal aggregation produces a series of sur-
faces (one surface per time interval) visualized by means of an animated map
display [7, 9]. In these works, movement data are treated as a set of independent
points in space and time.

Another way of aggregating movement data is based on considering the data
as a set of moves between predefined places (spatial compartments). Each move
is treated as a vector characterized by its origin and destination places, start and
end times, and, possibly, additional attributes such as duration and travelled dis-
tance. Moves with coinciding origins and destinations are united into aggregate
moves, which are characterized by the count of the original moves and other
statistics. The results may be visualized as a transition matrix where the rows
and columns correspond to the places and symbols in the cells or cell coloring or
shading encode the derived attribute values [13]. An obvious disadvantage is the
lack of spatial context. Another technique is flow map, where aggregated moves
are represented by bands or arrows connecting pairs of locations [24]. When this
kind of spatial aggregation is combined with temporal aggregation, the result
can be visualized by an animated matrix or flow map display or by a juxtaposed
sequence of such displays. Drecki and Forer [6] use a three-dimensional repre-
sentation to show aggregate moves corresponding to several consecutive time
intervals (reproduced in [4]).

The work [2] surveys the methods that are used for aggregation of movement
data and visualization of the resulting aggregates and proposes some novel tech-
niques designed specifically for this kind of data. By this moment, there were
no published works concerning visual analysis of movement data with the use of
trajectory data warehouses.

6 Conclusions

This paper discussed the main design issues concerning a DW which stores aggre-
gate measures computed over trajectories and allows performing OLAP analyses
over both the temporal and spatial dimensions. In particular, we focused on is-
sues related to storing and aggregating (rolling-up) the holistic measure Pres,
which, along with other measures (speed, distance covered, etc.), is very useful
to convey actionable knowledge to a traffic analyst. Moreover, we demonstrated
how T-Warehouse can be used within a visual analytics environment for enabling
interactive analysis and interpretation of the data.

Finally, we discussed the usage of T-Warehouse in the context of traffic anal-
ysis. In particular we presented a set of OLAP visual operations that permit
answering interesting questions in the context of traffic monitoring. We showed
a real use case which regards a large real dataset storing the trajectories of a
fleet of cars moving in the metropolitan area of Milan (Italy).



References

1. S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan,
and S. Sarawagi. On the computation of multidimensional aggregates. In VLDB,
pages 506–521, 1996.

2. G. Andrienko and N. Andrienko. Spatio-temporal aggregation for visual analysis
of movements. In Proc. of IEEE Symposium on Visual Analytics Science and
Technology (VAST 2008), pages 51–58. IEEE Computer Society Press, 2008.

3. G. Andrienko, N. Andrienko, and S. Wrobel. Visual Analytics Tools for Analysis
of Movement Data. ACM SIGKDD Explorations, 9(2):28–46, 2007.

4. N. Andrienko and G. Andrienko. Designing visual analytics methods for massive
collections of movement data. Cartographica, 42(2):117–138, 2007.

5. W. Choi, D. Kwon, and S. Lee. Spatio-temporal data warehouses using an adaptive
cell-based approach. DKE, 59(1):189–207, 2006.

6. I. Drecki and P. Forer. Tourism in new zealand - international visitors on the
move (a1 cartographic plate). Technical report, Tourism, Recreation Research and
Education Centre: Lincoln University, Lincoln, 2000.

7. J. A. Dykes and D. M. Mountain. Seeking structure in records of spatio-
temporal behavior: visualization issues. Computational Statistics and Data Anal-
ysis, 43(4):581–603, 2003.

8. P. Flajolet and G. Martin. Probabilistic counting algorithms for data base appli-
cations. Journal of Computer and System Sciences, 31(2):182–209, 1985.

9. P. Forer and O. Huisman. Information, Place and Cyberspace: Issues in Accessibil-
ity, chapter Time and Sequencing: Substitution at the Physical/Virtual Interface,
pages 73–90. Springer Verlag, 2000.

10. A. Fredrikson, C. North, C. Plaisant, and B. Shneiderman. Temporal, geographical
and categorical aggregations viewed through coordinated displays: a case study
with highway incident data. In Proc. Workshop on New Paradigms in information
Visualization and Manipulation, pages 26–34, 1999.
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