

Supporting Movement in ORDBMS –

the „HERMES‟ MOD Engine

Nikos Pelekis, Elias Frentzos, Nikos Giatrakos, Yannis Theodoridis

Information Systems Laboratory

Department of Informatics

University of Piraeus

Hellas

Technical Report Series

UNIPI-INFOLAB-TR-2010-01

July 2010

 1

Supporting Movement in ORDBMS –

the „HERMES‟ MOD Engine

Nikos Pelekis, Elias Frentzos, Nikos Giatrakos, Yannis Theodoridis

Dept of Informatics,

University of Piraeus, Hellas
URL: http://infolab.cs.unipi.gr/

E-mail: {npelekis, efrentzo, ngiatrak, ytheod}@unipi.gr

Abstract

Composition of space and mobility in a unified data framework results into

Moving Object Databases (MOD). MOD management systems support storage

and query processing of non-static spatial objects and provide essential

operations for higher level analysis of movement data. The goal of this paper is

to present HERMES MOD engine that supports the afore-mentioned

functionality through appropriate data types and methods in Object-Relational

DBMS (ORDBMS) environments. In particular, HERMES exploits on the

extensibility interface of ORDBMS that already have extensions for static

spatial data types and methods that follow the Open Geospatial Consortium

(OGC) standard, and extends the ORDBMS by supporting time-varying

geometries that change their position and/or extent in space and time

dimensions, either discretely or continuously. It further extends the data

definition and manipulation language of the ORDBMS with spatio-temporal

semantics and functionality based on advanced spatio-temporal indexing and

query processing techniques. Its implementation over two ORDBMSs and its

utilization in various domains proves the expressive power and applicability of

HERMES in different application domains where knowledge regarding

movement data of an organization is essential. As a proof-of-concept, in this

paper HERMES is applied to a case study related with vehicle traffic analysis.

Keywords: spatio-temporal databases, data cartridge, Oracle

Pelekis et. al.: The HERMES MOD Engine 2

Table of Contents

1 INTRODUCTION ... 3

2 A DATA TYPE SYSTEM FOR MOVING OBJECTS .. 7

2.1 BASE, TEMPORAL AND SPATIAL TYPES ... 7
2.2 PRELIMINARIES OF MOVING OBJECT DATA TYPES ... 9
2.3 ABSTRACT DEFINITIONS OF MOVING OBJECT DATA TYPES ... 11
2.4 SPATIOTEMPORAL INDEXING IN HERMES .. 15
2.5 THE TB-TREE DATA TYPES ... 17

3 PHYSICAL MAPPING OF THE HERMES MOD TYPE SYSTEM .. 20

3.1 UNIT FUNCTION ... 20
3.2 MOVING POINT, MOVING CIRCLE AND MOVING RECTANGLE .. 21
3.3 MOVING LINESTRING AND MOVING POLYGON ... 22
3.4 MOVING COLLECTION AND MOVING OBJECT ... 23
3.5 IMPLEMENTATION OF THE TB-TREE IN HERMES ... 24

4 OPERATIONS ON MOVING OBJECT DATA TYPES .. 25

4.1 MAINTAINING THE DATABASE CONSISTENT ... 26
4.2 PREDICATES MODELING TOPOLOGICAL AND DISTANCE RELATIONSHIPS .. 29
4.3 PROJECTION AND INTERACTION TO TEMPORAL AND SPATIAL DOMAIN ... 31
4.4 NUMERIC OPERATIONS ... 37
4.5 DISTANCE AND DIRECTION OPERATIONS ... 37
4.6 SET RELATIONSHIPS ... 38
4.7 RATE OF CHANGE .. 41
4.8 SIMILARITY FUNCTIONS ... 42
4.9 INDEX MAINTENANCE .. 43
4.10 INDEX OPERATORS ... 44

5 ARCHITECTURAL ASPECTS OF HERMES-MDC AND AN APPLICATION EXAMPLE 46

6 BUILDING REAL MOD APPLICATIONS ON TOP OF HERMES ... 52

7 A REAL CASE STUDY ... 53

7.1 USAGE SCENARIO .. 54
7.2 DATABASE DESIGN .. 54
7.3 QUERY OPERATIONS .. 54
7.4 QUERY REFINEMENT .. 77
7.5 TROUBLESHOOTING ... 82

8 COMPARISON WITH RELATED WORK ... 83

9 CONCLUSIONS AND FUTURE WORK ... 87

10 ACKNOWLEDGMENTS .. 87

11 REFERENCES .. 88

Pelekis et. al.: The HERMES MOD Engine 3

1 Introduction

Due to the explosion of mobile devices, the positioning technologies and the low data storage

cost, one of the most important assets of knowledge intensive organizations working with

movement data, (i.e. Location-Based Services (LBS), traffic engineering, climatology, social

anthropology and zoology, studying vehicle position data, hurricane track data, human and

animal movement data, respectively etc.) is the data itself. Spatial database research has

focused on supporting the modeling and querying of geometries associated with objects in a

database 25. Regarding static spatial data, the major commercial as well as open source

database management systems 11, 32, 34, 47, 51 already provide appropriate data

management and querying mechanisms that conform to Open Geospatial Consortium (OGC)

standards 35. On the other hand, temporal databases have focused on extending the

knowledge kept in a database about the current state of the real world to include the past, in

the two senses of “the past of the real world” (valid time) and “the past states of the database”

(transaction time) 53. About a decade‟s effort attempts to achieve an appropriate kind of

interaction between both sub-areas of database research. Spatio-temporal databases are the

outcome of the aggregation of time and space into a single framework 59, 47, 1, 37, 28 with

up-to-date reviews of spatio-temporal models and systems proposed in the literature found in

44 and 20, respectively. As delineated in these papers, a serious weakness of existing

approaches is that each of them deals with few common characteristics found across a

number of specific applications. Thus the applicability of each approach to different cases,

fails on spatio-temporal behaviors not anticipated by the application used for the initial model

development. For the previous reasons, the field of the MOD has emerged 24, which has been

shown 44 that it presents the most desirable properties among the proposals. However,

although a lot of research has been carried out in the field of MOD, the efforts are

independent trying to deal with specific problems and do not pay attention into embedding

the proposed solutions (i.e. query processing algorithms) on top of existing DBMS where real

world organizations base on. Towards this direction, the pioneer work of Guting et al. 24, 17

and 29 have proposed SECONDO system 2. However, SECONDO in contradiction to our

approach is a stand-alone system, built from scratch, its design does not utilize the provided

spatial extensions of existing ORDBMS, it does not conform to the OGC standards as it does

not follow any predefined data model 12 and as such it is not embeddable into the DBMS

infrastructure of an organization, where pure static spatial, as well as other types of data is

stored.

Pelekis et. al.: The HERMES MOD Engine 4

The aim of this paper is to describe a robust framework capable of aiding either an analyst

working with movement data, or more technically, a MOD developer in modeling,

constructing and querying a database with objects that change location, shape and size, either

discretely or continuously in time. Objects that change location or extent continuously are

much more difficult to accommodate in a database in contrast to discretely changing objects.

Supporting both types of spatio-temporal objects (the so-called moving objects) is exactly the

challenge adopted by this paper. In detail, we present an integrated and comprehensive design

of moving object data types in the form of extensible modules that can be embedded in OGC-

compliant Object-Relational Database Management Systems (ORDBMS) taking advantage of

their extensibility interface. The proposed HERMES MOD Engine provides the functionality to

construct a set of moving, expanding and/or shrinking geometries, which are just variables of

simple continuous functions that obtain hypostasis when projected to the spatial domain (i.e.

becoming OGC spatial data types) at a specific instance in time. Each one of these moving

objects is supplied with a set of methods that facilitate the user to query and analyze spatio-

temporal data. Embedding this functionality offered by HERMES in an ORDBMS data

manipulation language, one obtains a flexible, expressive and easy to use query language for

moving objects that was not available so far in real OGC-compliant ORDBMS.

The implementation of such a framework is based on a set of basic types including base

data types (i.e. integer, real, string and boolean, available in all DBMS), together with spatial

data types offered by spatial extensions of OGC-compliant ORDBMS and temporal data

types introduced in a temporal extension, called TAU Temporal Literal Library (TAU-TLL)

38. Based on these temporal and spatial object data types and the ideas behind the abstract

data types for moving objects that have been introduced in 24, this paper discusses the design

principles and the implementation issues concerning HERMES. The values of such moving

types are functions that associate each instant in time, with an OGC spatial type, in

contradiction to 24 whose design does not follow the OGC standards. A rich palette of

suitable operations is defined on these types to support querying and to make moving object

data management easier and more natural and sensible to users and applications.

Moreover, given the ubiquitousness of location-aware devices, databases handling moving

objects will, sooner or later, face enormous volumes of data. It consequently arises that

performance in the presence of vast data sizes, is a significant problem for moving object

databases and the only way to deal with such enormous sizes is the exploitation of specialized

access methods used for spatio-temporal indexing purposes. The domain of spatio-temporal

Pelekis et. al.: The HERMES MOD Engine 5

indexing is dominated by the presence of the R-tree, along with its variations and extensions,

which include, among others, 3D R-trees 55, TB-trees and STR-trees 46, PA-trees 33, and

MON-trees 4. As in the case of appropriate moving object data types and methods for

extending the type system of ORDBMS, except the well-known R-trees, which are suitable

only for static spatial data, none of the above proposals have been incorporated into existing

ORDBMS. Among them, the Trajectory Bundle tree (TB-tree) 46, is adopted in this work and

appropriately designed and implemented inside HERMES taking advantage of the indexing

extensibility interface of ORDBMS. Being a member of the R-tree family, TB-tree is able to

support traditional queries such as range and distance-based queries. At the same time, it

supports objects moving on the unconstrained space (it is general-purpose and not network-

based such as the MON-tree 4), and is the only one that fulfills the need for trajectory

preservation so as to efficiently support trajectory-based operations.

Furthermore, apart from simple query operators (e.g. range queries) natively supported by

R-trees, there is a variety of spatio-temporal operators that are essential higher level analysis

and which require more sophisticated query processing techniques in order to be efficiently

processed. Among them, an important class of queries is the so-called k nearest neighbor (k-

NN) search, where one is interested in finding the k closest trajectories to a predefined query

object Q (stationary or moving). Thus, one of the challenges being present in the domain of

trajectory databases is to develop mechanisms to perform k-NN search on MODs exploiting

spatio-temporal indexes storing historical information. Among the solutions proposed in the

literature we adopt the one proposed by 19 which efficiently supports Nearest Neighbor (NN)

queries over historical trajectory data.

Finally, as we aim at providing a powerful toolkit for analysts, HERMES provides

qualitatively different techniques for trajectory similarity search, which is exploited to support

trajectory clustering and classification mining tasks that imply a way to quantify the distance

between two trajectories. More specifically, we adopt a novel set of trajectory distance

functions 41, 39 based on primitive (space and time) as well as derived parameters of moving

objects (speed, acceleration, and direction), which are also capable to support sub-trajectory

similarity matching. The overall framework advances the contribution of our approach by two

inter-related facts: firstly, the combination of the similarity operators in the extended with

MOD semantics SQL-like query language (using AND/OR clauses) provides analysis

functionality unmatched so far (e.g. “find objects that moved closely in space but with very

dissimilar speed patterns”); secondly, the output of each of the supported operators defines

Pelekis et. al.: The HERMES MOD Engine 6

similarity patterns that can be utilized to reveal local similarity features (e.g. “find the most

similar portions between two, in general, dissimilar trajectories”).

Summarizing the previous discussion, the contributions of the paper are the following:

 We present a datatype-oriented model and an extension of SQL-like query language for

supporting the modeling and querying of MOD on top of OGC-compliant ORDBMS.

 We describe the physical representation design decisions and the architectural aspects of

our server-side MOD database engine, as well as the formulated interface for building

advanced mobility-related applications.

 We demonstrate how novel, appropriate access methods and advanced, non-trivial query

operators are embedded inside extensible ORDBMS providing efficiency and higher level

analysis functionality.

 We investigate the expressive power and flexibility of the produced query language via a

real-world application scenario.

 As a proof of concept, we have implemented the proposed framework on top of a

commercial ORDBMS, namely Oracle, while our design has also been successfully

applied and repeated in the open-source PostgreSQL with the PostGIS spatial extension 7.

To the best of our knowledge, HERMES is the first work that provides a complete

framework for building MOD applications, which has been incorporated into two state-of-

the-art OGC-compliant ORDBMS.

The outline of the paper is as follows: we first present the data type system for moving

objects introduced in HERMES in an abstract way (Section 2) and then, we discuss

implementation aspects (Section 3). An appropriate set of operations that extend the data

definition and manipulation language of an ORDBMS with spatio-temporal semantics is

discussed in Section 4. The overall architecture for implementing HERMES in a state-of-the-art

ORDBMS, is presented in Section 5 together with a proof-of-concept case study related with

vehicle traffic analysis. In Section 6 we assess the applicability of the proposed system in

building other systems via presenting four tools and corresponding application domains that

utilize HERMES as the platform for managing and analyzing their movement related data. An

extensive discussion on the comparison of HERMES functionality with related work appears in

Section 7. Finally, Section 8 concludes the paper, also pointing out some interesting future

research directions.

Pelekis et. al.: The HERMES MOD Engine 7

2 A Data Type System for Moving Objects

The basic modeling primitives of the proposed moving object data type system are objects

and literals. An object is a computational entity with a unique object identifier that

encapsulates both state and behavior. The state of an object is defined by the values it carries

for a set of properties. These properties can be attributes of the object itself or relationships

between the object and one or more other objects. The behavior of an object is defined by a

set of operations that can be executed on or by the object. On the other hand, a literal is a

computational entity that has only state. Let V be a universe of all possible computational

entities, containing objects and literals. A type is a set of elements of V that obey some

technical properties. Each type is associated with a predicate function defined over the V. A

value v V satisfies a type iff the predicate is true for that value. A value that satisfies a type

is called member of the type. A type system is a collection of types.

Types in the so-called MOD Type System are divided into Base Types BT, pure Temporal

Types TT, pure OGC-compliant Spatial Types ST and Moving Types MT, i.e., the proposed

MOD Type System is defined as:

MOD = BT  TT  ST  MT (1)

Figure 1 illustrates, in UML notation, all types in MOD Type System.

MOD

Type System

Base Types

BT

Moving Types

MT

Spatial Types

ST

Temporal Types

TT

short

double

long

enum

string

char

boolean

float

unsigned short

unsigned long

Interval

Temporal

Element

Period

Timepoint

Timestamp

Time

Date

Moving

Point

Moving

Object

Moving

Collection

Moving

Polygon

Moving

Circle

Moving

LineString

Moving

Rectangle

GEOMETRY

Figure 1 MOD Type System

2.1 Base, Temporal and Spatial Types

Base types are the standard database types built into any DBMS, such as integer and real

(float) numbers, alphanumeric strings and booleans. These types form a subset of the Atomic

Literal Types needed to define temporal types. The set ALT of Atomic Literal Types is defined

OGC

Geometry

Pelekis et. al.: The HERMES MOD Engine 8

as:

ALT =  boolean   char   short   ushort   long   ulong 
 float   double   octet   string   enum

(2)

where  * denotes the domain of type *. For example,  boolean = {true, false},  char
= {x | x ASCII}, and so on.

Moving from base to temporal types, the set TLT of Temporal Literal Types is defined as

27, 38:

TLT =  date   time   timestamp   interval   timepoint g  

 period g    temporalElement g 
(3)

Basically, TLT augments the four temporal literal data types found in ODMG object model

8 (namely, Date, Time, Timestamp and Interval) with three new temporal object data types

(namely, Timepoint, Period and Temporal Element). The widely used Gregorian calendar is

implemented and the discrete model of time is adopted, where time is isomorphic to the

integers because of its better representation and manipulation on databases. Time axis is

partitioned into a finite number of discrete segments, called granules 58. The choice of a

partitioning scheme is termed as granularity. The granularity of the timestamp that a fact is

associated with denotes the precision to which the timestamp can be represented. Time order

refers to whether the time axis can be always considered as linear or non-linear. In the linear

model, time advances from past to future in a totally ordered form. The non-linearity of the

time axis deals with aspects of the time such as periodic time and branching time 56.

Formally:

date =d year: GrYear, month: GrMonth, day: GrDay
time =d hour: GrHour, minute: GrMinute, second: GrSecond
timestamp =d date  time
interval =d day: long, hour: GrHour, minute: GrMinute, second: GrSecond
timepoint g =d tpg STV
periodg=d start:Timepointg, end:Timepointg | start  end, g  granularity
temporalElement g =d te: setperiodg| i, j  ij tei  tej

(4)

where the set granularity that contains elements that represent time accuracy according to the

time divisions in the Gregorian calendar:  granularity = {YEAR, MONTH, DAY,

HOUR, MINUTE, SECOND}, tpyear =d year: GrYear , tpmonth =d tpyear  month:

GrMonth , ..., tpsecond =d tpminute  second: GrSecond and STV =d beginning,

forever, now.

The four temporal literal data types found in ODMG object model 8 are augmented with

three new temporal object data types presented below:

 Timepoint: extends the Timestamp data type to include granularity. The new data type is a

Pelekis et. al.: The HERMES MOD Engine 9

subtype of the Timestamp data type. It inherits all the properties and the operations that

are defined for the Timestamp data type. It refines all the operations, which had as

argument Timestamp to Timepoint. Beginning and forever are defined to be members of

timepoint such as  t  timepoint g  beginning  t  forever

 Period: is used to represent an anchored duration of time, that is, duration of time with

starting and ending points. A period has an associated granularity. The period is the

composition of two timepoints with the constraint that the timepoint that starts the period

equals or precedes the timepoint that terminates it. Without loss of generality, it is

assumed that both timepoints have the same granularity. There are four categories of

periods depending on whether they include their starting and/or their ending timepoints or

not: [t1, t2] (closed-closed), [t1, t2) (closed-open), (t 1, t2] (open-closed), and (t1, t2) (open-

open). Without loss of generality, TAU Model supports only closed-open periods, with

which it is possible to model any other category. For example, the period [t1, t2] is

equivalent to the period [t1, t2+1 "granule"). The meaning of "1 granule" depends on the

granularity of the period. For instance, if the granularity is day then the period [t1, t2] is

equivalent to the period [t1, t2+1*DAY).

 Temporal Element: is used to represent a finite union of disjoint periods. Temporal

elements are closed under the set theoretic operations of union, intersection and

complementation.

On the other hand, spatial types (point, line segment, rectangle, etc.) are supported by

another component of the MOD type system architecture, called OGC Geometry. Such a

spatial extension is found in several state-of-the-art ORDBMS (e.g. 11, 32, 34, 47, 51) and

provides an integrated set of functions and procedures that enable spatial data following the

OGC standard to be efficiently stored in a spatial database, accessed and futher processed. Of

course, the geometric operations forming the behavior of spatial types supported by these

extensions, handle queries statically, meaning that there exists no notion of time associated to

the spatial objects. This is exactly the target addressed in the MOD type system we propose in

the sequel.

2.2 Preliminaries of Moving Object Data Types

As already mentioned, the authors in 24, 17 and 29 introduce the concept of sliced

representation, the basic idea of which is to decompose the temporal development of a

Pelekis et. al.: The HERMES MOD Engine 10

moving value into fragments called “slices” such that within the slice this development can

be described by some kind of “simple” function. This is illustrated in Figure 2 for a time-

varying point (moving point).

yy'

xx'

tt'

t1 t4t3t2

t ε [t1, t2) -> Linear movement

t ε [t2, t3) -> Arc movement

t5

t ε [t3, t4) -> Const movement

t ε [t4, t5) -> Linear movement

Figure 2 Moving Point with various types of movement

In this work, we adopt and extend the sliced representation concept and utilize it in the

implementation of the MOD type system that results to HERMES. In order to use the sliced

representation to define a moving type, one has to decompose the definition of each moving

type into several definitions, one for each of the slices that corresponds to a simple function,

and then compose these sub-definitions as a collection to define the moving type. Each one of

the sub-definitions corresponds to a so-called unit moving type.

In order to define a unit moving type, we need to associate a period of time with the

description of a simple function that models the behavior of the moving type in that specific

time period. Based on this approach, two real world notions are directly mapped to our model

as object types, namely time period and simple function. The first concept has been already

introduced as one of the temporal literal types in TLT (closed-open period in formula (2)).

The second concept is an object type, named Unit_Function, defined as a triplet of (x, y)

coordinates together with some additional motion parameters. The first two coordinates

represent the initial (xi, yi) and ending (xe, ye) coordinates of the sub-motion defined, while the

third coordinate (xc, yc) corresponds to the centre of a circle upon which the object is moving.

Whether we have constant, linear or arc motion between (xi, yi) and (xe, ye) is implied by a

flag indicating the type of the simple function. Since we require that HERMES manages not

only historical data, but also online and dynamic applications, we further let a Unit_Function

to model the case where a user currently (i.e., at an initial timepoint) is located at (xi, yi) and

moves with initial velocity v and acceleration a on a linear or circular arc route.

In the case of arc motions, following the categorization of realistic arc motions initially

discussed in 62, we classify them according to the quadrant the motion takes place and

motion heading (clockwise or counterclockwise). Figure 3 illustrates one of the possible eight

Pelekis et. al.: The HERMES MOD Engine 11

cases (e.g. quadrant I - clockwise direction).

Y

Xo

YY'

XX'

(x
t
,y

t
,t)

(x
e
,y

e
,t

e
)

(x
i
,y

i
,t

i
)

(x
c
,y

c
)



Figure 3 Motion on a circular arc

For constant and linear motions, the interpolation of a moving point‟s location in an

intermediate timepoint t is straightforward. For arc motions, there is need of some

trigonometric calculations. For the case of Figure 3 the necessary operations are illustrated in

Eq. 5. Following a similar process, we develop all kinds of arc functions in each quadrant and

direction.

   
















,,,,0

2
)(

2

2

1

)
2

(2

),(),()(1_

1

2






 

ei

tic

t

t

t

tttt

tttv

R

S

R

yy
Sin

tatvS

R

S
SinRL

SinLyCosLxyxtARC

(5)

Consequently, in the general case the Unit_Function is defined as follows:

Unit_Function = d xi:double, yi:double, xe:double, ye:double, xc:double, yc:double, v:double,

a:double, flag:TypeOfFunction
(6)

where  TypeOfFunction={ PLNML_1, ARC_<1..8>, CONST }, meaning 1
st
 order

polynomial, one of the eight possible circular arcs, and constant function, respectively.

In the two sections that follow, we provide abstract definitions of the data types that

compose the MOD type system that we propose as well as operations that exploit their

functionality.

2.3 Abstract Definitions of Moving Object Data Types

Combining time period and simple function together, the most primitive and simplest unit

object type is defined, namely Unit_Moving_Point. This is a fundamental type since all the

successor unit types are defined based upon it. Formally:

Unit_Moving_Point =d p: period SECOND, m: Unit_Function (7)

Following this, we define two unit moving types directly based on Unit_Moving_Point,

namely Unit_Moving_Circle and Unit_Moving_Rectangle. As it is easily inferred, these two

Pelekis et. al.: The HERMES MOD Engine 12

object types model circle and rectangle geometry constructs that change their position and/or

extent over time. Formally:

Unit_Moving_Rectangle= d{ ll:Unit_Moving_Point, ur: Unit_Moving_Point | equal

(ll.p, ur.p) }
(8)

Unit_Moving_Circle=d { f: Unit_Moving_Point, s: Unit_Moving_Point,

 t: Unit_Moving_Point | equal (f.p, s.p, t.p) }
(9)

For modeling the subsequent object types (Unit_Moving_Polygon and

Unit_Moving_LineString) an intermediate object type that represents the simplest built-in

constituent of these types is needed. This requirement is met by the Unit_Moving_Segment

object, which models a simple line or arc segment that changes its shape and size according to

its starting and ending unit moving points. This is clarified in Figure 4 where a moving

segment is mapped to a line segment at two different time instants t1 and t2. During the time

period between t1 and t2, the starting moving point mp1 follows a simple linear trajectory,

while the ending moving point mp2 follows an arc trajectory.

yy'

xx'

t1 t2

mp1

mp1

mp2
mp2

Figure 4 Linear Unit_Moving_Segment with its first Unit_Moving_Point
mp1 moving linearly and the second mp2 moving on a circular arc

Formally:

Unit_Moving_Segment= d{ b:Unit_Moving_Point, e: Unit_Moving_Point, m:

Unit_Moving_Point, kind:TypeOfSegment | (kind=SEG  equal (b.p, e.p))  (kind

=ARC  equal (b.p, e.p, m.p)) }

(10)

Unit_Moving_Linestring= d{l:setUnit_Moving_Segment |  i, j  ulong: i j  equal

(li.b.p, lj.e.p) }
(11)

Unit_Moving_Polygon =d { l: setUnit_Moving_Segment, hole:boolean |  i, j  ulong:
i j  equal (li.b.p, lj.e.p) }

(12)

where  TypeOfSegment  = {SEG, ARC} and SEG, ARC denote the two alternative modes

of interpolation in between two end points (line segment vs. arc, respectively).

Having defined the fundamental unit moving types, we now introduce the moving types

that play the dominant role in our spatio-temporal data type system. The process that we

followed to define the moving types is to introduce a moving type as a collection of the

corresponding unit moving type, which means, in terms of object orientation, that there exists

a composition relationship between the unit moving type and the moving type. As such, the

Moving_Point, Moving_Circle, Moving_Rectangle, Moving_LineString and Moving_Polygon

Pelekis et. al.: The HERMES MOD Engine 13

object types are introduced as a collection of Unit_Moving_Point, Unit_Moving_Circle,

Unit_Moving_Rectangle, Unit_Moving_LineString, Unit_Moving_Polygon object types,

respectively. Formally:

Moving_Point =d { p: setUnit_Moving_Point |  i, j  ulong, 1 i, j

|setUnit_Moving_Point|: j= i+1  pi.p < pj.p  overlaps(pi.p, pj.p)   t  double:

inside(t, pi.p)  at_instant(p, t)  OGC-GEOMETRYGTYPE=point }

(13)

Moving_Rectangle =d { r: setUnit_Moving_Rectangle |  i, j  ulong, 1 i, j

|setUnit_Moving_Rectangle|: j= i+1  ri.ll.p < rj.ur.p  overlaps(ri.ll.p, rj.ur.p)   t

 double: inside(t, ri.ll.p)  at_instant(r, t)  OGC-GEOMETRYGTYPE=rectangle }

(14)

Moving_Circle =d { c: setUnit_Moving_Circle |  i, j  ulong, 1 i, j

|setUnit_Moving_Circle|: j= i+1  ci.f.p < cj.s.p  overlaps(ci.f.p, cj.s.p)   t 

double: inside(t, ci.f.p)  at_instant(c, t)  OGC-GEOMETRYGTYPE=circle }

(15)

Moving_LineString =d { line: setUnit_Moving_LineString |  i, j  ulong, 1 i, j

|setUnit_Moving_LineString|: j= i+1  linei.l1.b.p < linej.l1.e.p  overlaps(linei.l1.b.p,

linej.l1.e.p)   t  double: inside(t, linei.l1.b.p)  at_instant(line, t)  OGC-

GEOMETRYGTYPE=linestring }

(16)

Moving_Polygon =d { pol: setUnit_Moving_Polygon |  i, j  ulong, 1 i, j

|setUnit_Moving_Polygon|: j= i+1  poli.l1.b.p < polj.l1.e.p  overlaps(poli.l1.b.p,

polj.l1.e.p)   t  double: inside(t, poli.l1.b.p)  at_instant(pol, t)  OGC-

GEOMETRYGTYPE=polygon }

(17)

Similarly, in order to model homogeneous collections of moving types, multi-moving types

are defined as collections of the corresponding moving types. Consequently, the proposed

spatio-temporal model is augmented by the following object types: Multi_Moving_Point,

Multi_Moving_Circle, Multi_Moving_Rectangle, Multi_Moving_LineString and

Multi_Moving_Polygon. Formally (and assuming that the spatial extension of the underlying

ORDBMS supports multi-spatial types):

Multi_Moving_Point =d { multi_mpoint: set Moving_Point |  i, j  ulong   t  double:

inside(t, multi_mpointi.pj.p)  i (at_instant(multi_mpointi, t))  OGC-

GEOMETRYGTYPE=multi-point }

(18)

Multi_Moving_LineString =d { multi_mline: set Moving_LineString | i, j  ulong   t 

double: inside(t, multi_mlinei.linej.l1.b.p)  i (at_instant(multi_mlinei, t))  OGC-

GEOMETRYGTYPE=multi-linestring }

(19)

Multi_Moving_Circle =d { multi_mcircle: set Moving_Circle | i, j  ulong   t  double:

inside(t, multi_mcirclei.cj.f.p)  i (at_instant(multi_mcirclei, t))  OGC-

GEOMETRYGTYPE=multi-polygon }

(20)

Multi_Moving_Rectangle =d { multi_mrectangle: set Moving_Rectangle | i, j  ulong  

t  double: inside(t, multi_mrectanglei.rj.ll.p)  i (at_instant(multi_mrectanglei, t)) 

OGC-GEOMETRYGTYPE= multi-polygon }

(21)

Multi_Moving_Polygon =d { multi_mpolygon: set Moving_Polygon | i, j  ulong   t 

double: inside(t, multi_mpolygoni.polj.l1.b.p)  i (at_instant(multi_mpolygoni, t)) 

OGC-GEOMETRYGTYPE= multi-polygon }

(22)

Pelekis et. al.: The HERMES MOD Engine 14

Moving_Object

Moving

Rectangle

Moving

Polygon

Moving

Collection

Moving

Circle

Moving

LineString

Moving

Point

Multi

Moving

Point

Multi

Moving

Polygon

Multi

Moving

Rectangle

Multi

Moving

Circle

Multi

Moving

LineString

Unit

Moving

Point

Unit

Moving

Polygon

Unit

Moving

Rectangle

Unit

Moving

Circle

Unit

Moving

LineString

Unit

Function

Unit

Moving

Segment

Union

Output

Union

Input

1..*

1..2 1..*

1..1

1..1

1..*

1..1

1..*

1..1

1..*

1..1

1..*

1..1

1..1

1..*

1..11..1

1..1

1..*

1..1

1..*

1..1

1..*

1..1

1..*

1..1

1..*

Figure 5 The moving types of MOD type system

An interesting issue here is that the previously mentioned multi-moving types do not carry

their own methods interface. All the functionality for these types can be invoked by the

methods of another object type, called Moving_Collection, standing as the supertype and

aggregating the interfaces, the object methods and the spatio-temporal semantics of all the

multi moving types. Furthermore, the moving-collection type is able to represent

heterogeneous collections of moving types, i.e., collections of different time-varying spatial

geometries. Formally:

Moving_Collection =d { multi_mpoint: Multi_Moving_Point, multi_mline:
Multi_Moving_LineString, multi_mcircle: Multi_Moving_Circle,
multi_mrectangle: Multi_Moving_Rectangle, multi_mpolygon:

Multi_Moving_Polygon |

 i, j  ulong   t  double: inside(t, multi_mpointi.pj.p)  inside(t,

multi_mlinei.linej.l1.b.p)  inside(t, multi_mcirclei.cj.f.p)  inside(t,

multi_mrectanglei.rj.ll.p)  inside(t, multi_mpolygoni.polj.l1.b.p)  [(i

(at_instant(multi_mpointi, t)))  (i (at_instant(multi_mlinei, t)))  (i

(at_instant(multi_mcirclei, t)))  (i (at_instant(multi_mrectanglei, t))) 

(i (at_instant(multi_mpolygoni, t)))]  OGC-
GEOMETRYGTYPE=collection }

(23)

The concept of inheritance is also utilized at the level of moving types by introducing an

object that encapsulates all semantics and functionality offered by moving types, including

Moving_Collection. The so-called Moving_Object type is the conjunction of all the previously

defined object types, which implies that this object can completely substitute any other

moving type. Furthermore, the Moving_Object models any moving type that can be the result

of an operation between moving objects. For example, the intersection of a Moving_Point

with a (static) polygon geometry is obviously another Moving_Point that is the restriction of

Pelekis et. al.: The HERMES MOD Engine 15

the first Moving_Point inside the polygon. This result can be modeled as a Moving_Object. If

the result of an operation is not a moving geometry then Moving_Object plays the role of a

degenerated moving type. In other words, if there is an operation that requests the perimeter

of Moving_Polygon, then obviously the result of this method is a time-varying real number

(Moving_Real). Such collapsed moving types like Moving_Real, Moving_String, and

Moving_Boolean do not formally exist in our type system but are modeled using the

Moving_Object object type. Formally:

Moving_Object =d { mobject: Moving_Object, mpoint: Moving_Point, mline:

Moving_LineString, mcircle: Moving_Circle, mrectangle: Moving_Rectangle,

mpolygon: Moving_Polygon, mcolection: Moving_Collection, geometry:

GEOMETRY, gtype: GeometryType, optype: string, arg1: ushort, arg2: ushort,

input: Union_Input }

(24)

where gtype is a flag that makes Moving_Object behave as if it were a simple moving type, 

GeometryType  = { MOBJECT, MPOINT, MLINE, MCIRCLE, MRECTANGLE,

MPOLYGON, MCOLLECTION } and Union_Input =d mask: string, tolerance: double,

distance: double .

Summarizing, Figure 5 illustrates a UML class diagram for the moving types supported in

the proposed MOD type system.

2.4 Spatiotemporal Indexing in Hermes

In this section we briefly introduce the basic notions of spatio-temporal indexing and

present the TB-tree which is adopted in this work and implemented in HERMES. Similar to the

original R-tree, the TB-tree is a height-balanced tree with the index records in its leaf nodes;

leaf nodes contain entries of the same trajectories, and are of the form S = MBB,

Orientation, where MBB is the 3D bounding box of the 3D line segment belonging to an

object‟s trajectory (handling time as the third dimension) and Orientation is a flag used to

reconstruct the actual 3D line segment inside the MBB among four different alternatives that

exist (see figure Figure 7). Moreover, contrary to the well-known B-tree, and similarly to the

original R-tree, internal and leaf node MBBs belonging to the same tree level are allowed to

overlap. Each internal or leaf node in the tree corresponds to a physical disk page (or disk

block, which is the fundamental element on which the actual disk storage is organized) and

contains between m and M entries (M is the node capacity and m in the case of TB-tree is set

Pelekis et. al.: The HERMES MOD Engine 16

1 2

3
4

to 1).

Since each leaf node contains entries of the same trajectory, the object id can be stored

once in the leaf node header. Therefore, TB-tree leaf nodes are of the form header, {Si},

where each Si = MBBi Orientationi and header = id, #entries, ptrCur, ptrParent, ptrNext,

ptrPrevious (in other words, the object identifier, the number of node entries and four

pointers, to the current, the parent, and the next and previous nodes of the same trajectory).

On the other hand, non-leaf nodes are of the form header, {Ei}, where each Ei = MBBi, ptri

with MBBi be the enclosing 3D box of the child node pointed by ptri (a pointer to it), and

header = #entries, ptrCur, ptrParent simply stores the number of node entries and a pointer

to itself and to its parent node. Furthermore, similar to SETI 9 and in order to support high

insertion rates, our TB-tree implementation uses an in-memory hashed front-line structure,

which maintains tuples of the form id, Pcurr, Ncurr with the object identifier id, its latest

position Pcurr = tcurr, xcurr, ycurr and a pointer Ncurr to the leaf node containing Pcurr.

t3

t1

t7

t11

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Figure 6 The TB-tree structure

Figure 7 Alternative ways that a 3D line segment can be contained inside a MBB

Given the size of a disk block, which is predetermined by the operation system, the number

of elements contained in a leaf of internal node in the tree is resticted by it. Specifically, given

that each Si is contained in 25 bytes (4 bytes for each one of the 6 double precission numbers

needed to describe the MBB and 1 byte for the orientation flag) and the header of each leaf

node has the size of 16 bytes (4 bytes for each one of the object identifier, the number of

entries, and the four pointers), the total leaf capacity in terms of trajectory segments is given

Pelekis et. al.: The HERMES MOD Engine 17

by Int(([page size]-16)/25); this number for a typical page size of 4096 bytes results in 163

trajectory segments inside each leaf node. Following the same reasoning each internal tree

node has a capacity of 170 entries, resulting in 170 child nodes.

The difference of the TB-tree with the majority of the R-tree variations relies on the way

the index is built. Specifically, its insertion algorithm is not based upon the spatial and

temporal relations of moving objects (or moving object segments) but it relies only on the

moving object identifier (id). When new line segments are inserted, the algorithm searches for

the leaf node containing the last entry of the same trajectory, and simply inserts the new entry

in it, thus forming leaf nodes that contain line segments from a single trajectory. Furthermore,

its split strategy is very simple: when a leaf node is full, a new one is created and is inserted at

the right-end of the tree; due to the monotonicity of time, this strategy ensures that trajectories

are organized monotonically inside the tree structure, e.g., trajectory segments are organized

by time. For each trajectory, a double linked list connects the leaf nodes that contain its

portions together (Figure 6), resulting in a structure that can efficiently answer trajectory-

based queries.

2.5 The TB-tree Data Types

In this section we introduce the data types required for embedding the TB-tree in an

ORDBMS that supports moving objects. We should note that these data types are transparent

to the user of HERMES and their usage is just for the internal construction of the tree. The

implementation of a tree-based index under the object-relational model follows a number of

well-known rules and techniques, such as implementing different object classes for each one

of the basic tree elements, namely, tree nodes (root, internal nodes, leafs) and node elements.

Figure 8 below provides an abstract, though insightful, view of the index organization, along

with the connection with the rest of the HERMES data types in the form of a UML class

diagram describing the structure‟s primitives. The left part of the diagram depicts the objects

participating in the index formation. Following a top-down description, the tbTreeIdx class is

used mainly for completeness as an abstraction of the corresponding part of the model and it

refers to the definition of TB-tree index on the table where the actual trajectory data are

stored. Since the main trajectory table may initially be empty, the corresponding aggregation

with the lower-level tbTreeElement class possesses a cardinality of «0..*».

Descending the diagram, we observe that the whole arrangement is separated in two kinds of

TB-tree Node types. Namely, the tbTreeNode Class regarding the internal nodes of the tree

Pelekis et. al.: The HERMES MOD Engine 18

structure and the tbTreeLeaf class used to represent the leaf nodes of the index where trajectory

segments are stored. Given that the size of each leaf node is predermined and equivalent to the

chosen disc block size, its capacity in terms of trajectory line segments is also predefined

(following the previous discussion, a page size of 4096 bytes results in leaf nodes fitting no

more than 163 segments). As a consequence, exceeding the aforementioned size, in terms of

leaf node entries, causes segments of the same trajectory to be stored in different leaf nodes

which remain connected by means of a double linked list. This is denoted using an association

termed as “linked”. Note that the head leaf of the list might be connected to at most 1 (or 0

when the trajectory fits in a block) other leaves and the same holds for the tail of the

arrangement. Each intermediate node is essentially linked to two other peers. This explains the

cardinality of the respective association.

Figure 8 TB-tree data types

A tbTreeLeaf includes a number of leaf entries (tbTreeLeafEntry in Figure 8), each consisting

of the MBB (tbMBB in the figure) that surrounds the trajectory segment kept in the leaf entry,

along with an integer number 1-4 denoting its orientation; tbMBBs is composed by a MinPoint

and a MaxPoint of tbPoint type which are the lower left and upper right of the box, respectively

in the spatio-temporal space, while tbpoint has only a property of tbX collection type, which is

an array of size 3 used to hold triplets (x,y,t) of time-stamped positions forming the entire

object‟s trajectory. More spectifically, the attributes of tbTreeLeaf are:

 MoID of integer type which is the global trajectory identifier,

 ptrCurrentNode of integer type, being the current node‟s identifier encapsulated in the

object to facilitate implementation issues,

Pelekis et. al.: The HERMES MOD Engine 19

 ptrParentNode of integer type, representing a pointer to the parent of the current node

used to ascend the tree when necessary,

 ptrPreviousNode of type integer, which is a pointer to the node containing the previous

fragment of the same trajectory,

 ptrNextNode of type integer, which is a pointer to the node containing the next fragment

of the same trajectory,

 LeafEntries, a collection of tbTreeLeafEntry type with fixed capacity, which involves

the current leaf entries as previously described, and,

 count of integer type that holds the cardinality of LeafEntries.

Formaly, given the leaf capacity LeafCapacity, i.e., the maximum number of leaf entries that

may be contained in a leaf node, we define the following types:

tbPoint=d{tbX:setdouble| |tbX|=3} (25)

tbMBB=d{MinPoint:tbPoint, MaxPoint:tbPoint|  0≤i≤2,

MinPoint.x(i)<=MaxPoint.x(i)}
(26)

tbTreeLeafEntry=d{MBB:tbMBB, Orientation: short | Orientation<4} (27)

tbTreeLeaf=d{MovingObjectId:long, ptrCurrentNode:long,

ptrParentNode:long, ptrNextNode:long, ptrPreviousNode:long,

LeafEntries: settbTreeLeafEntry, count:long | |LeafEntries|≤

LeafCapacity, count=|LeafEntries| }

(28)

Similarly, a tbTreeNode contains a set of tbTreeNodeEntry objects; each tbTreeNodeEntry

encloses all the the leaf or node entries contained in the sub-tree starting with this node as root.

More spectifically, its attributes involve:

 ptrCurrentNode of integer type, which is the current node‟s identifier encapsulated in

the object to facilitate implementation issues,

 ptrParentNode of integer type, which is a pointer to the parent of the current node used

to ascend the tree when necessary,

 NodeEnties, a collection of tbTreeNodeEntry type with fixed capacity, which involves

the current node entries as previously described, and,

 count of integer type to hold the cardinality of NodeEntries.

Pelekis et. al.: The HERMES MOD Engine 20

Formally, given the node capacity NodeCapacity we define:

tbTreeNodeEntry=d{MBB:tbMBB, ptr: long } (29)

tbTreeNode=d{ptrParentNode:long, ptrCurrentNode:long, NodeEntries:

settbTreeNodeEntry, count:long | |NodeEntries|≤ NodeCapacity,

count=|NodeEntries| }

(30)

Eventually, the two interfaces of Figure 8 to_tbTreeLeafEntry, to_Unit_Moving_Point provide

essential mechanisms for object transformation from one type to the other.

The following sections describe the design decisions and the implementation details for

mapping the MOD type system into extensible ORDBMS, as well as essential functionality

for extending SQL-like query languages with MOD querying constructs.

3 Physical Mapping of the Hermes MOD Type System

The physical representation of the data types reflects the structures that are necessary in order

to capture the semantics and implement the methods of these data types. In this section, we

discuss how MOD types (abstractly described in Section 3) are mapped to physical structures

for storing continuously and discretely time-evolving geometric data into an ORDBMS with

OGC-compliant spatial extension. The following subsections propose low-level constructs for

the implementation of such objects and illustrate the design decisions and implementation

issues considered during development.

3.1 Unit Function

Unit_Function is constructed as an octave of real numbers and a flag indicating the type of

the simple function. In the current version, three types of functions are supported, namely

polynomial of first degree, circular arc and the constant function.

The modeling of Unit_Function is extensible; for example, if one wishes to add

interpolations with spline or polynomials with degree higher than one, then what is only

needed to be done is the addition (if necessary) of the appropriate variables as attributes of the

object and the implementation of such a function.

We should note that we model a moving type that changes discretely for a period of time

by setting all Unit_Function objects of the corresponding unit-moving type to be constant

functions. Due to the fact that the coordinates represented by these Unit_Function objects do

not change for this period of time, it is equivalent to taking a snapshot of the moving

Pelekis et. al.: The HERMES MOD Engine 21

geometry, which is valid for the entire period. If at least one of these unit functions is not

constant then the moving type change is continuous for this period of time. In case of a

moving linestring and in order to model a discrete change for a period, the above assignment

should take place for all unit-moving points that compose the corresponding unit-moving

linestring. What is more, if this process were continued to all unit-moving types the result

would be a completely discretely changing moving geometry.

3.2 Moving Point, Moving Circle and Moving Rectangle

We construct Moving_Point object type as a collection of Unit_Moving_Point objects (i.e.

pointer to a nested table or a varying length array (i.e. varray), depending on the underlying

ORDBMS, of Unit_Moving_Point objects), which in turn are defined as objects consisting of

two attributes. The first attribute is the time period during which the other attribute is defined.

The time period is expressed as an open-closed Period object, while the other attribute is of

Unit_Function object type, whose domain of definition is the set of real numbers inside the

open interval [t1, t2), where t1 is the starting point of the period and t2 is the ending point of

the period.

Similarly to the Moving_Point object, Moving_Circle and Moving_Rectangle object types

are constructed as pointers to collections of Unit_Moving_Circle and

Unit_Moving_Rectangle, respectively. Even though these two types could be modeled as

special instances of Moving_Polygon object, it is a design decision to distinguish them both

for simplicity and flexibility reasons as well as for implementation reasons. The motivation

for defining distinct object constructors for these moving types is that both of them need just

a small, predefined number of unit types, in contrast to the moving polygon, where the

number of its sub-elements is unknown and generally large. What is more, this important

distinction facilitates the mapping of these moving types to their corresponding pure spatial

geometries and makes the process of finding degenerated moving types at specific time

instants easier.

yy'

xx'

t1 t2

mp1

mp1

mp2mp2

t3

mp1 mp2

mp5

mp4

mp3
mp3

mp4

mp5
mp4

mp5

mp3

mp1

mp2

mp3

mp4

mp5

t4

Figure 9 Instances of Moving_Circle and Moving_Rectangle type objects (and of degenerated cases)

Pelekis et. al.: The HERMES MOD Engine 22

Let us now examine the structure of Unit_Moving_Circle and Unit_Moving_Rectangle

objects. Unit_Moving_Circle consists of three Unit_Moving_Point objects, representing the

three points needed to define a valid circle. In the same way, Unit_Moving_Rectangle is

composed of two Unit_Moving_Point objects, modeling the lower-left and upper-right point

needed to define a valid rectangle. Figure 9 illustrates a moving circle and a moving rectangle

instantiated at four different time points t1, t2, t3, and t4, respectively. At time point t2, it is

clear to see the effect of the different interpolation functions and how they affect the position

and extent of the mapped geometries, in contrast to time point t1. At time point t3, a

degenerated moving circle and a degenerated moving rectangle are presented, meaning that

the three unit moving points that compose the moving circle become co-linear and the two

unit moving points that compose the moving rectangle form a line segment that is parallel to

either xx‟ or yy‟ axis. At timepoint t4, another collapsed state is depicted, where all unit-

moving points become equal. HERMES implementation is responsible to deal with such

degeneracies as will be discussed in Section 5.1.

3.3 Moving LineString and Moving Polygon

Moving_LineString is a moving type that is also constructed as a pointer to a nested table

consisting of Unit_Moving_LineString objects. The difference between this moving type and

the previously defined is that the Unit_Moving_LineString is also defined as a pointer to

another nested table comprising of Unit_Moving_Segment objects. Unit_Moving_Segment in

its turn is formed by three Unit_Moving_Point objects and a flag indicating the kind of

interpolation between the starting and the ending point of the LineString geometry. The

simplest part of a LineString geometry can be either a linear or an arc segment. In other

words, this flag exemplifies the usage of the other attributes of the Unit_Moving_Segment

object. Figure 10 illustrates the structure of the Moving_LineString object.

...
Nested table of Unit Moving

LineString objects

starting Unit Moving

Point

ending Unit Moving Point

middle Unit Moving Point

type of moving segment

Unit Moving

Segment

... ...

ob
je

ct
-r

el
at

io
na

l

ta
bl

e

Object

ID

Moving

LineString

...
Nested table of Unit Moving

Segment objects

Figure 10 Structure of the Moving_LineString Object

Pelekis et. al.: The HERMES MOD Engine 23

The Moving_Polygon definition is very close to that of Moving_LineString. The main

difference in the two definitions is on the construction of the corresponding unit moving type.

More specifically, apart from a pointer to a collection of Unit_Moving_Segment objects, the

Unit_Moving_Polygon object has an additional attribute, a flag that indicates if this set of

moving segments forms the exterior ring of a polygon or is an interior (hole) ring. In other

words, this extra attribute adds the logic that disjoint moving holes may exist inside a moving

polygon, with boundaries not crossing or touching the exterior boundary. Considering the rest

aspects of the definition of Unit_Moving_Polygon, there is no difference between the two

object types.

...
Nested table of Unit Moving

Polgon objects

starting Unit Moving Point

ending Unit Moving Point

middle Unit Moving Point

type of moving segment

Unit Moving

Segment

... ...

ob
je

ct
-r

el
at

io
na

l

ta
bl

e

Object

ID

Moving

Polygon

...

N
ested tables of U

nit M
oving

S
egm

ent objects...

...

xx'

yy'

Exterior boundary

2nd hole

1st hole

2nd

hole
1st

hole

Exterior

boundary

Projection of the moving polygon

in the spatial domain at a

user-defined time point

Exterior Unit

Moving Polygon

Hole Unit

Moving Polygon

Figure 11 Structure of the Moving_Polygon Object

Actually, the difference between these two moving types comes from the different

utilization of their collections of moving segments by the object methods. For example, an

operation that maps a Moving_LineString to a LineString geometry checks for inequality on

the starting and ending points of the line and this is a prerequisite for constructing the OGC

geometry. On the contrary, the corresponding method for a moving polygon checks for the

opposite, in order to be able to construct a valid OGC polygon. Another discrepancy of

Moving_Polygon, in contrast to all the other moving types, is that in case it includes interior

moving holes, then several Unit_Moving_Polygon objects need to be accessed in order to

transform it to its corresponding spatial geometry at a specific instant (see Figure 11).

3.4 Moving Collection and Moving Object

Moving_Collection is the object type that models both homogeneous and heterogeneous

collections of moving types. This is accomplished by defining this object as a set of five

pointers to each of the following types: Multi_Moving_Point, Multi_Moving_LineString,

Multi_Moving_Circle, Multi_Moving_Rectangle and Multi_Moving_Polygon. Each of these

Pelekis et. al.: The HERMES MOD Engine 24

moving types represents a homogeneous collection of moving points, linestrings, circles,

rectangles and polygons, constructed as a pointer to a nested table of Moving_Point,

Moving_LineString, Moving_Circle, Moving_Rectangle and Moving_Polygon object types,

respectively.

On the other hand, Moving_Object is the outcome of the conjunction of all the previous

presented moving objects, and can be considered as the supertype of these types. Practically

speaking, it is not intended to be directly used or constructed by a data cartridge user. On the

contrary, it is intended to be the result type of operations of the other moving types (i.e.,

system generated). As inferred from the structure of Moving_Object (cf. formula (24)), the

pointers to the moving types presented in the preceding sections model the subtypes of the

current (super) type simulating inheritance.

3.5 Implementation of the TB-tree in HERMES

Regarding the data types required for the TB-tree index, they are mainly implemented as

objects with simple attributes and arrays of attributes. Specifically:

 tbPoint is constructed as a standard array of real values with its cardinality set to 3 (x,

y and t)

 tbMBB is constructed by two attributes of type tbPoint

 LeafEntry is constructed by an attribute of tbMBB type and another one of integer type

taking values from 1 to 4, representing one among the four possible orientations that a

line segment may have inside its MBB.

 tbTreeLeaf is constructed by the integer value of MovingObjectId, and a set of pointers

(integer values), i.e., ptrCurrentNode, ptrParentNode, ptrPreviousNode and

ptrNextNode. It also contains a standard array of tbTreeLeafEntries with

predetermined size LeafCapacity, and an integer value containing the number of

occupied entries inside the array.

 Similarly, a tbTreeNode is constructed by the two pointers (integer values),

ptrCurrentNode and ptrParentNode, and a standard array of tbTreeNodeEntries with

predetermined size NodeCapacity. Finally, an integer value containing the number of

occupied entries inside the aforementioned array is employed inside the tbTreeNode

structure.

Regarding the implementation of the TB-tree in the HERMES a number tables constituting

Pelekis et. al.: The HERMES MOD Engine 25

the primary storage elements of index data are employed. Specifically, following the UML of

Figure 8, the basic data types are stored in the following tables. Note also that these tables are

automatically created/dropped upon the respective index creation/drop:

 movingobjects: The movingobjects is an auxiliary table used to store a pointer to the

index leaf where the last part of a trajectory is stored 18. As such, it contains only 2

columns for the trajectory id, and for the pointer integer values.

 tbTtreeidx_non_leaf: This is the table storing the internal tree nodes. It actually contains

tuples of the form (NodeId, tbTreeNode), where NodeId=tbTreeNode.ptrCurrentNode.

 tbTreeidx_leaf: This is the table storing the the tree leaf nodes; it also contains tuples of

the form (LeafId, tbTreeLeaf) where LeafId=tbTreeLeaf.ptrCurrentNode.

4 Operations on Moving Object Data Types

Following, we classify the operations of the moving types introduced by HERMES into

appropriate categories that enable us to describe and analyze the new query capabilities. The

initial set of operations is the union of the methods supported by the simple moving types

(namely, Moving_Point, Moving_LineString, Moving_Circle, Moving_Rectangle,

Moving_Polygon and Moving_Collection). This set of operations is equivalent to the methods

provided by the generic Moving_Object type as it models all the previous.

The identifiable classes of operations that HERMES supports are:

i) Consistency operations: operations responsible for keeping the database in a consistent

state (checking ordering and consecutiveness of periods of unit moving types, realizing

degenerated cases, etc.).

ii) Predicates: operations that return boolean values concerning topological and other

relationships between moving types (within distance, meet, overlap, etc.).

iii) Projection operations: operations that restrict and project moving types to temporal (e.g.

at_instant, at_period) and spatial domain (e.g. trajectory, buffer).

iv) Distance and Direction operations

v) Set operations: basic set relationship operations (union, intersection, set difference).

vi) Numeric operations: functions that compute a numeric value (e.g., the perimeter or the

area of a moving polygon, the speed of a moving point).

Pelekis et. al.: The HERMES MOD Engine 26

vii) Similarity functions: a set of trajectory distance functions based on primitive (space and

time) as well as derived parameters of trajectories (speed, acceleration, and direction).

viii) Index maintenance: necessary operations for creating, dropping and updating the TB-tree

index.

ix) Index operators: several advanced algorithms for efficient query processing of movement

data.

The following sections describe the functionality of selected operations, representative of

each class. The interested reader may find signatures and more algorithms in 43.

The interested reader may find signatures, more algorithms and special behavior of the

operations in Appendix D.

4.1 Maintaining the Database Consistent

HERMES-MDC provides a set of object methods that enable the user to check the

construction data of moving objects and maintain the database in a consistent state. These

operations impose some integrity constraints that need to be followed for time-varying spatial

data and, as such, protect the user from errors that have to do with the complex internal

structure of the moving types. There are six such object methods, which we illustrate below:

boolean check_periods_equality (): Check_periods_equality checks if the periods of the

Unit_Moving_Point objects of each one of the unit moving types that form a moving

geometry are equal. In other words, we do not permit the existence of a moving type that

consists of several unit moving types and at least one of them describes the motion of its

component Unit_Moving_Point objects with different D_Periods_Sec objects. Of course, such a

method does not have any meaning for Moving_Point, as each of its unit moving types

consists of only one Unit_Moving_Point object.

boolean check_sorting (): Check_sorting does not force any constraint per unit moving level. On the

contrary, the rule it entails, is that there should be an ascending sorting of the periods between

the unit moving types, each one represented by such a period. Such a constraint is required to

model the evolution of the moving types in the time line. The evolution of an object is

represented by its consecutive unit moving types and the corresponding time periods should

follow the same development.

boolean check_disjoint (): Check_disjoint assures that the D_Periods_Sec objects that represent the

time period for which the unit moving types are defined, are disjoint and that they do not

Pelekis et. al.: The HERMES MOD Engine 27

intersect in any point in the time axis. More specifically, this operation checks if a period

”overlaps” with the next in sorting-order period, namely the period of the next unit moving

type.

boolean check_meet (): Check_meet is an operation that can be invoked only by a user and is not

utilized internally by the data cartridge. It checks if a period ”meets” with the next period in

the unit-type-order. This object method has as a precondition the three previous operations,

meaning that except the “meet” criterion that should stand between periods of sequential unit

moving types, all the previous operations should return true. The meaning of this operation is

to assure that there is a smooth transformation of the time-changing geometries between

sequential unit moving types and there are not temporal gaps between them. Figure 2 is an

example where the “meet” constraint is satisfied in the transition of a moving point, as well as

the “sort” and “disjoint” constraints.

boolean check_degeneracies (D_Timepoint_Sec): Check_degeneracies is a method that checks if the

geometry associated with a moving type at a specific point in the continuous time axis is a

non-degenerated geometry. More specifically, this method finds the unit moving type (if there

is one), whose period attribute (D_Period_Sec object) “contains” the time point (D_Timepoint_Sec

object) passed as argument to the method. Afterwards, it interpolates the internal unit

functions for that instant of time, imposing some rules and constraints upon the produced

points in the Cartesian system of coordinates.

Depending on the type, Check_degeneracies imposes different restrictions on the development of

these moving objects at user-defined time points. For Moving_Point there is not such an

operation as there is no combination of mapped coordinates that could form an invalid

geometry. For the rest of the simple moving types, the reader can find below some

characteristic constraints enforced by HERMES-MDC:

Moving_LineString: (a) Checks if the Unit_Moving_Point objects (two for line segments;

three for arc segments) that define the Unit_Moving_Segment objects become equal at a

specific time point, thus degenerating a segment to a point; (b) Checks for overlapping

between consequent Unit_Moving_Segment objects, meaning that the two time-varying

ordinates of a Unit_Moving_Point “fall” upon the segment that is defined by the two previous

Unit_Moving_Point objects; (c) Checks the coordinates of the starting Unit_Moving_Point of

the first Unit_Moving_Segment not to be equal at an instant, with the coordinates of the

ending Unit_Moving_Point of the last Unit_Moving_Segment. In such a situation, the

Pelekis et. al.: The HERMES MOD Engine 28

potential LineString is degenerated to a Polygon geometry, regardless the fact that this

polygon may have other anomalies (e.g. self-intersected segments that are acceptable in a

LineString geometry); (d) In case of “arc” Unit_Moving_Segment the method checks for co-

linearity at a specific time point between the three Unit_Moving_Point objects that form the

“arc” moving segment. In this situation the arc segment becomes a degenerated linear

segment.

Moving_Circle: (a) Checks if the three Unit_Moving_Point objects that define a

Unit_Moving_Circle object become equal at a specific time point, thus degenerating a circle

to a point; (b) Assures that the three Unit_Moving_Point objects do not become co-linear.

Moving_Rectangle: (a) Checks if the lower left and upper right Unit_Moving_Point objects

that define a Unit_Moving_Rectangle object become equal at a specific time point, thus

degenerating a rectangle to a point; (b) Checks if the X or the Y ordinates of the projected

lower left and upper right Unit_Moving_Point objects become equal, meaning that the

produced rectangle is collapsed to a linear segment parallel to xx‟ or yy‟ axis, respectively.

Moving_Polygon: (a) Checks for the same rules and constraints as in the case of

Moving_Linestring, with the difference that, instead of inequality, it imposes equality

between the starting and ending Unit_Moving_Point; (b) Checks if the Unit_Moving_Polygon

objects that represent holes of a Moving_Polygon are always “disjoint” and “inside” the exterior

boundary.

Varchar2 validate_geometry (D_Timepoint_Sec, err_msg): Validate_geometry is a generic method that

performs a consistency check for valid moving geometry types. More specifically, this

operation utilizes all the previous “check” methods by executing them in the order that we

presented them, by this way producing a control pattern for each moving type. After applying

this control pattern, the validate_geometry method invokes the “at_instant” operation, which maps

a moving type to an Sdo_Geometry at a specific time point. Subsequently, this pure spatial

object is examined under some principles that stand for the geometry model of Oracle10g.

For example, polygons should have at least four points, which includes the point that closes

the polygon, linestrings should have at least two points and in a multi-polygon, all polygons

must be disjoint. Finally, the validate_geometry method following these tests returns „TRUE‟ if the

moving type is valid, an Oracle error message number based on the specific reason the time-

varying geometry is invalid or „FALSE‟ if the moving type fails for some other reason.

Pelekis et. al.: The HERMES MOD Engine 29

In the previous paragraphs, we described the operations concerning the constraints that should

hold in a database of “simple” moving objects. The corresponding methods of a homogeneous

or heterogeneous collection of such “simple” moving types, represented by the

Moving_Collection object follow a different strategy. In other words, these operations

traverse one by one all the component objects of the multi moving types that compose a

Moving_Collection object, and apply the previous discussed operations to them. The first

moving type that causes an error or is detected to be invalid or degenerated stops this process

and informs the cartridge user with an appropriate message.

In the case of Moving_Object, these methods function differently according to the kind of

Moving_Object. If a Moving_Object is just a wrapper of a simple moving type or a

homogeneous or heterogeneous collection of them, then these operations just invoke the

corresponding method of the wrapped moving type and return the result. If Moving_Object

represents a time-varying object as the result of an operation between moving types

(including Moving_Collection), or between a moving type and a static geometry, then

HERMES-MDC applies the corresponding method to the moving types that participate on the

construction of the Moving_Object and combines the separate outcomes to form the

concluding result.

4.2 Predicates Modeling Topological and Distance Relationships

HERMES-MDC provides object methods in the form of predicates to describe relationships

between moving types. There are two sets of predicates supported by HERMES-MDC,

namely within_distance and relate. Each set of predicates consists of eight operations, each of

which models the relationship of the current moving type with a Moving_Point, a

Moving_LineString, a Moving_Circle, a Moving_Rectangle, a Moving_Polygon, a

Moving_Collection, a Moving_Object and a Sdo_Geometry object. Each operation comes

with two different overloaded signatures, modeling different semantics: the first signature is

time-dependent, meaning that the outcome of the operation is related to a user-defined time

point, while the second is independent to the time dimension. Below, the reader can find the

pair of signatures of only one of the eight operations, and more specifically, those describing

relationship with a Moving_Polygon. The time-dependent signature of the method is the one

without the brackets, while the time-independent version of the operation can be obtained by

substituting the return type of the operation with the type in the brackets { } and by removing

the D_Timepoint_Sec argument from the parameter list. This is a common notation in the

remainder of the paper.

Pelekis et. al.: The HERMES MOD Engine 30

boolean {Moving_Object} f_within_distance (distance, Moving_Polygon, tolerance, D_Timepoint_Sec): The

time-dependent predicate determines whether two moving objects are within some specified

Euclidean distance from each other at a user-defined time point. After mapping the moving

objects to physical spatial geometries at the given instant, the function returns TRUE for

object pairs that are within the specified distance; returns FALSE otherwise. The distance

between two non-point objects (such as lines and polygons) is defined as the minimum

distance between these two objects. Thus, the distance between two adjacent polygons is

zero.

Many object methods in HERMES-MDC accept a tolerance parameter. If the distance between

two points is less than or equal to the tolerance, the cartridge considers the two points to be a

single point. Thus, tolerance is usually a reflection of how accurate or precise users perceive

their spatio-temporal data to be. Within_distance is a characteristic example for understanding

the semantics of the tolerance parameter. Also, the time-independent within_distance operation

differs from the above predicate in that the return value is a Moving_Object that represents a

time-varying boolean value. This implicitly defined “moving boolean” object models the

sequence of the time intervals that the two related objects are within or not some specified

Euclidean distance.

Varchar2 {Moving_Object} f_relate (mask, Moving_Polygon, tolerance, D_Timepoint_Sec): This generic

predicate examines two moving objects and determines their topological relationship. As

previously, the “relate” predicate appears with two overloaded versions. The first evaluates the

topological relationship upon a specific user-defined time point, while the second version

returns a Moving_Object modeling a time-varying string (“moving string”), which describes the

evolution in the topological relationship between the related objects. The user can specify the

kind of relationships that he/she requires to check via the mask parameter.

The “relate” operator implements a 9-intersection model for categorizing binary topological

relations between moving geometries [EF91]. At any time, each object has an interior, a

boundary, and an exterior. The boundary consists of points or lines that separate the interior

from the exterior. The boundary of a line consists of its end-points. The boundary of a

polygon is the line that describes its perimeter. The interior consists of points that are in the

object but not on its boundary and the exterior consists of those points that are not in the

object.

Pelekis et. al.: The HERMES MOD Engine 31

Given that an object A has three components (a boundary Ab, an interior Ai, and an exterior Ae),

any pair of objects has 9 possible interactions between their components. Pairs of components

have an empty (0) or a non-empty (1) set intersection. The set of interactions between two

projected moving geometries is represented by a 9-intersection matrix that specifies which

pairs of components intersect and which do not. Figure 12 shows the 9-intersection matrix for

two polygons that are adjacent to one another. This matrix yields the following bit mask,

generated in row-major form: "101001111". For more details on topological relationships

supported and respective values of mask parameter, see Appendix D.

1 0 1

0 0 1

1 1 1

B

b i e

A

B
A

b

i

e

A TOUCH B

Figure 12 9-Intersection Matrix

4.3 Projection and Interaction to Temporal and Spatial Domain

HERMES-MDC provides object methods of special interest that have been proposed in the

literature. Subsequently, we present the operations as these are defined for Moving_Object

and the semantics behind these methods and we differentiate our presentation in case of

change in the semantics of other moving types.

Unit_Moving_Point unit_type (D_Timepoint_Sec): This operation is the single method not defined for

a Moving_Object type. Generally speaking, this operation is defined only for the simple

moving objects that their construction is closely related with a collection of unit moving

objects. For the rest of the simple moving objects the above signature changes the result type to

their corresponding unit moving object (see [Pel02]). The simple but very important task that

this function performs is that it finds (and returns) the unit-moving object whose attribute

time period (D_Period_Sec object) “contains” the user-defined time point (D_Timepoint_Sec

object). In other words, it returns that unit-moving type where the time instant represented by

the argument D_Timepoint_Sec object is “inside” the time period that characterizes the unit-

moving type. What is more, the unit_type method carries out all the necessary checks to

maintain the database consistent and to ensure the validity of the moving object.

Union_Output at_instant (D_Timepoint_Sec): The at_instant operation is the most important method

for the moving types introduced in HERMES-MDC, firstly because it is the operation that

maps the abstract variables of mathematical functions to meaningful spatial objects

Pelekis et. al.: The HERMES MOD Engine 32

conceivable by end-users and, secondly, because it is the base of implementation for many

other object methods. As already mentioned, the above signature concerns the at_instant

operation for the Moving_Object type. The return type (Union_Output) is an object that

represents the union of all the possible results of the projection of a Moving_Object at a user-

defined time point. In other words, if Moving_Object represents a time-varying geometry then

Union_Output is basically an Sdo_Geometry object. If Moving_Object represents a “moving” real

or string then Union_Output is a real number or a character string, respectively.

In the case of a Moving_Object the at_instant operation invokes the at_instant operations of the

moving types that construct the Moving_Object. If Moving_Object represents a moving

geometry then the result of the previous operation is immediately returned. If Moving_Object

represents a “moving” type as the result of an operation between moving objects then the

projected geometries of the previous step are applied against this operation and the outcome

of this second step is returned.

In the case of Moving_Collection, this operation invokes the at_instant operations of all the

moving types of the multi moving objects and subsequently applies a special “union”

operation upon the projected geometries by “concatenating” them in a collection object and

returns the result of the “concatenation”.

Moving_Object at_period (D_Period_Sec): The at_period object method is an operation that restricts

the moving object to the temporal domain. In other words, by using this function the user can

delimit the time period that is meaningful to ask the projection of the moving object to the

spatial domain. More specifically, the time period passed as argument to the method is

compared with all D_Period_Sec objects that characterize the unit moving objects. If the

parameter period does not overlap with the compared period then the corresponding unit type

is omitted. If it overlaps, then the time period that defines a unit-moving object becomes its

“intersection” with the given period.

D_Temp_Element_Sec f_temp_element (): The f_temp_element operation gives HERMES-MDC user

the capability to project the time periods that form the unit moving objects that compose a

moving type on the time line and subsequently “concatenate” all these distinct time periods to

construct a temporal element. Figure 13 depicts the result of the f_temp_element operation when

applied to a Moving_Point object.

Pelekis et. al.: The HERMES MOD Engine 33

yy'

xx'

time line

t1 t4t3t2

p1 -> [t1, t2)

t6t5

p4 -> [t5, t6)

p3 -> [t4, t5)

p2 -> [t2, t3)

p1 p4p3p2

f_tem_element --> p1 + p2 + p3 + p4

Figure 13 Projection of a Moving Point on the temporal domain

Moving_Object at_temp_element (D_Temp_Element_Sec): Similarly to the at_period operation, the

at_temp_element object method restricts the moving object to the temporal domain, but the

process of restricting the periods between which the moving object is valid is driven by a

collection of D_Period_Sec objects and not just one D_Period_Sec object as in the previous

case.

Sdo_Geometry {Moving_Object} f_buffer (distance, tolerance, D_Timepoint_Sec): The f_buffer operation

comes with two overloaded versions. The first generates a buffer polygon around a moving

geometry object at a specific user-defined time point, while the second version returns a

Moving_Object modeling a time-varying polygon, which describes a moving rounded buffer

around a moving geometry. Obviously, this method is meaningless for a Moving_Object that

represents a time-varying real number or string. Calling the f_buffer method for such a

Moving_Object triggers the error handling mechanism of HERMES-MDC, which informs the

user with an appropriate message.

The f_buffer operation for a homogeneous collection of moving geometries at a specific

timepoint returns a multi-polygon where each polygon represents the buffer of its

corresponding element in the collection. An interesting case is the buffer of a heterogeneous

collection of moving objects, which is just one polygon that buffers all the different projected

geometries together. The above-mentioned issues are visualized in Figure 14, where

snapshots of different moving types and their corresponding buffer polygons are presented.

What is not illustrated in the description of the operation is the specific structure of these

buffers for each corresponding moving type. Starting with the Moving_Point, someone would

expect that the buffer of this type at a specific instant would be a circle geometry with radius

the user-specified distance of the buffer. Surprisingly, the geometry returned by f_buffer

operation is a polygon consisting of two arc segments that circle the point at the specified

distance. The same happens in the case of the Moving_Circle where the buffer at a specific

Pelekis et. al.: The HERMES MOD Engine 34

timepoint is defined as the buffer of its centre but the distance of the buffer now is the initial

user-specified distance plus the radius of the moving circle at that instant. The buffer of a

Moving_LineString, a Moving_Rectangle and a Moving_Polygon at a specific timepoint is a

compound polygon whose number of linear segments is equal to the number of linear

segments that exist in the corresponding projected geometries and whose number of arc

segments is equal to the number of vertices plus the number of arc segments.

1

6

5

4

3

2

1

1098765432 14131211

8

7

(0, 0) X axis

Y axis

Initial geometry Buffer geometry

Moving Point at T Moving Circle at T Moving Rectangle at T

Multi Moving Point at T Heterogeneous Collection at T

Figure 14 Demonstrating f_buffer operation

Sdo_Geometry {Moving_Object} f_centroid (tolerance, D_Timepoint_Sec): The f_centroid operation

returns the centre of a moving polygon object at user-defined time points. The centre is also

known as the "centre of gravity". The overloaded f_centroid function represents a moving point

that at any time is the centre of gravity of the moving polygon object. The method is

meaningful only for moving types that model single time-varying areas. In all other cases,

(collections of moving geometries) an application error is raised informing the cartridge user.

An interesting case presented when utilizing this operation is once the centre of gravity of the

moving region falls out of its area. This could happen when the moving hole inside a moving

polygon includes the centre and when a moving polygon becomes too concave at a specific

timepoint. Both cases are visualized in Figure 15.

1

5

4

3

2

1

1098765432 14131211(0, 0) X axis

Y axis

Centre of gravity Geometry boundary

Figure 15 Demonstrating f_centroid operation

Pelekis et. al.: The HERMES MOD Engine 35

Sdo_Geometry {Moving_Object} f_convexhull (tolerance, D_Timepoint_Sec): The f_convexhull method

returns a simple convex polygon that completely encloses the moving geometry object at a

specific instant of time. The Moving_Object returned by the second time-independent

f_convexhull function, models a moving polygon that is the convex hull of a moving object at

any time point. HERMES-MDC uses as few straight-line sides as possible to create the

smallest polygon that completely encloses an instantiated moving object (see dashed lines in

Figure 16). A convex hull is a convenient way to get an approximation of a complex

geometry object.

Sdo_Geometry {Moving_Object} f_pointonsurface (tolerance, D_Timepoint_Sec): This function returns a

point geometry object representing a point that is guaranteed to be on the surface of a moving

polygon when projected to the spatial domain at the time point used as argument. The

returned point can be any point on the surface. The user should not make any assumption

about where on the surface the returned point is, or whether the point is the same or different

when the function is called multiple times with the same input parameter values. The second

version of the f_pointonsurface operation returns a Moving_Object, which models a moving

point whose mapping at any instant will be a point that is guaranteed to be on the surface of

the corresponding projected polygon at the same time point.

Figure 16 Convex polygons containing snapshots of several moving geometries

Union_Output f_initial (): The f_initial object method is basically the at_instant operation invoked at

the first instant of time that the moving object is valid, meaning the first second of the closed-

open period that identifies the least recent unit moving object.

Union_Output f_final (): Similarly to the f_initial object method, the f_final operation projects the

moving object at the last valid instant of the time period that characterizes the most recent

unit moving object.

Sdo_Geometry f_traversed (): The geometry returned by this function models all the places that a

moving geometry “traverses” along its motion during the periods that characterize the unit

moving objects. Such a geometry object is of polygon type. In the case of Moving_Point

objects, the f_traversed method is transformed to a special operator (f_trajectory) described in the

subsequent paragraph. Figure 17 illustrates four examples of traversed areas, one for each of

Pelekis et. al.: The HERMES MOD Engine 36

the simple moving types. In the case of the traversed Moving_LineString, we notice that the

returned geometry is not a single polygon but a multi polygon due to the fact that the periods

of the unit moving objects that compose the Moving_LineString do not “meet” each other or

the variables that define the unit functions between subsequent unit moving objects present a

substantial difference.

Sdo_Geometry f_trajectory (): This function is the f_traversed method for the case of a

Moving_Point object. In other words, this operation simulates the trajectory traversed by a

Moving_Point. More specifically, this projection of the movement of a Moving_Point to the

Cartesian plane is done by mapping the time-dependent ordinates of the object at the

beginning, ending and a random intermediate time instant of each one of the periods that

identify the Unit_Moving_Point objects that compose the Moving_Point. Subsequently, the

algorithm examines whether the intermediate projected co-ordinates “fall” upon the line

formed by the other two pairs of co-ordinates. Depending on the result, a linear or arc

segment connecting the beginning and ending projected co-ordinates is implied. A process of

merging these segments follows, to form the returned LineString geometry.

Figure 17 Areas Traversed by Moving Geometries

Sdo_Geometry f_locations (): The f_locations object method is defined only for a Moving_Point

object or a Moving_Object and follows the same algorithm as the f_trajectory operation with

the difference that the returned type is a multipoint geometry representing the previously

discussed projected co-ordinates at the beginning and ending timepoints of the periods that

characterize the Unit_Moving_Point objects.

Pelekis et. al.: The HERMES MOD Engine 37

4.4 Numeric operations

HERMES-MDC supports a special category of object methods that either compute a numeric

value of a moving object at a specific timepoint (e.g., the current perimeter of a moving

polygon) or construct a Moving_Object representing the same time-varying numeric value.

More analytically, we provide the subsequent numeric operations:

number {Moving_Object} f_area (tolerance, D_Timepoint_Sec): The f_area operation is defined for

those moving types that their projection to the Cartesian plane depicts a closed region and

computes the area for this region. The second (time-independent) version of the method

returns a Moving_Object representing the time-varying area of a moving, extending and/or

shrinking region. This function works with any moving polygon, including polygons with

moving holes.

number {Moving_Object} f_length (tolerance, D_Timepoint_Sec): The f_length object method computes

the length of a Moving_LineString object or the perimeter of a Moving_Circle,

Moving_Rectangle or Moving_Polygon projected at the Cartesian plane at a user-defined

time point. For a Moving_Polygon that contains one or more holes, this function calculates

the perimeters of the exterior boundary and all holes at the given time point, and returns the

sum of all the perimeters. The second version of the method returns a Moving_Object

representing the time-varying length or perimeter of the moving type that invokes the

operation.

Varchar2 {pls_integer} f_num_of_components ({mtype Varchar2}): This operation is introduced only

for Moving_Collection objects and its functionality is to estimate and return a structured

string that describes the number of components that compose the collection of moving types.

The second version of this object method takes a string describing a moving geometry as

parameter and returns the number of the objects of the same type that participate in the

construction of the moving collection.

4.5 Distance and Direction operations

The following two methods assist the cartridge user to calculate the minimum distance

between moving objects or the angle formed between moving points.

number {Moving_Object} f_distance (Moving_Polygon, tolerance, D_Timepoint_Sec): HERMES-MDC

provides a distance measure that exists for all moving types, which either computes the

distance between two instantiated moving objects (the time-dependent version) or returns a

time-varying real number that represents the minimum distance between these moving types

Pelekis et. al.: The HERMES MOD Engine 38

at all time points (the time-independent version). The distance between two objects is the

distance between the closest pair of points or segments of the two objects.

xx'

yy'

Moving

Galaxy

Moving

Star

Closest pair

of points

Earth

φ






































































yuyandxuxif
xux

yuy

yuyandxuxif

xuxif
xux

yuy

yuyandxuxif

yuyandxuxif
xux

yuy

uif

u

.. .. ,
..

..
arctan360

.. .. ,270

.. ,
..

..
arctan180

.. .. ,90

.. .. ,
..

..
arctan

 ,

) ,(
























u



d
p

22)..()..(xxpyypd  

Figure 18 Distance & Direction Operations

number {Moving_Object} f_direction (Moving_Point, D_Timepoint_Sec): The f_direction function is

defined only for Moving_Point objects returning the angle of the line from the first to the

second moving point (measured in degrees, 3600  angle), after these have been projected to

the Cartesian plane at a specific time point. The time-independent version of the function

returns a Moving_Object modeling a “moving real”, which corresponds to the time-changing

angle formed by the conceptual line segment that joins the two moving points and the xx‟ axis.

Figure 18 illustrates the distance between a star (Moving_Point) and a galaxy

(Moving_Polygon) projected at the spatial domain in a user-defined timepoint, as well as the

angle formed by the moving star and the earth.

4.6 Set Relationships

HERMES-MDC provides four object methods for describing set-relationships between

moving types. Each comes with two overloaded versions, one for describing a geometry

object as the result of applying the set-relationship at a user-defined time point and one for

describing a moving geometry that is defined as the set-relationship at all the time periods

that this relationship is meaningful. For example the intersection of a Moving_Point with a

Moving_Polygon results in a Moving_Object that represents another moving point, which is

the restriction of the initial Moving_Point inside or on the boundary of the Moving_Polygon.

Subsequently, we present the supported set-relationships operations between any moving type

and a Moving_Polygon object. Similar operations are defined for all the other moving types,

as well as operations describing set-relationships of a moving type with a pure spatial object.

Pelekis et. al.: The HERMES MOD Engine 39

Sdo_Geometry {Moving_Object} f_intersection (Moving_Polygon, tolerance, D_Timepoint_Sec): The

f_intersection object method returns either a geometry object that is the topological intersection

(AND operation) of the two associated moving types projected at a user-defined time point or a

Moving_Object whose mapping at each instant represents a geometry that is the outcome of

this set operation. Invoking f_intersection method for the simplest moving object

(Moving_Point), as one would expect, the result of this operation is the projection of itself on

the spatial domain (point geometry) at time instants that intersects with other moving types or

static geometries and null at time instants where it is not on the boundary or the interior of

linestrings and polygons or it coincides with none of the points in a collection of them. Let us

now present some motivating cases when invoking f_intersection method for moving linestring

and polygon objects with other single or multi moving types that have more than one

common points, segments or areas. Figure 19 below depicts the instantiation of a

Moving_Object modeling the intersection of a Moving_LineString with a polygon, at three

different timepoints t1, t2, and t3. At timepoint t1 it is obvious the result of such an operation,

which is a linestring geometry. At timepoint t2 this intersection has as result a multi-linestring

geometry due to the development of Moving_LineString, while at timepoint t3 the resulted

geometry is a heterogeneous collection of lines and points.

Sdo_Geometry {Moving_Object} f_union (Moving_Polygon, tolerance, D_Timepoint_Sec): The f_union

object method returns either a geometry object that is the topological union (OR operation) of

the two associated moving types projected at a user-defined time point or a Moving_Object

whose mapping at each instant represents a geometry that is the outcome of this set operation.

Intersection

time

Polygon boundaries

t1 t3t2

Moving LineString

Figure 19 Demonstrating f_intersection Operation

One could extract a series of rules that stand for the outcome of the f_union object method,

except the common one. More specifically, the union of a single moving geometry or a

homogeneous moving collection with a disjoint moving (or static) geometry of the same type

at a specific timepoint, results in a multi-geometry of that type. If the argument object is of

different type from the caller and do not have common boundaries and/or interior areas, then

the result in any case will be a heterogeneous collection. A noteworthy case is the union of a

moving point or linestring with linestring or polygon geometries when at the time of the

Pelekis et. al.: The HERMES MOD Engine 40

query their projection falls upon the linestring or the boundary of the polygon, respectively.

In such case, the points of the moving point or linestring are interleaved as additional points

in the sequence of points that defines the linestring or the boundary of the polygon.

Sdo_Geometry {Moving_Object} f_difference (Moving_Polygon, tolerance, D_Timepoint_Sec): The

f_difference object method returns either a geometry object that is the topological difference

(MINUS operation) of the two associated moving types projected at a user-defined time point

or a Moving_Object whose mapping at each instant represents a geometry that is the outcome

of this set operation. Generally speaking, the f_difference operation returns the part of the caller

object that does not belong to the argument object. More specifically, applying this method to

a moving geometry at a specific timepoint, the result is the projection of this moving type if

the argument object is disjoint with this projection. In a different case where the argument

object completely encloses the caller‟s projection the result is the null value. For example this

happens when a user requires the difference of a moving point or linestring whose

instantiation falls on the boundary or the interior of a polygon or upon the segment of a

linestring. An interesting case happens when the f_difference operation is invoked between two

moving polygons at an instant where the argument polygon has been moved wholly inside the

caller moving polygon. The result in such case is a polygon with a hole.

Sdo_Geometry {Moving_Object} f_xor (Moving_Polygon, tolerance, D_Timepoint_Sec): The f_xor object

method returns either a geometry object that is the topological symmetric difference (XOR

operation) of the two associated moving types projected at a user-defined time point or a

Moving_Object whose mapping at each instant represents a geometry that is the outcome of

this set operation. The f_xor operation provides the union of the caller with the argument

object, “subtracting” their intersection. As such, similarly to the f_union case, the f_xor for a

moving polygon with another one that is totally inside the first returns also a polygon with a

hole. If the first moving polygon does not cover completely the parameter moving polygon but

just overlap, the result of the f_xor operation at a specific timepoint is a multi-polygon

geometry. What is more, invoking this operation for a moving point with argument another

moving point, the outcome at a specific instant is a multi-point if their projections are not the

same and null if they are.

Pelekis et. al.: The HERMES MOD Engine 41

4.7 Rate of Change

An important property of any time-dependent value is its rate of change, i.e., its derivative. To

determine which of our data types is applicable to this concept, consider the following

definition of the derivative.

 
     

t

tftftf
tf

t 











 - t
lim

t

0

'

This definition, and thus the notion of derivation, is applicable to the moving types that firstly

support a difference operation and secondly support division by a real number. Moving_Point

type is the single type that clearly qualifies the above prerequisites. At least three operations

assume the rule of difference in the definition, namely the Euclidian distance, the direction

between two points and the vector difference (viewing points as two-dimensional vectors).

This leads to three different derivative operations, called speed, turn and velocity, respectively.

number {Moving_Object} f_speed (D_Timepoint_Sec): The speed operation comes in two overloaded

signatures. The time-dependent version returns a number representing the speed of a moving

point at a specific timepoint, while the time-independent version returns a Moving_Object

modeling the time-varying speed at any time instant.

The algorithm that implements the speed method is based on its formal definition:

     
    22

22

































t

ts

t

ts
tttspeed

yx
yx 

where x , y are the corresponding speeds of the moving point along xx‟ and yy‟ axes, which

are expressed as the time derivatives of the distance functions, namely
 
t

tsx




,

 

t

ts y




. These

functions are not other than the two Unit_Function objects needed to define a

Unit_Moving_Point.

number {Moving_Object} f_turn (D_Timepoint_Sec): Similarly, turn operation is provided by the

following two signatures, one representing the rate of change of the angle between the xx‟ axis

and the motion vector at a specific timepoint and one expressing the same derivative value at

any time instant.

The above-mentioned time-varying angle  t can be computed as the tangent between xs and

ys . Utilizing the derivative of the arctan function
 

21

1

x

xarctan

x





 and the definition of

Pelekis et. al.: The HERMES MOD Engine 42

derivatives of composite functions         xfxfgxfg '''
 , the derivative of  t can be

computed as follows:

  
 

 
   

 

 
 

 

 
































ts

ts
t

ts

ts
t

ts

ts
t

x

y

x

y

x

y
arctanarctantanarctantan 

 
 

 

 

   

 

         

    

 

       

  222

''

2

'

2

'

1

1

1

1

1

1

ts

ttstst

ts

tsts

tstststs

ts

tsts

ts

ts

ts
t

x

xyxy

x

yx

xyxy

x

yx

y

x

y











































































Sdo_Geometry {Moving_Object} f_velocity (D_Timepoint_Sec): Finally, the velocity of a moving point at

a specific timepoint or at any instant during its development, is represented as a point

geometry or a Moving_Point object, respectively.

Viewing a Moving_Point as a two-dimensional vector       tststs yx ,


, the derivative of this

vector, which implements the velocity operation, is given by the following equation

         '''
, tststs yx


.

Based on the f_direction method HERMES supports two sets of operations that provide

predicate functionality on directional relationships between moving objects. The first set

consists of four operations (namely, f_west, f_east, f_north, and f_south) each of which

returns a Boolean value depending on whether the moving object is e.g. west from the a given

moving or static geometry parameter, as well as a range of angles that puts some constraints

in the directional relationship. Similarly, the second set consists of four operations (namely,

f_left, f_right, f_above, and f_behind) that represent implicit directional relationships w.r.t. the

motion of the query object.

4.8 Similarity functions

HERMES supports a set of query operators for similarity search between moving points as

these have been introduced in 41, 39. Two main types of similarities are defined, namely,

spatiotemporal and (temporally-relaxed) spatial similarity, followed by three variations,

namely speed-pattern based, acceleration-pattern based, and directional similarity. More

specifically:

 number GenLIP(Moving_Point): The Generalized Locality Inbetween Polylines (GenLIP)

distance between two moving points, returns an intuitive value that implies the area (see the

shaded area in Figure 20) between the spatial projections of the two trajectories.

Pelekis et. al.: The HERMES MOD Engine 43

Y

X

Area1

Areai

S

Q

S

Figure 20: Locality In-between 2D Polylines

 number GenSTLIP(Moving_Point): The Generalized SpatioTemporal LIP (GenSTLIP)

function takes into account time, it operates on the original 3D representation of moving

points and as such eliminates the time-relaxation of the GenLIP method by requiring co-

location and co-existence during the lifetime of the moving points.

 number GenSPSTLIP(Moving_Point):

number GenACSTLIP(Moving_Point): The Generalized Speed-Pattern and Acceleration-

Pattern STLIP functions take also into account whether the two involved moving points move

with similar speed or acceleration patterns.

 number DDIST(Moving_Point):

 number TDDIST(Moving_Point): The Directional Distance (DDIST) and Temporal

DDIST (TDDIST) are two other variations that quantify the similarity of two moving

objects according to their heading pattern. The first variation operates on the spatial

projection of the objects, while the second checks whether the change in the heading

happens in a synchronized way.

4.9 Index maintenance

Based on the extensible indexing capabilities provided by an ORDBMS each TB-tree owns

the following functions:

 IndexCreate: creates the index tables (i.e tbtreeidx_leaf, tbtreeidx_non_leaf) and populates

the data already inserted in the table on which the index is created.

 IndexInsert: performs insertions in the tree, triggered by the insertion of a new trajectory

on the indexed table.

 IndexUpdate: updates the tree every time a new trajectory segment (i.e

unit_moving_point) is inserted.

 IndexDrop: drops the tables that store the index data. This method is called when a DROP

INDEX statement is issued

Pelekis et. al.: The HERMES MOD Engine 44

Functions IndexInsert and IndexUpdate call function TBINSERT which implements the

TB-tree‟s insertion algorihm as described in 46.

4.10 Index operators

Range/timeslice queries, of the form “find all objects located within a given area during a

certain time interval or time instance”, (Q2/Q1 in Figure 21), is a straightforward extension

of the respective 2D R-tree algorithm, in the 3D space formed by the two spatial and the one

temporal dimension. This algorithm recursively visits tree nodes, rejecting node MBBs that

does not overlap the query window, while following the pointers from overlapping MBBs to

their respective child nodes until all candidate leaf nodes have been found. The algorithm

starts by visiting the tree root, checking whether the MBBs of the root entries overlap the

spatio-temporal query window Q. If a node entry overlaps Q, the algorithm follows the

pointer to the corresponding child node, where it repeats recursively the same task. If the

algorithm reaches a leaf node, leaf entries are examined against Q and if their MBB overlap,

the algorithm reports their ids.

t y

Q1

Q2

x

T1
T2

Q3

 T3

T4
Q4

t1

t2

t3

t4

Figure 21 Querying trajectory databases

Regarding the k nearest neighbor (k-NN) search, 19 proposed a variety of solutions for

answering such queries. More specifically, given as an example the trajectory database of

Figure 21 given a stationary (or moving) query point Q3 (Q4) and a temporal query window

[t1, t2] ([t3, t4]), 19 proposed several algorithms for finding the moving object trajectory T3

(T4) that is closer to the query object. Among them, the incremental varations of the

algorithms proposed in 19 (IncPointNNSearch and IncTrajectoryNNSearch) are shown to be

more scalable, thus, being good solutions to be implemented in the HERMES. Here, we have

also to point that the aforementioned algorithms are capable to answer k-NN versions of the

respective queries as well.

Pelekis et. al.: The HERMES MOD Engine 45

More specifically, the algorithms proposed in 19 are based on the respective NN algorithm

for static objects presented in 26 which traverses the tree structure in a best-first way. The

proposed algorithms use a priority queue, in which the (node or leaf) entries of the tree nodes

are stored in increasing order of their distance from the query object. At each tree node the

algorithm iterates through its entries checking whether the lifetime of an entry overlaps the

time period of the query, calculating at the same time its distance from the query object,

which is used to store them in the priority queue. At each algorithm‟s iteration the first entry

is requested from the queue, until a leaf entry is found, which is then reported as the query

result. The algorithms proposed in 19 are incremental in the sense that the k-th NN can be

obtained with very little additional work once the (k-1)-th NN has been found; therefore, are

easily generalized to the case where are the k>1 nearest neighbors of a query object

(stationary of moving point) are requested.

Given the above discussion, HERMES supports the following set of operators, namely,

range 46, Point and Trajectory Nearest Neighbor 19 and spatio-temporal topological 46

queries.

Function tb_mp_in_spatiotemporal_window executes a range query against a table storing

indexed trajectories. It takes as arguments a standard spatial rectangular window, as well as

a temporal period, and returns trajectory ids as well as trajectory fractions fully contained

inside the given spatio-temporal window.

Function IncPointNNSearch executes a Point Nearest Neighbor query against a table

storing indexed trajectories. It takes as arguments the coordinates of the query point (X and

Y as reals), a temporal period, and the number of k closest nearest neighbors to be returned.

It returns trajectory ids, as well as the spatiotemporal trajectory line segments that are

closest to the query point at the given time period.

Function ΙncΤrajectoryΝΝsearch executes a trajectory Nearest Neighbor query against a

table storing indexed trajectories. It takes as arguments the identifier of the trajectory to be

used as query, and the number of k closest nearest neighbors to be returned. It returns

trajectory ids, as well as the spatiotemporal trajectory line segments that are closest to the

query trajectory during its life time.

Function TopologicalQuery is used to retrieve the trajectories that enter and/or leave a

spatio-temporal query window. The query parameters involve the lower left (X1,Y1) and

upper right (X2,Y2) of a (rectangular) area as well as a time period for the temporal part of

Pelekis et. al.: The HERMES MOD Engine 46

the query. Finally, a MASK must be defined to clarify the type of topological query.

Possible MASK (string) values can be „ENTER‟, „LEAVE‟, „ENTER_LEAVE‟ depending

whether the users are interested in trajectories that enter/leave or enter&leave the area

within the given time period.

5 Architectural Aspects of HERMES-MDC and an Application Example

HERMES can be utilized in a real world scenario to assist a database developer in modeling,

querying and analyzing moving object databases. A straightforward utilization scenario is to

design and construct a spatio-temporal object-relational database schema using HERMES and

build an application by transacting with this database. Figure 22 illustrates such a scenario on

the top of Oracle ORDBMS. In this case and in order to specify the database schema, the

database designer writes scripts in the syntax of the Data Definition Language (DDL), which

in this case is the PL/SQL, extended with the spatio-temporal operations previously

introduced.

To build an application on top of such a database for creating objects, querying data and

manipulating information; the application developer writes a source program (for instance) in

Java (or JSP in case of web-based applications) wherein he/she can embed PL/SQL scripts

that invoke object constructors and methods from HERMES. The JDBC pre-processor

integrates the power of the programming language with the database functionality offered by

the extended PL/SQL and together with the ORDBMS Runtime Library generate the

application‟s executable. By writing independent stored procedures that take advantage of

HERMES functionality and by compiling them with the PL/SQL Compiler, is another way to

build a spatio-temporal application. Figure 23 depicts such an application which also acts as a

web-based visual query builder for HERMES.

Pelekis et. al.: The HERMES MOD Engine 47

Figure 22 The architecture of the HERMES Figure 23 A visual query builder for

HERMES

To demonstrate the functionality of the proposed HERMES, in the following paragraphs we

present an application example related to vehicle traffic analysis. The motivation is that a

courier company, whose vehicles are enhanced with GPS devices transmiting their space-time

location to a central MOD, needs a flexible way to manage and analyse the motion of the

vehicles. One can enumerate a series of benefits to be gained from a possible optimization of

the movements of the couriers, such as, personnel‟s control, better and faster customer

services, minimization of operational costs, enhanced decision making. By utilizing this

application example, the expressive power and the applicability of HERMES in such a

commercial domain are demonstrated. We note that the subsequent discussion and

terminology follows the syntax of HERMES as implemented in Oracle ORDBMS. We have

already mentioned that the core of HERMES has also been implemented in 7 inside another

ORDBMS, namely the PostGIS. This actually proves the correctness of the design of HERMES

on top of extensible ORDBMS that have OGC-compliant spatial extensions. The differences

in the syntax between the two implementations are minor (and mainly due to the syntax

differences of the two static spatial extensions) 63, while we are in the process of testing the

compatibility between the results of the operations.

In order to present the capabilities of HERMES, we build the following database:

Highways (name: Varchar2, line: SDO_GEOMETRY)

Landmarks (name: Varchar2, kind: Varchar2, location: SDO_GEOMETRY)

Vehicles (id: Varchar2, type: Varchar2, route: Moving_Point)

High-Traffic-Areas (name: Varchar2, extent: Moving_Polygon)

Pelekis et. al.: The HERMES MOD Engine 48

Highways relation is a set of linestring geometries along which the vehicles are supposed

to be moving. Landmarks relation contains locations of certain landmarks, such as petrol

stations, etc. Vehicles relation identify the route of a lorry that is modeled as a moving point,

while type attribute stamps each vehicle with a characteristic description of each kind (e.g.

truck, motorbike, etc.). Furthermore, field route of relation Vehicles is indexed by a TB-tree.

High-Traffic-Areas relation records areas that could influence the route or the schedule of a

vehicle. These areas are given a name for identification purposes, while extent attribute

provides the time-varying regions for traffic jams.

In the following paragraphs, we illustrate a composite spatio-temporal scenario (in the form

of a series of MOD queries) in the domain of our application example. The linguistic

description of each query is followed by the implementation of the query in the form of a

PL/SQL block, as well as by an abstract presentation of the way that such a query is resolved.

This scenario illustrates the expressive power and the spatio-temporal query capabilities

added to PL/SQL by HERMES.

(Q1) Which vehicles are moving inside a given region right now?

PL/SQL block for Q1:

DECLARE
region SDO_GEOMETRY := SDO_GEOMETRY(2003, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3), SDO_ORDINATE_ARRAY(489048,4203749,
90032,4205990));

BEGIN
SELECT id FROM Vehicles
WHERE route.f_relate(‘INSIDE’, region, 0.005, TAU_TLL.now()) = ‘INSIDE’;

END;

In order to answer Q1 we invoke a typical SQL statement that selects from the Vehicles

relation the ids of the couriers that satisfy the WHERE-clause, which is the time-dependent

version of f_relate operation. A slight variant of Q1 is the classic spatio-temporal range query

(see Q2) that may also be answered with the employment of the TB-tree operators, by simply

invoking function tb_mp_in_spatiotemporal_window. Actually, this is the query depicted in

the query builder in Figure 23.

Pelekis et. al.: The HERMES MOD Engine 49

(Q2) Find all vehicles moving inside a given region and time period?

PL/SQL block for Q2:
DECLARE
region SDO_GEOMETRY := SDO_GEOMETRY(2003, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3), SDO_ORDINATE_ARRAY(489048,4203749,
 90032,4205990));
BEGIN
SELECT TB_MP_IN_SPATIOTEMPORAL_WINDOW (region,

tau_tll.d_period_sec(
 tau_tll.D_Timepoint_Sec(2010,7,9,10,35,0),
 tau_tll.D_Timepoint_Sec(2010,7,9,10,55,0)))
FROM Vehicles;
END;

(Q3) If vehicle ‘X’ is in the result set of Q1, when and where did it enter the region?
PL/SQL block for Q3:
DECLARE
truckX Moving_Point;
truckX_IN_region Moving_Object;
temp_projection TAU_TLL.TEMP_ELEMENT_SEC;
when TAU_TLL.TIMEPOINT_SEC;
where SDO_GEOMETRY;
BEGIN
SELECT route INTO truckX FROM Vehicles WHERE id=’X’;
truckX_IN_region := truckX.f_intersection(region);
temp_projection := truckX_IN_region.f_temp_element();
when := temp_projection.te(temp_projection.te.FIRST).b;
where := truckX_IN_region.f_initial();
END;

To address Q3, we demonstrate how we can restrict a moving point inside a static spatial

region and how to temporally and spatially project this restricted moving point in its initial

position. The result of such an operation (f_intersection) in all cases is a Moving_Object

that can be handled as any other moving geometry. By temporally projecting it

(f_temp_element) on the continuous time line and finding the temporal element that consists

of the time periods for which are defined the unit moving objects of the moving courier, we

can estimate the timepoint when initially entered the given region. In addition, by applying

the f_initial method, we can locate the point that this happened.

Pelekis et. al.: The HERMES MOD Engine 50

(Q4) A variant of Q3 would be to find all entering points of trajectories in the given
spatio-temporal range.

PL/SQL block for Q4:
SELECT * FROM TABLE(TB_TOPOLOGICAL_QUERY(
 SDO_GEOMETRY(2003, NULL, NULL,

 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(489048,4203749, 90032,4205990)),

tau_tll.d_period_sec(
 tau_tll.D_Timepoint_Sec(2010,7,9,10,35,0),
 tau_tll.D_Timepoint_Sec(2010,7,9,10,55,0)),
'ENTER'))

(Q5) What distance has vehicle ‘X’ travelled inside the region?
PL/SQL block for Q5:
DECLARE
distance double;
BEGIN
distance:= LENGTH (INTERSECTION (region, truckX.f_trajectory()));
END;

This query is resolved by finding the intersection of the region with the trajectory followed

by the courier (f_trajectory operation). This intersection is a LineString geometry that

restricts the route of the courier inside the region and by applying the LENGTH spatial

operator upon the resulted LineString we compute the required distance.

(Q6) Give a list of options to the driver of vehicle ‘X’ to refuel the vehicle within
the next 2km

PL/SQL block for Q6:
BEGIN
SELECT name, location FROM Landmarks
WHERE kind = ‘petrol station’ AND
truckX.f_within_distance(2000, location, 0.005, TAU_TLL.now()) = ‘TRUE’;
END;

In order to provide the list of petrol stations (Q6), we select the landmarks that are petrol

stations and the courier is within the specified distance (f_within_distance operation) from

them at the time the query is invoked.

Pelekis et. al.: The HERMES MOD Engine 51

(Q7) Which is the best route, in terms of distance, that this courier should follow in

order to avoid traffic jam ‘A’?

PL/SQL block for Q7:

DECLARE
jamA Moving_Polygon;
jamA_region SDO_GEOMETRY;
CURSOR highways IS SELECT * FROM Highways;
highway_length, min_length number := 0;
best_highway SDO_GEOMETRY;
BEGIN
SELECT extent INTO jamA FROM High-Traffic-Areas WHERE name=’A’;
jamA_region := jamA.f_traversed();
FOR highways_rec IN highways LOOP

IF RELATE (highways_rec.line, ‘DISJOINT’, jamA_region) = ‘DISJOINT’
THEN

 highway_length := LENGTH(highways_rec.line);
 IF highway_length < min_length THEN
 min_ length:= highway_length;
 best_highway := highways_rec.line;
 END IF;
 END IF;
END LOOP;
END;

To simplify the presentation of Q7 let us assume that the courier resides at the beginning of

a series of highways and that its destination is the ending point of these highways. As such,

having a cursor to traverse (FOR LOOP) all highways, we choose that highway that is

disjoint (RELATE operator) with the region traversed (f_traversed operation) by jam „A‟ and

it has the smallest length (LENGTH operator).

Based on related research work 44 queries like the above constitute a minimum

functionality a MOD system should provide. Furthermore, the usefulness and applicability of

the server-side extensions provided by HERMES have been proved in 45 and 40 by developing

benchmark queries proposed in 54 for the evaluation of systems supporing Location-Based

Services.

Pelekis et. al.: The HERMES MOD Engine 52

6 Building Real MOD Applications on Top of Hermes

The best way to evaluate HERMES is to assess the realization of its initial goal, which is to

provide a complete framework for developing MOD-related applications. In the previous

section we provided a sketch for building a specific application related to vehicle traffic

analysis, while in this section we demonstrate this by briefly presenting successfull

applications of HERMES in four different domains, namely in trajectory data warehouses (i.e.

TDW 31), in moving object data mining query languages (i.e. DAEDALUS tool 36), in

semantic enrichment of movement patterns (i.e. ATHENA tool 5), and in privacy-aware

trajectory tracking query engines (i.e. HERMES++ tool 22). We would like to note that the

above works are a subset of tools and methods developed as a result of a European-wide

research project called GeoPKDD – (Geographic Privacy-Aware Knowledge Discovery and

Delivery) 21. HERMES is also a prototype outcome of GeoPKDD designed to be the MOD

management infrastructure of such tools. Of cource, in order to support such diverse

applications domains we have designed and incorporated into HERMES several specialized

operations (e.g. a trajectory anomymizer operator for 22), however their description is

ommited here due to to space constraints.

Trajectory data warehouses – TDW aim at developing a multi-dimensional model suitable

for online analytical processing (OLAP) of trajectory data, such as drill-down and roll-up

operations. In order to design a trajectory warehouse architecture, one should first identify the

differences from conventional warehouse approaches and then to devise appropriate

extensions. There are three steps so as to realize the development of a TDW. At the first step

the design of a MOD and of a multidimensional data model (i.e. trajectory data cube) takes

place. At the second step, preprocessing (i.e. cleaning, consistency checking) and loading of

raw movement data into the MOD occurs, while once trajectories have been stored in the

MOD, the Extract-Transform-Load (ETL) phase is executed in order to feed the TDW and the

measures of the data cube are calculated. In 31, 30, 48 HERMES has been employed as the

infrastructure to develop the above described process in a huge, real trajectory dataset, where

due to the size of the dataset, the existence of efficient, scalable querying processing operators

to support ETL was a key requirement.

Moving object data mining query languages (MO-DMQL) – In 36 the authors proposed

DAEDALUS, a formal framework and system, that defines knowledge discovery processes as

a progressive combination of mining and querying operators. The heart of DAEDALUS is the

MO-DMQL query language that extends SQL in two aspects, namely a pattern definition

Pelekis et. al.: The HERMES MOD Engine 53

operator and functionality to uniform manipulate both raw trajectory data and unveiled

movement patterns. DAEDALUS system has been implemented as a query execution layer on

top of the HERMES. More specifically, the role of HERMES in DAEDALUS is two-fold; to act

as a repository for movement data and secondly to give the basic building block that allows

defining models‟ representation and storage.

Semantic enrichment of movement patterns – Having as aim to provide a model for the

conceptual representation and deductive reasoning of trajectory patterns obtained from

mining raw trajectories, the authors in 5 have developed ATHENA tool, which employs

ontologies for the semantic enrichment of trajectories. This is achieved by means of a

semantic enrichment process, where raw trajectories are enhanced with semantic information

and integrated with geographical knowledge encoded in an ontology. To highlight this process

imagine that a user poses a query using the ontology concepts where trajectories/patterns are

classified by a reasoner. The ontology is then populated by instances coming from a MOD

storing semantic trajectories, patterns and auxiliary geographical features. Again, HERMES

supports all the spatio-temporal data management requirements raised by ATHENA. The

overall undertaking was evaluated in a real-world case study posing as objective of the

analysis to understand tourist movements in Milan‟s metropolitan area.

Privacy-aware trajectory tracking query engines – Due to the very nature of movement

data, lately a new line of research has emerged that investigates safeguards to enforce so as to

ensure the privacy of the individuals, whose movement is recorded. HERMES++ 22 which has

been designed on top of HERMES describes such a privacy aware trajectory tracking query

engine, where subscribed users can gain restricted access to an in-house trajectory data

warehouse, to perform certain analysis tasks. In addition to regular queries involving non-

spatial non-temporal attributes, the engine supports a variety of spatiotemporal queries,

including range queries, nearest neighbor queries and queries for aggregate statistics. The

query results are augmented with fake trajectory data (dummies) to fulfil the requirements of

K-anonymity.

7 A Real Case Study

This Section includes the description of a real world application scenario and at the same time

presents usage instructions involving the desktop module of Hermes web application as

demonstrated in 40. We will analyze into detail the elements of the query language used in

the presented operations and corresponding parameters so as to facilitate interested users.

Pelekis et. al.: The HERMES MOD Engine 54

As regards the web interface, for best presentation results, we recommend that you use IE6

(or higher) or Safari web browsers though also Mozilla Firefox has been tested and works

properly.

7.1 Usage Scenario

To better perceive the functionality of the underlying Trajectory Database Engine we exhibit

the usage of implemented operators utilized in query operations assuming a specific

application scenario. The scenario described below constitutes a representative example of

HERMES potentials and its ability to provide real-world LBS support. However, note that the

set of supported services are not restricted by application specific factors but can serve as the

infrastructure for every modern application that demands advanced trajectory data

management and querying (i.e fleet management, asset tracking, mobile advertising etc).

In the demonstration scenario, we assume a fleet of taxis that move in the metropolitan area

of Athens, Greece. Taxis are moving on the underlying road network and periodically request

routing to certain destinations. A routing module indicates the shortest path as the preferable

path to reach the aforementioned destination. Afterwards, for the purposes of the

demonstration, each taxi driver is supposed to accept and follow the proposed path. In that

way, moving object trajectories are expected to be known in hand.

7.2 Database Design

The underlying data infrastructure consists of the following types of data:

Spatial entities:
- Athens Road Network Data (Nodes, Links)

- Landmarks (ID, geometry, address, area, type)

- Regions (ID, name, geometry)

Note that Landmarks are possible POIs that a taxi driver may wish to be aware of their

existence and their proximity to his way towards a destination. Regions involve a set of

municipalities that cover the underlying road network. We are going to further discuss the

role of landmarks and regions in query operations in the next subsection.

―Moving‖ entities:
- Vehicles (obj_id, traj_id, trajectory)

7.3 Query Operations

Query operations are categorized based on the type of the reference object and the type of the

data objects. In brief, a reference object involves the type of the object (trajectory or spatial

Pelekis et. al.: The HERMES MOD Engine 55

entity) based on which query answers are retrieved while the data object regards the type of

objects (trajectories or spatial entities) that participate in the posed query answer.

Based on the above the queries are categorized as:

Moving Point – Moving Point: both the reference and data objects are trajectories

Moving Point – Static Spatial: the reference object is a given trajectory while the query

answer is expected to be a set of spatial entities

Static Spatial – Moving Point: the reference object is a given spatial entity while the query

answer is expected to be a set of trajectories or trajectory parts

The user is expected to choose the desired query from the categories at the left of the screen.

Upon a specific query election the query is formed in the corresponding textbox at the center

of the screen where the user is supposed to provide required parameters.

Figure 24: Query Selection and Formation Areas

Pelekis et. al.: The HERMES MOD Engine 56

a. Moving Point – Moving Point

In this category we have two types of operations, namely Nearest Neighbor and Similarity queries.
i. Nearest Neighbor Query

Usage: Given a trajectory T find the k nearest parts (during T‘s lifetime) of other trajectories
Query:

SELECT TBFUNCTIONS.MV_INCTRAJECTORYNNSEARCH(TRAJ_ID ,K)

FROM DUAL
Parameters: The query parameters (in bold) involve the ID of the object‘s trajectory (reference
object) and the desired number of nearest neighbors k (data objects).
Example:

SELECT TBFUNCTIONS.MV_INCTRAJECTORYNNSEARCH(1 ,10)

FROM DUAL

Figure 25: Answer of an incremental trajectory NN query

visualized on the map

Figure 26: Answer of an incremental trajectory NN query in gml

format

Pelekis et. al.: The HERMES MOD Engine 57

ii. Similarity Query

Usage: Given a trajectory T find at most N similar trajectories that satisfy a given similarity
threshold. In this type of query we distinguish the following types of similarity:
- DDIST: The operator finds trajectories that are considered similar based on the resemblance they

exhibit in their direction during their lifetime. This function ignores the temporal information

part of the trajectories.

Query:

SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(),

M.MPOINT.DDIST(

(SELECT M.MPOINT

 FROM MPOINTS M

 WHERE TRAJ_ID=TRAJ_ID), 1) S

FROM MPOINTS M

WHERE M.MPOINT.DDIST(

(SELECT M.MPOINT

 FROM MPOINTS M WHERE TRAJ_ID=TRAJ_ID), 1)<THRESHOLD

 AND ROWNUM<N

 ORDER BY S ASC

Parameters: The query parameters (in bold) involve the ID of the object‘s trajectory (reference
object), a similarity threshold which is a real value between 0-1 and the expected, maximum
number of similar trajectories – data objects. Note that the trajectory Id of the reference object
should be declared twice. The first declaration involves the similarity value and its projection to the
query results while the second regards the selection part of the query.
Example:
SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(), M.MPOINT.DDIST((SELECT M.MPOINT

FROM MPOINTS M WHERE TRAJ_ID=1), 1) S

FROM MPOINTS M

WHERE M.MPOINT.DDIST((SELECT M.MPOINT FROM MPOINTS M WHERE TRAJ_ID=1),

1)<0.5 AND ROWNUM<4

ORDER BY S ASC

Figure 27: Answer of DDIST similarity query visualized on the

map

Pelekis et. al.: The HERMES MOD Engine 58

Figure 28: Answer of DDIST similarity query in gml format

- TDDIST: A time aware version of DDIST similarity function, in that it takes into account (apart from

their heading) temporal information of trajectories.

Query:

SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(),

M.MPOINT. TDDIST (

(SELECT M.MPOINT

 FROM MPOINTS M

 WHERE TRAJ_ID=TRAJ_ID), 1) S

FROM MPOINTS M

WHERE M.MPOINT. TDDIST(

(SELECT M.MPOINT

 FROM MPOINTS M WHERE TRAJ_ID=TRAJ_ID), 1)<THRESHOLD

 AND ROWNUM<N

 ORDER BY S ASC

Parameters: Parameters are equivalent with those in DDIST
Example:
SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(), M.MPOINT.TDDIST((SELECT M.MPOINT

FROM MPOINTS M WHERE TRAJ_ID=1), 1) S

FROM MPOINTS M

WHERE M.MPOINT. TDDIST((SELECT M.MPOINT FROM MPOINTS M WHERE TRAJ_ID=1),

1)<0.5 AND ROWNUM<4

ORDER BY S ASC

Pelekis et. al.: The HERMES MOD Engine 59

Figure 29: Answer of TDDIST similarity query visualized on the

map

Figure 30: Answer of TDDIST similarity query in gml format

- LIP: the operator involves spatial similarity based on a distance function upon the projections of
trajectories in the Cartesian plain. The idea is to calculate the area of the shape formed by two
2D polylines, which are the outcome of the projection.

Query:

SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(),

M.MPOINT. LIP (

(SELECT M.MPOINT

 FROM MPOINTS M

 WHERE TRAJ_ID=TRAJ_ID), 1

) S

FROM MPOINTS M

WHERE M.MPOINT. LIP(

(SELECT M.MPOINT

 FROM MPOINTS M WHERE TRAJ_ID=TRAJ_ID), 1)<THRESHOLD

 AND ROWNUM<N

 ORDER BY S ASC

Pelekis et. al.: The HERMES MOD Engine 60

Parameters: The TRAJ_ID and N parameters are equivalent with those in DDIST, TDDIST. The
THRESHOLD parameter differs in that it refers to the area which is the outcome of the distance
function. As such it receives real values regarding that mensuration.
Example:
SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(), M.MPOINT.LIP((SELECT M.MPOINT FROM

MPOINTS M WHERE TRAJ_ID=1), 1) S

FROM MPOINTS M

WHERE M.MPOINT. LIP((SELECT M.MPOINT FROM MPOINTS M WHERE TRAJ_ID=1), 1)<

10000000 AND ROWNUM<4

ORDER BY S ASC

Figure 31: Answer of LIP similarity query visualized on the map

Figure 32: Answer of LIP similarity query in gml format

- GenSTLIP_OSP: An operator that measures spatiotemporal similarity between trajectories.
Intuitively, two moving objects are considered similar in both space and time when they move
close at the same time.

Query:

SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(),

M.MPOINT.GENSTLIP_OSP(

Pelekis et. al.: The HERMES MOD Engine 61

(SELECT M.MPOINT

 FROM MPOINTS M

 WHERE TRAJ_ID=TRAJ_ID),

1,0,

 MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(),0.00005),

(SELECT MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(),

0.00005)

FROM MPOINTS M

WHERE TRAJ_ID=TRAJ_ID), 1,10) S

FROM MPOINTS M

WHERE M.MPOINT.GENSTLIP_OSP(

(SELECT M.MPOINT

 FROM MPOINTS M

 WHERE TRAJ_ID=TRAJ_ID),

 1,0,

 MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(), 0.00005),

 (SELECT MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(),

0.00005)

FROM MPOINTS M

WHERE TRAJ_ID=TRAJ_ID), 1,10

)<THRESHOLD AND ROWNUM<N

ORDER BY S ASC

Parameters: The TRAJ_ID, N and THRESHOLD parameters are equivalent with those in LIP.
Example:
SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(), M.MPOINT.GENSTLIP_OSP((SELECT

M.MPOINT FROM MPOINTS M WHERE TRAJ_ID=1), 1,0,

MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(), 0.00005),

(SELECT MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(), 0.00005) FROM

MPOINTS M WHERE TRAJ_ID=1), 1,10) S

FROM MPOINTS M

WHERE M.MPOINT.GENSTLIP_OSP((SELECT M.MPOINT FROM MPOINTS M WHERE

TRAJ_ID=1), 1,0,

MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(), 0.00005),

(SELECT MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(), 0.00005) FROM

MPOINTS M WHERE TRAJ_ID=1), 1,10)< 10000000 AND ROWNUM<4 ORDER BY S ASC

Figure 33: Answer of LIP similarity query visualized on the map

Pelekis et. al.: The HERMES MOD Engine 62

Figure 34: Answer of LIP similarity query in gml format

Notes: In the web interface upon the selection of similarity query in the corresponding category,
the user is able to further define the type of similarity that will be taken into consideration in the
query using the query builder at the left-down part of the screen.

Figure 35: Similarity function selection

b. Moving Point – Static Spatial

In this category we have three types of operations, namely Point, Nearest Neighbor and

Topological queries.

i. Point Query

Usage: Given a trajectory T find the regions (municipalities of Athens) that T visits during its
lifespan.
Query:

SELECT RG_NAME, RG_REGION

FROM SP_REGIONS R WHERE MDSYS.SDO_RELATE(R.RG_REGION,

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE

TRAJ_ID=TRAJ_ID),'MASK=ANYINTERACT QUERYTYPE=WINDOW')='TRUE'

Parameters: The query parameters (in bold) involve the ID of the object‘s (reference object)
trajectory. In the mask parameter of SDO_RELATE we use ANYINTERACT denoting that the
trajectory and region objects are not disjoint. The QUERYTYPE taking place in the mask is used for
backward compatibility.
Example:

SELECT RG_NAME, RG_REGION

FROM SP_REGIONS R WHERE MDSYS.SDO_RELATE(R.RG_REGION,

Pelekis et. al.: The HERMES MOD Engine 63

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE TRAJ_ID=

1),'MASK=ANYINTERACT QUERYTYPE=WINDOW')='TRUE'

Figure 36: Answer of point query visualized on the map

Figure 37: Answer of point query in gml format

ii. Nearest Neighbor Query

Usage: Given a trajectory T find the k nearest landmarks (POIs)
Query:

SELECT ADDRESS,GEOMETRY

FROM (SELECT * FROM LANDMARKS L WHERE L.TYPE='TYPE') L

WHERE MDSYS.SDO_NN(L.GEOMETRY,

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE

TRAJ_ID=TRAJ_ID),'SDO_NUM_RES=K')='TRUE'

Parameters: The query parameters (in bold) involve the TRAJ_ID of the object‘s trajectory
(reference object). Furthermore the desired number of K-NNs needs to be specified. Eventually,
the user is able to choose the TYPE of POIs they desire to be retrieved. Possible values (strings)
for TYPE are: PORT AUTHORITIES, BUS TERMINALS, PHARMACIES, OLYMPIC
VENUES, NEIGHBOURHOODS, LANDMARKS.

Pelekis et. al.: The HERMES MOD Engine 64

Example:
SELECT ADDRESS,GEOMETRY

FROM (SELECT * FROM LANDMARKS L WHERE L.TYPE='PHARMACIES') L

WHERE MDSYS.SDO_NN(L.GEOMETRY,

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE

TRAJ_ID=1),'SDO_NUM_RES=4')='TRUE'

Figure 38: Answer of K-nn query visualized on the map

Figure 39: Answer of K-nn query in gml format

iii. Topological Query

Usage: Given a trajectory T find the regions that OVERLAPBDYDISJOINT,

OVERLAPBDYINTERSECT, CONTAINS etc with it
Query:

SELECT RG_NAME, RG_REGION

FROM SP_REGIONS R

WHERE MDSYS.SDO_RELATE(R.RG_REGION,

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE

TRAJ_ID=TRAJ_ID),'MASK=REL_TYPE QUERYTYPE=WINDOW')='TRUE'

Pelekis et. al.: The HERMES MOD Engine 65

Parameters: The query parameters (in bold) involve the TRAJ_ID of the object‘s trajectory
(reference object) as well as the topological relation type (REL_TYPE). Possible choices for the
mask element are:
- DISJOINT -- The boundaries and interiors do not intersect.
- TOUCH -- The boundaries intersect but the interiors do not intersect.
- OVERLAPBDYDISJOINT -- The interior of one object intersects the boundary and interior of the

other object, but the two boundaries do not intersect. This relationship occurs, for example,
when a line originates outside a polygon and ends inside that polygon.

- OVERLAPBDYINTERSECT -- The boundaries and interiors of the two objects intersect.
- EQUAL -- The two objects have the same boundary and interior.
- CONTAINS -- The interior and boundary of one object is completely contained in the interior of the

other object.
- COVERS -- The interior of one object is completely contained in the interior or the boundary of the

other object and their boundaries intersect.
- INSIDE -- The opposite of CONTAINS. A INSIDE B implies B CONTAINS A.
- COVEREDBY -- The opposite of COVERS. A COVEREDBY B implies B COVERS A.
- ON -- The interior and boundary of one object is on the boundary of the other object (and the

second object covers the first object). This relationship occurs, for example, when a line is on the
boundary of a polygon.

Example:

SELECT RG_NAME, RG_REGION

FROM SP_REGIONS R

WHERE MDSYS.SDO_RELATE(R.RG_REGION,

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE

TRAJ_ID=2),'MASK=CONTAINS QUERYTYPE=WINDOW')='TRUE'

Figure 40: Answer of topological query (MASK=CONTAINS)

visualized on the map

Pelekis et. al.: The HERMES MOD Engine 66

Figure 41: Answer of topological query (MASK=CONTAINS)

in gml format

c. Static Spatial – Moving Point

In this category we have four types of operations, namely Range, Nearest Neighbor,

Topological and Directional Queries.

i. Range Query

Usage: Find trajectory parts contained in a given spatiotemporal window
Query:
SELECT TBFUNCTIONS.MV_QUERY_WINDOW(

SDO_GEOMETRY(2003, 1000001, NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),

SDO_ORDINATE_ARRAY(X1,Y1,X2,Y2)),

 TAU_TLL.D_PERIOD_SEC(

 TAU_TLL.D_TIMEPOINT_SEC(timepoint1),

 TAU_TLL.D_TIMEPOINT_SEC(timepoint2))

)

FROM DUAL
Parameters: The query parameters (in bold) involve the lower left (X1,Y1) and upper right (X2,Y2)
of the (rectangular) spatial window as well as a time period (timepoint1, timepoint2)for the
temporal part of the query
Example:
SELECT TBFUNCTIONS.MV_QUERY_WINDOW(

SDO_GEOMETRY(2003, 1000001, NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),

SDO_ORDINATE_ARRAY(465000, 4200000, 480000, 4201900)),

 TAU_TLL.D_PERIOD_SEC(

 TAU_TLL.D_TIMEPOINT_SEC(2009,07,04,21,12,43),

 TAU_TLL.D_TIMEPOINT_SEC(2009,07,04,21,15,56))

)

FROM DUAL

Pelekis et. al.: The HERMES MOD Engine 67

Figure 42: Answer of range query visualized on the map

Figure 43: Answer of range query in gml format

Notes: The insertion of the appropriate time interval for a range query can be made by using the
text boxes labeled Initial and Final Timepoint, placed at the top of the web interface.

Figure 44: Initial and Final Timepoint Selection

By choosing the icon (surrounded by red rectangles in Figure 44) at the right side of time

point selection textboxes, a popup window will appear presenting a calendar as well as a

clock to enable users define corresponding time points. Note that after identifying a time

point by clicking or typing in the popup calendar window, you need to additionally click

inside each textbox to confirm your selection which is then passed inside the formed query.

Furthermore, we should note that the specification of X1,Y1,X2,Y2 by the user could have

been graphically made by choosing the construction of map images in SVG format. However,

Pelekis et. al.: The HERMES MOD Engine 68

making every node of the road network (or point in the map) selectable tremendously affects

response time. As a result we allow users type the exact coordinates of the desired spatial

rectangle. In the query refinement section we will examine an alternative way to pass the

spatial window parameter.

ii. Nearest Neighbor Query

Usage: Find the K nearest to a POI trajectory parts, within a given time period
Query:
SELECT TBFUNCTIONS.MV_INCPOINTNNSEARCH(

X,Y,

TAU_TLL.D_TIMEPOINT_SEC(timepoint1),

TAU_TLL.D_TIMEPOINT_SEC(timepoint2),

K)

FROM DUAL

Parameters: The query parameters (in bold) involve the coordinates (X,Y) of the POI, the time
period (timepoint1,timepoint2)and the desired number of nearest neighbors K
Example:
SELECT TBFUNCTIONS.MV_INCPOINTNNSEARCH(

480000,4201900,

TAU_TLL.D_TIMEPOINT_SEC(2009,06,30,00,59,40),TAU_TLL

.D_TIMEPOINT_SEC(2009,07,17,00,59,55), 15)

FROM DUAL

Figure 45: Answer of incremental point NN query visualized on

the map

Pelekis et. al.: The HERMES MOD Engine 69

Figure 46: Answer of incremental point NN query in gml format

Notes: The insertion of the appropriate time interval for the incremental point NN query can be
made by using corresponding textboxes as we have already discussed.

iii. Topological Query

Usage: Find the trajectories that enter/leave an area within a given timeperiod
Query:
SELECT TRAJ_ID,M.MPOINT.F_TRAJECTORY2()

FROM MPOINTS M

WHERE TRAJ_ID IN (

SELECT DISTINCT * FROM TABLE(

TBFUNCTIONS.TB_TOPOLOGICAL_QUERY(

 SDO_GEOMETRY(2003, NULL, NULL,

 SDO_ELEM_INFO_ARRAY(1,1003,3),

 SDO_ORDINATE_ARRAY(X1,Y1,X2,Y2)),

 TAU_TLL.D_PERIOD_SEC(

TAU_TLL.D_TIMEPOINT_SEC(timepoint1),

 TAU_TLL.D_TIMEPOINT_SEC(timepoint2)),

'MASK')

)

)

Parameters: The query parameters (in bold) involve the lower left (X1,Y1) and upper right (X2,Y2)
of a (rectangular) area as well as a time period (timepoint1, timepoint2) for the temporal part
of the query. Finally, a MASK must be defined to clarify the type of topological query. Possible
MASK (string) values can be ‗ENTER‘, ‗LEAVE‘, ‗ENTER_LEAVE‘ depending whether the
users are interested in trajectories that enter/leave or enter&leave the area within the given
timeperiod.
Example:
SELECT TRAJ_ID,M.MPOINT.F_TRAJECTORY2()

FROM MPOINTS M

WHERE TRAJ_ID IN (SELECT DISTINCT * FROM TABLE

(TBFUNCTIONS.TB_TOPOLOGICAL_QUERY(SDO_GEOMETRY(2003, NULL, NULL,

Pelekis et. al.: The HERMES MOD Engine 70

SDO_ELEM_INFO_ARRAY(1,1003,3),

SDO_ORDINATE_ARRAY(465000,4200000,480000,4201900)),

TAU_TLL.D_PERIOD_SEC(TAU_TLL.D_TIMEPOINT_SEC(2009,06,22,01,43,17),

TAU_TLL.D_TIMEPOINT_SEC(2009,06,22,01,49,10)),'ENTER_LEAVE')))

Figure 47: Answer of topological query visualized on the map

Figure 48: Answer of topological query in gml format

Notes: The insertion of the appropriate time interval for the incremental point NN query can be
made by using corresponding textboxes as it already has been discusses.

iv. Directional Query

Usage: Find trajectories the location of which is east, west, north, south, front, behind, left, right of
a Point at a given time instant (time point). In this type of query we distinguish the following
directional functions:
- F_LEFT: The f_left operation returns true if the location of the point at the user defined timepoint

is left from the argument geometry - point
- Similarly, operations f_right, f_front, f_behind return true if the location of the point at the user

defined timepoint is on the right, in front or behind the argument geometry – point, respectively.

Pelekis et. al.: The HERMES MOD Engine 71

- Furthermore, we augment our operator set with a related set of methods that identify whether a

moving point is located west, east, north, south of a geometry. These methods are differentiated

from the previous as we do not care for the heading of the moving point.

Query:

SELECT M.MPOINT.F_TRAJECTORY2()

FROM MPOINTS M

WHERE M.MPOINT.F_EAST(

 SDO_GEOMETRY(2001,1000001,

 SDO_POINT_TYPE(X,Y, NULL),NULL,NULL),

 TAU_TLL.D_TIMEPOINT_SEC(timepoint1),

 A1,A2)=1

Parameters: The query parameters (in bold) involve the coordinates (X,Y) of the reference point
geometry, the time instant (timepoint)and the angle range (A1, A2) that dictates the search space
towards the specified direction.
Example:
SELECT M.MPOINT.F_TRAJECTORY2()

FROM MPOINTS M

WHERE M.MPOINT.F_LEFT(SDO_GEOMETRY(2001,1000001,

 SDO_POINT_TYPE(465000,4200000, NULL),NULL,NULL),

 TAU_TLL.D_TIMEPOINT_SEC(2009,06,10,21,39,11),30,150)=1

Figure 49: Answer of directional (f_left) query visualized on the

map

Pelekis et. al.: The HERMES MOD Engine 72

Figure 50: Answer of directional (f_left) query in gml format

Notes: The insertion of the appropriate time point can be made by using the “Initial

Timepoint” textbox only.

In the web interface upon the selection of directional query in the corresponding category, the

user is able to further select the type that will be taken into consideration in the query using

the query builder at the left-down part of the screen.

Figure 51: Directional function selection

d. Complementary operations

Apart from the previously presented query categorization, a set of complementary operators

are provided. They can be used by performing a selection in the “Select“ part of the query

builder (provided that neither similarity nor directional query category have been selected).

The following figure presents the set of complementary functions.

Pelekis et. al.: The HERMES MOD Engine 73

Figure 52: Set of complementary functions

F_TRAJECTORY2
Usage: Function used to visualize a specific trajectory on the map
Query:

SELECT M.MPOINT.F_TRAJECTORY2()

FROM MPOINTS M

WHERE TRAJ_ID=TRAJ_ID

Parameters: The only parameter involves the ID of the trajectory that the user wishes to visualize.
In case ―TRAJ_ID‖ is left as is, the whole set of stored trajectories is presented on the map.
Example:
SELECT M.MPOINT.F_TRAJECTORY2()

FROM MPOINTS M

WHERE TRAJ_ID=10

Figure 53: Visualization of TRAJ_ID=10

GET_ENTER_LEAVE_POINTS, F_ENTERPOINTS, F_LEAVEPOINTS
Usage: This set of functions is used to identify the enter/leave (or both) points of a specific
trajectory in respect to a spatial region on the map
Query:

SELECT M.MPOINT.GET_ENTER_LEAVE_POINTS(

SDO_GEOMETRY(2003, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1,1003,3),

SDO_ORDINATE_ARRAY(X1,Y1,X2,Y2)))

FROM MPOINTS M

WHERE TRAJ_ID=TRAJ_ID

Parameters: The query parameters involve the lower left (X1,Y1) and upper right (X2,Y2) of the
region as well as a trajectory ID. F_ENTERPOINTS and F_LEAVEPOINTS receive similar
parameters.

Pelekis et. al.: The HERMES MOD Engine 74

Example:
SELECT M.MPOINT.GET_ENTER_LEAVE_POINTS(SDO_GEOMETRY(2003, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1,1003,3),

SDO_ORDINATE_ARRAY(465000,4200000,480000,4201900)))

FROM MPOINTS M

WHERE TRAJ_ID=10

Figure 54: Enter, Leave points of TRAJ_ID=10 in respect with

the selected region

AT_INSTANT
Usage: The function returns the location of a moving object (specific TRAJ_ID) at a given time
point.
Query:

SELECT M.MPOINT.AT_INSTANT(TAU_TLL.D_TIMEPOINT_SEC(timepoint))

FROM MPOINTS M

WHERE TRAJ_ID=TRAJ_ID

Parameters: The query parameters involve the specification of the exact time point (using the Initial
Time Point Textbox) and the ID of the desired trajectory. In case ‗TRAJ_ID‘ is used as is instead
of a specific trajectory identificator, the locations of all available moving objects for the given time
point are projected on the map.
Example:
SELECT M.MPOINT.AT_INSTANT(TAU_TLL.D_TIMEPOINT_SEC(2009,06,10,21,39,11))

FROM MPOINTS M

WHERE TRAJ_ID=TRAJ_ID

Pelekis et. al.: The HERMES MOD Engine 75

Figure 55: Locations of moving objects at the specified time

point

F_INITIAL, F_FINAL
Usage: The function returns the starting, ending point of a given trajectory, respectively
Query:

SELECT M.MPOINT.F_INITIAL()

FROM MPOINTS M

WHERE TRAJ_ID=TRAJ_ID

Parameters: The only parameter involves the ID of the trajectory that the user wishes to visualize
its initial/ final location.
Example:
SELECT M.MPOINT.F_INITIAL()

FROM MPOINTS M

WHERE TRAJ_ID=1

Figure 56: Initial location of TRAJ_ID=1

F_UNION
Usage: The function returns a geometry object that is the topological union (OR operation) of an
instanced point with a given trajectory at a specific time point

Pelekis et. al.: The HERMES MOD Engine 76

Query:
SELECT M.MPOINT.F_UNION((SELECT M.MPOINT FROM MPOINTS M WHERE

TRAJ_ID=TRAJ_ID1),TOLERANCE,TAU_TLL.D_TIMEPOINT_SEC(timepoint))

FROM MPOINTS M

WHERE TRAJ_ID=TRAJ_ID2

Parameters: The parameters involve the TRAJ_ID1 of a selected moving object and the
TRAJ_ID2 of the reference, time-instanced moving point. In addition, a specific time point and a
tolerance value need to be specified. Many Spatial functions accept a tolerance parameter. If the
distance between two points is less than or equal to the tolerance, the two points are considered as
a unique point. Thus, tolerance is usually a reflection of how accurate or precise users perceive their
spatial data to be.
Example:
SELECT M.MPOINT.F_UNION((SELECT M.MPOINT FROM MPOINTS M WHERE

TRAJ_ID=1),0.001,TAU_TLL.D_TIMEPOINT_SEC(2009,06,10,21,39,11))

FROM MPOINTS M

WHERE TRAJ_ID=10

Figure 57: F_UNION between TRAJ_ID=10 at the specified

time point and TRAJ_ID=1

F_XOR
Usage: The function returns a geometry object that is the topological symmetric difference (XOR
operation) of an instanced point with a given trajectory at a specific time point
Query:

SELECT M.MPOINT.F_XOR((SELECT M.MPOINT FROM MPOINTS M WHERE

TRAJ_ID=TRAJ_ID1),TOLERANCE,TAU_TLL.D_TIMEPOINT_SEC(timepoint))

FROM MPOINTS M

WHERE TRAJ_ID=TRAJ_ID2

Parameters: The parameters are equivalent with those in F_UNION
Example:
SELECT M.MPOINT.F_XOR((SELECT M.MPOINT FROM MPOINTS M WHERE

TRAJ_ID=1),0.001,TAU_TLL.D_TIMEPOINT_SEC(2009,06,10,21,39,11))

FROM MPOINTS M

WHERE TRAJ_ID=12

Pelekis et. al.: The HERMES MOD Engine 77

Figure 58: F_XOR between TRAJ_ID=12 at the specified time

point and TRAJ_ID=1

7.4 Query Refinement

Certain types of queries can be further refined by choosing between their results and exploit

them as parameters in a new query. The talk mainly regards interaction between “Moving

Point – Static Spatial” and “Static Spatial – Moving Point” categories. In other words, a data

object that participates in the answer of a query belonging to the “Moving Point – Static

Spatial” category can be defined as the reference object in a “Static Spatial – Moving Point”

query. The exact match is obviously determined by the type of parameter that “Static Spatial

– Moving Point” queries accept.

In particular, the user has the ability to perform the following types of query combinations:

- Moving Point – Static Spatial: Point and Topological Query with Static Spatial – Moving Point: Range

and Topological Query

- Moving Point – Static Spatial: Nearest Neighbor Query with Static Spatial – Moving Point: Nearest

Neighbor and Directional Query

Moreover, the results of the “Moving Point – Static Spatial” category can be exploited in the

previously presented GET_ENTER_LEAVE_POINTS, F_ENTERPOINTS,

F_LEAVEPOINTS queries.

We now proceed by citing representative examples of the steps that the user should follow

during the query refinement process.

Pelekis et. al.: The HERMES MOD Engine 78

a. Moving Point – Static Spatial: Point Query & Static Spatial Moving Point: Range Query

STEP1: Point Query Execution
SELECT RG_NAME, RG_REGION

FROM SP_REGIONS R WHERE MDSYS.SDO_RELATE(R.RG_REGION,

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE TRAJ_ID=1),

'MASK=ANYINTERACT QUERYTYPE=WINDOW')='TRUE'

Figure 59: Answer of point query visualized on the map

STEP2: New Reference Object Selection

To select the new reference object, the user should choose the “QUERY RESULTS” tab in

the interface. In the table presenting the results of the previously posed query, the selection

column provides appropriate radio buttons for this purpose. Finally the user should inform the

system that the chosen result is to be passed as a parameter to the next query. This is achieved

by clicking on the “Use geometry selection” checkbox above the table.

Figure 60: New reference object selection (municipality of

Athens)

Pelekis et. al.: The HERMES MOD Engine 79

STEP3: Query Refinement

In the range query that will be formed the user needs to define only the desired time period

since the spatial window has already been declared in the previous step (in this example the

spatial window regards the municipality of Athens)1.

Figure 61: Range query execution in the refinement process

b. Moving Point – Static Spatial: Nearest Neighbor Query & Static Spatial Moving Point:

Range Query

STEP1: Moving Point – Static Spatial: Nearest Neighbor Query Execution
SELECT ADDRESS,GEOMETRY

FROM (SELECT * FROM LANDMARKS L WHERE L.TYPE='LANDMARKS') L

WHERE MDSYS.SDO_NN(L.GEOMETRY,

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE

TRAJ_ID=4),'SDO_NUM_RES=7')='TRUE'

1 The spatial window that appears to the user in the formed range query, still displays the coordinates a default rectangular area.

However, the actual execution takes into account the new reference object specified in step 2. This saves some extra client-server

communication.

Pelekis et. al.: The HERMES MOD Engine 80

Figure 62: Answer of Moving Points – Static Spatial: NN query

visualized on the map

STEP2: New Reference Object Selection
The selection of the new reference object is similar with the example in the previous section.

Figure 63: New reference object selection (municipality of

Athens)

STEP3: Query Refinement (Static Spatial – Moving Point: Nearest Neighbor query)

In the nearest neighbor query that will be formed the user needs to define only the desired

time period since the reference point has already been declared in the previous step.

Pelekis et. al.: The HERMES MOD Engine 81

Figure 64: Static Spatial – Moving Point: Nearest Neighbor

query execution in the refinement process

c. Additional

 As already mentioned the results of the “Moving Point – Static Spatial” category can be

exploited in GET_ENTER_LEAVE_POINTS, F_ENTERPOINTS, F_LEAVEPOINTS

queries. Since the triplet of these functions receives a spatial window parameter only Moving

Point – Static Spatial: Point and Topological queries can be utilized in the first step of the

process.

STEP1: Moving Point – Static Spatial: Point Query Execution
SELECT RG_NAME, RG_REGION

FROM SP_REGIONS R WHERE MDSYS.SDO_RELATE(R.RG_REGION,

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE TRAJ_ID=1),

'MASK=ANYINTERACT QUERYTYPE=WINDOW')='TRUE'

Figure 65: Answer of point query visualized on the map

Pelekis et. al.: The HERMES MOD Engine 82

STEP2: New Reference Object Selection

Figure 66: New reference object selection (municipality of

Athens)

STEP3: Query Refinement (F_ENTERPOINTS)

Figure 67: F_ENTERPOINTS results in the query refinement

process

7.5 Troubleshooting

There are two known situations that can cause malfunction to the HERMES web application.

Leaving the session inactive for several minutes may cause the scripts that form the query

upon the selection of a respective category to become inactive (i.e no query is presented in the

corresponding textbox after a selection). Refreshing the session solves that problem

Server errors similar to the one presented in the figure below may occur as a result of invalid

modifications to the initially formed query by the user. This happens due to the fact that there

Pelekis et. al.: The HERMES MOD Engine 83

is no intermediate parser to examine the validity of the query request before passing it to the

database server.

Figure 68: Server Error

We recommend that you avoid changing the query, apart from the required parameter parts.

Upon an error occurrence it is preferable to close the window and start a new session.

8 Comparison with Related Work

Several research efforts have tried to model spatio-temporal databases using the moving

object concept. In 15 the authors propose a new line of research where moving points and

moving regions are viewed as three-dimensional (2D + time) or higher dimensional entities

whose structure and behavior is captured by modeling them as abstract data types. Such

abstract data types for moving points and moving regions have been introduced in 24,

together with a set of operations on such entities. The model presented in 24 was the first

attempt to deal with continuous motion while in 17 the definition of the discrete

representation of the above-discussed abstract data types is presented. The interesting part of

the discrete model is how “moving” types are represented. The authors describe the sliced

representation behind which, the basic idea is to decompose the temporal development of a

value into fragments called “slices” such that within the slice this development can be

described by some kind of “simple” function. The next step in this development was the

study of algorithms for the rather large set of operations defined in 24. Whereas 17 just

provides a brief look into this issue by presenting two example algorithms at the end, in 29

the authors present a comprehensive, systematic study of algorithms for a subset of the

operations introduced in 24. Whereas some algorithms are relatively straightforward and

simple, there are still a considerable number of quite involved ones. In all cases the authors

analyze the complexity of the algorithms. In 29 the data structures from 17 are also refined

and extended by auxiliary fields to speed up computations. This paper also offers a blueprint

for implementing such a “moving objects” extension package for suitable extensible database

architectures. More specifically, the details and the current status of a prototypical

Pelekis et. al.: The HERMES MOD Engine 84

implementation of the data structures and algorithms described are presented. The final

outcome of this work has been recently demonstrated in 2. The prototype is being developed

as an algebra module for the experimental database system SECONDO 12.

As an extension to the abstract model in 24, the concept of spatio-temporal predicates is

introduced in 16. The goal is to investigate temporal changes of topological relationships

induced by temporal changes of spatial objects. Further work on modeling includes 52 where

the authors focus on moving point objects and the inclusion of concepts of differential

geometry (speed, acceleration) in a calculus based query language. In 6 discuss in detail non-

linear representation for moving objects, while in 57 the authors consider movement in

networks and some evaluation strategies.

Another model using moving objects is proposed by Wolfson and colleagues in 50, 61 and

60. The authors propose the so-called Moving Objects Spatio-Temporal (MOST) data model

for databases with dynamic attributes, i.e. attributes that change continuously as a function of

time, without being explicitly updated. This model enables the DBMS to predict the future

location of a moving object by providing a motion vector, which consists of its location,

speed and direction for a recent period of time. In the model, the answer to a query depends

not only on the database contents, but also on the time at which the query is entered. As long

as the predicted position based on the motion vector does not deviate from the actual position

more than some threshold, no update to the database is necessary. An important issue here is

to balance the cost of updates against the cost of imprecise information. The authors also offer

a query language (Future Temporal Logic - FTL) based on temporal logic to formulate

questions about the near future movement. The approach is restricted to moving points and

does not address more complex time-varying geometries such as moving regions.

Related work in the field also includes our initial approach in designing HERMES. More

specifically, in 45 we briefly described the envisioned architecture of HERMES framework, in

42 we presented the primitives of the proposed datatype-oriented model and provides a

preliminary insight on the supported functionality, while in 40 we demonstrated the software

developed theretofore, focusing in a specific (i.e. LBS) application domain. The current paper

presents the complete system and describes all the necessary infrastructure for introducing

our datatype system for moving objects. More specifically, we describe all the base, temporal

and spatial types that compose the basic constructs for the definition of the moving objects

datatypes, while we discuss in detail the fundamentals for extending the previous with

moving objects. In addition, all the datatypes, which are the core of the data type system of

Pelekis et. al.: The HERMES MOD Engine 85

HERMES, are now formally defined and discussed in detail. The definition of the data type

system is followed by a presentation of the design decisions and techniques for the physical

representation of the proposed abstract data types. We further discuss the principles adhered

by HERMES for designing moving objects operations and present in detail the full set of

methods defined upon the proposed data types. Our design extends the data definition and

manipulation language of OGC-compliant ORDBMS with spatio-temporal semantics and

functionality, paying special attention on advanced spatio-temporal indexing and query

processing techniques. The proposed operations are accompanied with a discussion regarding

their development and fruitful examples and illustrations for depicting the supported

functionality. We also include a description of the implementation details of our system taking

advantage of extensibility interfaces provided by state-of-the-art ORDBMS. Furthermore, we

focus on the resulted query language which is applied, as a proof-of-concept, to a case study

related with vehicle traffic analysis. Finally, we present several systems and case studies that

HERMES has been successfully applied and we provide a qualitative comparison of our

research effort with related work.

In 23 the authors extended the SECONDO system with algorithms for efficient k-nearest

neighbor search on moving object trajectories, while in 13 they introduced a benchmark that

defines datasets and queries for experimental evaluations. Another recent approach is

TrajStore 10, which focuses on supporting efficient spatio-temporal range queries in very

large datasets.

In the following paragraphs and in order to place the contribution of this paper, we briefly

present the differences of HERMES features proposed in this paper with the approach

described in 24, 17 and 29, which is the most related to our work.

HERMES introduces time-varying geometries that change location or shape in discrete steps

and/or continuously. Our approach for supporting both discretely and continuously changing

spatio-temporal objects and which is based on the Unit_Function object is more generic and

flexible than the tactic adopted in 17 that asserts the same functionality. Apart from linear

interpolations of spatial and spatio-temporal (moving) types utilized in 17 and 29, HERMES

also utilizes arc interpolations by proposing a categorization according to the quadrant the

motion takes place and the motion heading. What is more, the user of HERMES is facilitated

with a flexible and extensible interface for additional types of motion for moving types (e.g.

splines, polynomials of degree higher than one etc.), which is provided via the Unit_Function

object type.

Pelekis et. al.: The HERMES MOD Engine 86

In addition to Moving_Point, Moving_LineString, Moving_Polygon, proposed in 17, the

proposed MOD Type System also includes types like Moving_Circle, Moving_Rectangle,

Moving_Collection and Moving_Object. A rich set of object methods is introduced that

expresses all the interesting spatio-temporal phenomena and processes. This set of operations

is a superset of the operations introduced in 24. The operation set commenced in 24 at an

abstract level, is reduced in 17 where specific finite representations and data structures are

given for all the types of the abstract model, and is further reduced in 29 where a subset of the

algorithms are selected to make the implementation manageable.

Of course, there are more differences between the two operations sets supplied by 24 and

HERMES. For example, all topological operations introduced in 24 are combined in HERMES

under a single operator, which distinguishes the different topological relationships via a

“mask” parameter. Furthermore, HERMES introduces new operations describing the buffer,

the convex hull, the centre of gravity and points on the surface of moving geometries.

Additionally, particular attention has been paid to operations that facilitate the user to check

the construction of moving objects and to keep such kind of spatio-temporal data in a

consistent state. This leads to effective database maintenance and reliable error-handling

mechanism. More importantly, as we aim to provide a powerful toolkit for analysts, HERMES

includes higher level methods (e.g. operators for trajectory similarity search), upon which

knowledge discovery tasks can be easily performed.

The Moving_Collection object supports not only a homogeneous collection of moving

types but also a heterogeneous collection of them. In 24, heterogeneous collections are not

supported and a single moving type corresponds to a homogeneous Moving_Collection of the

proposed MOD Type System. The Moving_Object can substitute any of the other moving

types, as well as moving geometries that result as operations on other moving geometries and

moreover, it can model time-varying objects like the time-changing perimeter of a moving

region. In 24 such degenerated moving types (moving reals, strings and booleans) are

constructed as separate objects, which leads to a proliferation of object types that mainly are

not spatio-temporal, which makes more difficult and unnatural the utilization of such data

types by end users.

Generally speaking, the proposed MOD Type System is richer and more flexible than the

one presented in 24. For example, it supports moving linestrings that intersect themselves

during their development, while such a behavior is not allowed in 24 due to the fact that the

spatial model does not accept self-intersecting linestrings. This is a very simple example of

Pelekis et. al.: The HERMES MOD Engine 87

the importance that HERMES is OGC-compliant.

9 Conclusions and Future Work

In this paper, a formal framework and its implementation for managing and analyzing

moving objects, called HERMES, was introduced. HERMES is a system extension that provides

spatio-temporal functionality to ORDBMS offering OGC-compliant spatial extensions and

supports modeling and querying of moving objects changing location either in discrete steps

or continuously. A collection of data types and their corresponding operations are defined,

implemented, and demonstrated through a vehicle traffic analysis application developed in

Oracle. This application demonstrates that embedding the functionality offered by HERMES in

ORDBMS data manipulation language provides a flexible, expressive and easy to use query

language for moving object databases.

Another contribution of this work is that it prescribes straightforward future research

directions. First of all, due to the fact that our study concerns only two-dimensional spatial

objects as well as the change and motion of such geometries in the 2D Cartesian plane, there

is need to investigate the way we could model surfaces and three-dimensional spatial objects

and the time-changing variants of them. Additionally, a future direction we are planning to

follow is to utilize the optimization extensibility interface of existing ORDBMS in order to

enhance the performance of HERMES. Finally, we will follow and extend the benchmark

introduced in 13 for a more qualitative comparison of HERMES with the approach of

SECONDO.

10 Acknowledgments

Research partially supported by the FP6-14915 IST/FET Project GeoPKDD (Geographic

Privacy-aware Knowledge Discovery and Delivery) (URL: www.geopkdd.eu) and by the FP7

ICT/FET Project MODAP (Mobility, Data Mining, and Privacy) funded by the European

Union (URL: www.modap.org).

Pelekis et. al.: The HERMES MOD Engine 88

11 References

1 T. Abraham, J.F. Roddick. Survey of Spatio-Temporal Databases. GeoInformatica, 3:61-99, 1999.

2 T. Abraham, J.F. Roddick. Survey of Spatio-Temporal Databases. GeoInformatica, 3:61-99, 1999.

3 V.T. de Almeida, R.H. Güting, T. Behr. Querying Moving Objects in SECONDO. Proc. 7th International

Conference on Mobile Data Management (MDM), 2006.

4 V.T. de Almeida, R.H. Güting. Indexing the Trajectories of Moving Objects in Networks. GeoInformatica

9(1):33-60, 2005.

5 M. Baglioni, J. A. F. de Macedo, C. Renso, R. Trasarti, M. Wachowicz. Towards Semantic Interpretation of

Movement Behavior, Proc of 12
th
 AGILE International Conference on Geographic Information Science

(AGILE), Hannover, Germany, 2009.

6 L. Becker, H. Blunck, K. Hinrichs, J. Vahrenhold. A Framework for Representing Moving Objects. Proc. of

DEXA, 854-863, 2004.

7 S. Boulahya. Représentation et interrogation de données spatio-temporelles : Cas d‟étude sur

PostgreSQL/PostGIS. Masters' Thesis, Department of Computer and Decision Engineering, Université Libre

de Bruxelles, Brussels, Belgium, 2009, (in French).

8 R.G.G. Cattel, D.K. Barry (eds.). The Object Database Standard: ODMG 2.0. Morgan Kaufmann Publishers,

May 1997.

9 V.P. Chakka, A. Everspaugh, J. Patel. Indexing Large Trajectory Data Sets with SETI. Proceedings of CIDR,

2003.

10 P. Cudre-Mauroux, E. Wu, and S. Madden, TrajStore: An Adaptive Storage System for Very Large

Trajectory Data Sets, Proc. of 26
th
 International Conference on Data Engineering (ICDE), 2010.

11 DB2 Spatial Extender. http://www-01.ibm.com/software/data/spatial/db2spatial/ (accessed on 9 July 2010).

12 S. Dieker and R. H. Güting. Plug and Play with Query Algebras: Secondo. A Generic DBMS Development

Environment. Proc. Int‟l Symp. on Database Engineering and Applications (IDEAS), pages 380-390,

September 2000.

13 C. Düntgen, T. Behr, R. H. Güting. BerlinMOD: a benchmark for moving object databases. VLDB J. 18(6):

1335-1368, 2009.

14 M. Egenhofer and R. Franzosa. Point-Set Topological Spatial Relations. International Journal of

Geographical Information Systems, 5(2): 161-174, 1991.

15 M. Erwig, R.H. Güting, M. Schneider, and M. Vazirgiannis. Spatio-Temporal Data Types: An Approach to

Modeling and Querying Moving Objects in Databases. GeoInformatica, 3(3): 265-291, 1999.

16 M. Erwig and M. Schneider. Spatio-Temporal Predicates. IEEE Transactions on Knowledge and Data

Engineering, 14(4): 881-901, 2002.

17 L. Forlizzi, R. H. Güting, E. Nardelli, M. Schneider. A Data Model and Data Structures for Moving Objects

Databases. Proc. ACM SIGMOD Int‟l Conf. on Management of Data, Dallas, Texas, USA, 2000.

18 E. Frentzos. Trajectory Data Management. PhD Thesis, 2008.

19 E. Frentzos, K. Gratsias, N. Pelekis, Y. Theodoridis. Algorithms for Nearest Neighbor Search on Moving

Object Trajectories. Geoinformatica 11(2): 159-193 (2007)

20 E. Frentzos, N. Pelekis, I Ntoutsi and Y. Theodoridis. Trajectory Database Systems, In F. Giannotti and D.

Pedreschi (eds), Mobility, Data Mining and Privacy. Springer, 2008.

21 GeoPKDD (Geographic Privacy-aware Knowledge Discovery and Delivery) FP6-14915 IST/FET Project,

funded by the European Commission. URL: www.geopkdd.eu.

22 A. Gkoulalas-Divanis and V. S. Verykios. A Privacy Aware Trajectory Tracking Query Engine. ACM

SIGKDD Explorations, 10(1): 40-49, July 2008.

23 R. H. Güting, T. Behr and J. Xu. Efficient k-nearest neighbor search on moving object trajectories. VLDB J.,

2010.

24 R.H. Güting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. A

Foundation for Representing and Querying Moving Objects. ACM Transactions on Database Systems, 25(1):

1-42, 2000.

25 Güting, R.H. An Introduction to Spatial Database Systems. VLDB Journal, 4: 357-399, 1994.

26 G. Hjaltason, H. Samet, Distance Browsing in Spatial Databases, ACM TODS, 24(2): 265-318, 1999.

27 I. Kakoudakis. The TAU Temporal Object Model. MPhil Thesis, UMIST, Department of Computation, 1996.

28 M. Koubarakis, T. Sellis et al. (eds.). Spatio-temporal Databases: The Chorochronos Approach. Springer,

2003.

29 J. A. C. Lema, L. Forlizzi, R. H. Güting, E. Nardelli, M. Schneider. Algorithms for Moving Objects

Databases. The Computer Journal 46(6): 680-712, 2003.

http://www.informatik.uni-trier.de/~ley/db/conf/mdm/mdm2006.html#AlmeidaGB06

Pelekis et. al.: The HERMES MOD Engine 89

30 L. Leonardi, G. Marketos, E. Frentzos, N. Giatrakos, S. Orlando, N. Pelekis, A. Raffaetà, A. Roncato, C.

Silvestri, Y. Theodoridis. T-Warehouse: Visual OLAP Analysis on Trajectory Data. Proc. of the 26
th
 IEEE

International Conference on Data Engineering (ICDE‟10), Long Beach, California, 2010.

31 G. Marketos, E. Frentzos, I. Ntoutsi, N. Pelekis, A. Raffaeta and Y. Theodoridis. “Building Real-World

Trajectory Warehouses”. Proc. 7
th
 International ACM SIGMOD Workshop on Data Engineering for Wireless

and Mobile Access (MobiDE), Vancouver, Canada, 2008.

32 MySQL Spatial Extension. http://dev.mysql.com/doc/refman/5.1/en/opengis-geometry-model.html (accessed

on 9 July 2010).

33 Y. Ni, C. Ravishankar. Indexing Spatio-temporal Trajectories with Efficient Polynomial Approximations,

IEEE TKDE, 19(5): 663-678, 2007.

34 Oracle Corp. Oracle® Spatial User's Guide and Reference.

http://www.oracle.com/technology/products/spatial/spatial_doc_index.html (accessed on 9 July 2010).

35 Open Geospatial Consortium, Inc.® (OGC). http://www.opengeospatial.org/ (accessed on 9 July 2010).

36 R. Ortale, E. Ritacco, N. Pelekis, R. Trasarti, G. Costa, F. Giannotti, G. Manco, C. Renso, and Y.

Theodoridis. The DAEDALUS Framework: Progressive Querying and Mining of Movement Data. Proc. 16
th

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACMGIS),

Irvine, CA, USA, 2008.

37 D. Peuquet. Making Space for Time: Issues in Spase-Time Data Representation. GeoInformatica, 5: 11-32,

2001.

38 N. Pelekis. STAU: A spatio-temporal extension to ORACLE DBMS. PhD Thesis, UMIST, Department of

Computation, 2002.

39 N. Pelekis, G. Andrienko, N. Andrienko, I. Kopanakis, G. Marketos and Y. Theodoridis. Exploring

Movement Data via Similarity-based Analysis, Journal of Intelligent Information Systems, submitted.

40 N. Pelekis, E. Frentzos, N. Giatrakos, Y. Theodoridis: HERMES: Aggregative LBS via a Trajectory DB

Engine. Proc. ACM SIGMOD Conference, Vancouver, Canada, 2008.

41 N. Pelekis, I. Kopanakis, I. Ntoutsi, G. Marketos, G. Andrienko and Y. Theodoridis. Similarity Search in

Trajectory Databases. Proc. of the 14
th
 IEEE International Symposium on Temporal Representation and

Reasoning (TIME 2007), Alicante, Spain, 2007.

42 N. Pelekis, Y. Theodoridis. Boosting Location-Based Services with a Moving Object Database Engine. Proc.

5
th
 Int‟l ACM Workshop on Data Engineering for Wireless and Mobile Access (MobiDE), 2006.

43 N. Pelekis, and Y. Theodoridis. An Oracle data cartridge for moving objects. Information Systems

Laboratory, Department of Informatics, University of Piraeus, UNIPI-ISL-TR-2010-01. July 2010.

http://isl.cs.unipi.gr/publications.html.

44 N. Pelekis, B. Theodoulidis, I. Kopanakis, Y. Theodoridis. Literature Review of Spatio-Temporal Database

Models. Knowledge Engineering Review, 19(3), 235-274, June 2004.

45 N. Pelekis, Y. Theodoridis, S. Vosinakis, T. Panayiotopoulos. Hermes – A Framework for Location-Based

Data Management. Proc. 10th Int‟l Conference on Extending Database Technology (EDBT), Munich,

Germany, 2006.

46 D. Pfoser, C. S. Jensen, Y. Theodoridis. Novel Approaches to the Indexing of Moving Object Trajectories.

Proceedings of VLDB, 2000.

47 PostGIS. http://postgis.refractions.net/ (accessed on 9 July 2010).

48 A. Raffaetà, L. Leonardi, G. Marketos, G. Andrienko, N. Andrienko, E. Frentzos, N. Giatrakos, S. Orlando,

N. Pelekis, A. Roncato, C. Silvestri. Visual Mobility Analysis using T-Warehouse. International Journal of

Data Warehousing & Mining, to appear.

49 A. Renolen. Temporal Maps and Temporal Geographical Information Systems (Review of Research).

Department of Surveying and Mapping, The Norwegian Institute of Technology, February 1997.

50 P. Sistla, O. Wolfson, S. Chamberlain, S.Dao. Modeling and Querying Moving Objects. Proc. 13th Int‟l Conf.

on Data Engineering (ICDE), Birmingham, UK, 1997.

51 SQL Server Spatial Data. http://www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx (accessed on 9

July 2010).

52 J. Su, H. Xu and O. Ibarra. Moving Objects: Logical Relationships and Queries. Proc. 7th Int‟l Symp. on

Spatial and Temporal Databases (SSTD), Redondo Beach, California, USA, 2001.

53 Tansel, A.U., J. Clifford, S. Gadia, S. Jajodia, A. Segev and R. Snodgrass. Temporal Databases: Theory,

Design and Implementation. Benjamin/Cummings Publishing Company, 1993.

54 Y. Theodoridis. Ten Benchmark Database Queries for Location-based Services, The Computer Journal, 46

(6): 713-725, 2003.

55 Y. Theodoridis, M. Vazirgiannis, T. Sellis. Spatio-temporal Indexing for Large Multimedia Applications.

Proceedings of ICMCS, 1996.

56 I. Theodoulidis and P. Loucopoulos. The Time Dimension in Conceptual Modeling. Information Systems, 16

(3): 273-300, 1991.

http://www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx

Pelekis et. al.: The HERMES MOD Engine 90

57 M. Vazirgiannis and O. Wolfson. A Spatiotemporal Model and Language for Moving Objects on Road

Networks. Proc. 7th Int‟l Symp. on Spatial and Temporal Databases (SSTD), Redondo Beach, California,

USA, 2001.

58 G. Wiederhold, S. Jajodia and W. Litwin. Dealing with Granularity of Time in Temporal Databases. Proc.

3rd Nordic Conf. on Advanced Information Systems Engineering, Trondheim, Norway, May 1991.

59 M.F. Worboys. Unifying the Spatial and Temporal Components of Geographical Information. Proc. Int‟l

Symp. on Spatial Data Handling (SDH), 1994.

60 O. Wolfson, A. P. Sistla, S. Chamberlain and Y. Yesha. Updating and Querying Databases that Track Mobile

Units. Distributed and Parallel Databases, 7 (3): 257-387, 1999.

61 O. Wolfson, B. Xu, S. Chamberlain, L. Jiang. Moving Objects Databases: Issues and Solutions. Proc. 10th

Int‟l Conf. on Scientific and Statistical Database Management (SSDBM), Capri, Italy, 1998.

62 P. Zhang. The Spatial Movement Extensions of STAU. MPhil Thesis, UMIST, Department of Computation,

2003.

63 Esteban Zimányi, personal communication, 2010.

Pelekis et. al.: The HERMES MOD Engine 91

1 Appendix A – the Temporal Data Model Adopted by HERMES-MDC

TAU Model augment the four temporal data types found in ODMG object model, Date, Time,

Timestamp and Interval, with three new temporal data types: Timepoint, Period and Temporal

Element. In the following sections, the semantics and the formal definitions of all the temporal

literal types supported by TAU Time Model are given, as well as the formal specifications of the

atomic literal types that are utilized in the definition of the temporal types, in terms of set

theory.

Operations related with each temporal type fall into three categories namely, constructors,

access methods and utilities.

Constructors are operations that create instances of a type and initialize their state.

Access Methods are operations used to retrieve values of built-in properties.

Utilities are operations that return general information regarding the instance.

1.1 Atomic Literal Types

The set of Atomic Literal Types ALT is defined as

ALT =  boolean   char   short   ushort   long   ulong   float   double  

octet   string   enum, where

 boolean = {true, false}  char = {x | x ASCII}

 short = {x:  | s_lb x s_ub}  ushort = {x:  | x us_ub}

 long = {x:  | l_lb x l_ub}  ulong = {x:  | x ul_ub}

 float = {x:  | f_lb x f_ub}  double = {x:  | d_lb x d_ub}

 bit = {0, 1}  octet = bit
8

 string = Char
n
, n*

  enum = {(s, n) | s string, n  any

numerical type}

s_lb, l_lb, f_lb, d_lb are the lower bounds and s_ub, us_ub, l_ub, ul_ub, f_ub, d_ub are the upper

bounds of the corresponding numerical types. The representation, precision, ranges and

operations of numerical types are implementation platform specific.

Further more, in order to formalize the definition of the temporal literal types we should first

define the time divisions in the Gregorian calendar, which are,

 GrYear = {y: long | lb y ub  y 0}  GrMonth = {m: ushort | 1 m 12}

Pelekis et. al.: The HERMES MOD Engine 92

 GrDay = {d: ushort | 1 d 31}  GrHour = {h: ushort | 0 h 23}

 GrMinute = {m: ushort | 0 m 59}  GrSecond = {s: double | 0 s 59}

as well as the set granularity that contains elements that represent time accuracy:

 granularity = {YEAR, MONTH, DAY, HOUR, MINUTE, SECOND}

As such the set of Temporal Literal Types TLT is defined as

TLT =  date   time   timestamp   timepoint g   interval   period g  

temporalElement g.

1.2 ODMG Temporal Data Types

The ODMG Standard [CB97] defines the following temporal data types:

Date: Instances of the Date type represent unique points in time. It supports the fields YEAR,

MONTH and DAY.

date =d year GrYear, month GrMonth, day GrDay

Time: The Time data type supports the fields HOUR, MINUTE and SECOND. It either

represents a unique point in time (for which the date is implicit) or it represents a recurring

point of time. It is possible to specify a precision, i.e. the number of decimal places of

accuracy to which the SECOND field will be kept. The default precision is zero (whole

seconds only). The maximum precision is implementation defined (at least 6). The Time data

type has a WITH TIME ZONE option. If the option is not specified the values of the data

type are assumed to be always in the current default time zone of the user session. If the

option is specified then the values of the data type include the TIMEZONE_HOUR and

TIMEZONE_MINUTE fields, which specify the offset of the time zone of the rest of the

value from Universal Coordinated Time.

time =d hour GrHour, minute GrMinute, secondGrSecond

Timestamp: The Timestamp data type supports the fields YEAR, MONTH, DAY, HOUR,

MINUTE and SECOND. It represents unique points in time. With Timestamp data type it is

possible to specify a precision and WITH TIME ZONE option (see Time data type).

timestamp =d date  time

Interval: The Interval data type is used to represent an unanchored duration of time. Every

interval data type consists of a contiguous subset of the fields: DAY, HOUR, MINUTE and

SECOND.

Pelekis et. al.: The HERMES MOD Engine 93

interval =d day long, hour GrHour, minute GrMinute, second GrSecond

1.3 Advanced Temporal Data Types

We augment the four temporal literal data types found in ODMG object model [CB97] with

three new temporal object data types presented below:

Timepoint: TAU Model extends the Timestamp data type to include granularity. The new data type

is a subtype of the Timestamp data type. It inherits all the properties and the operations that are

defined for the Timestamp data type. It refines all the operations, which had as argument

Timestamp to Timepoint.

timepoint g =d tpg STV where

tp year =d yearGrYear , tpmonth d tpyear  month: GrMonth , ...,

tp second =d tpminute  secondGrSecond and STV d beginning, forever, now

Beginning and forever are defined to be members of timepoint such as

 t  timepoint g  beginning  t  forever

Period: The Period data type is used to represent an anchored duration of time, that is,

duration of time with starting and ending points. A period has an associated granularity. The

period is the composition of two timepoints with the constraint that the timepoint that starts

the period equals or precedes the timepoint that terminates it. Without loss of generality, it is

assumed that both timepoints have the same granularity.

period g =d  startTimepointg, endTimepointg | start  end, g  granularity

There are four categories of periods depending on whether they include their starting and/or

their ending timepoints or not: [T1, T2] (closed-closed), [T1, T2) (closed-open), (T1, T2] (open-

closed), and (T1, T2) (open-open). Without loss of generality, TAU Model supports only closed-

open periods, with which it is possible to model any other category. For example, the period

[T1, T2] is equivalent to the period [T1, T2+1 "granule"). The meaning of "1 granule" depends

on the granularity of the period. For instance, if the granularity is day then the period [T1, T2]

is equivalent to the period [T1, T2+1*DAY).

Temporal Element: The Temporal Element data type is used to represent a finite union of

disjoint periods. Temporal elements are closed under the set theoretic operations of union,

intersection and complementation.

temporalElement g =d te setperiodg| i, j  ij tei  tej

Pelekis et. al.: The HERMES MOD Engine 94

2 Appendix B – the Spatial Data Model Adopted by HERMES-MDC

2.1 Description of Spatial Data Types

The spatial data model adopted by Oracle10g is a hierarchical structure consisting of

elements, geometries, and layers, which correspond to representations of spatial data. Layers

are composed of geometries, which in turn are made up of elements. For example, a point

might represent a building location, a line string might represent a road or flight path, and a

polygon might represent a state, city, or zoning district.

Element: An element is the basic building block of a geometry. The supported spatial element

types in the object-relational model are points, simple, arc (circular arcs) and compound

linestrings and polygons, as well as circles and rectangles as sub-cases of polygon geometries.

Figure 69 illustrates the supported geometric primitive types. Point is the simplest geometry,

which consists of one coordinate. Each coordinate in an element is stored as a (x, y) pair often

corresponding to longitude and latitude. LineStrings are composed of one or more pairs of

points that define line segments. Polygons are composed of connected linestrings that form a

closed ring and the interior of the polygon is implied.

 yy'

xx'

Arc LineString

RectangleCircleCompound LineString

Compound Polygon

with hole
Arc PolygonPoint

Polygon

LineString

Figure 69 Primitive Geometry Types Supported by Oracle10g

As it is obvious in Figure 69, arc and compound types generalize the LineString and Polygon

types, to represent geometries with arbitrary interpolations but the same topology. Self-

crossing polygons are not supported although self-crossing linestrings are (see Figure 70). If a

linestring crosses itself, it does not become a polygon. A self-crossing linestring does not

have any implied interior. The exterior ring and the interior ring of a polygon with holes are

considered as two distinct elements that together make up a complex polygon.

Pelekis et. al.: The HERMES MOD Engine 95

Self-crossing

Polygon

Self-crossing

LineString

yy'

xx'

1

2

3
4

6

7
1

2
3

4

5

Figure 70 Self-crossing LineString & Polygons

Geometry: A geometry (or geometry object) is the representation of a spatial feature, modelled as

an ordered set of primitive elements. A geometry can consist of a single element, which is an

instance of one of the supported primitive types, a homogeneous or heterogeneous collection

of elements. A multipolygon, such as one used to represent a set of islands, is a homogeneous

collection. A heterogeneous collection is one in which the elements are of different types.

Layer: A layer is a heterogeneous collection of geometries having the same attribute set. For

example, one layer in a Geographical Information System (GIS) might include topographical

features, while another might describe population density, and a third describes the network

of roads and bridges in the area (lines and points). Each layer's geometries are stored in the

database in standard tables.

2.2 Object Orientation and Geometry Hierarchy

Until now we have clarified all the geometric types that our model supports. In Figure 71, one

can see the geometry interface hierarchy adopted by the proposed spatial model and

developed as an extension of the Open GIS geometry model [OGIS]. In the proposed model,

a geometry object can be either a simple geometry or a geometry collection. A simple

geometry is defined as previously, while a geometry collection is a heterogeneous collection

of points, linestrings and polygons. More specific types like multipoint, multicurve and

multisurface are introduced to represent homogeneous collections of points, linestrings and

polygons respectively for easier geospatial analysis.

In Figure 71, the white blocks are helper interfaces i.e., Segment, LinearSegment,

CircularArc, Spline and other potential interpolations of a Segment. The dark-shaded blocks

are the Open GIS types i.e., Geometry, Point, Curve, Surface, LineString, Polygon,

GeometryCollection, MultiPoint, MultiCurve, MultiSurface, MultiLineString and

MultiPolygon. The light-shaded blocks are the extended types i.e., CurveString,

CurvePolygon, MultiCurveString and MultiCurvePolygon.

The Curve, Surface, Multicurve and Multisurface are intermediate abstract types that make

this model more flexible for expansion. A curve is an arbitrary topologically one-dimensional

Pelekis et. al.: The HERMES MOD Engine 96

geometry object. A surface is an arbitrary topologically two-dimensional geometry object that

may or may not be plane. A multicurve and a multisurface represent collections of curves and

surfaces, respectively.

Geometry

Segment

MultiCurvePolygonMultiCurveString

MultiSurfaceMultiCurveMultiPoint

PolygonLineString

CurvePolygonCurveString

Geometry CollectionSurfaceCurvePoint

SplineCircularArcLinearSegment

MultiPolygonMultiLineString

.......

Figure 71 Geometry Interface Hierarchy

The proposed geometry interface hierarchy is fully compatible with the Open GIS model

because the existence of the extended types does not affect the inheritance relationships when

developers implement linear interfaces only. In fact, the new CurveString and CurvePolygon

interfaces generalize the LineString and Polygon interfaces respectively, to represent

geometries with arbitrary interpolations but the same topology as traditional Open GIS

geometries.

2.3 Structures for Spatial Data Types

In the spatial object-relational model, the geometric description of a spatial object is stored in

a single row, in a single column of object type SDO_GEOMETRY (defined under the MDSYS

Oracle user) in a user-defined table. Any table that has a column of type SDO_GEOMETRY must

have another column, or set of columns, that define a unique primary key for that table. This

object type corresponds to the most general type defined in the interface hierarchy of Figure

71. Each subtype is declared and stored in a database table as an SDO_GEOMETRY object and

the knowledge of which sub-type is or what its special characteristics are, are embodied in the

structure of this generic object. Oracle Spatial defines SDO_GEOMETRY object type as:

CREATE TYPE SDO_GEOMETRY AS OBJECT (

SDO_GTYPE NUMBER,

SDO_SRID NUMBER,

Pelekis et. al.: The HERMES MOD Engine 97

SDO_POINT SDO_POINT_TYPE,

SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY,

SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY);

The sections that follow describe the semantics of each SDO_GEOMETRY attribute, and some

usage considerations.

SDO_GTYPE indicates the type of the geometry. Valid geometry types correspond to those

specified in the geometry interface hierarchy. The following table shows the valid SDO_GTYPE

values and the correspondence between the names and semantics.

 Value Geometry Type Description

d000 UNKNOWN_GEOMETRY Spatial ignores this geometry

d001 POINT Geometry contains one point

d002 LINESTRING Geometry contains one line string

d003 POLYGON Geometry contains one polygon with or without

holes

d004 COLLECTION Geometry is a heterogeneous collection of

elements

d005 MULTIPOINT Geometry has multiple points

d006 MULTILINESTRING Geometry has multiple linestrings

d007 MULTIPOLYGON Geometry has multiple, disjoint polygons (more

than one exterior boundary)

Table 1 Valid SDO_GTYPE Values

For a polygon with holes, the user should enter the exterior boundary first, followed by any

interior boundaries. In a multi-polygon all polygons in the collection must be disjoint. The d

in the Value column of the previous table is the number of dimensions: 2, 3, or 4. For example,

a value of 2003 indicates a 2-dimensional polygon. For the time only 2-dimensional

geometries are supported. The number of dimensions reflects the number of coordinates used

to represent each vertex (for example, (x,y) for 2-dimensional objects or (x,y,z) for 3-

dimensional objects). Points and lines are considered to be 2-dimensional objects. In any

given layer (column), all geometries must have the same number of dimensions. For example,

we cannot mix 2-dimensional and 3-dimensional data in the same layer.

Pelekis et. al.: The HERMES MOD Engine 98

SDO_SRID is intended to be a foreign key in a spatial reference system definition table, in

order to integrate support into Oracle10g for storing and manipulating SDO_GEOMETRY

objects in a variety of coordinate systems.

SDO_POINT is defined using an object type with attributes x, y and z of type NUMBER. If

the SDO_ELEM_INFO and SDO_ORDINATES arrays are both null, and the SDO_POINT

attribute is non-null, then the x and y values are considered to be the coordinates for a point

geometry. Otherwise the SDO_POINT attribute is ignored.

SDO_ELEM_INFO is defined using a varying length array of numbers. This attribute helps

to interpret the ordinates stored in the SDO_ORDINATES attribute (see section 3.2.1.5). Each

triplet set of numbers is interpreted as follows:

SDO_STARTING_OFFSET indicates the offset within the SDO_ORDINATES array where

the first ordinate for this element is stored.

SDO_ETYPE indicates the type of the element. Valid values are 0 through 5, as well as the

following: 1003 and 2003 (variants of 3), and 1005 and 2005 (variants of 5). SDO_ETYPE

values 1, 2, and 3 concern simple elements. They are defined by a single triplet entry in the

SDO_ELEM_INFO array. Moreover, the following are considered variants of type 3, with the

first digit indicating exterior (1) or interior (2):

1003: exterior polygon ring (must be specified in counter-clockwise order)

2003: interior polygon ring (must be specified in clockwise order)

SDO_ETYPE values 4 and 5 concern compound elements. They contain at least one header triplet

with a series of triplet values that belong to the compound element. The elements of a

compound element are contiguous. The last point of a subelement in a compound element is

the first point of the next subelement. The point is not repeated.

SDO_ETYPE SDO_INTERPRETATION Meaning

0 0 Unsupported element type. Ignored by the

Spatial functions and procedures.

1 1 Point type.

1 n >1 Point cluster with n points.

2 1 Line string whose vertices are connected by

Pelekis et. al.: The HERMES MOD Engine 99

straight-line segments.

2 2 Line string made up of a connected sequence of

circular arcs.

3 1 Simple polygon whose vertices are connected by

straight-line segments.

3 2 Polygon made up of a connected sequence of

circular arcs that closes on itself.

3 3 Rectangle type. A bounding rectangle such that

only two points, the lower-left and the upper-

right, are required to describe it.

3 4 Circle type. Described by three points, all on the

circumference of the circle.

4 n > 1 Line string with some vertices connected by

straight-line segments and some by circular arcs.

5 n > 1 Compound polygon with some vertices

connected by straight-line segments and some by

circular arcs.

Table 2 Values and Semantics of SDO_ELEM_INFO

SDO_INTERPRETATION can mean one of two things, depending on whether or not

SDO_ETYPE is a compound element. If the SDO_ETYPE is a compound element (4 or 5),

this field specifies how many subsequent triplet values are parts of the element. If the

SDO_ETYPE is not a compound element (1, 2, or 3), the interpretation attribute determines

how the sequence of ordinates for this element is interpreted. For example, a line string or

polygon boundary may be made up of a sequence of connected straight-line segments or

circular arcs. If a geometry consists of more than one element, then the last ordinate for an

element is always one less than the starting offset for the next element. The last element in the

geometry is described by the ordinates from its starting offset to the end of the

SDO_ORDINATES varying length array. The semantics of each SDO_ETYPE element and

the relationship between the SDO_ELEM_INFO and SDO_ORDINATES varying length

arrays for each of these SDO_ETYPE elements are given in the following table.

Pelekis et. al.: The HERMES MOD Engine 100

Each circular arc in the geometries is described using three coordinates: the arc's starting

point, any point on the arc, and the arc's end point. The coordinates for a point designating the

end of one arc and the start of the next arc are not repeated. For example, five coordinates are

used to describe a linestring made up of two connected circular arcs. Points 1, 2, and 3 define

the first arc, and points 3, 4, and 5 define the second arc, where point 3 is only stored once.

For polygon geometries the user needs to specify a point for each vertex, and the last point

specified must be identical to the first (to "close" the polygon). For example, for a 4-sided

polygon, we need to specify 5 points, with point 5 the same as point 1.

For compound elements the value, n, in the interpretation column specifies the number of

contiguous subelements that make up the geometry. The next n triplets in the

SDO_ELEM_INFO array describe each of these subelements. The subelements can only be of

SDO_ETYPE 2. The end point of a subelement is the start point of the next subelement, and it

must not be repeated.

SDO_ORDINATES is defined using a varying length array of NUMBER type that stores the

coordinate values that make up the boundary of a spatial object. This array must always be

used in conjunction with the SDO_ELEM_INFO varying length array. The values in the array

are ordered by dimension. For example, a polygon whose boundary has four 2-dimensional

points is stored as {x1,y1, x2,y2, x3,y3, x4,y4, x1,y1}.

The values in the SDO_ORDINATES array must all be valid and non-null. There are no

special values used to delimit elements in a multi-element geometry. The start and end points

for the sequence describing a specific element are determined by the STARTING_OFFSET

values for that element and the next element in the SDO_ELEM_INFO array as explained

previously.

Usage considerations: The Spatial Data Cartridge user should use the SDO_GTYPE values

as shown in table 1. The Spatial component enforces some geometry consistency constraints

and more specifically, the following:

For SDO_GTYPE values d001 and d005, any subelement not of SDO_ETYPE 1 is ignored.

For SDO_GTYPE values d002 and d006, any subelement not of SDO_ETYPE 2 or 4 is

ignored.

For SDO_GTYPE values d003 and d007, any subelement not of SDO_ETYPE 3 or 5 is

ignored. (This includes SDO_ETYPE variants 1003, 2003, 1005, and 2005).

Pelekis et. al.: The HERMES MOD Engine 101

2.4 Formal Definition of Pure Spatial Types

This section describes formally in terms of set theory the unique object type that represents all

the different geometric constructs adopted in our spatial model.

ST =  SDO_GEOMETRY

Before introducing the constraints and the interdependencies between the element types that

compose the SDO_GEOMETRY object, let us first define these components, in order to associate

conceptually their formal description with their linguistic one in Section 12.3. The reader

should have in mind that even though the spatial model supports geometries of higher

dimension than two, we are interested in 2-Dimensional spatial objects only.

SDO_GTYPE_TYPE = {gt: ushort | 2000 gt 2007}

SDO_POINT_TYPE = {(x, y) | x, y  double}

SDO_ELEM_INFO_ARRAY = {set (so, et, ip) | so  SDO_STARTING_OFFSET  et  SDO_ETYPE  ip

 SDO_INTERPRETATION   i, j  i  j  soi soj }

where

SDO_STARTING_OFFSET={so:ulong | 1 so LAST(ORD)}

 SDO_ETYPE = {et: ushort | 0 et 5  et  {1003, 2003, 1005, 2005}}

 SDO_INTERPRETATION = {ip: ushort}

SDO_ORDINATES = {set x | x double, |set x|=2k, k 0, k ulong }

As such SDO_GEOMETRY is defined as follows:

SDO_GEOMETRY =d { SDO_GTYPE: SDO_GTYPE_TYPE,

 SDO_SRID: ushort,

 SDO_POINT: SDO_POINT_TYPE,

 SDO_ELEM_INFO: SDO_ELEM_INFO_ARRAY,

 SDO_ORDINATES: SDO_ORDINATES_ARRAY |

/* Due to space limitations we use the following abbreviations:

 SDO_GTYPE_TYPE:=GTYPE

 SDO_POINT_TYPE:=PTYPE

 SDO_ELEM_INFO_ARRAY:=ELEM

 SDO_ORDINATES_ARRAY:=ORD */

Pelekis et. al.: The HERMES MOD Engine 102

( gt  GTYPE  gt  {2001, 2005}  GTYPE   (so, et, ip)  ELEM: et=1) 

( gt  GTYPE  gt  {2002, 2006}  GTYPE   (so, et, ip)  ELEM: et=2  et=4) 

( gt  GTYPE  gt  {2003, 2007}  GTYPE   (so, et, ip)  ELEM: et=3  et=5) 

( gt  GTYPE  gt=2001  (PTYPE  (ELEM =  ORD =))  (PTYPE=  (ELEM =(1, 1, 1) 

|ORD|=2))) 

( gt  GTYPE  gt=2002 |ORD|  4  (ORD1  ORD LAST(ORD)-1  ORD2  ORD LAST(ORD))  ( j=2k+1, k

0, k ulong: point (ORDj, ORDj+1)  point (ORDj+2, ORDj+3))  ( j=2k+1, k 0, k ulong: collinear (segment

(point (ORDj, ORDj+1), point (ORDj+2, ORDj+3)), segment (point (ORDj+2, ORDj+3), point (ORDj+4, ORDj+5)) 

overlap(segment (point (ORDj, ORDj+1), point (ORDj+2, ORDj+3)), segment (point (ORDj+2, ORDj+3), point

(ORDj+4, ORDj+5)))  ( j=2k+1, k 0, k ulong: arcline ((point (ORDj, ORDj+1), point (ORDj+2, ORDj+3),

point (ORDj+4, ORDj+5))  collinear ((point (ORDj, ORDj+1), point (ORDj+2, ORDj+3), point (ORDj+4,

ORDj+5)))) 

( gt  GTYPE  gt=2003  ( (so, et, ip)  ELEM: ip=3  parallel (segment (point (ORDso, ORDso+1),

point (ORDso+2, ORDso+3)), xx‟)  parallel (segment (point (ORDso, ORDso+1), point (ORDso+2, ORDso+3)), yy‟))

 ( (so, et, ip)  ELEM: ip=4  collinear ((point (ORDso, ORDso+1), point (ORDso+2, ORDso+3), point

(ORDso+4, ORDso+5)))  ( j, 1 j |ELEM|DIV3, j ulong (soj, etj, ipj)  ELEM: etj=3  etj=5  Polygonj=d

{ORDsoj,…, ORDsoj+1-1}  ORD  linestringsOfPolygonj=d {set linestring: ORDk,…,ORDlsoj k l

soj+1-1  l, m  linestring: l=next(m), lm  meet (l, m)  intersect (l, m)  touch (l, m)  (ORDsoj=

ORDsoj+1-2  ORDsoj+1= ORDsoj+1-1)   linestring: (v) rules applied to ORDk,…,ORDlinstead to all

ORD}   m, 1 m: inside(Polygonm, Polygon1)  counter-clockwise(Polygon1)  clockwise(Polygonm)   m1,

m2 1 m1  1 m2: m1m2 disjoint(m1, m2))) 

( gt  GTYPE  gt=2004   j, 1 j |ELEM|DIV3, j ulong: (etj=2  etj=4  geometryj(ORDsoj,…,

ORDsoj+1-1) follows (v) rules) (etj=3  etj=5  geometryj(ORDsoj,…,ORDsoj+1-1) follows (vi) rules 

unique(geometryj(ORDsoj,…,ORDsoj+1-1))) 

( gt  GTYPE  gt=2005   j, 1 j |ELEM|DIV3, j ulong: etj=1  ipj=1  soj=2j-1 

|ORD|=2|ELEM|DIV3  unique(point(ORDsoj, ORD soj+1-1))) 

( gt  GTYPE  gt=2006   j, 1 j |ELEM|DIV3, j ulong: linestringj(ORDsoj,…, ORDsoj+1-1) follows (v)

rules  unique(linestringj (ORDsoj,…, ORDsoj+1-1))) 

( gt  GTYPE  gt=2007   i, j, 1 i, j |ELEM|DIV3, i, j ulong: i j  disjoint(polygoni, polygonj) 

polygonj(ORDsoj,…, ORDsoj+1-1) follows (vi) rules  unique(polygonj(ORDsoj,…, ORDsoj+1-1)))

}

The constraints (i) to (iii) describe formally some usage considerations, while the rules from

(iv) to (x) illustrate possible interrelations between the constituent types of the

Pelekis et. al.: The HERMES MOD Engine 103

SDO_GEOMETRY object for each one of the geometries that can be represented by this object.

More specifically, the (iv) rule depicts the two possible ways to define a point geometry and

(v) exemplifies that in order to construct a valid linestring the size of the ordinates array

should be at least four (namely two points) and the first point must not coincide with the last

point, as this is the case that differentiates a simple polygon from a linestring. What is more,

each pair of sequential points must be different and for each triplet of points, if these points

are intended to describe two sequential linear segments then we require that there are no such

co-linear overlapping segments, otherwise if these points describe just an arc-segment then

we require that these points are not co-linear.

The (vi) set theory proposition describes the constraints that should stand in case the

SDO_GEOMETRY object models a polygon geometry. Firstly ensures the validity of rectangular

and circle geometries, which are special cases of a polygon. This is accomplished by not

permitting parallelism between the segment that is formed by the lower left and upper right

point that define a rectangular and the xx‟ or the yy‟ axis; and by forbidding co-linearity

between the three points needed to define a circle.

For simple polygons the model requires that the first polygon-element described in the

elements-info array must be the exterior boundary that will include one or more possible

disjoint hole-polygons. The points that form the exterior boundary in the ordinates array must

be specified in counter-clockwise order, while points composing hole-polygons must be

specified in clockwise order. Furthermore, the linestring subelements that describe complex

interpolations of the boundary of a polygon must meet (the end point of a linestring is the

same with the starting point of the next linestring), must not intersect in their interior (a point

other than an end point), must not touch (the end point lies in the interior of the other

linestring) and the starting point of the first linestring must be equal with the end point of the

last linestring. Finally, each of these linestring sub-elements must fulfil the constraints

imposed for linestring geometries in (v).

The rules described in (vii) impose that, for each distinct geometry object that is integrated in

a heterogeneous collection, the corresponding constraints must stand depending on the kind

of geometry. For example, if the collection has a linestring, then the (v) constraints must stand

for this linestring. Similarly, propositions from (viii) to (x) require unique representation and

existence of a geometry object inside a homogeneous collection and validity of each of them

as this is implied by the rules that conform to its type. An additional rule that is enforced in

the case of a multi-polygon is that either the exterior boundaries of the polygons composing

Pelekis et. al.: The HERMES MOD Engine 104

the collection are disjoint or the exterior boundary of a polygon is inside a hole of another

polygon.

Pelekis et. al.: The HERMES MOD Engine 105

3 Appendix C – Formal Definition of Spatio-Temporal Moving Types

In order to formally define in terms of set theory the moving types introduced in this paper we

follow a down-top approach, meaning that we first describe the simpler data types and

subsequently we define the more complex data types. In this section we just present the

formal definitions while their linguistic explanations have been given in section.

MT =  Moving_Point    Moving_LineString    Moving_Rectangle    Moving_Circle   

Moving_Polygon    Moving_Collection    Moving_Object .

First of all let us define the unit moving types, which are the basic building components of the

spatio-temporal data types. The simpler of the unit moving types, the Unit_Moving_Point, upon

which, is based the definition of all the others, needs for its construction two kind of objects,

namely the D_Period_Sec and the Unit_Function. The D_Period_Sec is formally described in

Appendix B as the period SECOND type. The Unit_Function has been defined earlier, as such,

Unit_Moving_Point =d p: period SECOND, m: Unit_Function

Unit_Moving_Rectangle =d { ll: Unit_Moving_Point, ur: Unit_Moving_Point | equal (ll.p, ur.p) }

Unit_Moving_Circle =d { f: Unit_Moving_Point, s: Unit_Moving_Point, t: Unit_Moving_Point | equal (f.p,

s.p, t.p) }

Unit_Moving_Segment =d { b: Unit_Moving_Point, e: Unit_Moving_Point, m: Unit_Moving_Point,

kind:TypeOfSegment | (kind=SEG  equal (b.p, e.p))  (kind =ARC  equal (b.p, e.p, m.p)) }, where 

TypeOfSegment  = { SEG, ARC }

Unit_Moving_Linestring =d { l: setUnit_Moving_Segment |  i, j  ulong: i j  equal (li.b.p, lj.e.p) }

Unit_Moving_Polygon =d { l: setUnit_Moving_Segment, hole:boolean |  i, j  ulong: i j  equal (li.b.p,

lj.e.p) }

Having defined all the unit-moving types we are now ready to formalize the description of

our moving types:

Moving_Point =d { p: setUnit_Moving_Point |  i, j  ulong, 1 i, j |setUnit_Moving_Point|: j= i+1 

pi.p < pj.p  overlaps(pi.p, pj.p)   t  double: inside(t, pi.p)  at_instant(p, t) 

SDO_GEOMETRYSDO_GTYPE=2001 /*point geometry*/}

Moving_Rectangle =d { r: setUnit_Moving_Rectangle |  i, j  ulong, 1 i, j |setUnit_Moving_Rectangle|:

j= i+1  ri.ll.p < rj.ur.p  overlaps(ri.ll.p, rj.ur.p)   t  double: inside(t, ri.ll.p)  at_instant(r, t) 

SDO_GEOMETRYSDO_GTYPE=2003  SDO_ELEM_INFO=(1, 3, 3) /*rectangle geometry*/ }

Pelekis et. al.: The HERMES MOD Engine 106

Moving_Circle =d { c: setUnit_Moving_Circle |  i, j  ulong, 1 i, j |setUnit_Moving_Circle|: j= i+1 

ci.f.p < cj.s.p  overlaps(ci.f.p, cj.s.p)   t  double: inside(t, ci.f.p)  at_instant(c, t) 

SDO_GEOMETRYSDO_GTYPE=2003  SDO_ELEM_INFO=(1, 3, 4) /*circle geometry*/ }

Moving_LineString =d { line: setUnit_Moving_LineString |  i, j  ulong, 1 i, j

|setUnit_Moving_LineString|: j= i+1  linei.l1.b.p < linej.l1.e.p  overlaps(linei.l1.b.p, linej.l1.e.p)   t 

double: inside(t, linei.l1.b.p)  at_instant(line, t)  SDO_GEOMETRYSDO_GTYPE=2002 /*linestring geometry*/ }

Moving_Polygon =d { pol: setUnit_Moving_Polygon |  i, j  ulong, 1 i, j |setUnit_Moving_Polygon|: j=

i+1  poli.l1.b.p < polj.l1.e.p  overlaps(poli.l1.b.p, polj.l1.e.p)   t  double: inside(t, poli.l1.b.p) 

at_instant(pol, t)  SDO_GEOMETRYSDO_GTYPE=2003 /*polygon geometry*/ }

In order to define the Moving_Collection and subsequently the Moving_Object data types, we

first need to describe formally the multi object types for each one of the moving types:

Multi_Moving_Point =d { multi_mpoint: set Moving_Point |  i, j  ulong   t  double: inside(t,

multi_mpointi.pj.p)  i (at_instant(multi_mpointi, t))  SDO_GEOMETRYSDO_GTYPE=2005 /*multi-point

geometry*/ }

Multi_Moving_LineString =d { multi_mline: set Moving_LineString |  i, j  ulong   t  double: inside(t,

multi_mlinei.linej.l1.b.p)  i (at_instant(multi_mlinei, t))  SDO_GEOMETRYSDO_GTYPE=2006 /*multi-linestring

geometry*/ }

Multi_Moving_Circle =d { multi_mcircle: set Moving_Circle |  i, j  ulong   t  double: inside(t,

multi_mcirclei.cj.f.p)  i (at_instant(multi_mcirclei, t))  SDO_GEOMETRYSDO_GTYPE=2007 /*multi-polygon

geometry*/ }

Multi_Moving_Rectangle =d { multi_mrectangle: set Moving_Rectangle |  i, j  ulong   t  double:

inside(t, multi_mrectanglei.rj.ll.p)  i (at_instant(multi_mrectanglei, t))  SDO_GEOMETRYSDO_GTYPE=2007

/*multi-polygon geometry*/ }

Multi_Moving_Polygon =d { multi_mpolygon: set Moving_Polygon |  i, j  ulong   t  double: inside(t,

multi_mpolygoni.polj.l1.b.p)  i (at_instant(multi_mpolygoni, t))  SDO_GEOMETRYSDO_GTYPE=2007 /*multi-

polygon geometry*/ }

As such, Moving_Collection =d { multi_mpoint: Multi_Moving_Point,

multi_mline: Multi_Moving_LineString,

multi_mcircle: Multi_Moving_Circle,

multi_mrectangle: Multi_Moving_Rectangle,

multi_mpolygon: Multi_Moving_Polygon |

 i, j  ulong   t  double: inside(t, multi_mpointi.pj.p)  inside(t, multi_mlinei.linej.l1.b.p)  inside(t,

multi_mcirclei.cj.f.p)  inside(t, multi_mrectanglei.rj.ll.p)  inside(t, multi_mpolygoni.polj.l1.b.p)

Pelekis et. al.: The HERMES MOD Engine 107

 [(i (at_instant(multi_mpointi, t))) (i (at_instant(multi_mlinei, t))) (i (at_instant(multi_mcirclei, t)))

(i (at_instant(multi_mrectanglei, t)))  (i (at_instant(multi_mpolygoni, t)))] 

SDO_GEOMETRYSDO_GTYPE=2004 /*collection geometry*/ }

Moving_Object =d { mobject: Moving_Object,

mpoint: Moving_Point,

mline: Moving_LineString,

mcircle: Moving_Circle,

mrectangle: Moving_Rectangle,

mpolygon: Moving_Polygon,

mcolection: Moving_Collection,

geometry: SDO_GEOMETRY,

gtype: GeometryType,

optype: string,

arg1: ushort,

arg2: ushort,

input: Union_Input | section<> }

where

 GeometryType  = { MOBJECT, MPOINT, MLINE, MCIRCLE, MRECTANGLE, MPOLYGON,

MCOLLECTION }

Union_Input =d mask: string, tolerance: double, distance: double

Pelekis et. al.: The HERMES MOD Engine 108

4 Appendix D – Description of HERMES-MDC’s operations

4.1 Maintaining the Database Consistent

The two subsequent sections present how HERMES-MDC facilitates a user checking the

construction data of two moving objects and as such maintaining the database in a consistent

state:

4.1.1 Validation of a Moving LineString

In the following figure we demonstrate a series of visual transformations (virtual movements)

of a moving linestring. The corresponding linguistic description of the figure as well as events

raised by HERMES-MDC is given in Table 3. By this way we show special features, interesting

and degenerated cases as well as rules and constraints that we impose in this type. HERMES-

MDC identifies and reports such phenomena in order to maintain the consistency of the

database. In the figure below the black solid lines represents snapshots of the moving objects.

The various spatio-temporal transformations Ti that are of interest are depicted by the grey

dashed arrows from some initial positions of the unit-moving points to some others (that are

differently coloured).

Spatio-Temporal

Transformations

HERMES-MDC Events

T1: u_m_p2  (4, 4); Raises an application error because u_m_p2, u_m_p3 & u_m_p4 that define

an arc segment are becoming co-linear.

T2: u_m_p6  (7.5, 6.5); Raises an application error because u_m_p6 is lying on an interior point of

the segment defined by u_m_p4 & u_m_p5. In other words, segments

(u_m_p4, u_m_p5) & (u_m_p5, u_m_p6) overlap.

T3: u_m_p6  (12, 8); Despite that u_m_p4, u_m_p5 & u_m_p6 are becoming co-linear and as such

two consequent linear segments could be replaced by only one, this is an

acceptable case.

T4 & T5: u_m_p6 & u_m_p7  (10,

6);

Raises an application error due to that u_m_p6 & u_m_p7 that define a line

segment are becoming the same point and as such the segment is

degenerated to a point.

T6: u_m_p7  (7.5, 6.5); Even though u_m_p7, which is the last unit-moving point for the moving

linestring, touches the interior of another segment, this is an acceptable

case.

T7: u_m_p7  (4, 6); Despite the fact that u_m_p7, which is the last unit-moving point for the

Pelekis et. al.: The HERMES MOD Engine 109

moving linestring, crosses another segment, this is an acceptable case.

T8: u_m_p7  (14, 7); &

 u_m_p6  (15, 5);

Raises an application error due to that the trajectories of u_m_p6 & u_m_p7,

which are sequential unit-moving points, are intersecting, and this is a

criterion that the corresponding unit-moving segment is rotating, something

we do not accept.

T10 & T11: u_m_p1 & u_m_p7  (7,

2);

Raises an application error because u_m_p1 & u_m_p7, which are the first

and last (respectively) unit-moving points for the moving linestring, are

moving to the same point and as such they form a closed polygon.

Table 3 Spatial Validation of a Moving LineString

1

6

5

4

3

2

1

1098765432 1514131211

8

7

(0, 0) X axis

Y axis

Line segment

Ordinate indicator

Motion arrow New position

Initial position

1__ pmu

7__ pmu

6__ pmu

5__ pmu
4__ pmu

3__ pmu
2__ pmu

7.5

6.5

1T

10T

9T

8T

7T

6T
5T

4T

3T

2T

11T

Figure 72 Spatial Validation of a Moving LineString

4.1.2 Validation of a Moving Polygon

As previously in the case of a Moving_LineString, here we follow exactly the same technique

to demonstrate the check_degeneracies and validate_geometry operations that perform a spatial

consistency check upon a Moving_Polygon.

Spatio-Temporal

Transformations

HERMES-MDC Events

T1: u_m_p1  (3, 1.5); Raises an application error due to that the moving polygon is not “closed”,

meaning that the first unit-moving point is not the same with the last one.

T2: u_m_p2  (5, 5); Despite that u_m_p1, u_m_p2 & u_m_p3 are becoming co-linear and as such

two consequent linear segments (u_m_p1, u_m_p2) & (u_m_p2, u_m_p3)

Pelekis et. al.: The HERMES MOD Engine 110

could be replaced by only one (u_m_p1, u_m_p3), this is an acceptable case.

T3: u_m_p4  (9.5, 7); Raises an application error because u_m_p3, u_m_p4 & u_m_p5 that define

an arc segment are becoming co-linear.

T4: u_m_p7  (13, 7); Raises an application error due to that u_m_p7 crosses another segment.

Self-intersection of unit-moving segments is forbidden in a moving polygon.

T5: u_m_p7  (13, 6); Raises an application error due to that u_m_p7 touches the interior of

another segment. Similar situation as the previous one.

T6: u_m_p7  u_m_p8; Raises an application error due to that u_m_p7 & u_m_p8 that are

components of an arc segment are becoming the same point and as such

there are not three different unit-moving points to define the arc. The same

case can be noticed when a moving segment is degenerated to a point.

T7: u_m_p9  (11/3, 4); Raises an application error because u_m_p9 that is one of the vertices of a

hole; touches the exterior boundary of the polygon.

T8: u_m_p9  (3, 6); Raises an application error because u_m_p9 crosses the boundary of the

polygon and as such the hole that belongs to, intersects with the exterior

polygon.

T9: u_m_p10  (11, 4);

T10: u_m_p10  u_m_p15

Both transformations raise an application error because the first implies that

two hole-polygons are intersecting, while the second that these interior

polygons are touching.

T11: u_m_p12  (15, 6);

T12: u_m_p13  (16, 6);

T13: u_m_p14  (15, 4);

T14: u_m_p15  (16, 3);

These transformations also raise an application error because they are

transferring an interior hole-polygon outside the exterior boundary.

Table 4 Spatial Validation of a Moving Polygon

Pelekis et. al.: The HERMES MOD Engine 111

1

6

5

4

3

2

1

1098765432 1514131211

8

7

(0, 0) X axis

Y axis

Line segment

Ordinate indicator

Motion arrow New position

Initial position

1__ pmu

7__ pmu

6__ pmu

5__ pmu

4__ pmu

3__ pmu

2__ pmu

11/3

16

8__ pmu

14__ pmu

13__ pmu

15__ pmu

12__ pmu

11__ pmu

10__ pmu

9__ pmu

1T

10T
9T

8T

7T

6T

5T

4T

3T

2T

11T

14T

13T

12T

1.5

Figure 73 Spatial Validation of a Moving Polygon

4.2 Predicates Modeling Topological Relationships

The user can specify the kind of topological relationships that he requires to check via a mask

parameter. The following mask relationships can be tested in HERMES-MDC:

ANYINTERACT - Returns TRUE if the objects are not disjoint.

CONTAINS - Returns CONTAINS if the argument moving object is entirely within the caller

object and the object boundaries do not touch, at the given instance of time; otherwise, returns

FALSE.

COVEREDBY - Returns COVEREDBY if the parameter object is entirely within the caller object

and the object boundaries touch at one or more points; otherwise, returns FALSE.

COVERS - Returns COVERS if the argument object is entirely within the caller object and the

boundaries touch in one or more places; otherwise, returns FALSE.

DISJOINT - Returns DISJOINT if the objects have no common boundary or interior points;

otherwise, returns FALSE.

EQUAL - Returns EQUAL if the objects share every point of their boundaries and interior,

including any holes in the objects; otherwise, returns FALSE.

INSIDE - Returns INSIDE if the argument object is entirely within the caller object and the

object boundaries do not touch; otherwise, returns FALSE.

Pelekis et. al.: The HERMES MOD Engine 112

OVERLAPBDYDISJOINT - Returns OVERLAPBDYDISJOINT if the objects overlap, but their

boundaries do not interact; otherwise, returns FALSE.

OVERLAPBDYINTERSECT - Returns OVERLAPBDYINTERSECT if the objects overlap, and their

boundaries intersect in one or more places; otherwise, returns FALSE.

TOUCH - Returns TOUCH if the two objects share a common boundary point, but no interior

points; otherwise, returns FALSE.

Values for mask can be combined using a logical boolean operator. For example, „INSIDE +

TOUCH‟ returns „INSIDE + TOUCH‟ or „FALSE‟ depending on the outcome of the test.

Generally, the “relate” function can return the following types of answers:

If we pass a mask listing one or more relationships, the function returns the name of the

relationship if it is true for the pair of geometries. If all of the relationships are false, the

procedure returns FALSE.

If we pass the DETERMINE keyword in mask, the function returns the one relationship keyword

that best matches the geometries. DETERMINE can only be used when the relate predicate is in

the SELECT clause of the SQL statement.

If we pass the ANYINTERACT keyword in mask, the function returns TRUE if the two geometries

are not disjoint.

4.3 Projection and Interaction to Temporal and/or Spatial Domain

The signatures of the object methods as these are defined for the Moving_Object type that

HERMES-MDC provides for handling the projection and interaction of moving types to

temporal and/or spatial domain are given in Section 4.4. Here we present the algorithms of an

interesting as well as representative subset of these methods.

Below the reader can find an abstract description of the algorithm of the at_instant operation

for a Moving_Object in the form of PL/SQL-like pseudo-code. Due to space limitations we

present only the parts of the algorithm that have to do with Moving_Polygon and

Moving_Collection objects as these are more interesting. Also, we do not present the

algorithms but just the function calls for all the time-specific operations developed in TAU TLL

Data Cartridge. The reader interested in these operations is referred to [Pel02].

Pelekis et. al.: The HERMES MOD Engine 113

FUNCTION at_instant(tp TAU_TLL.D_Timepoint_Sec) return Union_Output is

result Union_Output;

geom MDSYS.SDO_GEOMETRY;

geom1 MDSYS.SDO_GEOMETRY;

geom2 MDSYS.SDO_GEOMETRY;

BEGIN

 IF m_object.gtype IS NOT NULL THEN

 SWITCH (m_object.gtype)

 CASE 'MOBJECT':

 result := m_object.at_instant(tp);

 CASE 'MPOINT':

 geom := m_object.m_point.at_instant(tp);

 CASE 'MLINE':

 geom := m_object.m_line.at_instant(tp);

 CASE 'MCIRCLE':

 geom := m_object.m_circle.at_instant(tp);

 CASE 'MRECTANGLE':

 geom := m_object.m_rectangle.at_instant(tp);

 CASE 'MPOLYGON':

 geom := m_object.m_polygon.at_instant(tp);

 CASE 'MCOLLECTION':

 geom := m_object.m_collection.at_instant(tp);

 END SWITCH;

 result := Construct Union_Output from geom or result.geom;

 ELSE

 IF m_object.optype is unary THEN

 SWITCH (m_obj.arg1)

 CASE 1: result := m_object.at_instant(tp);

 CASE 2: geom := m_object.m_point.at_instant(tp);

Pelekis et. al.: The HERMES MOD Engine 114

 ...

 CASE 7: geom := m_object.m_collection.at_instant(tp);

 CASE 8: geom := geometry;

 END SWITCH;

 result := invoke_unary_operation(m_object.optype, geom1 or result.geom, m_object.input);

 ELSIF m_object.optype is binary THEN

 SWITCH (m_object.arg1)

 CASE 1: result := m_object.at_instant(tp);

 CASE 2: geom1 := m_object.m_point.at_instant(tp);

 ...

 CASE 7: geom1 := m_object.m_collection.at_instant(tp);

 CASE 8: geom1 := m_object.geometry;

 END SWITCH;

 SWITCH (m_object.arg2)

 CASE 1: result := m_object.at_instant(tp);

 CASE 2: geom2 := m_object.m_point.at_instant(tp);

 ...

 CASE 7: geom2 := m_object.m_collection.at_instant(tp);

 CASE 8: geom2 := m_object.geometry;

 END SWITCH;

 result := invoke_binary_operation(m_object.optype, geom1, geom2, m_object.input);

 ELSE

 raise_application_error('At_Instant operation is invalid for this kind of Moving_Object');

 END IF;

 END IF;

 return result;

END;

Figure 74 The at_instant algorithm for a Moving_Object

Pelekis et. al.: The HERMES MOD Engine 115

The pseudo-code of the at_instant operation for a Moving Polygon is given below:

 FUNCTION at_instant(tp TAU_TLL.D_Timepoint_Sec) return Sdo_Geometry is

 t double;

 BEGIN

 IF check_periods_equality() <> TRUE THEN

raise_application_error('Periods in at least one entry of the nested table of type Unit_Moving_Polygon are

NOT equal');

 END IF;

 IF check_sorting() <> TRUE THEN

raise_application_error(„Periods in the nested table of type Unit_Moving_Polygon are NOT sorted');

 END IF;

 IF check_disjoint() <> TRUE THEN

raise_application_error(„Periods in the nested table of type Unit_Moving_Polygon are NOT disjoint');

 END IF;

 /* OPTIONAL - IF check_meet() <> TRUE THEN

raise_application_error(„Periods in the nested table of type Unit_Moving_Polygon do NOT meet');

 END IF; */

 i := pol.FIRST; -- get subscript of first unit moving polygon

 WHILE i IS NOT NULL LOOP

 contain_flag := pol(i).b.p.f_contains(pol(i).b.p, tp); --Check if tp is “inside” the period of pol(i)

 IF contain_flag = TRUE THEN

 t := tp.get_Abs_Date(); -- Map Timepoint object to real number (instant on time-line).

 result := merge_polygons(i, t);

 // The merge_polygons algorithm is given in Figure 76

 exit;

Pelekis et. al.: The HERMES MOD Engine 116

 END IF;

 i := pol.NEXT(i); -- get subscript of next unit moving polygon

 END LOOP;

 IF result is not null THEN

 err_msg := VALIDATE_GEOMETRY(result);

 IF err_msg = 'TRUE' THEN

 return result;

 ELSE

 raise_application_error('Geometry validation failed'||err_msg);

 END IF;

 ELSE

raise_application_error('The Timepoint is NOT contained in any of the Periods in the nested table of type

Unit_Moving_Polygon');

 END IF;

 END;

Figure 75 The at_instant algorithm for a Moving_Polygon

The algorithm merge_polygons invoked in the at_instant method of a Moving_Polygon is

given in Figure 76:

 FUNCTION merge_polygons (i, integer, t double) return Sdo_Geometry is

 BEGIN

 LOOP FOREVER

 j := pol(i).l.FIRST; -- get subscript of first moving segment

 WHILE j IS NOT NULL LOOP

 Interpolate the Unit_Moving_Points of current moving segment at instance t

Pelekis et. al.: The HERMES MOD Engine 117

 Add the description of the linestring element in the Elem_Info_Array

 Add the corresponding co-ordinates in the Ordinates_Array

 Check for degenerecies in the linestring element

 j := pol(i).l.NEXT(j); -- get subscript of next moving segment

 END LOOP;

 result := Construct the polygon formed by the Elem_Info_Array & Ordinates_Array;

 Check for degenerecies in the polygon geometry;

 IF i <> pol.LAST THEN

 i := i + 1;

 Initialize flags & local variables;

 Extend Elem_Info_Array & Ordinates_Array for probable addition of holes;

 IF pol(i).hole = FALSE THEN

 return result;

 END IF;

 ELSE

 return result;

 END IF;

 END LOOP;

 END;

Figure 76 The merge_polygons algorithm

The pseudo-code of the at_instant operation for a Moving_Collection is given below:

 FUNCTION at_instant(tp TAU_TLL.D_Timepoint_Sec) return Sdo_Geometry is

 BEGIN

FOR each m_collection.multi_moving_type in {multi_mpoint, multi_mline, multi_mcircle, multi_mrectangle,

multi_mpolygon}

 i := m_collection.multi_moving_type.FIRST; -- get subscript of first element

Pelekis et. al.: The HERMES MOD Engine 118

 WHILE i IS NOT NULL LOOP

 mtype := m_collection.multi_moving_type(i);

 IF i = 1 AND result IS NULL THEN

 current_homogeneous_collection := mtype.at_instant(tp);

 ELSE

 current_geom := mtype.at_instant(tp);

current_homogeneous_collection:=ADD(current_homogeneous_collection, current_geom);

 END IF;

 i := m_collection.multi_moving_type.NEXT(i); -- get subscript of next element

 END LOOP;

heterogeneous_collection:=ADD(heterogeneous_collection, current_homogeneous_collection);

 END FOR;

 return heterogeneous_collection;

 END;

Figure 77 The at_instant algorithm for a Moving_Collection

Figure 78 depicts the algorithm of the at_period operation for the case of a

Moving_LineString object.

FUNCTION at_period(p TAU_TLL.D_Period_Sec) return Moving_LineString is

new_line set<Unit_Moving_LineString>;

new_p TAU_TLL.D_Period_Sec;

BEGIN

 i := line.FIRST; -- get subscript of first Unit_Moving_LineString

 WHILE i IS NOT NULL LOOP

 /* Check if period that characterizes the current Unit

 Moving LineString overlaps with the argument period */

Pelekis et. al.: The HERMES MOD Engine 119

 overlaps_flag := line(i).b.p.f_overlaps(line(i).b.p, p); --Check if p “overlaps” the period of line(i)

 /* If YES take the period formed as the intersection of the two

 overlapped periods and update every Unit_Moving_Point */

 IF overlaps_flag = TRUE THEN

 new_p := line(i)b.p.intersects(line(i).b.p, p);

 j := line(i).l.FIRST; -- get subscript of first element

 WHILE j IS NOT NULL LOOP

 line(i).l(j).b.p := new_p;

 line(i).l(j).e.p := new_p;

 line(i).l(j).m.p := new_p;

 j := line(i).l.NEXT(j);

 END LOOP;

 new_line(i) := line(i);

 END IF;

 i := line.NEXT(i); -- get subscript of next Unit_Moving_LineString

 END LOOP;

 return Moving_LineString(new_line);

END;

Figure 78 The at_period algorithm for a Moving_LineString

In Figure 79, we provide the reader with the pseudo-code of the at_temp_element operation

for the case of a Moving_Point object, where it is obvious the different strategy of restricting

the temporal domain with a temporal element, rather than with a period.

Pelekis et. al.: The HERMES MOD Engine 120

FUNCTION at_temp_element(te TAU_TLL.D_Temp_Element_Sec) return Moving_Point is

new_point set<Unit_Moving_Point>;

intersection_te TAU_TLL.D_Temp_Element_Sec;

new_period TAU_TLL.D_Period_Sec;

BEGIN

 new_point := p;

 /* First find the temporal element object that is the intersection of the argument

 temporal element with the temporal element returned by f_temp_element function */

 intersection_te := intersection(f_temp_element(), te);

 /* For each period <new_period> composing the previous resulted temporal element,

 update those periods of the Unit Moving Points that "contain" the <new_period>. */

 k := intersection_te.te.FIRST; -- get the subscript of first period of the temporal element

 WHILE k IS NOT NULL LOOP

 new_period := intersection_te.te(k);

 i := new_point(i).FIRST;

 WHILE i IS NOT NULL LOOP

 contain_flag := new_point(i).p.f_contains(new_point(i).p, new_period);

 IF contain_flag = 1 THEN

 new_point(i).p := new_period;

 END IF;

 i := new_point.NEXT(i);

 END LOOP;

 k := intersection_te.te.NEXT(k); -- get the subscript of next period of the temporal element

 END LOOP;

Pelekis et. al.: The HERMES MOD Engine 121

 return Moving_Point(new_point);

END;

Figure 79 The at_temp_element algorithm for a Moving_Point

In Figure 80 we provide the reader with the pseudo-code of the f_traversed operation for the

case of a Moving_LineString object. We should mention that the current implementation

supports only time-changing geometries whose vertices move linearly. What is more, the

soundness of the algorithm presumes that during the period associated with the linear

functions describing the motion of the vertices, rotation of the segments is forbidden by a

condition of the model.

FUNCTION f_traversed return MDSYS.SDO_GEOMETRY is

result, prev_result, line_1, line_2 MDSYS.SDO_GEOMETRY;

tp_curr TAU_TLL.D_Timepoint_Sec;

BEGIN

 i := line.FIRST; -- get subscript of first unit moving linestring;

 WHILE i IS NOT NULL LOOP

tp_curr := line(i).l(1).b.p.b; -- get the first instant of the period of the current unit moving linestring;

line_1 := at_instant(tp_curr); -- Project the Moving LineString at the spatial domain at this time point;

 -- Access the Elem_Info_Array & Ordinates_Array of line_1;

 tp_curr := f_decr(line(i).l(1).b.p.e); -- get the last instant of the period of the current unit moving

linestring;

line_2 := at_instant(tp_curr); -- Project the Moving LineString at the spatial domain at this time point;

 -- Access the Elem_Info_Array & an Ordinates_Array of line_2;

-- Initialize an Elem_Info_Array & an Ordinates_Array object for constructing the traversed polygon;

-- Depending on the type of the projected linestrings (1 & 2) construct an Elem_Info_Array that will represent a

 polygon geometry with elements the union of the elements of the Elem_Info_Arrays of line_1 & line_2;

-- Similarly, construct an Ordinates_Array that will represent a polygon geometry, whose boundary will be

composed by the two projected lines connected at their end points by linear segments;

 For example...

Pelekis et. al.: The HERMES MOD Engine 122

 IF line_1 & line_2 are linearly interpolated THEN

 -- Construct Elem_Info_Array for a linerly interpolated polygon;

-- Extend the Ordinates_Array as the size of the Ordinates_Array of line_1 and transfer all the ordinates from

the second to the first array;

 ordinates.EXTEND(ordinates_1.LAST);

 WHILE ordinates_offset_1 IS NOT NULL LOOP

 ordinates(ordinates_offset_1) := ordinates_1(ordinates_offset_1);

 ordinates_offset_1 := ordinates_1.NEXT(ordinates_offset_1);

 END LOOP;

-- Extend the Ordinates_Array as the size of the Ordinates_Array of line_2 and transfer all the ordinates from

the second to the end of the first array;

 ordinates.EXTEND(ordinates_2.LAST);

 WHILE ordinates_offset_2 IS NOT NULL LOOP

 ordinates(ordinates_1.LAST + ordinates_offset_2) := ordinates_2(ordinates_offset_2);

 ordinates_offset_2 := ordinates_2.NEXT(ordinates_offset_2);

 END LOOP;

 ordinates.EXTEND(2); -- Connect first point to last point to form a polygon

 ordinates(ordinates_1.LAST + ordinates_2.LAST + 1) := ordinates_1(1);

 ordinates(ordinates_1.LAST + ordinates_2.LAST + 2) := ordinates_1(2);

 result := Construct the traversed polygon formed by the Elem_Info_Array & Ordinates_Array;

 ELSIF line_1 & line_2 are arc-interpolated OR are compound linestrings THEN

 Similarly...

 END IF;

-- The final traversed polygon is the union of the traversed areas at all time periods for which the Moving

LineString is defined;

 IF i <> line.FIRST THEN

 result := UNION(prev_result, result);

Pelekis et. al.: The HERMES MOD Engine 123

 END IF;

 prev_result := result;

 i := line.NEXT(i); -- get subscript of last unit moving linestring

 END LOOP;

 return result;

END;

Figure 80 The f_traversed algorithm for a Moving_LineString

4.4 Signatures of operations

The signatures of the UTILITIES package:

PACKAGE utilities AS TYPE CursorType IS REF CURSOR;

 -- Checks if three point are co-linear

 FUNCTION check_colinear (x1 NUMBER, y1 NUMBER, x2 NUMBER, y2 NUMBER, x3

NUMBER, y3 NUMBER) RETURN BOOLEAN;

 -- Checks if the segment defined by the first two points overlaps with

the segment defined by the last two points

 FUNCTION check_overlap (x1 NUMBER, y1 NUMBER, x2 NUMBER, y2 NUMBER, x3

NUMBER, y3 NUMBER) RETURN BOOLEAN;

 -- Prints a MDSYS.SDO_GEOMETRY

 PROCEDURE print_geometry (geom MDSYS.SDO_GEOMETRY, descr VARCHAR2);

 -- Adds two angles

 FUNCTION add_angles (angle1 NUMBER, angle2 NUMBER) RETURN NUMBER;

 -- Adds two angles

 FUNCTION is_angle_between (min_angle NUMBER, angle NUMBER, max_angle

NUMBER) RETURN BOOLEAN;

 -- Returns the angle (in degrees) between the segment defined by the

two points (arguments) and the xx' axis

 FUNCTION direction (x1 NUMBER, y1 NUMBER, x2 NUMBER, y2 NUMBER) RETURN

NUMBER;

 -- Returns the angle (in degrees) between the segment defined by the

two points (arguments) and the xx' axis

 FUNCTION direction (geom1 MDSYS.SDO_GEOMETRY, geom2 MDSYS.SDO_GEOMETRY)

RETURN NUMBER;

 -- Returns the angle (in degrees) between the segment defined by the

two points (arguments) and the xx' axis

 FUNCTION get_tan (geom1 MDSYS.SDO_GEOMETRY, geom2 MDSYS.SDO_GEOMETRY)

RETURN NUMBER;

 -- Returns the angle (in degrees 0-180) between the segment defined by

the points Q_start -> Q_end and the segment defined by the points S_start -

> S_end

 FUNCTION angle (q_start MDSYS.SDO_GEOMETRY, q_end MDSYS.SDO_GEOMETRY,

s_start MDSYS.SDO_GEOMETRY, s_end MDSYS.SDO_GEOMETRY) RETURN NUMBER;

 -- Returns the angle (in degrees) between the segment defined by the

points Q_start -> Q_end and the S_angle

 FUNCTION angle2(Q_angle number, S_angle number) return number;

Pelekis et. al.: The HERMES MOD Engine 124

 -- Returns the angle (in degrees 0-360) between the segment defined by

the points Q_start -> Q_end and the segment defined by the points S_start -

> S_end

 FUNCTION angle3 (q_start MDSYS.SDO_GEOMETRY, q_end MDSYS.SDO_GEOMETRY,

s_start MDSYS.SDO_GEOMETRY, s_end MDSYS.SDO_GEOMETRY) RETURN NUMBER;

 -- Returns the distance between two points

 FUNCTION distance (x1 NUMBER, y1 NUMBER, x2 NUMBER, y2 NUMBER) RETURN

NUMBER;

 -- Sorts the multi-point argument geometry according to the direction

of a single linestring (segment)

 FUNCTION f_sort (mpoint IN OUT MDSYS.SDO_GEOMETRY, line

MDSYS.SDO_GEOMETRY) RETURN MDSYS.SDO_GEOMETRY;

 -- Returns the points being at odd positions 1,3,5 etc

 FUNCTION get_odd_points (multipoint MDSYS.SDO_GEOMETRY) RETURN

MDSYS.SDO_GEOMETRY;

 -- Returns the points being at odd positions 2,4,6, etc

 FUNCTION get_even_points (multipoint MDSYS.SDO_GEOMETRY) RETURN

MDSYS.SDO_GEOMETRY;

 -- Transfers linestring S according to the first point of linestring Q.

 FUNCTION transfer(Q MDSYS.SDO_GEOMETRY, S IN OUT MDSYS.SDO_GEOMETRY)

return MDSYS.SDO_GEOMETRY;

 FUNCTION transfer2(Q MDSYS.SDO_GEOMETRY, S IN OUT MDSYS.SDO_GEOMETRY)

return MDSYS.SDO_GEOMETRY;

 -- Computes the cost (area in m^2) for transfering segment Q towards S.

 FUNCTION transfer_cost(Q MDSYS.SDO_GEOMETRY, S MDSYS.SDO_GEOMETRY, dir

number) return number;

 -- Constructs a segment (single linestring) from the two argument

points

 FUNCTION f_segment(xi number, yi number, xe number, ye number) return

MDSYS.SDO_GEOMETRY;

 -- Returns the number of the segment of the linestring where the point

resides. The algorithm starts from from segment with number "old_pos"

 FUNCTION position(line MDSYS.SDO_GEOMETRY, x number, y number, old_pos

pls_integer) return pls_integer;

 -- Checks if Q's (PQ) or S's (PS) point "sees" the last segment of

Q_line or S_line without intersecting the previous segments of the latter

 FUNCTION BadSegment(Q_line MDSYS.SDO_GEOMETRY, S_line

MDSYS.SDO_GEOMETRY, PQx number, PQy number, PSx number, PSy number) return

boolean;

 -- Smooth linestring

 PROCEDURE SmoothLine(L IN OUT MDSYS.SDO_GEOMETRY);

 -- Spatial Similarity

 FUNCTION LIP(Q MDSYS.SDO_GEOMETRY, S IN OUT MDSYS.SDO_GEOMETRY, trans

boolean, Q_LEN number, S_LEN number) return number;

 -- Integrates LIP

 FUNCTION FindBadSegments(Q IN OUT MDSYS.SDO_GEOMETRY, S IN OUT

MDSYS.SDO_GEOMETRY, trans boolean, policy pls_integer, Q_LEN number, S_LEN

number) return number;

 -- Second policy

 FUNCTION GenLIP(Q IN OUT MDSYS.SDO_GEOMETRY, S IN OUT

MDSYS.SDO_GEOMETRY, trans boolean, policy pls_integer, Q_LEN number, S_LEN

number) return number; --, avg_sim IN OUT number, NoLIPgrams IN OUT

pls_integer

 -- Direction Distance

 FUNCTION DDIST(Q IN OUT MDSYS.SDO_GEOMETRY, S IN OUT

MDSYS.SDO_GEOMETRY, policy pls_integer) return number;

 -- Computes MDI

 FUNCTION compute_MDI (startQ_tp TAU_TLL.D_Timepoint_Sec, endQ_tp

TAU_TLL.D_Timepoint_Sec, startS_tp TAU_TLL.D_Timepoint_Sec, endS_tp

TAU_TLL.D_Timepoint_Sec, delta TAU_TLL.D_Interval) return number;

Pelekis et. al.: The HERMES MOD Engine 125

END;

The signatures of the Unit_Moving_Point object methods:

TYPE unit_moving_point AS OBJECT (

 -- Time period with granularity second where Unit function is valid

 p tau_tll.d_period_sec,

 -- Motion during period p

 m unit_function,

 -- ###### MEMBER FUNCTIONS #####

 -- Polynomial of first degree

 MEMBER FUNCTION f_plnml_1 (tp tau_tll.d_timepoint_sec) RETURN coords,

 -- Polynomial of first degree

 MEMBER FUNCTION r_f_plnml_1 (x NUMBER, y NUMBER) RETURN

tau_tll.d_timepoint_sec,

 --

 MEMBER FUNCTION f_plnml_3_1 (tp tau_tll.d_timepoint_sec) RETURN coords,

 --

 MEMBER FUNCTION f_plnml_3_2 (tp tau_tll.d_timepoint_sec) RETURN coords,

 --

 MEMBER FUNCTION r_f_plnml_3_x (x NUMBER, y NUMBER) RETURN

tau_tll.d_timepoint_sec,

 -- Depending on the "descr" of the Unit_Function invokes the appropriate

function

 MEMBER FUNCTION f_interpolate (tp tau_tll.d_timepoint_sec) RETURN

coords,

 -- Returns the timepoint that corresponds to a specific xy coords

 MEMBER FUNCTION get_time_point (x NUMBER, y NUMBER) RETURN

tau_tll.d_timepoint_sec,

 -- Checks if this unit_moving_point contains the given (x, y)

 MEMBER FUNCTION f_contains (x NUMBER, y NUMBER) RETURN BOOLEAN,

 -- Gets the speed at the given timepoint

 MEMBER FUNCTION get_speed (tp tau_tll.d_timepoint_sec) RETURN NUMBER,

 -- Get (x, y) of the

 MEMBER FUNCTION get_midle_point RETURN coords

)

The signatures of the Moving_Point object methods:

TYPE moving_point AS OBJECT (

 -- A series of Unit_Moving_Point defining the consequent parts of a

Moving_Point

 u_tab moving_point_tab, -- previous name of the attribute was

"p"

 --The trajectory id should be placed in the moving object so as to be

retrieved by

 --ODCIIndexUpdate and ODCIIndexInsert

 traj_id Integer,

 -- Returns moving point as a CLOB

 -- ###### MEMBER FUNCTIONS #####

 MEMBER FUNCTION to_clob RETURN CLOB,

 -- Returns moving point as a string

 MEMBER FUNCTION to_string RETURN VARCHAR2,

 -- Prints moving point to standard output

 MEMBER PROCEDURE print_moving_point,

 -- Add a unit_moving_point

 MEMBER PROCEDURE add_unit (new_unit unit_moving_point),

 -- Merge two Moving_Points

Pelekis et. al.: The HERMES MOD Engine 126

 MEMBER FUNCTION merge_moving_points (mp1 moving_point, mp2 moving_point)

RETURN moving_point,

 --Checks if there is an ascending sorting of the periods in the nested

table

 MEMBER FUNCTION check_sorting RETURN BOOLEAN,

 --Checks if even one period in the nested table overlaps with the next

in order period...THEN returns FALSE

 MEMBER FUNCTION check_disjoint RETURN BOOLEAN,

 --Checks if even one period in the nested table does NOT meets with the

next in order period...THEN returns FALSE

 MEMBER FUNCTION check_meet RETURN BOOLEAN,

 -- Returns that Unit_Moving_Point that corresponds to a specific

timepoint

 MEMBER FUNCTION unit_type (tp tau_tll.d_timepoint_sec) RETURN

unit_moving_point,

 -- Sorts the multi-point argument geometry by time

 MEMBER FUNCTION sort_by_time (mpoint IN OUT MDSYS.SDO_GEOMETRY) RETURN

MDSYS.SDO_GEOMETRY,

 -- Return the enter and leave points of the moving point for a given

geometry

 MEMBER FUNCTION get_enter_leave_points (geom MDSYS.SDO_GEOMETRY) RETURN

MDSYS.SDO_GEOMETRY,

 -- Returns a MDSYS.SDO_GEOMETRY of Point type as the result of

Mapping/Projecting the Moving_Point at a specific timepoint

 MEMBER FUNCTION at_instant (tp tau_tll.d_timepoint_sec) RETURN

MDSYS.SDO_GEOMETRY,

 -- Returns a moving point restricted at a specific period

 MEMBER FUNCTION at_period (per tau_tll.d_period_sec) RETURN

moving_point,

 -- Returns a moving point restricted at a specific temporal element

 MEMBER FUNCTION at_temp_element (te tau_tll.d_temp_element_sec) RETURN

moving_point,

 -- Restricts the moving point at the space specified by the linestring

parameter which is supposed to be part of his route

 MEMBER FUNCTION at_linestring (line MDSYS.SDO_GEOMETRY) RETURN

moving_point,

 -- Returns tha last valid timepoint of the lifespan of the moving point

 MEMBER FUNCTION f_final_timepoint RETURN tau_tll.d_timepoint_sec,

 -- Returns tha first valid timepoint of the lifespan of the moving point

 MEMBER FUNCTION f_initial_timepoint RETURN tau_tll.d_timepoint_sec,

 -- Returns the timepoint that corresponds to a specific xy coords

 MEMBER FUNCTION get_time_point (x NUMBER, y NUMBER) RETURN

tau_tll.d_timepoint_sec,

 -- Returns a linestring geometry representing the points that this

moving point traverses! NOTE: For linear motions use "f_trajectory2"

 MEMBER FUNCTION f_trajectory RETURN MDSYS.SDO_GEOMETRY,

 MEMBER FUNCTION f_trajectory2 RETURN MDSYS.SDO_GEOMETRY,

 -- Returns a temporal element constructed by the union of the periods

for which the moving point is defined

 MEMBER FUNCTION f_temp_element RETURN tau_tll.d_temp_element_sec,

 -- Returns the instanced point as this is defined at the first valid

second

 MEMBER FUNCTION f_initial RETURN MDSYS.SDO_GEOMETRY,

 -- Returns the instanced point as this is defined at the last valid

second

 MEMBER FUNCTION f_final RETURN MDSYS.SDO_GEOMETRY,

 -- Returns the angle of the moving point' s direction

 MEMBER FUNCTION f_direction (tp tau_tll.d_timepoint_sec) RETURN NUMBER,

 -- Returns TRUE for objects being in front of moving point at the given

timepoint

Pelekis et. al.: The HERMES MOD Engine 127

 MEMBER FUNCTION f_front (geom MDSYS.SDO_GEOMETRY, tp

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN

NUMBER,

 -- Returns TRUE for objects being behind of moving point at the given

timepoint

 MEMBER FUNCTION f_behind (geom MDSYS.SDO_GEOMETRY, tp

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER,

 -- Returns TRUE for objects being left of moving point at the given

timepoint

 MEMBER FUNCTION f_left (geom MDSYS.SDO_GEOMETRY, tp

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER,

 -- Returns TRUE for objects being right of moving point at the given

timepoint

 MEMBER FUNCTION f_right (geom MDSYS.SDO_GEOMETRY, tp

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER,

 -- Returns TRUE for objects being north of moving point at the given

timepoint

 MEMBER FUNCTION f_north (geom MDSYS.SDO_GEOMETRY, tp

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER,

 -- Returns TRUE for objects being south of moving point at the given

timepoint

 MEMBER FUNCTION f_south (geom MDSYS.SDO_GEOMETRY, tp

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER,

 -- Returns TRUE for objects being east of moving point at the given

timepoint

 MEMBER FUNCTION f_east (geom MDSYS.SDO_GEOMETRY, tp

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER,

 -- Returns TRUE for objects being west of moving point at the given

timepoint

 MEMBER FUNCTION f_west (geom MDSYS.SDO_GEOMETRY, tp

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER,

 -- Returns TRUE when the moving point is between the multi-geometry at

the given timepoint

 MEMBER FUNCTION f_between (geom MDSYS.SDO_GEOMETRY, tp

tau_tll.d_timepoint_sec) RETURN NUMBER,

 -- Returns the rate of change of the Euclidean distance (speed) that

the moving point traverses at a specific time point

 MEMBER FUNCTION f_speed (tp tau_tll.d_timepoint_sec) RETURN NUMBER,

 -- Generates a buffer polygon around an instanced point at a specific

timepoint

 MEMBER FUNCTION f_buffer (distance NUMBER, tolerance NUMBER, tp

tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY,

 -- Computes the distance between two moving points instanced at a

specific timepoint.

 -- The distance between two geometry objects is the distance between

the closest pair of points or segments of the two objects

 MEMBER FUNCTION f_distance (moving_point moving_point, tolerance NUMBER,

tp tau_tll.d_timepoint_sec) RETURN NUMBER,

 -- Computes the distance between a moving point instanced at a specific

timepoint and another geometry type.

 -- The distance between two geometry objects is the distance between

the closest pair of points or segments of the two objects

 MEMBER FUNCTION f_distance (geom MDSYS.SDO_GEOMETRY, tolerance NUMBER,

tp tau_tll.d_timepoint_sec) RETURN NUMBER,

 -- Determines if this moving point is within some specified Euclidean

distance from other moving objects at a specific timepoint

 MEMBER FUNCTION f_within_distance (distance NUMBER, moving_point

moving_point, tolerance NUMBER, tp tau_tll.d_timepoint_sec) RETURN

VARCHAR2,

 -- Determines if this moving point is within some specified Euclidean

distance from other geometry objects at a specific timepoint

Pelekis et. al.: The HERMES MOD Engine 128

 MEMBER FUNCTION f_within_distance (distance NUMBER, geom

MDSYS.SDO_GEOMETRY, tolerance NUMBER, tp tau_tll.d_timepoint_sec) RETURN

VARCHAR2,

 -- Examines current Moving_Point to determine its spatial relationship

with another moving point

 MEMBER FUNCTION f_relate (MASK VARCHAR2, moving_point moving_point,

tolerance NUMBER, tp tau_tll.d_timepoint_sec) RETURN VARCHAR2,

 -- Examines current Moving_Point to determine its spatial relationship

with other geometry objects

 MEMBER FUNCTION f_relate (MASK VARCHAR2, geom MDSYS.SDO_GEOMETRY,

tolerance NUMBER, tp tau_tll.d_timepoint_sec) RETURN VARCHAR2,

 -- Returns a geometry object that is the topological intersection (AND

operation) of an instanced point with another moving point at a specific

timepoint

 MEMBER FUNCTION f_intersection (moving_point moving_point, tolerance

NUMBER, tp tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY,

 -- Returns a geometry object that is the topological intersection (AND

operation) of an instanced point at a specific timepoint with another

geometry object

 MEMBER FUNCTION f_intersection (geom MDSYS.SDO_GEOMETRY, tolerance

NUMBER, tp tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY,

 -- Returns a moving point that is the restriction (intersection) of the

calling moving point inside the polygon argument

 MEMBER FUNCTION f_intersection (geom MDSYS.SDO_GEOMETRY, tolerance

NUMBER) RETURN moving_point,

 -- Returns a moving point that is the restriction (intersection) of the

calling moving point inside the polygon argument

 MEMBER FUNCTION f_intersection2 (geom MDSYS.SDO_GEOMETRY, tolerance

NUMBER) RETURN moving_point,

 -- Computes the linestring and the period that is the restriction

(intersection) of the calling moving point inside the polygon argument

 MEMBER PROCEDURE f_intersection (geom MDSYS.SDO_GEOMETRY, line_inside

OUT MDSYS.SDO_GEOMETRY, period_inside OUT tau_tll.d_period_sec, tolerance

NUMBER),

 -- Returns a moving point (and the corresponding linestring and period)

that is the restriction (intersection) of the calling moving point inside

the polygon argument

 MEMBER FUNCTION f_intersection (geom MDSYS.SDO_GEOMETRY, line_inside OUT

MDSYS.SDO_GEOMETRY, period_inside OUT tau_tll.d_period_sec, tolerance

NUMBER) RETURN moving_point,

 -- Returns a geometry object that is the topological union (OR

operation) of an instanced point with this moving point at a specific

timepoint

 MEMBER FUNCTION f_union (moving_point moving_point, tolerance NUMBER, tp

tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY,

 -- Returns a geometry object that is the topological union (OR

operation) of an instanced point at a specific timepoint with another

geometry object

 MEMBER FUNCTION f_union (geom MDSYS.SDO_GEOMETRY, tolerance NUMBER, tp

tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY,

 -- Returns a geometry object that is the topological symmetric

difference (XOR operation) of an instanced point with this moving point at

a specific timepoint

 MEMBER FUNCTION f_xor (moving_point moving_point, tolerance NUMBER, tp

tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY,

 -- Returns a geometry object that is the topological symmetric

difference (XOR operation) of an instanced point at a specific timepoint

with another geometry object

 MEMBER FUNCTION f_xor (geom MDSYS.SDO_GEOMETRY, tolerance NUMBER, tp

tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY,

Pelekis et. al.: The HERMES MOD Engine 129

 -- Returns the points(sorted by time) that the moving point enters

inside the area of the polygon argument

 MEMBER FUNCTION f_enterpoints (geom MDSYS.SDO_GEOMETRY) RETURN

MDSYS.SDO_GEOMETRY,

 -- Returns the points(sorted by time) that the moving point leaves the

area of the polygon argument

 MEMBER FUNCTION f_leavepoints (geom MDSYS.SDO_GEOMETRY) RETURN

MDSYS.SDO_GEOMETRY,

 -- Returns the timepoint that the moving point entered the given

polygonal geometry

 MEMBER FUNCTION f_enter (geom MDSYS.SDO_GEOMETRY) RETURN

tau_tll.d_timepoint_sec,

 -- Returns the timepoint that the moving point left the given polygonal

geometry

 MEMBER FUNCTION f_leave (geom MDSYS.SDO_GEOMETRY) RETURN

tau_tll.d_timepoint_sec,

 -- Returns the average speed of a moving point during its lifespan

 MEMBER FUNCTION f_avg_speed RETURN NUMBER,

 -- Returns the average acceleration of a moving point during its

lifespan

 MEMBER FUNCTION f_avg_acceleration RETURN NUMBER,

 -- Returns the average direction of a moving point during its lifespan

 MEMBER FUNCTION f_avg_direction RETURN NUMBER,

 -- Transfers moving point to the starting point of Sm. The translation

is dx on XX' and dy in YY'

 MEMBER FUNCTION transfer2(Qm moving_point, Sm IN OUT moving_point)

return moving_point,

 -- Returns the timepoint when the moving point passes from (x,y). The

algorithm starts looking from "old_pos"

 MEMBER FUNCTION f_timepoint(line MDSYS.SDO_GEOMETRY, x number, y

number, old_pos pls_integer, new_pos OUT pls_integer) return

TAU_TLL.D_Timepoint_Sec,

 -- Returns the Locality In-between Polylines=projections of the two

moving points

 MEMBER FUNCTION LIP(m_point Moving_Point, trans boolean) return number,

 -- Returns the Spatio-Temporal Distance between two moving points

 MEMBER FUNCTION STLIP(S IN OUT Moving_Point, trans boolean, t

TAU_TLL.D_Interval, Q_LEN number, S_LEN number, kapa number) return

number,

 -- Returns the Speed-Pattern STLIP between two moving points following

arbitrary trajectories

 MEMBER FUNCTION SPSTLIP(S IN OUT Moving_Point, trans boolean, t

TAU_TLL.D_Interval, Q_LEN number, S_LEN number) return number,

 -- Returns the Direction Distance between the spatial projections of

two moving points

 MEMBER FUNCTION DDIST(m_point Moving_Point, policy pls_integer) return

number,

 -- Returns the Direction Distance between two moving points

 MEMBER FUNCTION TDDIST(S IN OUT Moving_Point, policy pls_integer)

return number,

 -- Integrates STLIP

 MEMBER FUNCTION GenSTLIP_OSP(S_M IN OUT Moving_Point, trans boolean,

policy pls_integer, Q_LEN number, S_LEN number, kapa number, delta number)

return number

)

Pelekis et. al.: The HERMES MOD Engine 130

5 Appendix E – Description of HERMES TB–TREE PL/SQL

Implementation Building Blocks

Hereafter, we discuss the basic principles that have been fostered in our effort to embody the TB-Tree index in

the Oracle ORDBMS. We will present in detail the primitive data types (objects) that have been defined to serve

as the building blocks and primary storage elements of the underlying structure. Moreover, we proceed by

discussing the OR database tables involving the index and the way they relate to the primary table where moving

object trajectories are stored.

Types Description

tbX The tbX collection type is a varray of size 3 used to hold triplets (x,y,t) of the
points taking part in a moving object’s trajectory formation

tbPoint The tbPoint is defined as an object with x of tbX type as its only attribute
tbMBB The tbMBB is an object that represents the Minimum Bounding Box of a

tree node. Its attributes (MinPoint, MaxPoint) are both of tbPoint type and
represent the lower left and upper right of the box

tbTreeLeafEntry The tbTreeLeafEntry is an object involving the entries of leaf nodes. Each
such entry has two attributes: MBB of tbMBB type and Orientation of
integer type. The first involves the box defined by a moving object’s
trajectory segment while the latter denotes the orientation of the segment
in the MBB

tbTreeNodeEntry The tbTreeNodeEntry is an object involving the entries of internal (non-
leaf) nodes. Each such entry has two attributes: MBB of tbMBB type and Ptr
of integer type. The first involves the box defined by the MBB of all the
entries of its child node, while the second denotes the identifier of the
current entry’s child

NodeEntries The NodeEntries collection type is a varray of size 155 (hard coded for
block size=8192 Bytes) used to hold an internal node’s entries. The size of
the varray was defined so as to ensure that the entries (plus any additional
attributes) of the node will fit in one disk block

LeafEntries The LeafEntries collection type is a varray of size 155 (hard coded for block
size=8192 Bytes) used to hold a leaf node’s entries. The size of the varray
was defined so as to ensure that the entries (plus any additional attributes)
of the node will fit in one disk block

LeafEntries2 Same as LeafEntries but this time the collection type is defined as a nested
table. The reason is that when processing leaf entries in memory (i.e during
their insertion in the leaf node) we need a structure the size of which is not
known in hand. Furthermore, the design of certain operators where those
entries are processed does not make any assumption about a fixed disk
block size. Eventually, we would need a varray to store leaf entries since
nested tables do not guarantee the insertion and storage of the entries in
the sorted form that have been arranged during insertion algorithm
execution. Obviously, this gives us the advantage that a change of the page
size will only need the modification of the varray’s dimension in
LeafEntries, NodeEntries

tbTreeNode The tbTreeΝοde is an object representing the internal node itself. Its
attributes involve: 1) ptrParentNode of integer type which is a pointer to
the parent of the current node used to ascend the tree when necessary, 2)
ptrCurrentNode of integer type which is the current node’s identifier
encapsulated in the object to facilitate implementation issues, 3) counter of
integer type to hold the number of the current node entries. This is
extremely useful since we are able to know in hand the number of entries
in the node instead of using the .COUNT collection operator to count the
number of entries every time the node is used. 4) tbTreeNodeEnties of
NodeEntries type which involves the entries of the node as were previously

Pelekis et. al.: The HERMES MOD Engine 131

described
tbTreeLeaf The tbTreeLeaf is an object representing the internal node itself. Its

attributes involve: 1) MoID of type integer which is the global identifier of a
trajectory 2) the rowid (varchar2!) of the moving object whose partial trajectory is
contained in the leaf. This is used by the ODCIINDEXFETCH to return batches

of base table rows, 3) ptrParentNode of integer type which is a pointer to the
parent of the current node used to ascend the tree when necessary, 4)
ptrCurrentNode of integer type which is the current node’s identifier
encapsulated in the object to facilitate implementation issues, 5)
PtrPreviousNode of type integer which is a pointer to the node with the
parts of the trajectory preceding those of the current node 6) PtrNextNode
of type integer which is a pointer to the node with the next parts of the
trajectory, 7) counter of integer type to hold the number of the current
node’s entries. The utility of the attribute has already been discussed, 8)
tbTreeLeafEntries of LeafEntry type which involves the entries of the leaf
as were previously described

tbTreeLeaf2 Same as before, but this time we use LeafEntries2
tbMovingObject The tbMovingObject is an object with 2 attributes. The first one –ID-

denotes the identifier of a stored trajectory while the second – ptrLastleaf -
involves the identifier of the node where the last entries of the trajectory
are kept

tbMovingObjectsCollection A nested table of tbMovingobject used in function and operator
implementations

tbMovingObjectEntry Type tbMovingObjectEntry is a 3 - dimensional moving object line segment
containing the object`s id and the points

tbMovingObjectEntries A nested table of tbMovingobjectEntry
IDS A nested table of integers used to hold IDs of moving objects
mp_Array A nested table of hermes.moving_object type. This type is used as the

return type of query functions. For instance, performing a range query, we
expect parts of moving objects as the answer. These trajectory parts are
stored in an array of mp_array type and are returned to the user in that
form

Geom_tbl Same as above but this time we use a nested table of geometries. The utility
is the same as in the mp_Array case. The only difference is the
transformation of moving_object into geometry so that it can be projected
on a map

PriorityQueueNode This is an object that constitutes the building block of a priority queue data
structure. Such kind of node should be modeled as hybrid since it can hold
features involving a tbTreeNode or TbTreeLeaf object. Its attributes are as
follows: 1) Ptr integer, for tbtreenodeentry this is a pointer to the child leaf,
2) MBB tbMBB, for tbtreenodeentry this is the MBB of the entry, 3) Id
number, the id of the moving object, 4) P1 tbPoint, the first point of a
moving object entry, 5) P2 tbPoint, the last point of a moving object entry,
6) EType varchar2(20), the type of the entry in {x for null,
tbMovingobjectEntry, tbTreenodeEntry}, 7) Dist number, the distance of
the queue entry calculated by the MinDistLine2D function, and PtrNext
integer, PtrPrevious integer, PtrCurrent integer, Trajectory
tbMovingObjectEntries

QueueEntries A nested table of PriorityQueueNode type used to keep the entries of the
respective structure

PriorityQueue The priority queue is intended to hold line segments of trajectories,
ordered based on their 2D distance from a given trajectory or point. It is
therefore useful to note here that its utility involves the implementation of
IncPointNNSearch and IncTrajectoryNNSearch as well as their variations,
namely mv_IncPointNNSearch, mv_ IncTrajectoryNNSearch. The attributes
of the queue are as follows: 1) Entries of QueueEntries type to hold the
actual entries of the queue, 2) counter of integer type which is used to hold
the current number of entries in the queue as nodes are inserted or
extracted (deleted), 3) Last of integer type which is a pointer to the tail of

Pelekis et. al.: The HERMES MOD Engine 132

the queue, 4) while top is a pointer to the first element of the queue. The
object is equipped with member functions used for initializing, enqueueing
and dequeueing entries

TBTree_IdxType_Im This object is the actual interface based on which our custom index type is
built. Based on the extensible indexing capabilities provided by the oracle
ordbms each such object should own the following functions: 1)
ODCIIndexCreate which is a function that creates the index tables (i.e
tbtreeidx_leaf, tbtreeidx_non_leaf) and populates the data already inserted
in the table (mpoints) on which the index is created, 2) ODCIIndexInsert
which a function that performs insertions in the tree triggered by the
insertion of a new trajectory on the main table, 3) ODCIIndexUpdate which
is a function that updates the tree every time a new trajectory segment (i.e
unit_moving_point) is inserted, 4) ODCIIndexDelete to adjust the tree upon
the occurrence of a deletion (not implemented), 5) The ODCIGetInterfaces
function returns the list of names of the interfaces implemented by the
type. To specify the current version of these interfaces, the
ODCIGetInterfaces routine must return'SYS.ODCIINDEX2' in the OUT
parameter, 6) The ODCIIndexDrop function drops the tables that store the
index data. This method is called when a DROP INDEX statement is issued,
7) The ODCIIndexStart is a function that prepares the execution of an
operator by determining the rowids of the base table that need to be
fetched. Note that we need a new ODCIIndexStart for each operator that
will be later defined. 8) The ODCIIndexFetch function fetches the base
table rows as they are determined by a corresponding ODCIIndexStart
function, 9) The ODCIIndexClose function completes the execution of a
custom operator

Table 5: Defined types and corresponding description

Having described the basic data types defined to serve the implementation purposes of the index
structure as well as the operations and functions built upon it, we will proceed by referring to the
basic tables the tuples of which constitute the primary storage elements of trajectory and index
data. Note beforehand that it is crucial for the table names to remain as are, since they are hard
coded in the index implementation packages, functions and operands.
Table Name Description

mpoints This table is used to store the trajectories of moving objects. Its attributes
involve the object and trajectory id and the actual trajectory of
hermes.moving_point type. Note that the trajectory id (traj_id) should be
unique and practically is attributed as a sequence of increasing integers
based on the trajectory insertion order. Mpoints should be manually defined
and constitutes the table on which the tb-tree index will be created

movingobjects The movingobjects table is an auxiliary one which is used to store a pointer
to the index leaf where the last part of a trajectory is stored. As such it
aparts from 2 columns for ID, pointer integer values. Note that this table is
automatically created/dropped upon the index creation/drop

Tbtreeidx_non_leaf This is the table where the internal nodes of the tree are stored. Any
additional column is just a copy of a certain object attribute and it is used for
fast access. Note that this table is automatically created/dropped upon the
index creation/drop

tbTreeidx_leaf This is the table where the leaf nodes of the tree are stored. Any additional
column is just a copy of a certain object attribute and it is used for fast
access. Note that this table is automatically created/dropped upon the index
creation/drop

mv_tbl This table is an auxiliary one since it is used to store the geometries returned after
the execution of functions such as mv_query_window,
mv_IncTrajectoryNNSearch, mv_IncPointNNSearch, mv_query_window2. The
aforementioned functions will execure the posed query, store the results in mv_tbl
and the mapviewer interface will then issue a select * statement to visualize them.
After the visualization they should be deleted so that the mv_tbl will be empty for

Pelekis et. al.: The HERMES MOD Engine 133

the next query answers.

5.1 TB – TREE PL/SQL Implementation Packages

tbFunctions package

Function/ Procedure Parameters Return type Description

MoAdd IMO
tbMovingObject

 A procedure which adds or updates the
MovingObjects Table

UpdateTreeHeight — — A procedure that updates the tree height (a
system parameter that is stored in
movingobjects table) when the root of the
tree is split

Savenode Node tbtreeleaf,
leaftab varchar2,
existence boolean

— A procedure used to save or update an
internal node of the tree to the corresponding
table

Saveleaf Node tbtreeleaf,
leaftab varchar2,
existence boolean

— A procedure used to save or update a leaf
node of the tree to the corresponding table

TBINSERT POINT1
TBPOINT,
POINT2
TBPOINT,
MOVINGOBJECTI
D INTEGER, RID
varCHAR2, leaftab
VARCHAR2,
nodetab
VARCHAR2

— The Insertion Method of the TB-Tree

ChooseLastLeaf nodetab varchar2,
leaftab varchar2

tbTreeLeaf A function that descents the TB-tree until it
finds the last (right-most) leaf node which is
finally returned

Includes SourceMBR tbMBB,
InsertedMBR
tbMBB, Dimensions
integer

Boolean A function that returns true if a SourceMBR
includes an InsertedMBR

AdjustTree L tbTreeLeaf, LL
tbTreeLeaf, nodetab
varchar2, leaftab
varchar2

tbTreeNode Algorithm AdjustTree by Antonin Guttman

LCoveringMBB Node tbTreeLeaf tbMBB A function that calculates the covering
rectangle of a rTree Leaf Node

NCoveringMBB Node tbTreeNode tbMBB A function that calculates the covering
rectangle of a rTree internal Node

OVERLAPS1D SourceMin Number,
SourceMax Number,
InsertedMin
Number,
InsertedMax
Number

boolean A function that returns true if the
SourceMBR overlaps the InsertedMBR in 1
dimension

TBMAX A1 NUMBER, A2
NUMBER

NUMBER A function that finds the maximum between
2 numbers

TBMIN A1 NUMBER, A2
NUMBER

NUMBER A function that finds the minimum between 2
numbers

Equals P1 tbPoint, P2
tbPoint

Boolean A function that returns true if tbPoints P1
and P2 are very close (are equal..)

HFINDNODE IDD integer, P1 tbTreeLeaf A function which uses the hashed structure

Pelekis et. al.: The HERMES MOD Engine 134

TBPOINT, tab
varchar2

containing each trajectory's last position
(moving objects table) and returns the
appropriate leaf

READLEAFNODE PTRNODE
varchar2, tab
varchar2

TBTREELEAF A function used to read a LEAF node from
the corresponding table

READNODE PTRNODE
varchar2, tab
varchar2

TBTREENOD
E

A function used to read an internal tree node
from the corresponding table

ConstructEntry Ent tbTreeLeafEntr,
Id integer

tbMovingObject
Entry

A function to convert a 3D R-tree entry to a
3D entry with starting point the (X1,Y1,T1)
and ending point the (X2,Y2,T2)

Overlapss sourceMBb TBMBB,
insertedMBb
TBMBB,
Dimensions integer

boolean General overlap function. It checks if overlap
does exist in 1 to 3 dimensions based on a
given (dimension) parameter

leafentry_to_unit_mov
ing_point

tble tbtreeleafentry hermes.unit_mo
ving_point

A function that transforms a tb tree leaf entry
to the corresponding
hermes.unit_moving_point

tb_mp_in_spatiotemp
oral_window

geom
MDSYS.SDO_GEO
METRY, tp
tau_tll.D_period_sec

hermes.mp_Arra
y

A function that returns the partial trajectories
of all moving points restricted in a certain
spatiotemporal window
(Note: This is the operator used to extract
statistics for the cuboids during the ETL
procedure)

mv_query_window geom
MDSYS.SDO_GEO
METRY,tp
tau_tll.D_period_sec

— Same as tb_mp_in_Spatiotemp_Wind but
returns an array of SDO_GEOMETRIES to
be used in mapviewer

ConstructMBB Ent
tbMovingObjectEntr
y

tbMBB A function that returns the MBB of a given
tbMovingObjectEntry

Distance2D P1 tbPoint, P2
tbPoint

integer A function that calculates the squared
distance between two points

MinDist2D Point tbPoint, MBB
tbMBB

integer A function that returns the minimum distance
between a point and an MBB

ActualDist2D Point tbPoint, P1
tbPoint, P2
tbPoint

integer A function that calculates the actual distance
of a point from a straight line

Intersects2D Line1
tbMovingObjectEntr
y, Line2
tbMovingObjectEntr
y

Boolean A function that returns true if two line
segments intersect

MinDistLine2D Line
tbMovingObjectEntr
y, MBB
tbMBB

integer A function that returns the minimum distance
between a line and an MBB

ActualLineDist2D Line1
tbMovingObjectEntr
y, Line2
tbMovingObjectEntr
y

number A function that calculates the minimum
horizontal distance between two 3d lines

IncPointNNSearch
Error! Reference source
not found.

QueryPoint
tbMovingObjectEntr
y, k
integer

tbMovingObject
Entries

This is a function (actually operator) that acts
as follows: given a static point, it returns the k
trajectory segments that are closer to it

GetTrajectoryPart Trajectory
tbMovingObjectEntr
ies, iMBB

tbMovingObject
Entries

Algorithm GetTrajectoryPart retrieves the
part of the trajectory temporaly contained
inside the temporal component of iMBR

Pelekis et. al.: The HERMES MOD Engine 135

tbMBB, traj_size
integer

MinDistTrajectory2D Trajectory
tbMovingObjectEntr
ies, MBB
tbMBB, traj_size
integer

number A function that returns the minimum distance
between a trajectory and a MBB

IncTrajectoryNNSear
ch Error! Reference
source not found.

QueryTrajectory
hermes.moving_poin
t, k number

tbMovingObject
Entries

This is a function (actually operator) that acts
as follows: given a trajevtory segments, it
returns the k trajectory segments that are
closer to it

mv_IncTrajectoryNN
Search

t_id integer, k
number

— Same as IncTrajectoryNNSearch but this time
the results are stored in the mv_tbl to be later
visualized on the map

mv_IncPointNNSearc
h

x number, y
number, t1
tau_tll.d_timepoint_s
ec, t2
tau_tll.d_timepoint_s
ec, k integer

— Same as IncPointNNSearch but this time the
results are stored in the mv_tbl to be later
visualized on the map

tb_Topological_Query geom
MDSYS.SDO_GEO
METRY, tp
tau_tll.D_period_sec,
mask varchar2

IDS A function that returns the trajectory IDs that
(enter, leave, enter/leave) a certain region
within a given time period

