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Abstract 

Composition of space and mobility in a unified data framework results into 

Moving Object Databases (MOD). MOD management systems support storage 

and query processing of non-static spatial objects and provide essential 

operations for higher level analysis of movement data. The goal of this paper is 

to present HERMES MOD engine that supports the afore-mentioned 

functionality through appropriate data types and methods in Object-Relational 

DBMS (ORDBMS) environments. In particular, HERMES exploits on the 

extensibility interface of ORDBMS that already have extensions for static 

spatial data types and methods that follow the Open Geospatial Consortium 

(OGC) standard, and extends the ORDBMS by supporting time-varying 

geometries that change their position and/or extent in space and time 

dimensions, either discretely or continuously. It further extends the data 

definition and manipulation language of the ORDBMS with spatio-temporal 

semantics and functionality based on advanced spatio-temporal indexing and 

query processing techniques. Its implementation over two ORDBMSs and its 

utilization in various domains proves the expressive power and applicability of 

HERMES in different application domains where knowledge regarding 

movement data of an organization is essential. As a proof-of-concept, in this 

paper HERMES is applied to a case study related with vehicle traffic analysis. 

 

 

Keywords: spatio-temporal databases, data cartridge, Oracle



Pelekis et. al.:  The HERMES MOD Engine 2 

 

Table of Contents 

1 INTRODUCTION ............................................................................................................................................... 3 

2 A DATA TYPE SYSTEM FOR MOVING OBJECTS .................................................................................. 7 

2.1 BASE, TEMPORAL AND SPATIAL TYPES ....................................................................................................... 7 
2.2 PRELIMINARIES OF MOVING OBJECT DATA TYPES ..................................................................................... 9 
2.3 ABSTRACT DEFINITIONS OF MOVING OBJECT DATA TYPES ..................................................................... 11 
2.4 SPATIOTEMPORAL INDEXING IN HERMES .................................................................................................. 15 
2.5 THE TB-TREE DATA TYPES ....................................................................................................................... 17 

3 PHYSICAL MAPPING OF THE HERMES MOD TYPE SYSTEM ........................................................ 20 

3.1 UNIT FUNCTION ......................................................................................................................................... 20 
3.2 MOVING POINT, MOVING CIRCLE AND MOVING RECTANGLE .................................................................. 21 
3.3 MOVING LINESTRING AND MOVING POLYGON ......................................................................................... 22 
3.4 MOVING COLLECTION AND MOVING OBJECT ........................................................................................... 23 
3.5 IMPLEMENTATION OF THE TB-TREE IN HERMES ....................................................................................... 24 

4 OPERATIONS ON MOVING OBJECT DATA TYPES ............................................................................ 25 

4.1 MAINTAINING THE DATABASE CONSISTENT ............................................................................................. 26 
4.2 PREDICATES MODELING TOPOLOGICAL AND DISTANCE RELATIONSHIPS ................................................ 29 
4.3 PROJECTION AND INTERACTION TO TEMPORAL AND SPATIAL DOMAIN ................................................... 31 
4.4 NUMERIC OPERATIONS ............................................................................................................................... 37 
4.5 DISTANCE AND DIRECTION OPERATIONS ................................................................................................... 37 
4.6 SET RELATIONSHIPS ................................................................................................................................... 38 
4.7 RATE OF CHANGE ...................................................................................................................................... 41 
4.8 SIMILARITY FUNCTIONS ............................................................................................................................. 42 
4.9 INDEX MAINTENANCE ................................................................................................................................ 43 
4.10 INDEX OPERATORS ..................................................................................................................................... 44 

5 ARCHITECTURAL ASPECTS OF HERMES-MDC AND AN APPLICATION EXAMPLE ............. 46 

6 BUILDING REAL MOD APPLICATIONS ON TOP OF HERMES ....................................................... 52 

7 A REAL CASE STUDY ................................................................................................................................... 53 

7.1 USAGE SCENARIO ...................................................................................................................................... 54 
7.2 DATABASE DESIGN .................................................................................................................................... 54 
7.3 QUERY OPERATIONS .................................................................................................................................. 54 
7.4 QUERY REFINEMENT .................................................................................................................................. 77 
7.5 TROUBLESHOOTING ................................................................................................................................... 82 

8 COMPARISON WITH RELATED WORK ................................................................................................. 83 

9 CONCLUSIONS AND FUTURE WORK ..................................................................................................... 87 

10 ACKNOWLEDGMENTS ................................................................................................................................ 87 

11 REFERENCES .................................................................................................................................................. 88 

 
 



Pelekis et. al.:  The HERMES MOD Engine 3 

 

1 Introduction 

Due to the explosion of mobile devices, the positioning technologies and the low data storage 

cost, one of the most important assets of knowledge intensive organizations working with 

movement data, (i.e. Location-Based Services (LBS), traffic engineering, climatology, social 

anthropology and zoology, studying vehicle position data, hurricane track data, human and 

animal movement data, respectively etc.) is the data itself. Spatial database research has 

focused on supporting the modeling and querying of geometries associated with objects in a 

database 25. Regarding static spatial data, the major commercial as well as open source 

database management systems 11, 32, 34, 47, 51 already provide appropriate data 

management and querying mechanisms that conform to Open Geospatial Consortium (OGC) 

standards 35. On the other hand, temporal databases have focused on extending the 

knowledge kept in a database about the current state of the real world to include the past, in 

the two senses of “the past of the real world” (valid time) and “the past states of the database” 

(transaction time) 53. About a decade‟s effort attempts to achieve an appropriate kind of 

interaction between both sub-areas of database research. Spatio-temporal databases are the 

outcome of the aggregation of time and space into a single framework 59, 47, 1, 37, 28 with 

up-to-date reviews of spatio-temporal models and systems proposed in the literature found in 

44 and 20, respectively. As delineated in these papers, a serious weakness of existing 

approaches is that each of them deals with few common characteristics found across a 

number of specific applications. Thus the applicability of each approach to different cases, 

fails on spatio-temporal behaviors not anticipated by the application used for the initial model 

development. For the previous reasons, the field of the MOD has emerged 24, which has been 

shown 44 that it presents the most desirable properties among the proposals. However, 

although a lot of research has been carried out in the field of MOD, the efforts are 

independent trying to deal with specific problems and do not pay attention into embedding 

the proposed solutions (i.e. query processing algorithms) on top of existing DBMS where real 

world organizations base on. Towards this direction, the pioneer work of Guting et al. 24, 17 

and 29 have proposed SECONDO system 2. However, SECONDO in contradiction to our 

approach is a stand-alone system, built from scratch, its design does not utilize the provided 

spatial extensions of existing ORDBMS, it does not conform to the OGC standards as it does 

not follow any predefined data model 12 and as such it is not embeddable into the DBMS 

infrastructure of an organization, where pure static spatial, as well as other types of data is 

stored. 
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The aim of this paper is to describe a robust framework capable of aiding either an analyst 

working with movement data, or more technically, a MOD developer in modeling, 

constructing and querying a database with objects that change location, shape and size, either 

discretely or continuously in time. Objects that change location or extent continuously are 

much more difficult to accommodate in a database in contrast to discretely changing objects. 

Supporting both types of spatio-temporal objects (the so-called moving objects) is exactly the 

challenge adopted by this paper. In detail, we present an integrated and comprehensive design 

of moving object data types in the form of extensible modules that can be embedded in OGC-

compliant Object-Relational Database Management Systems (ORDBMS) taking advantage of 

their extensibility interface. The proposed HERMES MOD Engine provides the functionality to 

construct a set of moving, expanding and/or shrinking geometries, which are just variables of 

simple continuous functions that obtain hypostasis when projected to the spatial domain (i.e. 

becoming OGC spatial data types) at a specific instance in time. Each one of these moving 

objects is supplied with a set of methods that facilitate the user to query and analyze spatio-

temporal data. Embedding this functionality offered by HERMES in an ORDBMS data 

manipulation language, one obtains a flexible, expressive and easy to use query language for 

moving objects that was not available so far in real OGC-compliant ORDBMS. 

The implementation of such a framework is based on a set of basic types including base 

data types (i.e. integer, real, string and boolean, available in all DBMS), together with spatial 

data types offered by spatial extensions of OGC-compliant ORDBMS and temporal data 

types introduced in a temporal extension, called TAU Temporal Literal Library (TAU-TLL) 

38. Based on these temporal and spatial object data types and the ideas behind the abstract 

data types for moving objects that have been introduced in 24, this paper discusses the design 

principles and the implementation issues concerning HERMES. The values of such moving 

types are functions that associate each instant in time, with an OGC spatial type, in 

contradiction to 24 whose design does not follow the OGC standards. A rich palette of 

suitable operations is defined on these types to support querying and to make moving object 

data management easier and more natural and sensible to users and applications.  

Moreover, given the ubiquitousness of location-aware devices, databases handling moving 

objects will, sooner or later, face enormous volumes of data. It consequently arises that 

performance in the presence of vast data sizes, is a significant problem for moving object 

databases and the only way to deal with such enormous sizes is the exploitation of specialized 

access methods used for spatio-temporal indexing purposes. The domain of spatio-temporal 
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indexing is dominated by the presence of the R-tree, along with its variations and extensions, 

which include, among others, 3D R-trees 55, TB-trees and STR-trees 46, PA-trees 33, and 

MON-trees 4. As in the case of appropriate moving object data types and methods for 

extending the type system of ORDBMS, except the well-known R-trees, which are suitable 

only for static spatial data, none of the above proposals have been incorporated into existing 

ORDBMS. Among them, the Trajectory Bundle tree (TB-tree) 46, is adopted in this work and 

appropriately designed and implemented inside HERMES taking advantage of the indexing 

extensibility interface of ORDBMS. Being a member of the R-tree family, TB-tree is able to 

support traditional queries such as range and distance-based queries. At the same time, it 

supports objects moving on the unconstrained space (it is general-purpose and not network-

based such as the MON-tree 4), and is the only one that fulfills the need for trajectory 

preservation so as to efficiently support trajectory-based operations. 

Furthermore, apart from simple query operators (e.g. range queries) natively supported by 

R-trees, there is a variety of spatio-temporal operators that are essential higher level analysis 

and which require more sophisticated query processing techniques in order to be efficiently 

processed. Among them, an important class of queries is the so-called k nearest neighbor (k-

NN) search, where one is interested in finding the k closest trajectories to a predefined query 

object Q (stationary or moving). Thus, one of the challenges being present in the domain of 

trajectory databases is to develop mechanisms to perform k-NN search on MODs exploiting 

spatio-temporal indexes storing historical information. Among the solutions proposed in the 

literature we adopt the one proposed by 19 which efficiently supports Nearest Neighbor (NN) 

queries over historical trajectory data. 

Finally, as we aim at providing a powerful toolkit for analysts, HERMES provides 

qualitatively different techniques for trajectory similarity search, which is exploited to support 

trajectory clustering and classification mining tasks that imply a way to quantify the distance 

between two trajectories. More specifically, we adopt a novel set of trajectory distance 

functions 41, 39 based on primitive (space and time) as well as derived parameters of moving 

objects (speed, acceleration, and direction), which are also capable to support sub-trajectory 

similarity matching. The overall framework advances the contribution of our approach by two 

inter-related facts: firstly, the combination of the similarity operators in the extended with 

MOD semantics SQL-like query language (using AND/OR clauses) provides analysis 

functionality unmatched so far (e.g. “find objects that moved closely in space but with very 

dissimilar speed patterns”); secondly, the output of each of the supported operators defines 
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similarity patterns that can be utilized to reveal local similarity features (e.g. “find the most 

similar portions between two, in general, dissimilar trajectories”). 

Summarizing the previous discussion, the contributions of the paper are the following: 

 We present a datatype-oriented model and an extension of SQL-like query language for 

supporting the modeling and querying of MOD on top of OGC-compliant ORDBMS. 

 We describe the physical representation design decisions and the architectural aspects of 

our server-side MOD database engine, as well as the formulated interface for building 

advanced mobility-related applications. 

 We demonstrate how novel, appropriate access methods and advanced, non-trivial query 

operators are embedded inside extensible ORDBMS providing efficiency and higher level 

analysis functionality. 

 We investigate the expressive power and flexibility of the produced query language via a 

real-world application scenario. 

 As a proof of concept, we have implemented the proposed framework on top of a 

commercial ORDBMS, namely Oracle, while our design has also been successfully 

applied and repeated in the open-source PostgreSQL with the PostGIS spatial extension 7. 

To the best of our knowledge, HERMES is the first work that provides a complete 

framework for building MOD applications, which has been incorporated into two state-of-

the-art OGC-compliant ORDBMS. 

The outline of the paper is as follows: we first present the data type system for moving 

objects introduced in HERMES in an abstract way (Section 2) and then, we discuss 

implementation aspects (Section 3). An appropriate set of operations that extend the data 

definition and manipulation language of an ORDBMS with spatio-temporal semantics is 

discussed in Section 4. The overall architecture for implementing HERMES in a state-of-the-art 

ORDBMS, is presented in Section 5 together with a proof-of-concept case study related with 

vehicle traffic analysis. In Section 6 we assess the applicability of the proposed system in 

building other systems via presenting four tools and corresponding application domains that 

utilize HERMES as the platform for managing and analyzing their movement related data. An 

extensive discussion on the comparison of HERMES functionality with related work appears in 

Section 7. Finally, Section 8 concludes the paper, also pointing out some interesting future 

research directions. 
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2 A Data Type System for Moving Objects 

The basic modeling primitives of the proposed moving object data type system are objects 

and literals. An object is a computational entity with a unique object identifier that 

encapsulates both state and behavior. The state of an object is defined by the values it carries 

for a set of properties. These properties can be attributes of the object itself or relationships 

between the object and one or more other objects. The behavior of an object is defined by a 

set of operations that can be executed on or by the object. On the other hand, a literal is a 

computational entity that has only state. Let V be a universe of all possible computational 

entities, containing objects and literals. A type is a set of elements of V that obey some 

technical properties. Each type is associated with a predicate function defined over the V. A 

value v V satisfies a type iff the predicate is true for that value. A value that satisfies a type 

is called member of the type. A type system is a collection of types. 

Types in the so-called MOD Type System are divided into Base Types BT, pure Temporal 

Types TT, pure OGC-compliant Spatial Types ST and Moving Types MT, i.e., the proposed 

MOD Type System is defined as: 

MOD = BT  TT  ST  MT (1) 

Figure 1 illustrates, in UML notation, all types in MOD Type System. 
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Type System

Base Types

BT

Moving Types

MT

Spatial Types

ST

Temporal Types

TT

short

double

long

enum

string

char

boolean

float

unsigned short

unsigned long

Interval

Temporal

Element

Period

Timepoint

Timestamp

Time

Date

Moving

Point

Moving

Object

Moving

Collection

Moving

Polygon

Moving

Circle

Moving

LineString

Moving

Rectangle

GEOMETRY

 

Figure 1 MOD Type System 

2.1 Base, Temporal and Spatial Types 

Base types are the standard database types built into any DBMS, such as integer and real 

(float) numbers, alphanumeric strings and booleans. These types form a subset of the Atomic 

Literal Types needed to define temporal types. The set ALT of Atomic Literal Types is defined 

OGC 

Geometry 
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as: 

ALT =  boolean   char   short   ushort   long   ulong  
 float   double   octet   string   enum 

(2) 

 
where  * denotes the domain of type *. For example,  boolean = {true, false},  char 
= {x | x ASCII}, and so on.  

 
Moving from base to temporal types, the set TLT of Temporal Literal Types is defined as 

27, 38: 
 
TLT =  date   time   timestamp   interval   timepoint g   

 period g    temporalElement g  
(3) 

 

Basically, TLT augments the four temporal literal data types found in ODMG object model 

8 (namely, Date, Time, Timestamp and Interval) with three new temporal object data types 

(namely, Timepoint, Period and Temporal Element). The widely used Gregorian calendar is 

implemented and the discrete model of time is adopted, where time is isomorphic to the 

integers because of its better representation and manipulation on databases. Time axis is 

partitioned into a finite number of discrete segments, called granules 58. The choice of a 

partitioning scheme is termed as granularity. The granularity of the timestamp that a fact is 

associated with denotes the precision to which the timestamp can be represented. Time order 

refers to whether the time axis can be always considered as linear or non-linear. In the linear 

model, time advances from past to future in a totally ordered form. The non-linearity of the 

time axis deals with aspects of the time such as periodic time and branching time 56. 

Formally: 

date =d year: GrYear, month: GrMonth, day: GrDay  
time =d hour: GrHour, minute: GrMinute, second: GrSecond  
timestamp =d date  time 
interval =d day: long, hour: GrHour, minute: GrMinute, second: GrSecond  
timepoint g =d tpg STV 
periodg=d start:Timepointg, end:Timepointg | start  end, g  granularity 
temporalElement g =d te: setperiodg| i, j  ij tei  tej 

(4) 

where the set granularity that contains elements that represent time accuracy according to the 

time divisions in the Gregorian calendar:  granularity = {YEAR, MONTH, DAY, 

HOUR, MINUTE, SECOND}, tpyear =d year: GrYear , tpmonth =d tpyear  month: 

GrMonth , ..., tpsecond =d tpminute  second: GrSecond  and STV =d beginning, 

forever, now. 

The four temporal literal data types found in ODMG object model 8 are augmented with 

three new temporal object data types presented below: 

 Timepoint: extends the Timestamp data type to include granularity. The new data type is a 
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subtype of the Timestamp data type. It inherits all the properties and the operations that 

are defined for the Timestamp data type. It refines all the operations, which had as 

argument Timestamp to Timepoint. Beginning and forever are defined to be members of 

timepoint such as  t  timepoint g  beginning  t  forever 

 Period: is used to represent an anchored duration of time, that is, duration of time with 

starting and ending points. A period has an associated granularity. The period is the 

composition of two timepoints with the constraint that the timepoint that starts the period 

equals or precedes the timepoint that terminates it. Without loss of generality, it is 

assumed that both timepoints have the same granularity. There are four categories of 

periods depending on whether they include their starting and/or their ending timepoints or 

not: [t1, t2] (closed-closed), [t1, t2) (closed-open), (t 1, t2] (open-closed), and (t1, t2) (open-

open). Without loss of generality, TAU Model supports only closed-open periods, with 

which it is possible to model any other category. For example, the period [t1, t2] is 

equivalent to the period [t1, t2+1 "granule"). The meaning of "1 granule" depends on the 

granularity of the period. For instance, if the granularity is day then the period [t1, t2] is 

equivalent to the period [t1, t2+1*DAY).  

 Temporal Element: is used to represent a finite union of disjoint periods. Temporal 

elements are closed under the set theoretic operations of union, intersection and 

complementation. 

On the other hand, spatial types (point, line segment, rectangle, etc.) are supported by 

another component of the MOD type system architecture, called OGC Geometry. Such a 

spatial extension is found in several state-of-the-art ORDBMS (e.g. 11, 32, 34, 47, 51) and 

provides an integrated set of functions and procedures that enable spatial data following the 

OGC standard to be efficiently stored in a spatial database, accessed and futher processed. Of 

course, the geometric operations forming the behavior of spatial types supported by these 

extensions, handle queries statically, meaning that there exists no notion of time associated to 

the spatial objects. This is exactly the target addressed in the MOD type system we propose in 

the sequel. 

2.2 Preliminaries of Moving Object Data Types 

As already mentioned, the authors in 24, 17 and 29 introduce the concept of sliced 

representation, the basic idea of which is to decompose the temporal development of a 
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moving value into fragments called “slices” such that within the slice this development can 

be described by some kind of “simple” function. This is illustrated in Figure 2 for a time-

varying point (moving point). 

yy'

xx'

tt'

t1 t4t3t2

t ε [t1, t2) -> Linear movement

t ε [t2, t3) -> Arc movement

t5

t ε [t3, t4) -> Const movement

t ε [t4, t5) -> Linear movement

 

Figure 2 Moving Point with various types of movement 

In this work, we adopt and extend the sliced representation concept and utilize it in the 

implementation of the MOD type system that results to HERMES. In order to use the sliced 

representation to define a moving type, one has to decompose the definition of each moving 

type into several definitions, one for each of the slices that corresponds to a simple function, 

and then compose these sub-definitions as a collection to define the moving type. Each one of 

the sub-definitions corresponds to a so-called unit moving type. 

In order to define a unit moving type, we need to associate a period of time with the 

description of a simple function that models the behavior of the moving type in that specific 

time period. Based on this approach, two real world notions are directly mapped to our model 

as object types, namely time period and simple function. The first concept has been already 

introduced as one of the temporal literal types in TLT (closed-open period in formula (2)). 

The second concept is an object type, named Unit_Function, defined as a triplet of (x, y) 

coordinates together with some additional motion parameters. The first two coordinates 

represent the initial (xi, yi) and ending (xe, ye) coordinates of the sub-motion defined, while the 

third coordinate (xc, yc) corresponds to the centre of a circle upon which the object is moving. 

Whether we have constant, linear or arc motion between (xi, yi) and (xe, ye) is implied by a 

flag indicating the type of the simple function. Since we require that HERMES manages not 

only historical data, but also online and dynamic applications, we further let a Unit_Function 

to model the case where a user currently (i.e., at an initial timepoint) is located at (xi, yi) and 

moves with initial velocity v and acceleration a on a linear or circular arc route. 

In the case of arc motions, following the categorization of realistic arc motions initially 

discussed in 62, we classify them according to the quadrant the motion takes place and 

motion heading (clockwise or counterclockwise). Figure 3 illustrates one of the possible eight 
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cases (e.g. quadrant I - clockwise direction). 
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Figure 3 Motion on a circular arc 

For constant and linear motions, the interpolation of a moving point‟s location in an 

intermediate timepoint t is straightforward. For arc motions, there is need of some 

trigonometric calculations. For the case of Figure 3 the necessary operations are illustrated in 

Eq. 5. Following a similar process, we develop all kinds of arc functions in each quadrant and 

direction. 
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(5) 

Consequently, in the general case the Unit_Function is defined as follows: 

Unit_Function = d  xi:double, yi:double, xe:double, ye:double, xc:double, yc:double, v:double, 

a:double, flag:TypeOfFunction  
(6) 

where  TypeOfFunction={ PLNML_1, ARC_<1..8>, CONST }, meaning 1
st
 order 

polynomial, one of the eight possible circular arcs, and constant function, respectively. 

In the two sections that follow, we provide abstract definitions of the data types that 

compose the MOD type system that we propose as well as operations that exploit their 

functionality. 

2.3 Abstract Definitions of Moving Object Data Types  

Combining time period and simple function together, the most primitive and simplest unit 

object type is defined, namely Unit_Moving_Point. This is a fundamental type since all the 

successor unit types are defined based upon it. Formally: 

Unit_Moving_Point =d p: period SECOND, m: Unit_Function  (7) 

Following this, we define two unit moving types directly based on Unit_Moving_Point, 

namely Unit_Moving_Circle and Unit_Moving_Rectangle. As it is easily inferred, these two 
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object types model circle and rectangle geometry constructs that change their position and/or 

extent over time. Formally: 

Unit_Moving_Rectangle= d{ ll:Unit_Moving_Point, ur: Unit_Moving_Point | equal 

(ll.p, ur.p) } 
(8) 

Unit_Moving_Circle=d { f: Unit_Moving_Point, s: Unit_Moving_Point,  

        t: Unit_Moving_Point  | equal (f.p, s.p, t.p) } 
(9) 

For modeling the subsequent object types (Unit_Moving_Polygon and 

Unit_Moving_LineString) an intermediate object type that represents the simplest built-in 

constituent of these types is needed. This requirement is met by the Unit_Moving_Segment 

object, which models a simple line or arc segment that changes its shape and size according to 

its starting and ending unit moving points. This is clarified in Figure 4 where a moving 

segment is mapped to a line segment at two different time instants t1 and t2. During the time 

period between t1 and t2, the starting moving point mp1 follows a simple linear trajectory, 

while the ending moving point mp2 follows an arc trajectory. 

yy'

xx'

t1 t2

mp1

mp1

mp2
mp2

 

Figure 4 Linear Unit_Moving_Segment with its first Unit_Moving_Point 
mp1 moving linearly and the second mp2 moving on a circular arc 

Formally: 

Unit_Moving_Segment= d{ b:Unit_Moving_Point, e: Unit_Moving_Point, m: 

Unit_Moving_Point, kind:TypeOfSegment | (kind=SEG  equal (b.p, e.p))  (kind 

=ARC  equal (b.p, e.p, m.p)) } 

(10) 

Unit_Moving_Linestring= d{l:setUnit_Moving_Segment |  i, j  ulong: i j  equal 

(li.b.p, lj.e.p) } 
(11) 

Unit_Moving_Polygon =d {  l: setUnit_Moving_Segment, hole:boolean |  i, j  ulong: 
i j  equal (li.b.p, lj.e.p) } 

(12) 

where  TypeOfSegment  = {SEG, ARC} and SEG, ARC denote the two alternative modes 

of interpolation in between two end points (line segment vs. arc, respectively). 

Having defined the fundamental unit moving types, we now introduce the moving types 

that play the dominant role in our spatio-temporal data type system. The process that we 

followed to define the moving types is to introduce a moving type as a collection of the 

corresponding unit moving type, which means, in terms of object orientation, that there exists 

a composition relationship between the unit moving type and the moving type. As such, the 

Moving_Point, Moving_Circle, Moving_Rectangle, Moving_LineString and Moving_Polygon 
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object types are introduced as a collection of Unit_Moving_Point, Unit_Moving_Circle, 

Unit_Moving_Rectangle, Unit_Moving_LineString, Unit_Moving_Polygon object types, 

respectively. Formally: 

Moving_Point =d { p: setUnit_Moving_Point |  i, j  ulong, 1 i, j 

|setUnit_Moving_Point|: j= i+1  pi.p < pj.p  overlaps(pi.p, pj.p)   t  double: 

inside(t, pi.p)  at_instant(p, t)  OGC-GEOMETRYGTYPE=point } 

(13) 

Moving_Rectangle =d { r: setUnit_Moving_Rectangle |  i, j  ulong, 1 i, j 

|setUnit_Moving_Rectangle|: j= i+1  ri.ll.p < rj.ur.p  overlaps(ri.ll.p, rj.ur.p)   t 

 double: inside(t, ri.ll.p)  at_instant(r, t)  OGC-GEOMETRYGTYPE=rectangle } 

(14) 

Moving_Circle =d { c: setUnit_Moving_Circle |  i, j  ulong, 1 i, j 

|setUnit_Moving_Circle|: j= i+1  ci.f.p < cj.s.p  overlaps(ci.f.p, cj.s.p)   t  

double: inside(t, ci.f.p)  at_instant(c, t)  OGC-GEOMETRYGTYPE=circle } 

(15) 

Moving_LineString =d { line: setUnit_Moving_LineString |  i, j  ulong, 1 i, j 

|setUnit_Moving_LineString|: j= i+1  linei.l1.b.p < linej.l1.e.p  overlaps(linei.l1.b.p, 

linej.l1.e.p)   t  double: inside(t, linei.l1.b.p)  at_instant(line, t)  OGC-

GEOMETRYGTYPE=linestring } 

(16) 

Moving_Polygon =d { pol: setUnit_Moving_Polygon |  i, j  ulong, 1 i, j 

|setUnit_Moving_Polygon|: j= i+1  poli.l1.b.p < polj.l1.e.p  overlaps(poli.l1.b.p, 

polj.l1.e.p)   t  double: inside(t, poli.l1.b.p)  at_instant(pol, t)  OGC-

GEOMETRYGTYPE=polygon } 

(17) 

Similarly, in order to model homogeneous collections of moving types, multi-moving types 

are defined as collections of the corresponding moving types. Consequently, the proposed 

spatio-temporal model is augmented by the following object types: Multi_Moving_Point, 

Multi_Moving_Circle, Multi_Moving_Rectangle, Multi_Moving_LineString and 

Multi_Moving_Polygon. Formally (and assuming that the spatial extension of the underlying 

ORDBMS supports multi-spatial types): 

Multi_Moving_Point =d { multi_mpoint: set Moving_Point |  i, j  ulong   t  double: 

inside(t, multi_mpointi.pj.p)  i (at_instant(multi_mpointi, t))  OGC-

GEOMETRYGTYPE=multi-point } 

(18) 

Multi_Moving_LineString =d { multi_mline: set Moving_LineString | i, j  ulong   t  

double: inside(t, multi_mlinei.linej.l1.b.p)  i (at_instant(multi_mlinei, t))  OGC-

GEOMETRYGTYPE=multi-linestring } 

(19) 

Multi_Moving_Circle =d { multi_mcircle: set Moving_Circle | i, j  ulong   t  double: 

inside(t, multi_mcirclei.cj.f.p)  i (at_instant(multi_mcirclei, t))  OGC-

GEOMETRYGTYPE=multi-polygon } 

(20) 

Multi_Moving_Rectangle =d { multi_mrectangle: set Moving_Rectangle | i, j  ulong   

t  double: inside(t, multi_mrectanglei.rj.ll.p)  i (at_instant(multi_mrectanglei, t))  

OGC-GEOMETRYGTYPE= multi-polygon } 

(21) 

Multi_Moving_Polygon =d { multi_mpolygon: set Moving_Polygon | i, j  ulong   t  

double: inside(t, multi_mpolygoni.polj.l1.b.p)  i (at_instant(multi_mpolygoni, t))  

OGC-GEOMETRYGTYPE= multi-polygon } 

(22) 



Pelekis et. al.:  The HERMES MOD Engine 14 

 

Moving_Object

Moving

Rectangle

Moving

Polygon

Moving

Collection

Moving

Circle

Moving

LineString

Moving

Point

Multi

Moving

Point

Multi

Moving

Polygon

Multi

Moving

Rectangle

Multi

Moving

Circle

Multi

Moving

LineString

Unit

Moving

Point

Unit

Moving

Polygon

Unit

Moving

Rectangle

Unit

Moving

Circle

Unit

Moving

LineString

Unit

Function

Unit

Moving

Segment

Union

Output

Union

Input

1..*

1..2 1..*

1..1

1..1

1..*

1..1

1..*

1..1

1..*

1..1

1..*

1..1

1..1

1..*

1..11..1

1..1

1..*

1..1

1..*

1..1

1..*

1..1

1..*

1..1

1..*

 

Figure 5 The moving types of MOD type system 

An interesting issue here is that the previously mentioned multi-moving types do not carry 

their own methods interface. All the functionality for these types can be invoked by the 

methods of another object type, called Moving_Collection, standing as the supertype and 

aggregating the interfaces, the object methods and the spatio-temporal semantics of all the 

multi moving types. Furthermore, the moving-collection type is able to represent 

heterogeneous collections of moving types, i.e., collections of different time-varying spatial 

geometries. Formally: 

Moving_Collection =d {  multi_mpoint: Multi_Moving_Point, multi_mline: 
Multi_Moving_LineString, multi_mcircle: Multi_Moving_Circle, 
multi_mrectangle: Multi_Moving_Rectangle, multi_mpolygon: 

Multi_Moving_Polygon  |  

 i, j  ulong   t  double: inside(t, multi_mpointi.pj.p)  inside(t, 

multi_mlinei.linej.l1.b.p)  inside(t, multi_mcirclei.cj.f.p)  inside(t, 

multi_mrectanglei.rj.ll.p)  inside(t, multi_mpolygoni.polj.l1.b.p)  [ (i 

(at_instant(multi_mpointi, t)))  (i (at_instant(multi_mlinei, t)))  (i 

(at_instant(multi_mcirclei, t)))  (i (at_instant(multi_mrectanglei, t)))  

(i (at_instant(multi_mpolygoni, t))) ]  OGC-
GEOMETRYGTYPE=collection } 

(23) 

The concept of inheritance is also utilized at the level of moving types by introducing an 

object that encapsulates all semantics and functionality offered by moving types, including 

Moving_Collection. The so-called Moving_Object type is the conjunction of all the previously 

defined object types, which implies that this object can completely substitute any other 

moving type. Furthermore, the Moving_Object models any moving type that can be the result 

of an operation between moving objects. For example, the intersection of a Moving_Point 

with a (static) polygon geometry is obviously another Moving_Point that is the restriction of 
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the first Moving_Point inside the polygon. This result can be modeled as a Moving_Object. If 

the result of an operation is not a moving geometry then Moving_Object plays the role of a 

degenerated moving type. In other words, if there is an operation that requests the perimeter 

of Moving_Polygon, then obviously the result of this method is a time-varying real number 

(Moving_Real). Such collapsed moving types like Moving_Real, Moving_String, and 

Moving_Boolean do not formally exist in our type system but are modeled using the 

Moving_Object object type. Formally: 

Moving_Object =d {  mobject: Moving_Object, mpoint: Moving_Point, mline: 

Moving_LineString, mcircle: Moving_Circle, mrectangle: Moving_Rectangle, 

mpolygon: Moving_Polygon, mcolection: Moving_Collection, geometry: 

GEOMETRY, gtype: GeometryType, optype: string, arg1: ushort, arg2: ushort, 

input: Union_Input } 

(24) 

where gtype is a flag that makes Moving_Object behave as if it were a simple moving type,  

GeometryType  = { MOBJECT, MPOINT, MLINE, MCIRCLE, MRECTANGLE, 

MPOLYGON, MCOLLECTION } and Union_Input =d mask: string, tolerance: double, 

distance: double . 

Summarizing, Figure 5 illustrates a UML class diagram for the moving types supported in 

the proposed MOD type system. 

2.4 Spatiotemporal Indexing in Hermes 

In this section we briefly introduce the basic notions of spatio-temporal indexing and 

present the TB-tree which is adopted in this work and implemented in HERMES. Similar to the 

original R-tree, the TB-tree is a height-balanced tree with the index records in its leaf nodes; 

leaf nodes contain entries of the same trajectories, and are of the form S = MBB, 

Orientation, where MBB is the 3D bounding box of the 3D line segment belonging to an 

object‟s trajectory (handling time as the third dimension) and Orientation is a flag used to 

reconstruct the actual 3D line segment inside the MBB among four different alternatives that 

exist (see figure Figure 7). Moreover, contrary to the well-known B-tree, and similarly to the 

original R-tree, internal and leaf node MBBs belonging to the same tree level are allowed to 

overlap. Each internal or leaf node in the tree corresponds to a physical disk page (or disk 

block, which is the fundamental element on which the actual disk storage is organized) and 

contains between m and M entries (M is the node capacity and m in the case of TB-tree is set 
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to 1).  

Since each leaf node contains entries of the same trajectory, the object id can be stored 

once in the leaf node header. Therefore, TB-tree leaf nodes are of the form header, {Si}, 

where each Si = MBBi  Orientationi and header = id, #entries, ptrCur, ptrParent, ptrNext, 

ptrPrevious (in other words, the object identifier, the number of node entries and four 

pointers, to the current, the parent, and the next and previous nodes of the same trajectory). 

On the other hand, non-leaf nodes are of the form header, {Ei}, where each Ei = MBBi, ptri 

with MBBi be the enclosing 3D box of the child node pointed by ptri (a pointer to it), and 

header = #entries, ptrCur, ptrParent simply stores the number of node entries and a pointer 

to itself and to its parent node. Furthermore, similar to SETI 9 and in order to support high 

insertion rates, our TB-tree implementation uses an in-memory hashed front-line structure, 

which maintains tuples of the form id, Pcurr, Ncurr with the object identifier id, its latest 

position Pcurr = tcurr, xcurr, ycurr  and a pointer Ncurr to the leaf node containing Pcurr.  

t3 

t1 

t7 

t11 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

 

Figure 6 The TB-tree structure 

 

Figure 7 Alternative ways that a 3D line segment can be contained inside a MBB 

Given the size of a disk block, which is predetermined by the operation system, the number 

of elements contained in a leaf of internal node in the tree is resticted by it. Specifically, given 

that each Si is contained in 25 bytes (4 bytes for each one of the 6 double precission numbers 

needed to describe the MBB and 1 byte for the orientation flag) and the header of each leaf 

node has the size of 16 bytes (4 bytes for each one of the object identifier, the number of 

entries, and the four pointers), the total leaf capacity in terms of trajectory segments is given 
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by Int(([page size]-16)/25); this number for a typical page size of 4096 bytes results in 163 

trajectory segments inside each leaf node. Following the same reasoning each internal tree 

node has a capacity of 170 entries, resulting in 170 child nodes. 

The difference of the TB-tree with the majority of the R-tree variations relies on the way 

the index is built. Specifically, its insertion algorithm is not based upon the spatial and 

temporal relations of moving objects (or moving object segments) but it relies only on the 

moving object identifier (id). When new line segments are inserted, the algorithm searches for 

the leaf node containing the last entry of the same trajectory, and simply inserts the new entry 

in it, thus forming leaf nodes that contain line segments from a single trajectory. Furthermore, 

its split strategy is very simple: when a leaf node is full, a new one is created and is inserted at 

the right-end of the tree; due to the monotonicity of time, this strategy ensures that trajectories 

are organized monotonically inside the tree structure, e.g., trajectory segments are organized 

by time. For each trajectory, a double linked list connects the leaf nodes that contain its 

portions together (Figure 6), resulting in a structure that can efficiently answer trajectory-

based queries.  

2.5 The TB-tree Data Types 

In this section we introduce the data types required for embedding the TB-tree in an 

ORDBMS that supports moving objects. We should note that these data types are transparent 

to the user of HERMES and their usage is just for the internal construction of the tree. The 

implementation of a tree-based index under the object-relational model follows a number of 

well-known rules and techniques, such as implementing different object classes for each one 

of the basic tree elements, namely, tree nodes (root, internal nodes, leafs) and node elements. 

Figure 8 below provides an abstract, though insightful, view of the index organization, along 

with the connection with the rest of the HERMES data types in the form of a UML class 

diagram describing the structure‟s primitives. The left part of the diagram depicts the objects 

participating in the index formation. Following a top-down description, the tbTreeIdx class is 

used mainly for completeness as an abstraction of the corresponding part of the model and it 

refers to the definition of TB-tree index on the table where the actual trajectory data are 

stored. Since the main trajectory table may initially be empty, the corresponding aggregation 

with the lower-level tbTreeElement class possesses a cardinality of «0..*».  

Descending the diagram, we observe that the whole arrangement is separated in two kinds of 

TB-tree Node types. Namely, the tbTreeNode Class regarding the internal nodes of the tree 
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structure and the tbTreeLeaf class used to represent the leaf nodes of the index where trajectory 

segments are stored. Given that the size of each leaf node is predermined and equivalent to the 

chosen disc block size, its capacity in terms of trajectory line segments is also predefined 

(following the previous discussion, a page size of 4096 bytes results in leaf nodes fitting no 

more than 163 segments). As a consequence, exceeding the aforementioned size, in terms of 

leaf node entries, causes segments of the same trajectory to be stored in different leaf nodes 

which remain connected by means of a double linked list. This is denoted using an association 

termed as “linked”. Note that the head leaf of the list might be connected to at most 1 (or 0 

when the trajectory fits in a block) other leaves and the same holds for the tail of the 

arrangement. Each intermediate node is essentially linked to two other peers. This explains the 

cardinality of the respective association.    

 

Figure 8 TB-tree data types 

A tbTreeLeaf includes a number of leaf entries (tbTreeLeafEntry in Figure 8), each consisting 

of the MBB (tbMBB in the figure) that surrounds the trajectory segment kept in the leaf entry, 

along with an integer number 1-4 denoting its orientation; tbMBBs is composed by a MinPoint 

and a MaxPoint of tbPoint type which are the lower left and upper right of the box, respectively 

in the spatio-temporal space, while tbpoint has only a property of tbX collection type, which is 

an array of size 3 used to hold triplets (x,y,t) of time-stamped positions forming the entire 

object‟s trajectory. More spectifically, the attributes of tbTreeLeaf  are:  

 MoID of integer type which is the global trajectory identifier, 

 ptrCurrentNode of integer type, being the current node‟s identifier encapsulated in the 

object to facilitate implementation issues,  
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 ptrParentNode of integer type, representing a pointer to the parent of the current node 

used to ascend the tree when necessary,  

 ptrPreviousNode of type integer, which is a pointer to the node containing the previous 

fragment of the same trajectory, 

 ptrNextNode of type integer, which is a pointer to the node containing the next fragment 

of the same trajectory,  

 LeafEntries, a collection of tbTreeLeafEntry type with fixed capacity, which involves 

the current leaf entries as previously described, and, 

 count of integer type that holds the cardinality of LeafEntries. 

Formaly, given the leaf capacity LeafCapacity, i.e., the maximum number of leaf entries that 

may be contained in a leaf node, we define the following types: 

tbPoint=d{tbX:setdouble| |tbX|=3} (25) 

tbMBB=d{MinPoint:tbPoint, MaxPoint:tbPoint|  0≤i≤2,  

MinPoint.x(i)<=MaxPoint.x(i)} 
(26) 

tbTreeLeafEntry=d{MBB:tbMBB, Orientation: short | Orientation<4} (27) 

tbTreeLeaf=d{MovingObjectId:long, ptrCurrentNode:long, 

ptrParentNode:long, ptrNextNode:long, ptrPreviousNode:long, 

LeafEntries: settbTreeLeafEntry, count:long | |LeafEntries|≤ 

LeafCapacity, count=|LeafEntries| } 

(28) 

Similarly, a tbTreeNode contains a set of tbTreeNodeEntry objects; each tbTreeNodeEntry 

encloses all the the leaf or node entries contained in the sub-tree starting with this node as root. 

More spectifically, its attributes involve:  

 ptrCurrentNode of integer type, which is the current node‟s identifier encapsulated in 

the object to facilitate implementation issues,  

 ptrParentNode of integer type, which is a pointer to the parent of the current node used 

to ascend the tree when necessary,  

 NodeEnties, a collection of tbTreeNodeEntry type with fixed capacity, which involves 

the current node entries as previously described, and, 

 count of integer type to hold the cardinality of NodeEntries.  
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Formally, given the node capacity NodeCapacity we define: 

tbTreeNodeEntry=d{MBB:tbMBB, ptr: long } (29) 

tbTreeNode=d{ptrParentNode:long, ptrCurrentNode:long, NodeEntries: 

settbTreeNodeEntry, count:long | |NodeEntries|≤ NodeCapacity, 

count=|NodeEntries| } 

(30) 

Eventually, the two interfaces of Figure 8 to_tbTreeLeafEntry, to_Unit_Moving_Point provide 

essential mechanisms for object transformation from one type to the other. 

The following sections describe the design decisions and the implementation details for 

mapping the MOD type system into extensible ORDBMS, as well as essential functionality 

for extending SQL-like query languages with MOD querying constructs. 

3 Physical Mapping of the Hermes MOD Type System 

The physical representation of the data types reflects the structures that are necessary in order 

to capture the semantics and implement the methods of these data types. In this section, we 

discuss how MOD types (abstractly described in Section 3) are mapped to physical structures 

for storing continuously and discretely time-evolving geometric data into an ORDBMS with 

OGC-compliant spatial extension. The following subsections propose low-level constructs for 

the implementation of such objects and illustrate the design decisions and implementation 

issues considered during development. 

3.1 Unit Function 

Unit_Function is constructed as an octave of real numbers and a flag indicating the type of 

the simple function. In the current version, three types of functions are supported, namely 

polynomial of first degree, circular arc and the constant function. 

The modeling of Unit_Function is extensible; for example, if one wishes to add 

interpolations with spline or polynomials with degree higher than one, then what is only 

needed to be done is the addition (if necessary) of the appropriate variables as attributes of the 

object and the implementation of such a function. 

We should note that we model a moving type that changes discretely for a period of time 

by setting all Unit_Function objects of the corresponding unit-moving type to be constant 

functions. Due to the fact that the coordinates represented by these Unit_Function objects do 

not change for this period of time, it is equivalent to taking a snapshot of the moving 
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geometry, which is valid for the entire period. If at least one of these unit functions is not 

constant then the moving type change is continuous for this period of time. In case of a 

moving linestring and in order to model a discrete change for a period, the above assignment 

should take place for all unit-moving points that compose the corresponding unit-moving 

linestring. What is more, if this process were continued to all unit-moving types the result 

would be a completely discretely changing moving geometry. 

3.2 Moving Point, Moving Circle and Moving Rectangle 

We construct Moving_Point object type as a collection of Unit_Moving_Point objects (i.e. 

pointer to a nested table or a varying length array (i.e. varray), depending on the underlying 

ORDBMS, of Unit_Moving_Point objects), which in turn are defined as objects consisting of 

two attributes. The first attribute is the time period during which the other attribute is defined. 

The time period is expressed as an open-closed Period object, while the other attribute is of 

Unit_Function object type, whose domain of definition is the set of real numbers inside the 

open interval [t1, t2), where t1 is the starting point of the period and t2 is the ending point of 

the period. 

Similarly to the Moving_Point object, Moving_Circle and Moving_Rectangle object types 

are constructed as pointers to collections of Unit_Moving_Circle and 

Unit_Moving_Rectangle, respectively. Even though these two types could be modeled as 

special instances of Moving_Polygon object, it is a design decision to distinguish them both 

for simplicity and flexibility reasons as well as for implementation reasons. The motivation 

for defining distinct object constructors for these moving types is that both of them need just 

a small, predefined number of unit types, in contrast to the moving polygon, where the 

number of its sub-elements is unknown and generally large. What is more, this important 

distinction facilitates the mapping of these moving types to their corresponding pure spatial 

geometries and makes the process of finding degenerated moving types at specific time 

instants easier. 
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Figure 9 Instances of Moving_Circle and Moving_Rectangle type objects (and of degenerated cases) 
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Let us now examine the structure of Unit_Moving_Circle and Unit_Moving_Rectangle 

objects. Unit_Moving_Circle consists of three Unit_Moving_Point objects, representing the 

three points needed to define a valid circle. In the same way, Unit_Moving_Rectangle is 

composed of two Unit_Moving_Point objects, modeling the lower-left and upper-right point 

needed to define a valid rectangle. Figure 9 illustrates a moving circle and a moving rectangle 

instantiated at four different time points t1, t2, t3, and t4, respectively. At time point t2, it is 

clear to see the effect of the different interpolation functions and how they affect the position 

and extent of the mapped geometries, in contrast to time point t1. At time point t3, a 

degenerated moving circle and a degenerated moving rectangle are presented, meaning that 

the three unit moving points that compose the moving circle become co-linear and the two 

unit moving points that compose the moving rectangle form a line segment that is parallel to 

either xx‟ or yy‟ axis. At timepoint t4, another collapsed state is depicted, where all unit-

moving points become equal. HERMES implementation is responsible to deal with such 

degeneracies as will be discussed in Section 5.1. 

3.3 Moving LineString and Moving Polygon 

Moving_LineString is a moving type that is also constructed as a pointer to a nested table 

consisting of Unit_Moving_LineString objects. The difference between this moving type and 

the previously defined is that the Unit_Moving_LineString is also defined as a pointer to 

another nested table comprising of Unit_Moving_Segment objects. Unit_Moving_Segment in 

its turn is formed by three Unit_Moving_Point objects and a flag indicating the kind of 

interpolation between the starting and the ending point of the LineString geometry. The 

simplest part of a LineString geometry can be either a linear or an arc segment. In other 

words, this flag exemplifies the usage of the other attributes of the Unit_Moving_Segment 

object. Figure 10 illustrates the structure of the Moving_LineString object. 
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Figure 10 Structure of the Moving_LineString Object 
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The Moving_Polygon definition is very close to that of Moving_LineString. The main 

difference in the two definitions is on the construction of the corresponding unit moving type. 

More specifically, apart from a pointer to a collection of Unit_Moving_Segment objects, the 

Unit_Moving_Polygon object has an additional attribute, a flag that indicates if this set of 

moving segments forms the exterior ring of a polygon or is an interior (hole) ring. In other 

words, this extra attribute adds the logic that disjoint moving holes may exist inside a moving 

polygon, with boundaries not crossing or touching the exterior boundary. Considering the rest 

aspects of the definition of Unit_Moving_Polygon, there is no difference between the two 

object types. 
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Figure 11 Structure of the Moving_Polygon Object 

Actually, the difference between these two moving types comes from the different 

utilization of their collections of moving segments by the object methods. For example, an 

operation that maps a Moving_LineString to a LineString geometry checks for inequality on 

the starting and ending points of the line and this is a prerequisite for constructing the OGC 

geometry. On the contrary, the corresponding method for a moving polygon checks for the 

opposite, in order to be able to construct a valid OGC polygon. Another discrepancy of 

Moving_Polygon, in contrast to all the other moving types, is that in case it includes interior 

moving holes, then several Unit_Moving_Polygon objects need to be accessed in order to 

transform it to its corresponding spatial geometry at a specific instant (see Figure 11). 

3.4 Moving Collection and Moving Object 

Moving_Collection is the object type that models both homogeneous and heterogeneous 

collections of moving types. This is accomplished by defining this object as a set of five 

pointers to each of the following types: Multi_Moving_Point, Multi_Moving_LineString, 

Multi_Moving_Circle, Multi_Moving_Rectangle and Multi_Moving_Polygon. Each of these 
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moving types represents a homogeneous collection of moving points, linestrings, circles, 

rectangles and polygons, constructed as a pointer to a nested table of Moving_Point, 

Moving_LineString, Moving_Circle, Moving_Rectangle and Moving_Polygon object types, 

respectively.  

On the other hand, Moving_Object is the outcome of the conjunction of all the previous 

presented moving objects, and can be considered as the supertype of these types. Practically 

speaking, it is not intended to be directly used or constructed by a data cartridge user. On the 

contrary, it is intended to be the result type of operations of the other moving types (i.e., 

system generated). As inferred from the structure of Moving_Object (cf. formula (24)), the 

pointers to the moving types presented in the preceding sections model the subtypes of the 

current (super) type simulating inheritance. 

3.5 Implementation of the TB-tree in HERMES 

Regarding the data types required for the TB-tree index, they are mainly implemented as 

objects with simple attributes and arrays of attributes.  Specifically: 

 tbPoint is constructed as a standard array of real values with its cardinality set to 3 (x, 

y and t) 

 tbMBB is constructed by two attributes of type tbPoint 

 LeafEntry is constructed by an attribute of tbMBB type and another one of integer type 

taking values from 1 to 4, representing one among the four possible orientations that a 

line segment may have inside its MBB. 

 tbTreeLeaf is constructed by the integer value of MovingObjectId, and a set of pointers 

(integer values), i.e., ptrCurrentNode, ptrParentNode, ptrPreviousNode and 

ptrNextNode. It also contains a standard array of tbTreeLeafEntries with 

predetermined size LeafCapacity, and an integer value containing the number of 

occupied entries inside the array. 

 Similarly, a tbTreeNode is constructed by the two pointers (integer values), 

ptrCurrentNode and ptrParentNode, and a standard array of tbTreeNodeEntries with 

predetermined size NodeCapacity. Finally, an integer value containing the number of 

occupied entries inside the aforementioned array is employed inside the tbTreeNode 

structure. 

Regarding the implementation of the TB-tree in the HERMES a number tables constituting 
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the primary storage elements of index data are employed. Specifically, following the UML of 

Figure 8, the basic data types are stored in the following tables. Note also that these tables are 

automatically created/dropped upon the respective index creation/drop: 

 movingobjects: The movingobjects is an auxiliary table used to store a pointer to the 

index leaf where the last part of a trajectory is stored 18. As such, it contains only 2 

columns for the trajectory id, and for the pointer integer values.  

 tbTtreeidx_non_leaf: This is the table storing the internal tree nodes. It actually contains 

tuples of the form (NodeId, tbTreeNode), where NodeId=tbTreeNode.ptrCurrentNode.  

 tbTreeidx_leaf: This is the table storing the the tree leaf nodes; it also contains tuples of 

the form (LeafId, tbTreeLeaf) where LeafId=tbTreeLeaf.ptrCurrentNode. 

 

4 Operations on Moving Object Data Types 

Following, we classify the operations of the moving types introduced by HERMES into 

appropriate categories that enable us to describe and analyze the new query capabilities. The 

initial set of operations is the union of the methods supported by the simple moving types 

(namely, Moving_Point, Moving_LineString, Moving_Circle, Moving_Rectangle, 

Moving_Polygon and Moving_Collection). This set of operations is equivalent to the methods 

provided by the generic Moving_Object type as it models all the previous.  

The identifiable classes of operations that HERMES supports are: 

i) Consistency operations: operations responsible for keeping the database in a consistent 

state (checking ordering and consecutiveness of periods of unit moving types, realizing 

degenerated cases, etc.). 

ii) Predicates: operations that return boolean values concerning topological and other 

relationships between moving types (within distance, meet, overlap, etc.). 

iii) Projection operations: operations that restrict and project moving types to temporal (e.g. 

at_instant, at_period) and spatial domain (e.g. trajectory, buffer). 

iv) Distance and Direction operations 

v) Set operations: basic set relationship operations (union, intersection, set difference).  

vi) Numeric operations: functions that compute a numeric value (e.g., the perimeter or the 

area of a moving polygon, the speed of a moving point). 
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vii) Similarity functions: a set of trajectory distance functions based on primitive (space and 

time) as well as derived parameters of trajectories (speed, acceleration, and direction). 

viii) Index maintenance: necessary operations for creating, dropping and updating the TB-tree 

index. 

ix) Index operators: several advanced algorithms for efficient query processing of movement 

data. 

The following sections describe the functionality of selected operations, representative of 

each class. The interested reader may find signatures and more algorithms in 43. 

The interested reader may find signatures, more algorithms and special behavior of the 

operations in Appendix D. 

4.1 Maintaining the Database Consistent 

HERMES-MDC provides a set of object methods that enable the user to check the 

construction data of moving objects and maintain the database in a consistent state. These 

operations impose some integrity constraints that need to be followed for time-varying spatial 

data and, as such, protect the user from errors that have to do with the complex internal 

structure of the moving types. There are six such object methods, which we illustrate below: 

boolean check_periods_equality (): Check_periods_equality checks if the periods of the 

Unit_Moving_Point objects of each one of the unit moving types that form a moving 

geometry are equal. In other words, we do not permit the existence of a moving type that 

consists of several unit moving types and at least one of them describes the motion of its 

component Unit_Moving_Point objects with different D_Periods_Sec objects. Of course, such a 

method does not have any meaning for Moving_Point, as each of its unit moving types 

consists of only one Unit_Moving_Point object. 

boolean check_sorting (): Check_sorting does not force any constraint per unit moving level. On the 

contrary, the rule it entails, is that there should be an ascending sorting of the periods between 

the unit moving types, each one represented by such a period. Such a constraint is required to 

model the evolution of the moving types in the time line. The evolution of an object is 

represented by its consecutive unit moving types and the corresponding time periods should 

follow the same development. 

boolean check_disjoint (): Check_disjoint assures that the D_Periods_Sec objects that represent the 

time period for which the unit moving types are defined, are disjoint and that they do not 
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intersect in any point in the time axis. More specifically, this operation checks if a period 

”overlaps” with the next in sorting-order period, namely the period of the next unit moving 

type. 

boolean check_meet (): Check_meet is an operation that can be invoked only by a user and is not 

utilized internally by the data cartridge. It checks if a period ”meets” with the next period in 

the unit-type-order. This object method has as a precondition the three previous operations, 

meaning that except the “meet” criterion that should stand between periods of sequential unit 

moving types, all the previous operations should return true. The meaning of this operation is 

to assure that there is a smooth transformation of the time-changing geometries between 

sequential unit moving types and there are not temporal gaps between them. Figure 2 is an 

example where the “meet” constraint is satisfied in the transition of a moving point, as well as 

the “sort” and “disjoint” constraints. 

boolean check_degeneracies (D_Timepoint_Sec): Check_degeneracies is a method that checks if the 

geometry associated with a moving type at a specific point in the continuous time axis is a 

non-degenerated geometry. More specifically, this method finds the unit moving type (if there 

is one), whose period attribute (D_Period_Sec object) “contains” the time point (D_Timepoint_Sec 

object) passed as argument to the method. Afterwards, it interpolates the internal unit 

functions for that instant of time, imposing some rules and constraints upon the produced 

points in the Cartesian system of coordinates.  

Depending on the type, Check_degeneracies imposes different restrictions on the development of 

these moving objects at user-defined time points. For Moving_Point there is not such an 

operation as there is no combination of mapped coordinates that could form an invalid 

geometry. For the rest of the simple moving types, the reader can find below some 

characteristic constraints enforced by HERMES-MDC: 

Moving_LineString: (a) Checks if the Unit_Moving_Point objects (two for line segments; 

three for arc segments) that define the Unit_Moving_Segment objects become equal at a 

specific time point, thus degenerating a segment to a point; (b) Checks for overlapping 

between consequent Unit_Moving_Segment objects, meaning that the two time-varying 

ordinates of a Unit_Moving_Point “fall” upon the segment that is defined by the two previous 

Unit_Moving_Point objects; (c) Checks the coordinates of the starting Unit_Moving_Point of 

the first Unit_Moving_Segment not to be equal at an instant, with the coordinates of the 

ending Unit_Moving_Point of the last Unit_Moving_Segment. In such a situation, the 
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potential LineString is degenerated to a Polygon geometry, regardless the fact that this 

polygon may have other anomalies (e.g. self-intersected segments that are acceptable in a 

LineString geometry); (d) In case of “arc” Unit_Moving_Segment the method checks for co-

linearity at a specific time point between the three Unit_Moving_Point objects that form the 

“arc” moving segment. In this situation the arc segment becomes a degenerated linear 

segment. 

Moving_Circle: (a) Checks if the three Unit_Moving_Point objects that define a 

Unit_Moving_Circle object become equal at a specific time point, thus degenerating a circle 

to a point; (b) Assures that the three Unit_Moving_Point objects do not become co-linear. 

Moving_Rectangle: (a) Checks if the lower left and upper right Unit_Moving_Point objects 

that define a Unit_Moving_Rectangle object become equal at a specific time point, thus 

degenerating a rectangle to a point; (b) Checks if the X or the Y ordinates of the projected 

lower left and upper right Unit_Moving_Point objects become equal, meaning that the 

produced rectangle is collapsed to a linear segment parallel to xx‟ or yy‟ axis, respectively. 

Moving_Polygon: (a) Checks for the same rules and constraints as in the case of 

Moving_Linestring, with the difference that, instead of inequality, it imposes equality 

between the starting and ending Unit_Moving_Point; (b) Checks if the Unit_Moving_Polygon 

objects that represent holes of a Moving_Polygon are always “disjoint” and “inside” the exterior 

boundary. 

Varchar2 validate_geometry (D_Timepoint_Sec, err_msg): Validate_geometry is a generic method that 

performs a consistency check for valid moving geometry types. More specifically, this 

operation utilizes all the previous “check” methods by executing them in the order that we 

presented them, by this way producing a control pattern for each moving type. After applying 

this control pattern, the validate_geometry method invokes the “at_instant” operation, which maps 

a moving type to an Sdo_Geometry at a specific time point. Subsequently, this pure spatial 

object is examined under some principles that stand for the geometry model of Oracle10g. 

For example, polygons should have at least four points, which includes the point that closes 

the polygon, linestrings should have at least two points and in a multi-polygon, all polygons 

must be disjoint. Finally, the validate_geometry method following these tests returns „TRUE‟ if the 

moving type is valid, an Oracle error message number based on the specific reason the time-

varying geometry is invalid or „FALSE‟ if the moving type fails for some other reason. 
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In the previous paragraphs, we described the operations concerning the constraints that should 

hold in a database of “simple” moving objects. The corresponding methods of a homogeneous 

or heterogeneous collection of such “simple” moving types, represented by the 

Moving_Collection object follow a different strategy. In other words, these operations 

traverse one by one all the component objects of the multi moving types that compose a 

Moving_Collection object, and apply the previous discussed operations to them. The first 

moving type that causes an error or is detected to be invalid or degenerated stops this process 

and informs the cartridge user with an appropriate message. 

In the case of Moving_Object, these methods function differently according to the kind of 

Moving_Object. If a Moving_Object is just a wrapper of a simple moving type or a 

homogeneous or heterogeneous collection of them, then these operations just invoke the 

corresponding method of the wrapped moving type and return the result. If Moving_Object 

represents a time-varying object as the result of an operation between moving types 

(including Moving_Collection), or between a moving type and a static geometry, then 

HERMES-MDC applies the corresponding method to the moving types that participate on the 

construction of the Moving_Object and combines the separate outcomes to form the 

concluding result. 

4.2 Predicates Modeling Topological and Distance Relationships 

HERMES-MDC provides object methods in the form of predicates to describe relationships 

between moving types. There are two sets of predicates supported by HERMES-MDC, 

namely within_distance and relate. Each set of predicates consists of eight operations, each of 

which models the relationship of the current moving type with a Moving_Point, a 

Moving_LineString, a Moving_Circle, a Moving_Rectangle, a Moving_Polygon, a 

Moving_Collection, a Moving_Object and a Sdo_Geometry object. Each operation comes 

with two different overloaded signatures, modeling different semantics: the first signature is 

time-dependent, meaning that the outcome of the operation is related to a user-defined time 

point, while the second is independent to the time dimension. Below, the reader can find the 

pair of signatures of only one of the eight operations, and more specifically, those describing 

relationship with a Moving_Polygon. The time-dependent signature of the method is the one 

without the brackets, while the time-independent version of the operation can be obtained by 

substituting the return type of the operation with the type in the brackets { } and by removing 

the D_Timepoint_Sec argument from the parameter list. This is a common notation in the 

remainder of the paper. 
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boolean {Moving_Object} f_within_distance (distance, Moving_Polygon, tolerance, D_Timepoint_Sec): The 

time-dependent predicate determines whether two moving objects are within some specified 

Euclidean distance from each other at a user-defined time point. After mapping the moving 

objects to physical spatial geometries at the given instant, the function returns TRUE for 

object pairs that are within the specified distance; returns FALSE otherwise. The distance 

between two non-point objects (such as lines and polygons) is defined as the minimum 

distance between these two objects. Thus, the distance between two adjacent polygons is 

zero.  

Many object methods in HERMES-MDC accept a tolerance parameter. If the distance between 

two points is less than or equal to the tolerance, the cartridge considers the two points to be a 

single point. Thus, tolerance is usually a reflection of how accurate or precise users perceive 

their spatio-temporal data to be. Within_distance is a characteristic example for understanding 

the semantics of the tolerance parameter. Also, the time-independent within_distance operation 

differs from the above predicate in that the return value is a Moving_Object that represents a 

time-varying boolean value. This implicitly defined “moving boolean” object models the 

sequence of the time intervals that the two related objects are within or not some specified 

Euclidean distance. 

Varchar2 {Moving_Object} f_relate (mask, Moving_Polygon, tolerance, D_Timepoint_Sec): This generic 

predicate examines two moving objects and determines their topological relationship. As 

previously, the “relate” predicate appears with two overloaded versions. The first evaluates the 

topological relationship upon a specific user-defined time point, while the second version 

returns a Moving_Object modeling a time-varying string (“moving string”), which describes the 

evolution in the topological relationship between the related objects. The user can specify the 

kind of relationships that he/she requires to check via the mask parameter.  

The “relate” operator implements a 9-intersection model for categorizing binary topological 

relations between moving geometries [EF91]. At any time, each object has an interior, a 

boundary, and an exterior. The boundary consists of points or lines that separate the interior 

from the exterior. The boundary of a line consists of its end-points. The boundary of a 

polygon is the line that describes its perimeter. The interior consists of points that are in the 

object but not on its boundary and the exterior consists of those points that are not in the 

object.  



Pelekis et. al.:  The HERMES MOD Engine 31 

 

Given that an object A has three components (a boundary Ab, an interior Ai, and an exterior Ae), 

any pair of objects has 9 possible interactions between their components. Pairs of components 

have an empty (0) or a non-empty (1) set intersection. The set of interactions between two 

projected moving geometries is represented by a 9-intersection matrix that specifies which 

pairs of components intersect and which do not. Figure 12 shows the 9-intersection matrix for 

two polygons that are adjacent to one another. This matrix yields the following bit mask, 

generated in row-major form: "101001111". For more details on topological relationships 

supported and respective values of mask parameter, see Appendix D. 
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Figure 12 9-Intersection Matrix 

4.3 Projection and Interaction to Temporal and Spatial Domain 

HERMES-MDC provides object methods of special interest that have been proposed in the 

literature. Subsequently, we present the operations as these are defined for Moving_Object 

and the semantics behind these methods and we differentiate our presentation in case of 

change in the semantics of other moving types. 

Unit_Moving_Point unit_type (D_Timepoint_Sec): This operation is the single method not defined for 

a Moving_Object type. Generally speaking, this operation is defined only for the simple 

moving objects that their construction is closely related with a collection of unit moving 

objects. For the rest of the simple moving objects the above signature changes the result type to 

their corresponding unit moving object (see [Pel02]). The simple but very important task that 

this function performs is that it finds (and returns) the unit-moving object whose attribute 

time period (D_Period_Sec object) “contains” the user-defined time point (D_Timepoint_Sec 

object). In other words, it returns that unit-moving type where the time instant represented by 

the argument D_Timepoint_Sec object is “inside” the time period that characterizes the unit-

moving type. What is more, the unit_type method carries out all the necessary checks to 

maintain the database consistent and to ensure the validity of the moving object. 

Union_Output at_instant (D_Timepoint_Sec): The at_instant operation is the most important method 

for the moving types introduced in HERMES-MDC, firstly because it is the operation that 

maps the abstract variables of mathematical functions to meaningful spatial objects 
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conceivable by end-users and, secondly, because it is the base of implementation for many 

other object methods. As already mentioned, the above signature concerns the at_instant 

operation for the Moving_Object type. The return type (Union_Output) is an object that 

represents the union of all the possible results of the projection of a Moving_Object at a user-

defined time point. In other words, if Moving_Object represents a time-varying geometry then 

Union_Output is basically an Sdo_Geometry object. If Moving_Object represents a “moving” real 

or string then Union_Output is a real number or a character string, respectively.  

In the case of a Moving_Object the at_instant operation invokes the at_instant operations of the 

moving types that construct the Moving_Object. If Moving_Object represents a moving 

geometry then the result of the previous operation is immediately returned. If Moving_Object 

represents a “moving” type as the result of an operation between moving objects then the 

projected geometries of the previous step are applied against this operation and the outcome 

of this second step is returned. 

In the case of Moving_Collection, this operation invokes the at_instant operations of all the 

moving types of the multi moving objects and subsequently applies a special “union” 

operation upon the projected geometries by “concatenating” them in a collection object and 

returns the result of the “concatenation”. 

Moving_Object at_period (D_Period_Sec): The at_period object method is an operation that restricts 

the moving object to the temporal domain. In other words, by using this function the user can 

delimit the time period that is meaningful to ask the projection of the moving object to the 

spatial domain. More specifically, the time period passed as argument to the method is 

compared with all D_Period_Sec objects that characterize the unit moving objects. If the 

parameter period does not overlap with the compared period then the corresponding unit type 

is omitted. If it overlaps, then the time period that defines a unit-moving object becomes its 

“intersection” with the given period.  

D_Temp_Element_Sec f_temp_element (): The f_temp_element operation gives HERMES-MDC user 

the capability to project the time periods that form the unit moving objects that compose a 

moving type on the time line and subsequently “concatenate” all these distinct time periods to 

construct a temporal element. Figure 13 depicts the result of the f_temp_element operation when 

applied to a Moving_Point object.  



Pelekis et. al.:  The HERMES MOD Engine 33 

 

yy'

xx'

time line

t1 t4t3t2

p1 -> [t1, t2)

t6t5

p4 -> [t5, t6)

p3 -> [t4, t5)

p2 -> [t2, t3)

p1 p4p3p2

f_tem_element --> p1 + p2 + p3 + p4  

Figure 13 Projection of a Moving Point on the temporal domain 

Moving_Object at_temp_element (D_Temp_Element_Sec): Similarly to the at_period operation, the 

at_temp_element object method restricts the moving object to the temporal domain, but the 

process of restricting the periods between which the moving object is valid is driven by a 

collection of D_Period_Sec objects and not just one D_Period_Sec object as in the previous 

case.  

Sdo_Geometry {Moving_Object} f_buffer (distance, tolerance, D_Timepoint_Sec): The f_buffer operation 

comes with two overloaded versions. The first generates a buffer polygon around a moving 

geometry object at a specific user-defined time point, while the second version returns a 

Moving_Object modeling a time-varying polygon, which describes a moving rounded buffer 

around a moving geometry. Obviously, this method is meaningless for a Moving_Object that 

represents a time-varying real number or string. Calling the f_buffer method for such a 

Moving_Object triggers the error handling mechanism of HERMES-MDC, which informs the 

user with an appropriate message. 

The f_buffer operation for a homogeneous collection of moving geometries at a specific 

timepoint returns a multi-polygon where each polygon represents the buffer of its 

corresponding element in the collection. An interesting case is the buffer of a heterogeneous 

collection of moving objects, which is just one polygon that buffers all the different projected 

geometries together. The above-mentioned issues are visualized in Figure 14, where 

snapshots of different moving types and their corresponding buffer polygons are presented. 

What is not illustrated in the description of the operation is the specific structure of these 

buffers for each corresponding moving type. Starting with the Moving_Point, someone would 

expect that the buffer of this type at a specific instant would be a circle geometry with radius 

the user-specified distance of the buffer. Surprisingly, the geometry returned by f_buffer 

operation is a polygon consisting of two arc segments that circle the point at the specified 

distance. The same happens in the case of the Moving_Circle where the buffer at a specific 
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timepoint is defined as the buffer of its centre but the distance of the buffer now is the initial 

user-specified distance plus the radius of the moving circle at that instant. The buffer of a 

Moving_LineString, a Moving_Rectangle and a Moving_Polygon at a specific timepoint is a 

compound polygon whose number of linear segments is equal to the number of linear 

segments that exist in the corresponding projected geometries and whose number of arc 

segments is equal to the number of vertices plus the number of arc segments. 
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Figure 14 Demonstrating f_buffer operation 

Sdo_Geometry {Moving_Object} f_centroid (tolerance, D_Timepoint_Sec): The f_centroid operation 

returns the centre of a moving polygon object at user-defined time points. The centre is also 

known as the "centre of gravity". The overloaded f_centroid function represents a moving point 

that at any time is the centre of gravity of the moving polygon object. The method is 

meaningful only for moving types that model single time-varying areas. In all other cases, 

(collections of moving geometries) an application error is raised informing the cartridge user. 

An interesting case presented when utilizing this operation is once the centre of gravity of the 

moving region falls out of its area. This could happen when the moving hole inside a moving 

polygon includes the centre and when a moving polygon becomes too concave at a specific 

timepoint. Both cases are visualized in Figure 15. 
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Figure 15 Demonstrating f_centroid operation 
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Sdo_Geometry {Moving_Object} f_convexhull (tolerance, D_Timepoint_Sec): The f_convexhull method 

returns a simple convex polygon that completely encloses the moving geometry object at a 

specific instant of time. The Moving_Object returned by the second time-independent 

f_convexhull function, models a moving polygon that is the convex hull of a moving object at 

any time point. HERMES-MDC uses as few straight-line sides as possible to create the 

smallest polygon that completely encloses an instantiated moving object (see dashed lines in 

Figure 16). A convex hull is a convenient way to get an approximation of a complex 

geometry object.  

Sdo_Geometry {Moving_Object} f_pointonsurface (tolerance, D_Timepoint_Sec): This function returns a 

point geometry object representing a point that is guaranteed to be on the surface of a moving 

polygon when projected to the spatial domain at the time point used as argument. The 

returned point can be any point on the surface. The user should not make any assumption 

about where on the surface the returned point is, or whether the point is the same or different 

when the function is called multiple times with the same input parameter values. The second 

version of the f_pointonsurface operation returns a Moving_Object, which models a moving 

point whose mapping at any instant will be a point that is guaranteed to be on the surface of 

the corresponding projected polygon at the same time point.  

 

Figure 16 Convex polygons containing snapshots of several moving geometries 

Union_Output f_initial (): The f_initial object method is basically the at_instant operation invoked at 

the first instant of time that the moving object is valid, meaning the first second of the closed-

open period that identifies the least recent unit moving object.  

Union_Output f_final (): Similarly to the f_initial object method, the f_final operation projects the 

moving object at the last valid instant of the time period that characterizes the most recent 

unit moving object.  

Sdo_Geometry f_traversed (): The geometry returned by this function models all the places that a 

moving geometry “traverses” along its motion during the periods that characterize the unit 

moving objects. Such a geometry object is of polygon type. In the case of Moving_Point 

objects, the f_traversed method is transformed to a special operator (f_trajectory) described in the 

subsequent paragraph. Figure 17 illustrates four examples of traversed areas, one for each of 



Pelekis et. al.:  The HERMES MOD Engine 36 

 

the simple moving types. In the case of the traversed Moving_LineString, we notice that the 

returned geometry is not a single polygon but a multi polygon due to the fact that the periods 

of the unit moving objects that compose the Moving_LineString do not “meet” each other or 

the variables that define the unit functions between subsequent unit moving objects present a 

substantial difference.  

Sdo_Geometry f_trajectory (): This function is the f_traversed method for the case of a 

Moving_Point object. In other words, this operation simulates the trajectory traversed by a 

Moving_Point. More specifically, this projection of the movement of a Moving_Point to the 

Cartesian plane is done by mapping the time-dependent ordinates of the object at the 

beginning, ending and a random intermediate time instant of each one of the periods that 

identify the Unit_Moving_Point objects that compose the Moving_Point. Subsequently, the 

algorithm examines whether the intermediate projected co-ordinates “fall” upon the line 

formed by the other two pairs of co-ordinates. Depending on the result, a linear or arc 

segment connecting the beginning and ending projected co-ordinates is implied. A process of 

merging these segments follows, to form the returned LineString geometry.  

 

Figure 17 Areas Traversed by Moving Geometries 

Sdo_Geometry f_locations (): The f_locations object method is defined only for a Moving_Point 

object or a Moving_Object and follows the same algorithm as the f_trajectory operation with 

the difference that the returned type is a multipoint geometry representing the previously 

discussed projected co-ordinates at the beginning and ending timepoints of the periods that 

characterize the Unit_Moving_Point objects. 
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4.4 Numeric operations 

HERMES-MDC supports a special category of object methods that either compute a numeric 

value of a moving object at a specific timepoint (e.g., the current perimeter of a moving 

polygon) or construct a Moving_Object representing the same time-varying numeric value. 

More analytically, we provide the subsequent numeric operations: 

number {Moving_Object} f_area (tolerance, D_Timepoint_Sec): The f_area operation is defined for 

those moving types that their projection to the Cartesian plane depicts a closed region and 

computes the area for this region. The second (time-independent) version of the method 

returns a Moving_Object representing the time-varying area of a moving, extending and/or 

shrinking region. This function works with any moving polygon, including polygons with 

moving holes.  

number {Moving_Object} f_length (tolerance, D_Timepoint_Sec): The f_length object method computes 

the length of a Moving_LineString object or the perimeter of a Moving_Circle, 

Moving_Rectangle or Moving_Polygon projected at the Cartesian plane at a user-defined 

time point. For a Moving_Polygon that contains one or more holes, this function calculates 

the perimeters of the exterior boundary and all holes at the given time point, and returns the 

sum of all the perimeters. The second version of the method returns a Moving_Object 

representing the time-varying length or perimeter of the moving type that invokes the 

operation. 

Varchar2 {pls_integer} f_num_of_components ({mtype Varchar2}): This operation is introduced only 

for Moving_Collection objects and its functionality is to estimate and return a structured 

string that describes the number of components that compose the collection of moving types. 

The second version of this object method takes a string describing a moving geometry as 

parameter and returns the number of the objects of the same type that participate in the 

construction of the moving collection. 

4.5 Distance and Direction operations 

The following two methods assist the cartridge user to calculate the minimum distance 

between moving objects or the angle formed between moving points. 

number {Moving_Object} f_distance (Moving_Polygon, tolerance, D_Timepoint_Sec): HERMES-MDC 

provides a distance measure that exists for all moving types, which either computes the 

distance between two instantiated moving objects (the time-dependent version) or returns a 

time-varying real number that represents the minimum distance between these moving types 
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at all time points (the time-independent version). The distance between two objects is the 

distance between the closest pair of points or segments of the two objects. 
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Figure 18 Distance & Direction Operations 

number {Moving_Object} f_direction (Moving_Point, D_Timepoint_Sec): The f_direction function is 

defined only for Moving_Point objects returning the angle of the line from the first to the 

second moving point (measured in degrees, 3600  angle ), after these have been projected to 

the Cartesian plane at a specific time point. The time-independent version of the function 

returns a Moving_Object modeling a “moving real”, which corresponds to the time-changing 

angle formed by the conceptual line segment that joins the two moving points and the xx‟ axis. 

Figure 18 illustrates the distance between a star (Moving_Point) and a galaxy 

(Moving_Polygon) projected at the spatial domain in a user-defined timepoint, as well as the 

angle formed by the moving star and the earth. 

4.6 Set Relationships 

HERMES-MDC provides four object methods for describing set-relationships between 

moving types. Each comes with two overloaded versions, one for describing a geometry 

object as the result of applying the set-relationship at a user-defined time point and one for 

describing a moving geometry that is defined as the set-relationship at all the time periods 

that this relationship is meaningful. For example the intersection of a Moving_Point with a 

Moving_Polygon results in a Moving_Object that represents another moving point, which is 

the restriction of the initial Moving_Point inside or on the boundary of the Moving_Polygon.  

Subsequently, we present the supported set-relationships operations between any moving type 

and a Moving_Polygon object. Similar operations are defined for all the other moving types, 

as well as operations describing set-relationships of a moving type with a pure spatial object. 
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Sdo_Geometry {Moving_Object} f_intersection (Moving_Polygon, tolerance, D_Timepoint_Sec): The 

f_intersection object method returns either a geometry object that is the topological intersection 

(AND operation) of the two associated moving types projected at a user-defined time point or a 

Moving_Object whose mapping at each instant represents a geometry that is the outcome of 

this set operation. Invoking f_intersection method for the simplest moving object 

(Moving_Point), as one would expect, the result of this operation is the projection of itself on 

the spatial domain (point geometry) at time instants that intersects with other moving types or 

static geometries and null at time instants where it is not on the boundary or the interior of 

linestrings and polygons or it coincides with none of the points in a collection of them. Let us 

now present some motivating cases when invoking f_intersection method for moving linestring 

and polygon objects with other single or multi moving types that have more than one 

common points, segments or areas. Figure 19 below depicts the instantiation of a 

Moving_Object modeling the intersection of a Moving_LineString with a polygon, at three 

different timepoints t1, t2, and t3. At timepoint t1 it is obvious the result of such an operation, 

which is a linestring geometry. At timepoint t2 this intersection has as result a multi-linestring 

geometry due to the development of Moving_LineString, while at timepoint t3 the resulted 

geometry is a heterogeneous collection of lines and points. 

Sdo_Geometry {Moving_Object} f_union (Moving_Polygon, tolerance, D_Timepoint_Sec): The f_union 

object method returns either a geometry object that is the topological union (OR operation) of 

the two associated moving types projected at a user-defined time point or a Moving_Object 

whose mapping at each instant represents a geometry that is the outcome of this set operation.  

Intersection

time

Polygon boundaries

t1 t3t2

Moving LineString  

Figure 19 Demonstrating f_intersection Operation 

One could extract a series of rules that stand for the outcome of the f_union object method, 

except the common one. More specifically, the union of a single moving geometry or a 

homogeneous moving collection with a disjoint moving (or static) geometry of the same type 

at a specific timepoint, results in a multi-geometry of that type. If the argument object is of 

different type from the caller and do not have common boundaries and/or interior areas, then 

the result in any case will be a heterogeneous collection. A noteworthy case is the union of a 

moving point or linestring with linestring or polygon geometries when at the time of the 
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query their projection falls upon the linestring or the boundary of the polygon, respectively. 

In such case, the points of the moving point or linestring are interleaved as additional points 

in the sequence of points that defines the linestring or the boundary of the polygon. 

Sdo_Geometry {Moving_Object} f_difference (Moving_Polygon, tolerance, D_Timepoint_Sec): The 

f_difference object method returns either a geometry object that is the topological difference 

(MINUS operation) of the two associated moving types projected at a user-defined time point 

or a Moving_Object whose mapping at each instant represents a geometry that is the outcome 

of this set operation. Generally speaking, the f_difference operation returns the part of the caller 

object that does not belong to the argument object. More specifically, applying this method to 

a moving geometry at a specific timepoint, the result is the projection of this moving type if 

the argument object is disjoint with this projection. In a different case where the argument 

object completely encloses the caller‟s projection the result is the null value. For example this 

happens when a user requires the difference of a moving point or linestring whose 

instantiation falls on the boundary or the interior of a polygon or upon the segment of a 

linestring. An interesting case happens when the f_difference operation is invoked between two 

moving polygons at an instant where the argument polygon has been moved wholly inside the 

caller moving polygon. The result in such case is a polygon with a hole. 

Sdo_Geometry {Moving_Object} f_xor (Moving_Polygon, tolerance, D_Timepoint_Sec): The f_xor object 

method returns either a geometry object that is the topological symmetric difference (XOR 

operation) of the two associated moving types projected at a user-defined time point or a 

Moving_Object whose mapping at each instant represents a geometry that is the outcome of 

this set operation. The f_xor operation provides the union of the caller with the argument 

object, “subtracting” their intersection. As such, similarly to the f_union case, the f_xor for a 

moving polygon with another one that is totally inside the first returns also a polygon with a 

hole. If the first moving polygon does not cover completely the parameter moving polygon but 

just overlap, the result of the f_xor operation at a specific timepoint is a multi-polygon 

geometry. What is more, invoking this operation for a moving point with argument another 

moving point, the outcome at a specific instant is a multi-point if their projections are not the 

same and null if they are. 
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4.7 Rate of Change 

An important property of any time-dependent value is its rate of change, i.e., its derivative. To 

determine which of our data types is applicable to this concept, consider the following 

definition of the derivative. 

 
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This definition, and thus the notion of derivation, is applicable to the moving types that firstly 

support a difference operation and secondly support division by a real number. Moving_Point 

type is the single type that clearly qualifies the above prerequisites. At least three operations 

assume the rule of difference in the definition, namely the Euclidian distance, the direction 

between two points and the vector difference (viewing points as two-dimensional vectors). 

This leads to three different derivative operations, called speed, turn and velocity, respectively.  

number {Moving_Object} f_speed (D_Timepoint_Sec): The speed operation comes in two overloaded 

signatures. The time-dependent version returns a number representing the speed of a moving 

point at a specific timepoint, while the time-independent version returns a Moving_Object 

modeling the time-varying speed at any time instant. 

The algorithm that implements the speed method is based on its formal definition: 
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where x , y  are the corresponding speeds of the moving point along xx‟ and yy‟ axes, which 

are expressed as the time derivatives of the distance functions, namely 
 
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functions are not other than the two Unit_Function objects needed to define a 

Unit_Moving_Point. 

number {Moving_Object} f_turn (D_Timepoint_Sec): Similarly, turn operation is provided by the 

following two signatures, one representing the rate of change of the angle between the xx‟ axis 

and the motion vector at a specific timepoint and one expressing the same derivative value at 

any time instant. 

The above-mentioned time-varying angle  t  can be computed as the tangent between xs  and 

ys . Utilizing the derivative of the arctan function 
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derivatives of composite functions         xfxfgxfg '''
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Sdo_Geometry {Moving_Object} f_velocity (D_Timepoint_Sec): Finally, the velocity of a moving point at 

a specific timepoint or at any instant during its development, is represented as a point 

geometry or a Moving_Point object, respectively. 

Viewing a Moving_Point as a two-dimensional vector       tststs yx ,


, the derivative of this 

vector, which implements the velocity operation, is given by the following equation 

         '''
, tststs yx


. 

Based on the f_direction method HERMES supports two sets of operations that provide 

predicate functionality on directional relationships between moving objects. The first set 

consists of four operations (namely, f_west, f_east, f_north, and f_south) each of which 

returns a Boolean value depending on whether the moving object is e.g. west from the a given 

moving or static geometry parameter, as well as a range of angles that puts some constraints 

in the directional relationship. Similarly, the second set consists of four operations (namely, 

f_left, f_right, f_above, and f_behind) that represent implicit directional relationships w.r.t. the 

motion of the query object. 

4.8 Similarity functions  

HERMES supports a set of query operators for similarity search between moving points as 

these have been introduced in 41, 39. Two main types of similarities are defined, namely, 

spatiotemporal and (temporally-relaxed) spatial similarity, followed by three variations, 

namely speed-pattern based, acceleration-pattern based, and directional similarity. More 

specifically: 

 number GenLIP(Moving_Point): The Generalized Locality Inbetween Polylines (GenLIP) 

distance between two moving points, returns an intuitive value that implies the area (see the 

shaded area in Figure 20) between the spatial projections of the two trajectories. 
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Figure 20: Locality In-between 2D Polylines 

 number GenSTLIP(Moving_Point): The Generalized SpatioTemporal LIP (GenSTLIP) 

function takes into account time, it operates on the original 3D representation of moving 

points and as such eliminates the time-relaxation of the GenLIP method by requiring co-

location and co-existence during the lifetime of the moving points. 

 number GenSPSTLIP(Moving_Point): 

number GenACSTLIP(Moving_Point): The Generalized Speed-Pattern and Acceleration-

Pattern STLIP functions take also into account whether the two involved moving points move 

with similar speed or acceleration patterns. 

 number DDIST(Moving_Point):  

 number TDDIST(Moving_Point): The Directional Distance (DDIST) and Temporal 

DDIST (TDDIST) are two other variations that quantify the similarity of two moving 

objects according to their heading pattern. The first variation operates on the spatial 

projection of the objects, while the second checks whether the change in the heading 

happens in a synchronized way. 

4.9 Index maintenance  

Based on the extensible indexing capabilities provided by an ORDBMS each TB-tree owns 

the following functions: 

 IndexCreate: creates the index tables (i.e tbtreeidx_leaf, tbtreeidx_non_leaf) and populates 

the data already inserted in the table on which the index is created. 

 IndexInsert: performs insertions in the tree, triggered by the insertion of a new trajectory 

on the indexed table. 

 IndexUpdate: updates the tree every time a new trajectory segment (i.e 

unit_moving_point) is inserted. 

 IndexDrop: drops the tables that store the index data. This method is called when a DROP 

INDEX statement is issued 
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Functions IndexInsert and IndexUpdate call function TBINSERT which implements the 

TB-tree‟s insertion algorihm as described in 46. 

4.10 Index operators 

Range/timeslice queries, of the form “find all objects located within a given area during a 

certain time interval or time instance”, (Q2/Q1 in Figure 21), is a straightforward extension 

of the respective 2D R-tree algorithm, in the 3D space formed by the two spatial and the one 

temporal dimension. This algorithm recursively visits tree nodes, rejecting node MBBs that 

does not overlap the query window, while following the pointers from overlapping MBBs to 

their respective child nodes until all candidate leaf nodes have been found. The algorithm 

starts by visiting the tree root, checking whether the MBBs of the root entries overlap the 

spatio-temporal query window Q. If a node entry overlaps Q, the algorithm follows the 

pointer to the corresponding child node, where it repeats recursively the same task. If the 

algorithm reaches a leaf node, leaf entries are examined against Q and if their MBB overlap, 

the algorithm reports their ids. 
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Figure 21 Querying trajectory databases 

Regarding the k nearest neighbor (k-NN) search, 19 proposed a variety of solutions for 

answering such queries. More specifically, given as an example the trajectory database of 

Figure 21 given a stationary (or moving) query point Q3 (Q4) and a temporal query window 

[t1, t2] ([t3, t4]), 19 proposed several algorithms for finding the moving object trajectory T3 

(T4) that is closer to the query object. Among them, the incremental varations of the 

algorithms proposed in 19 (IncPointNNSearch and IncTrajectoryNNSearch) are shown to be 

more scalable, thus, being good solutions to be implemented in the HERMES. Here, we have 

also to point that the aforementioned algorithms are capable to answer k-NN versions of the 

respective queries as well.  
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More specifically, the algorithms proposed in 19 are based on the respective NN algorithm 

for static objects presented in 26 which traverses the tree structure in a best-first way. The 

proposed algorithms use a priority queue, in which the (node or leaf) entries of the tree nodes 

are stored in increasing order of their distance from the query object. At each tree node the 

algorithm iterates through its entries checking whether the lifetime of an entry overlaps the 

time period of the query, calculating at the same time its distance from the query object, 

which is used to store them in the priority queue. At each algorithm‟s iteration the first entry 

is requested from the queue, until a leaf entry is found, which is then reported as the query 

result. The algorithms proposed in 19 are incremental in the sense that the k-th NN can be 

obtained with very little additional work once the (k-1)-th NN has been found; therefore, are 

easily generalized to the case where are the k>1 nearest neighbors of a query object 

(stationary of moving point) are requested.  

Given the above discussion, HERMES supports the following set of operators, namely, 

range 46, Point and Trajectory Nearest Neighbor 19 and spatio-temporal topological 46 

queries.  

Function tb_mp_in_spatiotemporal_window executes a range query against a table storing 

indexed trajectories. It takes as arguments a standard spatial rectangular window, as well as 

a temporal period, and returns trajectory ids as well as trajectory fractions fully contained 

inside the given spatio-temporal window.  

Function IncPointNNSearch executes a Point Nearest Neighbor query against a table 

storing indexed trajectories. It takes as arguments the coordinates of the query point (X and 

Y as reals), a temporal period, and the number of k closest nearest neighbors to be returned. 

It returns trajectory ids, as well as the spatiotemporal trajectory line segments that are 

closest to the query point at the given time period. 

Function ΙncΤrajectoryΝΝsearch executes a trajectory Nearest Neighbor query against a 

table storing indexed trajectories. It takes as arguments the identifier of the trajectory to be 

used as query, and the number of k closest nearest neighbors to be returned. It returns 

trajectory ids, as well as the spatiotemporal trajectory line segments that are closest to the 

query trajectory during its life time. 

Function TopologicalQuery is used to retrieve the trajectories that enter and/or leave a 

spatio-temporal query window. The query parameters involve the lower left (X1,Y1) and 

upper right (X2,Y2) of a (rectangular) area as well as a time period for the temporal part of 
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the query. Finally, a MASK must be defined to clarify the type of topological query. 

Possible MASK (string) values can be „ENTER‟, „LEAVE‟, „ENTER_LEAVE‟ depending 

whether the users are interested in trajectories that enter/leave or enter&leave the area 

within the given time period. 

 

5 Architectural Aspects of HERMES-MDC and an Application Example 

HERMES can be utilized in a real world scenario to assist a database developer in modeling, 

querying and analyzing moving object databases. A straightforward utilization scenario is to 

design and construct a spatio-temporal object-relational database schema using HERMES and 

build an application by transacting with this database. Figure 22 illustrates such a scenario on 

the top of Oracle ORDBMS. In this case and in order to specify the database schema, the 

database designer writes scripts in the syntax of the Data Definition Language (DDL), which 

in this case is the PL/SQL, extended with the spatio-temporal operations previously 

introduced. 

To build an application on top of such a database for creating objects, querying data and 

manipulating information; the application developer writes a source program (for instance) in 

Java (or JSP in case of web-based applications) wherein he/she can embed PL/SQL scripts 

that invoke object constructors and methods from HERMES. The JDBC pre-processor 

integrates the power of the programming language with the database functionality offered by 

the extended PL/SQL and together with the ORDBMS Runtime Library generate the 

application‟s executable. By writing independent stored procedures that take advantage of 

HERMES functionality and by compiling them with the PL/SQL Compiler, is another way to 

build a spatio-temporal application. Figure 23 depicts such an application which also acts as a 

web-based visual query builder for HERMES. 
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Figure 22 The architecture of the HERMES Figure 23 A visual query builder for 

HERMES 

To demonstrate the functionality of the proposed HERMES, in the following paragraphs we 

present an application example related to vehicle traffic analysis. The motivation is that a 

courier company, whose vehicles are enhanced with GPS devices transmiting their space-time 

location to a central MOD, needs a flexible way to manage and analyse the motion of the 

vehicles. One can enumerate a series of benefits to be gained from a possible optimization of 

the movements of the couriers, such as, personnel‟s control, better and faster customer 

services, minimization of operational costs, enhanced decision making. By utilizing this 

application example, the expressive power and the applicability of HERMES in such a 

commercial domain are demonstrated. We note that the subsequent discussion and 

terminology follows the syntax of HERMES as implemented in Oracle ORDBMS. We have 

already mentioned that the core of HERMES has also been implemented in 7 inside another 

ORDBMS, namely the PostGIS. This actually proves the correctness of the design of HERMES 

on top of extensible ORDBMS that have OGC-compliant spatial extensions. The differences 

in the syntax between the two implementations are minor (and mainly due to the syntax 

differences of the two static spatial extensions) 63, while we are in the process of testing the 

compatibility between the results of the operations. 

In order to present the capabilities of HERMES, we build the following database: 

Highways (name: Varchar2, line: SDO_GEOMETRY) 

Landmarks (name: Varchar2, kind: Varchar2, location: SDO_GEOMETRY) 

Vehicles (id: Varchar2, type: Varchar2, route: Moving_Point) 

High-Traffic-Areas (name: Varchar2, extent: Moving_Polygon) 
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Highways relation is a set of linestring geometries along which the vehicles are supposed 

to be moving. Landmarks relation contains locations of certain landmarks, such as petrol 

stations, etc. Vehicles relation identify the route of a lorry that is modeled as a moving point, 

while type attribute stamps each vehicle with a characteristic description of each kind (e.g. 

truck, motorbike, etc.). Furthermore, field route of relation Vehicles is indexed by a TB-tree. 

High-Traffic-Areas relation records areas that could influence the route or the schedule of a 

vehicle. These areas are given a name for identification purposes, while extent attribute 

provides the time-varying regions for traffic jams. 

In the following paragraphs, we illustrate a composite spatio-temporal scenario (in the form 

of a series of MOD queries) in the domain of our application example. The linguistic 

description of each query is followed by the implementation of the query in the form of a 

PL/SQL block, as well as by an abstract presentation of the way that such a query is resolved. 

This scenario illustrates the expressive power and the spatio-temporal query capabilities 

added to PL/SQL by HERMES. 

(Q1) Which vehicles are moving inside a given region right now? 

PL/SQL block for Q1: 

DECLARE 
region SDO_GEOMETRY := SDO_GEOMETRY(2003, NULL, NULL,  
SDO_ELEM_INFO_ARRAY(1,1003,3), SDO_ORDINATE_ARRAY(489048,4203749,  
90032,4205990)); 

BEGIN 
SELECT id FROM Vehicles  
WHERE route.f_relate(‘INSIDE’, region, 0.005, TAU_TLL.now()) = ‘INSIDE’; 

END; 
 

In order to answer Q1 we invoke a typical SQL statement that selects from the Vehicles 

relation the ids of the couriers that satisfy the WHERE-clause, which is the time-dependent 

version of f_relate operation. A slight variant of Q1 is the classic spatio-temporal range query 

(see Q2) that may also be answered with the employment of the TB-tree operators, by simply 

invoking function tb_mp_in_spatiotemporal_window. Actually, this is the query depicted in 

the query builder in Figure 23. 
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(Q2) Find all vehicles moving inside a given region and time period? 

PL/SQL block for Q2: 
DECLARE 
region SDO_GEOMETRY := SDO_GEOMETRY(2003, NULL, NULL,  
SDO_ELEM_INFO_ARRAY(1,1003,3), SDO_ORDINATE_ARRAY(489048,4203749,  
                                                                                                                      90032,4205990)); 
BEGIN 
SELECT TB_MP_IN_SPATIOTEMPORAL_WINDOW (region,  

tau_tll.d_period_sec( 
                                               tau_tll.D_Timepoint_Sec(2010,7,9,10,35,0), 
                                               tau_tll.D_Timepoint_Sec(2010,7,9,10,55,0))) 
FROM Vehicles; 
END; 
 

(Q3) If vehicle ‘X’ is in the result set of Q1, when and where did it enter the region? 
PL/SQL block for Q3: 
DECLARE 
truckX Moving_Point; 
truckX_IN_region Moving_Object; 
temp_projection TAU_TLL.TEMP_ELEMENT_SEC; 
when TAU_TLL.TIMEPOINT_SEC; 
where SDO_GEOMETRY; 
BEGIN 
SELECT route INTO truckX FROM Vehicles WHERE id=’X’; 
truckX_IN_region := truckX.f_intersection(region);  
temp_projection := truckX_IN_region.f_temp_element(); 
when := temp_projection.te(temp_projection.te.FIRST).b;  
where := truckX_IN_region.f_initial(); 
END; 
 

To address Q3, we demonstrate how we can restrict a moving point inside a static spatial 

region and how to temporally and spatially project this restricted moving point in its initial 

position. The result of such an operation (f_intersection) in all cases is a Moving_Object 

that can be handled as any other moving geometry. By temporally projecting it 

(f_temp_element) on the continuous time line and finding the temporal element that consists 

of the time periods for which are defined the unit moving objects of the moving courier, we 

can estimate the timepoint when initially entered the given region. In addition, by applying 

the f_initial method, we can locate the point that this happened. 
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(Q4) A variant of Q3 would be to find all entering points of trajectories in the given 
spatio-temporal range. 

PL/SQL block for Q4: 
SELECT * FROM TABLE(TB_TOPOLOGICAL_QUERY( 
    SDO_GEOMETRY(2003, NULL, NULL,       

 SDO_ELEM_INFO_ARRAY(1,1003,3),  
    SDO_ORDINATE_ARRAY(489048,4203749, 90032,4205990)),      

tau_tll.d_period_sec( 
                                               tau_tll.D_Timepoint_Sec(2010,7,9,10,35,0), 
                                               tau_tll.D_Timepoint_Sec(2010,7,9,10,55,0)), 
'ENTER') ) 
 
(Q5) What distance has vehicle ‘X’ travelled inside the region? 
PL/SQL block for Q5: 
DECLARE 
distance double; 
BEGIN 
distance:= LENGTH (INTERSECTION (region, truckX.f_trajectory())); 
END; 
 
This query is resolved by finding the intersection of the region with the trajectory followed 

by the courier (f_trajectory operation). This intersection is a LineString geometry that 

restricts the route of the courier inside the region and by applying the LENGTH spatial 

operator upon the resulted LineString we compute the required distance. 

 

(Q6) Give a list of options to the driver of vehicle ‘X’ to refuel the vehicle within 
the next 2km 

PL/SQL block for Q6: 
BEGIN 
SELECT name, location FROM Landmarks  
WHERE kind = ‘petrol station’ AND  
truckX.f_within_distance(2000, location, 0.005, TAU_TLL.now()) = ‘TRUE’; 
END; 

 

In order to provide the list of petrol stations (Q6), we select the landmarks that are petrol 

stations and the courier is within the specified distance (f_within_distance operation) from 

them at the time the query is invoked. 
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(Q7) Which is the best route, in terms of distance, that this courier should follow in 

order to avoid traffic jam ‘A’?  

PL/SQL block for Q7: 

DECLARE 
jamA Moving_Polygon; 
jamA_region SDO_GEOMETRY; 
CURSOR highways IS SELECT * FROM Highways; 
highway_length, min_length number := 0; 
best_highway SDO_GEOMETRY; 
BEGIN 
SELECT extent INTO jamA FROM High-Traffic-Areas WHERE name=’A’; 
jamA_region := jamA.f_traversed(); 
FOR highways_rec IN highways LOOP 

IF RELATE (highways_rec.line, ‘DISJOINT’, jamA_region) = ‘DISJOINT’ 
THEN 

  highway_length := LENGTH(highways_rec.line); 
  IF highway_length < min_length THEN 
   min_ length:= highway_length; 
   best_highway := highways_rec.line; 
  END IF; 
 END IF; 
END LOOP; 
END; 
 

To simplify the presentation of Q7 let us assume that the courier resides at the beginning of 

a series of highways and that its destination is the ending point of these highways. As such, 

having a cursor to traverse (FOR LOOP) all highways, we choose that highway that is 

disjoint (RELATE operator) with the region traversed (f_traversed operation) by jam „A‟ and 

it has the smallest length (LENGTH operator). 

Based on related research work 44 queries like the above constitute a minimum 

functionality a MOD system should provide. Furthermore, the usefulness and applicability of 

the server-side extensions provided by HERMES have been proved in 45 and 40 by developing 

benchmark queries proposed in 54 for the evaluation of systems supporing Location-Based 

Services. 
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6 Building Real MOD Applications on Top of Hermes  

The best way to evaluate HERMES is to assess the realization of its initial goal, which is to 

provide a complete framework for developing MOD-related applications. In the previous 

section we provided a sketch for building a specific application related to vehicle traffic 

analysis, while in this section we demonstrate this by briefly presenting successfull 

applications of HERMES in four different domains, namely in trajectory data warehouses (i.e. 

TDW 31), in moving object data mining query languages (i.e. DAEDALUS tool 36), in 

semantic enrichment of movement patterns (i.e. ATHENA tool 5), and in privacy-aware 

trajectory tracking query engines (i.e. HERMES++ tool 22). We would like to note that the 

above works are a subset of tools and methods developed as a result of a European-wide 

research project called GeoPKDD – (Geographic Privacy-Aware Knowledge Discovery and 

Delivery) 21. HERMES is also a prototype outcome of GeoPKDD designed to be the MOD 

management infrastructure of such tools. Of cource, in order to support such diverse 

applications domains we have designed and incorporated into HERMES several specialized 

operations (e.g. a trajectory anomymizer operator for 22), however their description is 

ommited here due to to space constraints. 

Trajectory data warehouses – TDW aim at developing a multi-dimensional model suitable 

for online analytical processing (OLAP) of trajectory data, such as drill-down and roll-up 

operations. In order to design a trajectory warehouse architecture, one should first identify the 

differences from conventional warehouse approaches and then to devise appropriate 

extensions. There are three steps so as to realize the development of a TDW. At the first step 

the design of a MOD and of a multidimensional data model (i.e. trajectory data cube) takes 

place. At the second step, preprocessing (i.e. cleaning, consistency checking) and loading of 

raw movement data into the MOD occurs, while once trajectories have been stored in the 

MOD, the Extract-Transform-Load (ETL) phase is executed in order to feed the TDW and the 

measures of the data cube are calculated. In 31, 30, 48 HERMES has been employed as the 

infrastructure to develop the above described process in a huge, real trajectory dataset, where 

due to the size of the dataset, the existence of efficient, scalable querying processing operators 

to support ETL was a key requirement. 

Moving object data mining query languages (MO-DMQL) – In 36 the authors proposed 

DAEDALUS, a formal framework and system, that defines knowledge discovery processes as 

a progressive combination of mining and querying operators. The heart of DAEDALUS is the 

MO-DMQL query language that extends SQL in two aspects, namely a pattern definition 
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operator and functionality to uniform manipulate both raw trajectory data and unveiled 

movement patterns. DAEDALUS system has been implemented as a query execution layer on 

top of the HERMES. More specifically, the role of HERMES in DAEDALUS is two-fold; to act 

as a repository for movement data and secondly to give the basic building block that allows 

defining models‟ representation and storage. 

Semantic enrichment of movement patterns – Having as aim to provide a model for the 

conceptual representation and deductive reasoning of trajectory patterns obtained from 

mining raw trajectories, the authors in 5 have developed ATHENA tool, which employs 

ontologies for the semantic enrichment of trajectories. This is achieved by means of a 

semantic enrichment process, where raw trajectories are enhanced with semantic information 

and integrated with geographical knowledge encoded in an ontology. To highlight this process 

imagine that a user poses a query using the ontology concepts where trajectories/patterns are 

classified by a reasoner. The ontology is then populated by instances coming from a MOD 

storing semantic trajectories, patterns and auxiliary geographical features. Again, HERMES 

supports all the spatio-temporal data management requirements raised by ATHENA. The 

overall undertaking was evaluated in a real-world case study posing as objective of the 

analysis to understand tourist movements in Milan‟s metropolitan area. 

Privacy-aware trajectory tracking query engines – Due to the very nature of movement 

data, lately a new line of research has emerged that investigates safeguards to enforce so as to 

ensure the privacy of the individuals, whose movement is recorded. HERMES++ 22 which has 

been designed on top of HERMES describes such a privacy aware trajectory tracking query 

engine, where subscribed users can gain restricted access to an in-house trajectory data 

warehouse, to perform certain analysis tasks. In addition to regular queries involving non-

spatial non-temporal attributes, the engine supports a variety of spatiotemporal queries, 

including range queries, nearest neighbor queries and queries for aggregate statistics. The 

query results are augmented with fake trajectory data (dummies) to fulfil the requirements of 

K-anonymity. 

7 A Real Case Study 

This Section includes the description of a real world application scenario and at the same time 

presents usage instructions involving the desktop module of Hermes web application as 

demonstrated in 40. We will analyze into detail the elements of the query language used in 

the presented operations and corresponding parameters so as to facilitate interested users.  
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As regards the web interface, for best presentation results, we recommend that you use IE6 

(or higher) or Safari web browsers though also Mozilla Firefox has been tested and works 

properly.  

7.1 Usage Scenario 

To better perceive the functionality of the underlying Trajectory Database Engine we exhibit 

the usage of implemented operators utilized in query operations assuming a specific 

application scenario. The scenario described below constitutes a representative example of 

HERMES potentials and its ability to provide real-world LBS support. However, note that the 

set of supported services are not restricted by application specific factors but can serve as the 

infrastructure for every modern application that demands advanced trajectory data 

management and querying (i.e fleet management, asset tracking, mobile advertising etc). 

In the demonstration scenario, we assume a fleet of taxis that move in the metropolitan area 

of Athens, Greece. Taxis are moving on the underlying road network and periodically request 

routing to certain destinations. A routing module indicates the shortest path as the preferable 

path to reach the aforementioned destination. Afterwards, for the purposes of the 

demonstration, each taxi driver is supposed to accept and follow the proposed path. In that 

way, moving object trajectories are expected to be known in hand.    

7.2 Database Design 

The underlying data infrastructure consists of the following types of data: 

Spatial entities: 
- Athens Road Network Data (Nodes, Links) 

- Landmarks (ID, geometry, address, area, type) 

- Regions (ID, name, geometry) 

Note that Landmarks are possible POIs that a taxi driver may wish to be aware of their 

existence and their proximity to his way towards a destination. Regions involve a set of 

municipalities that cover the underlying road network.  We are going to further discuss the 

role of landmarks and regions in query operations in the next subsection. 

―Moving‖ entities: 
- Vehicles (obj_id, traj_id, trajectory) 

7.3 Query Operations 

Query operations are categorized based on the type of the reference object and the type of the 

data objects. In brief, a reference object involves the type of the object (trajectory or spatial 
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entity) based on which query answers are retrieved while the data object regards the type of 

objects (trajectories or spatial entities) that participate in the posed query answer.  

Based on the above the queries are categorized as: 

Moving Point – Moving Point: both the reference and data objects are trajectories 

Moving Point – Static Spatial: the reference object is a given trajectory while the query 

answer is expected to be a set of spatial entities 

Static Spatial – Moving Point:  the reference object is a given spatial entity while the query 

answer is expected to be a set of trajectories or trajectory parts 

The user is expected to choose the desired query from the categories at the left of the screen. 

Upon a specific query election the query is formed in the corresponding textbox at the center 

of the screen where the user is supposed to provide required parameters.  

 

Figure 24: Query Selection and Formation Areas 
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a. Moving Point – Moving Point 

In this category we have two types of operations, namely Nearest Neighbor and Similarity queries. 
i. Nearest Neighbor Query 

Usage: Given a trajectory T find the k nearest parts (during T‘s lifetime) of other trajectories  
Query:  

SELECT TBFUNCTIONS.MV_INCTRAJECTORYNNSEARCH(TRAJ_ID ,K) 

FROM DUAL 
Parameters: The query parameters (in bold) involve the ID of the object‘s trajectory (reference 
object) and the desired number of nearest neighbors k (data objects).   
Example: 

SELECT TBFUNCTIONS.MV_INCTRAJECTORYNNSEARCH(1 ,10) 

FROM DUAL 

 

Figure 25: Answer of an incremental trajectory NN query 

visualized on the map 

 

Figure 26: Answer of an incremental trajectory NN query in gml 

format 
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ii. Similarity Query 

Usage: Given a trajectory T find at most N similar trajectories that satisfy a given similarity 
threshold. In this type of query we distinguish the following types of similarity: 
- DDIST: The operator finds trajectories that are considered similar based on the resemblance they 

exhibit in their direction during their lifetime. This function ignores the temporal information 

part of the trajectories. 

Query:  
 

SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(),  

M.MPOINT.DDIST( 

(SELECT M.MPOINT  

       FROM MPOINTS M  

       WHERE TRAJ_ID=TRAJ_ID), 1) S  

FROM MPOINTS M 

WHERE M.MPOINT.DDIST( 

(SELECT M.MPOINT  

 FROM MPOINTS M WHERE TRAJ_ID=TRAJ_ID), 1)<THRESHOLD  

 AND ROWNUM<N  

 ORDER BY S ASC 

Parameters: The query parameters (in bold) involve the ID of the object‘s trajectory (reference 
object), a similarity threshold which is a real value between 0-1 and the expected, maximum 
number of similar trajectories – data objects. Note that the trajectory Id of the reference object 
should be declared twice. The first declaration involves the similarity value and its projection to the 
query results while the second regards the selection part of the query. 
Example: 
SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(), M.MPOINT.DDIST((SELECT M.MPOINT 

FROM MPOINTS M WHERE TRAJ_ID=1), 1) S  

FROM MPOINTS M 

WHERE M.MPOINT.DDIST((SELECT M.MPOINT FROM MPOINTS M WHERE TRAJ_ID=1), 

1)<0.5 AND ROWNUM<4  

ORDER BY S ASC 

 

Figure 27: Answer of DDIST similarity query visualized on the 

map 
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Figure 28: Answer of DDIST similarity query in gml format 

- TDDIST: A time aware version of DDIST similarity function, in that it takes into account (apart from 

their heading) temporal information of trajectories.  

Query:  
 

SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(),  

M.MPOINT. TDDIST ( 

(SELECT M.MPOINT  

       FROM MPOINTS M  

       WHERE TRAJ_ID=TRAJ_ID), 1) S  

FROM MPOINTS M 

WHERE M.MPOINT. TDDIST( 

(SELECT M.MPOINT  

 FROM MPOINTS M WHERE TRAJ_ID=TRAJ_ID), 1)<THRESHOLD  

 AND ROWNUM<N  

 ORDER BY S ASC 

Parameters: Parameters are equivalent with those in DDIST 
Example: 
SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(), M.MPOINT.TDDIST((SELECT M.MPOINT 

FROM MPOINTS M WHERE TRAJ_ID=1), 1) S  

FROM MPOINTS M 

WHERE M.MPOINT. TDDIST((SELECT M.MPOINT FROM MPOINTS M WHERE TRAJ_ID=1), 

1)<0.5 AND ROWNUM<4  

ORDER BY S ASC 
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Figure 29: Answer of TDDIST similarity query visualized on the 

map 

 

Figure 30: Answer of TDDIST similarity query in gml format 

- LIP: the operator involves spatial similarity based on a distance function upon the projections of 
trajectories in the Cartesian plain. The idea is to calculate the area of the shape formed by two 
2D polylines, which are the outcome of the projection.    

Query:  
 

SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(),  

M.MPOINT. LIP ( 

(SELECT M.MPOINT  

       FROM MPOINTS M  

       WHERE TRAJ_ID=TRAJ_ID), 1 

) S  

FROM MPOINTS M 

WHERE M.MPOINT. LIP( 

(SELECT M.MPOINT  

 FROM MPOINTS M WHERE TRAJ_ID=TRAJ_ID), 1)<THRESHOLD  

 AND ROWNUM<N  

 ORDER BY S ASC 
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Parameters: The TRAJ_ID and N parameters are equivalent with those in DDIST, TDDIST. The 
THRESHOLD parameter differs in that it refers to the area which is the outcome of the distance 
function. As such it receives real values regarding that mensuration.   
Example: 
SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(), M.MPOINT.LIP((SELECT M.MPOINT FROM 

MPOINTS M WHERE TRAJ_ID=1), 1) S  

FROM MPOINTS M 

WHERE M.MPOINT. LIP((SELECT M.MPOINT FROM MPOINTS M WHERE TRAJ_ID=1), 1)< 

10000000 AND ROWNUM<4  

ORDER BY S ASC 

 

Figure 31: Answer of LIP similarity query visualized on the map 

 

Figure 32: Answer of LIP similarity query in gml format 

- GenSTLIP_OSP: An operator that measures spatiotemporal similarity between trajectories. 
Intuitively, two moving objects are considered similar in both space and time when they move 
close at the same time. 

 
Query:  
 

SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(),  

M.MPOINT.GENSTLIP_OSP( 



Pelekis et. al.:  The HERMES MOD Engine 61 

 

(SELECT M.MPOINT  

 FROM MPOINTS M  

 WHERE TRAJ_ID=TRAJ_ID),  

1,0, 

      MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(),0.00005), 

(SELECT MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(),  

0.00005)  

FROM MPOINTS M  

WHERE TRAJ_ID=TRAJ_ID), 1,10) S 

FROM MPOINTS M 

WHERE M.MPOINT.GENSTLIP_OSP( 

(SELECT M.MPOINT  

 FROM MPOINTS M  

 WHERE TRAJ_ID=TRAJ_ID),  

 1,0, 

       MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(), 0.00005), 

      (SELECT MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(),  

0.00005)  

FROM MPOINTS M  

WHERE TRAJ_ID=TRAJ_ID), 1,10 

)<THRESHOLD AND ROWNUM<N  

ORDER BY S ASC 

Parameters: The TRAJ_ID, N and THRESHOLD parameters are equivalent with those in LIP. 
Example: 
SELECT TRAJ_ID, M.MPOINT.F_TRAJECTORY2(), M.MPOINT.GENSTLIP_OSP((SELECT 

M.MPOINT FROM MPOINTS M WHERE TRAJ_ID=1), 1,0, 

MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(), 0.00005), 

(SELECT MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(), 0.00005) FROM 

MPOINTS M WHERE TRAJ_ID=1), 1,10) S 

FROM MPOINTS M 

WHERE M.MPOINT.GENSTLIP_OSP((SELECT M.MPOINT FROM MPOINTS M WHERE 

TRAJ_ID=1), 1,0, 

MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(), 0.00005), 

(SELECT MDSYS.SDO_GEOM.SDO_LENGTH(M.MPOINT.F_TRAJECTORY2(), 0.00005) FROM 

MPOINTS M WHERE TRAJ_ID=1), 1,10)< 10000000 AND ROWNUM<4    ORDER BY S ASC 

 

Figure 33: Answer of LIP similarity query visualized on the map 
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Figure 34: Answer of LIP similarity query in gml format 

Notes: In the web interface upon the selection of similarity query in the corresponding category, 
the user is able to further define the type of similarity that will be taken into consideration in the 
query using the query builder at the left-down part of the screen. 

 

 

Figure 35: Similarity function selection 

b. Moving Point – Static Spatial 

In this category we have three types of operations, namely Point, Nearest Neighbor and 

Topological queries. 

i. Point Query 

Usage: Given a trajectory T find the regions (municipalities of Athens) that T visits during its 
lifespan.  
Query:  

SELECT RG_NAME, RG_REGION  

FROM SP_REGIONS R WHERE MDSYS.SDO_RELATE(R.RG_REGION, 

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE 

TRAJ_ID=TRAJ_ID),'MASK=ANYINTERACT QUERYTYPE=WINDOW')='TRUE' 

Parameters: The query parameters (in bold) involve the ID of the object‘s (reference object) 
trajectory. In the mask parameter of SDO_RELATE we use ANYINTERACT denoting that the 
trajectory and region objects are not disjoint. The QUERYTYPE taking place in the mask is used for 
backward compatibility. 
Example: 

SELECT RG_NAME, RG_REGION  

FROM SP_REGIONS R WHERE MDSYS.SDO_RELATE(R.RG_REGION, 
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(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE TRAJ_ID= 

1),'MASK=ANYINTERACT QUERYTYPE=WINDOW')='TRUE' 

 

 

Figure 36: Answer of point query visualized on the map 

 

Figure 37: Answer of point query in gml format 

ii. Nearest Neighbor Query 

Usage: Given a trajectory T find the k nearest landmarks (POIs)   
Query:  

SELECT ADDRESS,GEOMETRY  

FROM (SELECT * FROM LANDMARKS L WHERE L.TYPE='TYPE') L  

WHERE MDSYS.SDO_NN(L.GEOMETRY, 

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE 

TRAJ_ID=TRAJ_ID),'SDO_NUM_RES=K')='TRUE' 

Parameters: The query parameters (in bold) involve the TRAJ_ID of the object‘s trajectory 
(reference object). Furthermore the desired number of K-NNs needs to be specified. Eventually, 
the user is able to choose the TYPE of POIs they desire to be retrieved. Possible values (strings) 
for TYPE are: PORT AUTHORITIES, BUS TERMINALS, PHARMACIES, OLYMPIC 
VENUES, NEIGHBOURHOODS, LANDMARKS. 
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Example: 
SELECT ADDRESS,GEOMETRY  

FROM (SELECT * FROM LANDMARKS L WHERE L.TYPE='PHARMACIES') L  

WHERE MDSYS.SDO_NN(L.GEOMETRY, 

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE 

TRAJ_ID=1),'SDO_NUM_RES=4')='TRUE' 

 

Figure 38: Answer of K-nn query visualized on the map 

 

Figure 39: Answer of K-nn query in gml format 

iii. Topological Query 

Usage: Given a trajectory T find the regions that OVERLAPBDYDISJOINT, 

OVERLAPBDYINTERSECT, CONTAINS etc with it   
Query:  

SELECT RG_NAME, RG_REGION  

FROM SP_REGIONS R  

WHERE MDSYS.SDO_RELATE(R.RG_REGION, 

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE 

TRAJ_ID=TRAJ_ID),'MASK=REL_TYPE QUERYTYPE=WINDOW')='TRUE' 
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Parameters: The query parameters (in bold) involve the TRAJ_ID of the object‘s trajectory 
(reference object) as well as the topological relation type (REL_TYPE). Possible choices for the 
mask element are: 
- DISJOINT -- The boundaries and interiors do not intersect. 
- TOUCH -- The boundaries intersect but the interiors do not intersect. 
- OVERLAPBDYDISJOINT -- The interior of one object intersects the boundary and interior of the 

other object, but the two boundaries do not intersect. This relationship occurs, for example, 
when a line originates outside a polygon and ends inside that polygon. 

- OVERLAPBDYINTERSECT -- The boundaries and interiors of the two objects intersect. 
- EQUAL -- The two objects have the same boundary and interior. 
- CONTAINS -- The interior and boundary of one object is completely contained in the interior of the 

other object. 
- COVERS -- The interior of one object is completely contained in the interior or the boundary of the 

other object and their boundaries intersect. 
- INSIDE -- The opposite of CONTAINS. A INSIDE B implies B CONTAINS A. 
- COVEREDBY -- The opposite of COVERS. A COVEREDBY B implies B COVERS A. 
- ON -- The interior and boundary of one object is on the boundary of the other object (and the 

second object covers the first object). This relationship occurs, for example, when a line is on the 
boundary of a polygon. 

 
Example: 

SELECT RG_NAME, RG_REGION  

FROM SP_REGIONS R  

WHERE MDSYS.SDO_RELATE(R.RG_REGION, 

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE 

TRAJ_ID=2),'MASK=CONTAINS QUERYTYPE=WINDOW')='TRUE' 

 

 

Figure 40: Answer of topological query (MASK=CONTAINS) 

visualized on the map 
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Figure 41: Answer of topological query (MASK=CONTAINS) 

in gml format 

c. Static Spatial – Moving Point  

In this category we have four types of operations, namely Range, Nearest Neighbor, 

Topological and Directional Queries. 

i. Range Query 

Usage: Find trajectory parts contained in a given spatiotemporal window 
Query:  
SELECT TBFUNCTIONS.MV_QUERY_WINDOW( 

SDO_GEOMETRY(2003, 1000001, NULL,       
SDO_ELEM_INFO_ARRAY(1,1003,3),      

SDO_ORDINATE_ARRAY(X1,Y1,X2,Y2)), 

    TAU_TLL.D_PERIOD_SEC( 

    

 TAU_TLL.D_TIMEPOINT_SEC(timepoint1), 

    

 TAU_TLL.D_TIMEPOINT_SEC(timepoint2)) 

    

 )  

FROM DUAL 
Parameters: The query parameters (in bold) involve the lower left (X1,Y1) and upper right (X2,Y2) 
of the (rectangular) spatial window as well as a time period (timepoint1, timepoint2)for the 
temporal part of the query  
Example: 
SELECT TBFUNCTIONS.MV_QUERY_WINDOW( 

SDO_GEOMETRY(2003, 1000001, NULL,       
SDO_ELEM_INFO_ARRAY(1,1003,3), 

SDO_ORDINATE_ARRAY(465000, 4200000, 480000, 4201900)), 

    TAU_TLL.D_PERIOD_SEC( 

  

 TAU_TLL.D_TIMEPOINT_SEC(2009,07,04,21,12,43), 
  

 TAU_TLL.D_TIMEPOINT_SEC(2009,07,04,21,15,56)) 

    

 )  

FROM DUAL 
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Figure 42: Answer of range query visualized on the map 

 

Figure 43: Answer of range query in gml format 

Notes: The insertion of the appropriate time interval for a range query can be made by using the 
text boxes labeled Initial and Final Timepoint, placed at the top of the web interface. 

 

Figure 44: Initial and Final Timepoint Selection 

By choosing the icon (surrounded by red rectangles in Figure 44) at the right side of time 

point selection textboxes, a popup window will appear presenting a calendar as well as a 

clock to enable users define corresponding time points. Note that after identifying a time 

point by clicking or typing in the popup calendar window, you need to additionally click 

inside each textbox to confirm your selection which is then passed inside the formed query. 

Furthermore, we should note that the specification of  X1,Y1,X2,Y2 by the user could have 

been graphically made by choosing the construction of map images in SVG format. However, 
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making every node of the road network (or point in the map) selectable tremendously affects 

response time. As a result we allow users type the exact coordinates of the desired spatial 

rectangle. In the query refinement section we will examine an alternative way to pass the 

spatial window parameter.   

ii. Nearest Neighbor Query 

Usage: Find the K nearest to a POI trajectory parts, within a given time period  
Query:  
SELECT TBFUNCTIONS.MV_INCPOINTNNSEARCH( 

X,Y, 

TAU_TLL.D_TIMEPOINT_SEC(timepoint1), 

TAU_TLL.D_TIMEPOINT_SEC(timepoint2),  

K)  

FROM DUAL 

Parameters: The query parameters (in bold) involve the coordinates (X,Y) of the POI,  the time 
period (timepoint1,timepoint2)and the desired number of nearest neighbors K  
Example: 
SELECT TBFUNCTIONS.MV_INCPOINTNNSEARCH( 

480000,4201900, 

TAU_TLL.D_TIMEPOINT_SEC(2009,06,30,00,59,40),TAU_TLL

.D_TIMEPOINT_SEC(2009,07,17,00,59,55), 15)  

FROM DUAL 

 

Figure 45: Answer of incremental point NN query visualized on 

the map 
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Figure 46: Answer of incremental point NN query in gml format 

Notes: The insertion of the appropriate time interval for the incremental point NN query can be 
made by using corresponding textboxes as we have already discussed.   

iii. Topological Query 

Usage: Find the trajectories that enter/leave an area within a given timeperiod  
Query:  
SELECT TRAJ_ID,M.MPOINT.F_TRAJECTORY2() 

FROM MPOINTS M 

WHERE TRAJ_ID IN ( 

SELECT DISTINCT * FROM TABLE( 

       

TBFUNCTIONS.TB_TOPOLOGICAL_QUERY( 

   

 SDO_GEOMETRY(2003, NULL, NULL,   

  

 SDO_ELEM_INFO_ARRAY(1,1003,3),  

   

 SDO_ORDINATE_ARRAY(X1,Y1,X2,Y2)),   

  

 TAU_TLL.D_PERIOD_SEC( 

TAU_TLL.D_TIMEPOINT_SEC(timepoint1),

 TAU_TLL.D_TIMEPOINT_SEC(timepoint2)), 

'MASK') 

   

 ) 

) 

Parameters: The query parameters (in bold) involve the lower left (X1,Y1) and upper right (X2,Y2) 
of a (rectangular) area as well as a time period (timepoint1, timepoint2) for the temporal part 
of the query. Finally, a MASK must be defined to clarify the type of topological query. Possible 
MASK (string) values can be ‗ENTER‘, ‗LEAVE‘, ‗ENTER_LEAVE‘ depending whether the 
users are interested in trajectories that enter/leave or enter&leave the area within the given 
timeperiod. 
Example: 
SELECT TRAJ_ID,M.MPOINT.F_TRAJECTORY2() 

FROM MPOINTS M 

WHERE TRAJ_ID IN (SELECT DISTINCT * FROM TABLE 

(TBFUNCTIONS.TB_TOPOLOGICAL_QUERY(SDO_GEOMETRY(2003, NULL, NULL,  
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SDO_ELEM_INFO_ARRAY(1,1003,3), 

SDO_ORDINATE_ARRAY(465000,4200000,480000,4201900)), 

TAU_TLL.D_PERIOD_SEC(TAU_TLL.D_TIMEPOINT_SEC(2009,06,22,01,43,17), 

TAU_TLL.D_TIMEPOINT_SEC(2009,06,22,01,49,10)),'ENTER_LEAVE'))) 

 

Figure 47: Answer of topological query visualized on the map 

 

Figure 48: Answer of topological query in gml format 

Notes: The insertion of the appropriate time interval for the incremental point NN query can be 
made by using corresponding textboxes as it already has been discusses.   

iv. Directional Query 

Usage: Find trajectories the location of which is east, west, north, south, front, behind, left, right of 
a Point at a given time instant (time point). In this type of query we distinguish the following 
directional functions: 
- F_LEFT:  The f_left operation returns true if the location of the point at the user defined timepoint 

is left from the argument geometry - point 
- Similarly, operations f_right, f_front, f_behind return true if the location of the point at the user 

defined timepoint is on the right, in front or behind the argument geometry – point, respectively. 
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- Furthermore, we augment our operator set with a related set of methods that identify whether a 

moving point is located west, east, north, south of a geometry. These methods are differentiated 

from the previous as we do not care for the heading of the moving point. 

Query:  
 

SELECT M.MPOINT.F_TRAJECTORY2()  

FROM MPOINTS M  

WHERE M.MPOINT.F_EAST( 

    

 SDO_GEOMETRY(2001,1000001, 

  

 SDO_POINT_TYPE(X,Y, NULL),NULL,NULL), 

  

 TAU_TLL.D_TIMEPOINT_SEC(timepoint1), 

   A1,A2)=1 

Parameters: The query parameters (in bold) involve the coordinates (X,Y) of the reference point 
geometry,  the time instant (timepoint)and the angle range (A1, A2) that dictates the search space 
towards the specified direction. 
Example: 
SELECT M.MPOINT.F_TRAJECTORY2()  

FROM MPOINTS M  

WHERE M.MPOINT.F_LEFT(SDO_GEOMETRY(2001,1000001, 

               SDO_POINT_TYPE(465000,4200000, NULL),NULL,NULL), 

               TAU_TLL.D_TIMEPOINT_SEC(2009,06,10,21,39,11),30,150)=1 

 

Figure 49: Answer of directional  (f_left) query visualized on the 

map 



Pelekis et. al.:  The HERMES MOD Engine 72 

 

 

Figure 50: Answer of directional  (f_left) query in gml format 

Notes: The insertion of the appropriate time point can be made by using the “Initial 

Timepoint” textbox only.   

In the web interface upon the selection of directional query in the corresponding category, the 

user is able to further select the type that will be taken into consideration in the query using 

the query builder at the left-down part of the screen. 

 

 

Figure 51: Directional function selection 

d. Complementary operations  

Apart from the previously presented query categorization, a set of complementary operators 

are provided. They can be used by performing a selection in the “Select“ part of the query 

builder (provided that neither similarity nor directional query category have been selected). 

The following figure presents the set of complementary functions.  
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Figure 52: Set of complementary functions 

F_TRAJECTORY2 
Usage: Function used to visualize a specific trajectory on the map 
Query: 
 

SELECT M.MPOINT.F_TRAJECTORY2()  

FROM MPOINTS M  

WHERE TRAJ_ID=TRAJ_ID 

Parameters: The only parameter involves the ID of the trajectory that the user wishes to visualize. 
In case ―TRAJ_ID‖ is left as is, the whole set of stored trajectories is presented on the map. 
Example: 
SELECT M.MPOINT.F_TRAJECTORY2()  

FROM MPOINTS M  

WHERE TRAJ_ID=10 

 

Figure 53: Visualization of TRAJ_ID=10 

GET_ENTER_LEAVE_POINTS, F_ENTERPOINTS, F_LEAVEPOINTS 
Usage: This set of functions is used to identify the enter/leave (or both) points of a specific 
trajectory in respect to a spatial region on the map  
Query: 
 

SELECT M.MPOINT.GET_ENTER_LEAVE_POINTS( 

SDO_GEOMETRY(2003, NULL, NULL,  

SDO_ELEM_INFO_ARRAY(1,1003,3), 

SDO_ORDINATE_ARRAY(X1,Y1,X2,Y2)))  

FROM MPOINTS M  

WHERE TRAJ_ID=TRAJ_ID 

Parameters: The query parameters involve the lower left (X1,Y1) and upper right (X2,Y2) of the 
region as well as a trajectory ID. F_ENTERPOINTS and F_LEAVEPOINTS receive similar 
parameters.   
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Example: 
SELECT M.MPOINT.GET_ENTER_LEAVE_POINTS(SDO_GEOMETRY(2003, NULL, NULL, 

SDO_ELEM_INFO_ARRAY(1,1003,3), 

SDO_ORDINATE_ARRAY(465000,4200000,480000,4201900)))  

FROM MPOINTS M  

WHERE TRAJ_ID=10 

 

Figure 54: Enter, Leave points of TRAJ_ID=10 in respect with 

the selected region  

AT_INSTANT 
Usage: The function returns the location of a moving object (specific TRAJ_ID) at a given time 
point.  
Query: 
 

SELECT M.MPOINT.AT_INSTANT(TAU_TLL.D_TIMEPOINT_SEC(timepoint))  

FROM MPOINTS M  

WHERE TRAJ_ID=TRAJ_ID 

Parameters: The query parameters involve the specification of the exact time point (using the Initial 
Time Point Textbox) and the ID of the desired trajectory. In case ‗TRAJ_ID‘ is used as is  instead 
of a specific trajectory identificator, the locations of all available moving objects for the given time 
point are projected on the map.   
Example: 
SELECT M.MPOINT.AT_INSTANT(TAU_TLL.D_TIMEPOINT_SEC(2009,06,10,21,39,11))  

FROM MPOINTS M  

WHERE TRAJ_ID=TRAJ_ID 
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Figure 55: Locations of moving objects at the specified time 

point  

F_INITIAL, F_FINAL 
Usage: The function returns the starting, ending point of a given trajectory, respectively 
Query: 
 

SELECT M.MPOINT.F_INITIAL()  

FROM MPOINTS M  

WHERE TRAJ_ID=TRAJ_ID 

Parameters: The only parameter involves the ID of the trajectory that the user wishes to visualize 
its initial/ final location.  
Example: 
SELECT M.MPOINT.F_INITIAL()  

FROM MPOINTS M  

WHERE TRAJ_ID=1 

 

Figure 56: Initial location of TRAJ_ID=1  

F_UNION 
Usage: The function returns a geometry object that is the topological union (OR operation) of an 
instanced point with a given trajectory at a specific time point 
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Query: 
SELECT M.MPOINT.F_UNION((SELECT M.MPOINT FROM MPOINTS M WHERE 

TRAJ_ID=TRAJ_ID1),TOLERANCE,TAU_TLL.D_TIMEPOINT_SEC(timepoint))  

FROM MPOINTS M  

WHERE TRAJ_ID=TRAJ_ID2 

Parameters: The parameters involve the TRAJ_ID1 of a selected moving object and the 
TRAJ_ID2 of the reference, time-instanced moving point. In addition, a specific time point and a 
tolerance value need to be specified. Many Spatial functions accept a tolerance parameter. If the 
distance between two points is less than or equal to the tolerance, the two points are considered as 
a unique point. Thus, tolerance is usually a reflection of how accurate or precise users perceive their 
spatial data to be.  
Example: 
SELECT M.MPOINT.F_UNION((SELECT M.MPOINT FROM MPOINTS M WHERE 

TRAJ_ID=1),0.001,TAU_TLL.D_TIMEPOINT_SEC(2009,06,10,21,39,11))  

FROM MPOINTS M 

WHERE TRAJ_ID=10 

 

 

Figure 57: F_UNION between TRAJ_ID=10 at the specified 

time point and TRAJ_ID=1  

F_XOR 
Usage: The function returns a geometry object that is the topological symmetric difference  (XOR 
operation) of an instanced point with a given trajectory at a specific time point 
Query: 
 

SELECT M.MPOINT.F_XOR((SELECT M.MPOINT FROM MPOINTS M WHERE 

TRAJ_ID=TRAJ_ID1),TOLERANCE,TAU_TLL.D_TIMEPOINT_SEC(timepoint))  

FROM MPOINTS M  

WHERE TRAJ_ID=TRAJ_ID2 

Parameters: The parameters are equivalent with those in F_UNION  
Example: 
SELECT M.MPOINT.F_XOR((SELECT M.MPOINT FROM MPOINTS M WHERE 

TRAJ_ID=1),0.001,TAU_TLL.D_TIMEPOINT_SEC(2009,06,10,21,39,11))  

FROM MPOINTS M  

WHERE TRAJ_ID=12 
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Figure 58: F_XOR between TRAJ_ID=12 at the specified time 

point and TRAJ_ID=1  

 

7.4 Query Refinement 

Certain types of queries can be further refined by choosing between their results and exploit 

them as parameters in a new query. The talk mainly regards interaction between “Moving 

Point – Static Spatial” and “Static Spatial – Moving Point” categories. In other words, a data 

object that participates in the answer of a query belonging to the “Moving Point – Static 

Spatial” category can be defined as the reference object in a “Static Spatial – Moving Point” 

query. The exact match is obviously determined by the type of parameter that “Static Spatial 

– Moving Point” queries accept. 

In particular, the user has the ability to perform the following types of query combinations: 

- Moving Point – Static Spatial: Point and Topological Query with Static Spatial – Moving Point: Range 

and Topological Query 

- Moving Point – Static Spatial: Nearest Neighbor Query with Static Spatial – Moving Point: Nearest 

Neighbor and Directional Query 

Moreover, the results of the “Moving Point – Static Spatial” category can be exploited in the 

previously presented GET_ENTER_LEAVE_POINTS, F_ENTERPOINTS, 

F_LEAVEPOINTS queries. 

We now proceed by citing representative examples of the steps that the user should follow 

during the query refinement process. 
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a. Moving Point – Static Spatial: Point Query  &  Static Spatial Moving Point: Range Query 

STEP1: Point Query Execution 
SELECT RG_NAME, RG_REGION  

FROM SP_REGIONS R WHERE MDSYS.SDO_RELATE(R.RG_REGION, 

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE TRAJ_ID=1), 

'MASK=ANYINTERACT QUERYTYPE=WINDOW')='TRUE' 

 

Figure 59: Answer of point query visualized on the map 

STEP2: New Reference Object Selection 

To select the new reference object, the user should choose the “QUERY RESULTS” tab in 

the interface. In the table presenting the results of the previously posed query, the selection 

column provides appropriate radio buttons for this purpose. Finally the user should inform the 

system that the chosen result is to be passed as a parameter to the next query. This is achieved 

by clicking on the “Use geometry selection” checkbox above the table.  

 

Figure 60: New reference object selection (municipality of 

Athens) 
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STEP3: Query Refinement 

In the range query that will be formed the user needs to define only the desired time period 

since the spatial window has already been declared in the previous step (in this example the 

spatial window regards the municipality of Athens)1. 

 

Figure 61: Range query execution in the refinement process 

 
b. Moving Point – Static Spatial: Nearest Neighbor Query  &  Static Spatial Moving Point: 

Range Query 

STEP1: Moving Point – Static Spatial: Nearest Neighbor Query Execution 
SELECT ADDRESS,GEOMETRY  

FROM (SELECT * FROM LANDMARKS L WHERE L.TYPE='LANDMARKS') L  

WHERE MDSYS.SDO_NN(L.GEOMETRY, 

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE 

TRAJ_ID=4),'SDO_NUM_RES=7')='TRUE' 
 

                                                 
1 The spatial window that appears to the user in the formed range query, still displays the coordinates a default rectangular area. 

However, the actual execution takes into account the new reference object specified in step 2. This saves some extra client-server 

communication. 
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Figure 62: Answer of Moving Points – Static Spatial: NN query 

visualized on the map 

STEP2: New Reference Object Selection 
The selection of the new reference object is similar with the example in the previous section. 

 

Figure 63: New reference object selection (municipality of 

Athens) 

STEP3: Query Refinement (Static Spatial – Moving Point: Nearest Neighbor query) 

In the nearest neighbor query that will be formed the user needs to define only the desired 

time period since the reference point has already been declared in the previous step. 
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Figure 64: Static Spatial – Moving Point: Nearest Neighbor 

query execution in the refinement process 

c. Additional 

 As already mentioned the results of the “Moving Point – Static Spatial” category can be 

exploited in GET_ENTER_LEAVE_POINTS, F_ENTERPOINTS, F_LEAVEPOINTS 

queries. Since the triplet of these functions receives a spatial window parameter only Moving 

Point – Static Spatial: Point and Topological queries can be utilized in the first step of the 

process.  

STEP1: Moving Point – Static Spatial: Point Query Execution 
SELECT RG_NAME, RG_REGION  

FROM SP_REGIONS R WHERE MDSYS.SDO_RELATE(R.RG_REGION, 

(SELECT M.MPOINT.F_TRAJECTORY2() FROM MPOINTS M WHERE TRAJ_ID=1), 

'MASK=ANYINTERACT QUERYTYPE=WINDOW')='TRUE' 

 

Figure 65: Answer of point query visualized on the map 
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STEP2: New Reference Object Selection 

 

Figure 66: New reference object selection (municipality of 

Athens) 

STEP3: Query Refinement (F_ENTERPOINTS) 

 

Figure 67: F_ENTERPOINTS results in the query refinement 

process 

7.5 Troubleshooting 

There are two known situations that can cause malfunction to the HERMES web application.  

Leaving the session inactive for several minutes may cause the scripts that form the query 

upon the selection of a respective category to become inactive (i.e no query is presented in the 

corresponding textbox after a selection). Refreshing the session solves that problem 

Server errors similar to the one presented in the figure below may occur as a result of invalid 

modifications to the initially formed query by the user. This happens due to the fact that there 
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is no intermediate parser to examine the validity of the query request before passing it to the 

database server. 

 

Figure 68: Server Error 

We recommend that you avoid changing the query, apart from the required parameter parts. 

Upon an error occurrence it is preferable to close the window and start a new session.     

8 Comparison with Related Work 

Several research efforts have tried to model spatio-temporal databases using the moving 

object concept. In 15 the authors propose a new line of research where moving points and 

moving regions are viewed as three-dimensional (2D + time) or higher dimensional entities 

whose structure and behavior is captured by modeling them as abstract data types. Such 

abstract data types for moving points and moving regions have been introduced in 24, 

together with a set of operations on such entities. The model presented in 24 was the first 

attempt to deal with continuous motion while in 17 the definition of the discrete 

representation of the above-discussed abstract data types is presented. The interesting part of 

the discrete model is how “moving” types are represented. The authors describe the sliced 

representation behind which, the basic idea is to decompose the temporal development of a 

value into fragments called “slices” such that within the slice this development can be 

described by some kind of “simple” function. The next step in this development was the 

study of algorithms for the rather large set of operations defined in 24. Whereas 17 just 

provides a brief look into this issue by presenting two example algorithms at the end, in 29 

the authors present a comprehensive, systematic study of algorithms for a subset of the 

operations introduced in 24. Whereas some algorithms are relatively straightforward and 

simple, there are still a considerable number of quite involved ones. In all cases the authors 

analyze the complexity of the algorithms. In 29 the data structures from 17 are also refined 

and extended by auxiliary fields to speed up computations. This paper also offers a blueprint 

for implementing such a “moving objects” extension package for suitable extensible database 

architectures. More specifically, the details and the current status of a prototypical 
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implementation of the data structures and algorithms described are presented. The final 

outcome of this work has been recently demonstrated in 2. The prototype is being developed 

as an algebra module for the experimental database system SECONDO 12. 

As an extension to the abstract model in 24, the concept of spatio-temporal predicates is 

introduced in 16. The goal is to investigate temporal changes of topological relationships 

induced by temporal changes of spatial objects. Further work on modeling includes 52 where 

the authors focus on moving point objects and the inclusion of concepts of differential 

geometry (speed, acceleration) in a calculus based query language. In 6 discuss in detail non-

linear representation for moving objects, while in 57 the authors consider movement in 

networks and some evaluation strategies. 

Another model using moving objects is proposed by Wolfson and colleagues in 50, 61 and 

60. The authors propose the so-called Moving Objects Spatio-Temporal (MOST) data model 

for databases with dynamic attributes, i.e. attributes that change continuously as a function of 

time, without being explicitly updated. This model enables the DBMS to predict the future 

location of a moving object by providing a motion vector, which consists of its location, 

speed and direction for a recent period of time. In the model, the answer to a query depends 

not only on the database contents, but also on the time at which the query is entered. As long 

as the predicted position based on the motion vector does not deviate from the actual position 

more than some threshold, no update to the database is necessary. An important issue here is 

to balance the cost of updates against the cost of imprecise information. The authors also offer 

a query language (Future Temporal Logic - FTL) based on temporal logic to formulate 

questions about the near future movement. The approach is restricted to moving points and 

does not address more complex time-varying geometries such as moving regions. 

Related work in the field also includes our initial approach in designing HERMES. More 

specifically, in 45 we briefly described the envisioned architecture of HERMES framework, in 

42 we presented the primitives of the proposed datatype-oriented model and provides a 

preliminary insight on the supported functionality, while in 40 we demonstrated the software 

developed theretofore, focusing in a specific (i.e. LBS) application domain. The current paper 

presents the complete system and describes all the necessary infrastructure for introducing 

our datatype system for moving objects. More specifically, we describe all the base, temporal 

and spatial types that compose the basic constructs for the definition of the moving objects 

datatypes, while we discuss in detail the fundamentals for extending the previous with 

moving objects. In addition, all the datatypes, which are the core of the data type system of 
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HERMES, are now formally defined and discussed in detail. The definition of the data type 

system is followed by a presentation of the design decisions and techniques for the physical 

representation of the proposed abstract data types. We further discuss the principles adhered 

by HERMES for designing moving objects operations and present in detail the full set of 

methods defined upon the proposed data types. Our design extends the data definition and 

manipulation language of OGC-compliant ORDBMS with spatio-temporal semantics and 

functionality, paying special attention on advanced spatio-temporal indexing and query 

processing techniques. The proposed operations are accompanied with a discussion regarding 

their development and fruitful examples and illustrations for depicting the supported 

functionality. We also include a description of the implementation details of our system taking 

advantage of extensibility interfaces provided by state-of-the-art ORDBMS. Furthermore, we 

focus on the resulted query language which is applied, as a proof-of-concept, to a case study 

related with vehicle traffic analysis. Finally, we present several systems and case studies that 

HERMES has been successfully applied and we provide a qualitative comparison of our 

research effort with related work. 

In 23 the authors extended the SECONDO system with algorithms for efficient k-nearest 

neighbor search on moving object trajectories, while in 13 they introduced a benchmark that 

defines datasets and queries for experimental evaluations. Another recent approach is 

TrajStore 10, which focuses on supporting efficient spatio-temporal range queries in very 

large datasets. 

In the following paragraphs and in order to place the contribution of this paper, we briefly 

present the differences of HERMES features proposed in this paper with the approach 

described in 24, 17 and 29, which is the most related to our work. 

HERMES introduces time-varying geometries that change location or shape in discrete steps 

and/or continuously. Our approach for supporting both discretely and continuously changing 

spatio-temporal objects and which is based on the Unit_Function object is more generic and 

flexible than the tactic adopted in 17 that asserts the same functionality. Apart from linear 

interpolations of spatial and spatio-temporal (moving) types utilized in 17 and 29, HERMES 

also utilizes arc interpolations by proposing a categorization according to the quadrant the 

motion takes place and the motion heading. What is more, the user of HERMES is facilitated 

with a flexible and extensible interface for additional types of motion for moving types (e.g. 

splines, polynomials of degree higher than one etc.), which is provided via the Unit_Function 

object type. 
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In addition to Moving_Point, Moving_LineString, Moving_Polygon, proposed in 17, the 

proposed MOD Type System also includes types like Moving_Circle, Moving_Rectangle, 

Moving_Collection and Moving_Object. A rich set of object methods is introduced that 

expresses all the interesting spatio-temporal phenomena and processes. This set of operations 

is a superset of the operations introduced in 24. The operation set commenced in 24 at an 

abstract level, is reduced in 17 where specific finite representations and data structures are 

given for all the types of the abstract model, and is further reduced in 29 where a subset of the 

algorithms are selected to make the implementation manageable.  

Of course, there are more differences between the two operations sets supplied by 24 and 

HERMES. For example, all topological operations introduced in 24 are combined in HERMES 

under a single operator, which distinguishes the different topological relationships via a 

“mask” parameter. Furthermore, HERMES introduces new operations describing the buffer, 

the convex hull, the centre of gravity and points on the surface of moving geometries. 

Additionally, particular attention has been paid to operations that facilitate the user to check 

the construction of moving objects and to keep such kind of spatio-temporal data in a 

consistent state. This leads to effective database maintenance and reliable error-handling 

mechanism. More importantly, as we aim to provide a powerful toolkit for analysts, HERMES 

includes higher level methods (e.g. operators for trajectory similarity search), upon which 

knowledge discovery tasks can be easily performed. 

The Moving_Collection object supports not only a homogeneous collection of moving 

types but also a heterogeneous collection of them. In 24, heterogeneous collections are not 

supported and a single moving type corresponds to a homogeneous Moving_Collection of the 

proposed MOD Type System. The Moving_Object can substitute any of the other moving 

types, as well as moving geometries that result as operations on other moving geometries and 

moreover, it can model time-varying objects like the time-changing perimeter of a moving 

region. In 24 such degenerated moving types (moving reals, strings and booleans) are 

constructed as separate objects, which leads to a proliferation of object types that mainly are 

not spatio-temporal, which makes more difficult and unnatural the utilization of such data 

types by end users. 

Generally speaking, the proposed MOD Type System is richer and more flexible than the 

one presented in 24. For example, it supports moving linestrings that intersect themselves 

during their development, while such a behavior is not allowed in 24 due to the fact that the 

spatial model does not accept self-intersecting linestrings. This is a very simple example of 
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the importance that HERMES is OGC-compliant. 

9 Conclusions and Future Work 

In this paper, a formal framework and its implementation for managing and analyzing 

moving objects, called HERMES, was introduced. HERMES is a system extension that provides 

spatio-temporal functionality to ORDBMS offering OGC-compliant spatial extensions and 

supports modeling and querying of moving objects changing location either in discrete steps 

or continuously. A collection of data types and their corresponding operations are defined, 

implemented, and demonstrated through a vehicle traffic analysis application developed in 

Oracle. This application demonstrates that embedding the functionality offered by HERMES in 

ORDBMS data manipulation language provides a flexible, expressive and easy to use query 

language for moving object databases. 

Another contribution of this work is that it prescribes straightforward future research 

directions. First of all, due to the fact that our study concerns only two-dimensional spatial 

objects as well as the change and motion of such geometries in the 2D Cartesian plane, there 

is need to investigate the way we could model surfaces and three-dimensional spatial objects 

and the time-changing variants of them. Additionally, a future direction we are planning to 

follow is to utilize the optimization extensibility interface of existing ORDBMS in order to 

enhance the performance of HERMES. Finally, we will follow and extend the benchmark 

introduced in 13 for a more qualitative comparison of HERMES with the approach of 

SECONDO. 
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1 Appendix A – the Temporal Data Model Adopted by HERMES-MDC 

TAU Model augment the four temporal data types found in ODMG object model, Date, Time, 

Timestamp and Interval, with three new temporal data types: Timepoint, Period and Temporal 

Element. In the following sections, the semantics and the formal definitions of all the temporal 

literal types supported by TAU Time Model are given, as well as the formal specifications of the 

atomic literal types that are utilized in the definition of the temporal types, in terms of set 

theory. 

Operations related with each temporal type fall into three categories namely, constructors, 

access methods and utilities. 

Constructors are operations that create instances of a type and initialize their state. 

Access Methods are operations used to retrieve values of built-in properties. 

Utilities are operations that return general information regarding the instance. 

1.1 Atomic Literal Types 

The set of Atomic Literal Types ALT is defined as 

ALT =  boolean   char   short   ushort   long   ulong   float   double   

octet   string   enum, where 

 boolean = {true, false}  char = {x | x ASCII} 

 short = {x:  | s_lb x s_ub}  ushort = {x:  | x us_ub} 

 long = {x:  | l_lb x l_ub}  ulong = {x:  | x ul_ub} 

 float = {x:  | f_lb x f_ub}  double = {x:  | d_lb x d_ub} 

 bit = {0, 1}  octet = bit
8
 

 string = Char
n
, n*

  enum = {(s, n) | s string, n  any 

numerical type} 

s_lb, l_lb, f_lb, d_lb are the lower bounds and s_ub, us_ub, l_ub, ul_ub, f_ub, d_ub are the upper 

bounds of the corresponding numerical types. The representation, precision, ranges and 

operations of numerical types are implementation platform specific. 

Further more, in order to formalize the definition of the temporal literal types we should first 

define the time divisions in the Gregorian calendar, which are, 

 GrYear = {y: long | lb y ub  y 0}  GrMonth = {m: ushort | 1 m 12} 
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 GrDay = {d: ushort | 1 d 31}  GrHour = {h: ushort | 0 h 23} 

 GrMinute = {m: ushort | 0 m 59}  GrSecond = {s: double | 0 s 59} 

as well as the set granularity that contains elements that represent time accuracy: 

 granularity = {YEAR, MONTH, DAY, HOUR, MINUTE, SECOND} 

As such the set of Temporal Literal Types TLT is defined as 

TLT =  date   time   timestamp   timepoint g   interval   period g   

temporalElement g. 

1.2 ODMG Temporal Data Types 

The ODMG Standard [CB97] defines the following temporal data types: 

Date: Instances of the Date type represent unique points in time. It supports the fields YEAR, 

MONTH and DAY. 

date =d year GrYear, month GrMonth, day GrDay  

Time: The Time data type supports the fields HOUR, MINUTE and SECOND. It either 

represents a unique point in time (for which the date is implicit) or it represents a recurring 

point of time. It is possible to specify a precision, i.e. the number of decimal places of 

accuracy to which the SECOND field will be kept. The default precision is zero (whole 

seconds only). The maximum precision is implementation defined (at least 6). The Time data 

type has a WITH TIME ZONE option. If the option is not specified the values of the data 

type are assumed to be always in the current default time zone of the user session. If the 

option is specified then the values of the data type include the TIMEZONE_HOUR and 

TIMEZONE_MINUTE fields, which specify the offset of the time zone of the rest of the 

value from Universal Coordinated Time. 

time =d hour GrHour, minute GrMinute, secondGrSecond  

Timestamp: The Timestamp data type supports the fields YEAR, MONTH, DAY, HOUR, 

MINUTE and SECOND. It represents unique points in time. With Timestamp data type it is 

possible to specify a precision and WITH TIME ZONE option (see Time data type). 

timestamp =d date  time 

Interval: The Interval data type is used to represent an unanchored duration of time. Every 

interval data type consists of a contiguous subset of the fields: DAY, HOUR, MINUTE and 

SECOND. 
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interval =d day long, hour GrHour, minute GrMinute, second GrSecond  

1.3 Advanced Temporal Data Types 

We augment the four temporal literal data types found in ODMG object model [CB97] with 

three new temporal object data types presented below: 

Timepoint: TAU Model extends the Timestamp data type to include granularity. The new data type 

is a subtype of the Timestamp data type. It inherits all the properties and the operations that are 

defined for the Timestamp data type. It refines all the operations, which had as argument 

Timestamp to Timepoint. 

timepoint g =d tpg STV where 

tp year =d yearGrYear , tpmonth d tpyear  month: GrMonth , ..., 

tp second =d tpminute  secondGrSecond  and STV d beginning, forever, now 

Beginning and forever are defined to be members of timepoint such as 

 t  timepoint g  beginning  t  forever 

Period: The Period data type is used to represent an anchored duration of time, that is, 

duration of time with starting and ending points. A period has an associated granularity. The 

period is the composition of two timepoints with the constraint that the timepoint that starts 

the period equals or precedes the timepoint that terminates it. Without loss of generality, it is 

assumed that both timepoints have the same granularity. 

period g =d  startTimepointg, endTimepointg | start  end, g  granularity 

There are four categories of periods depending on whether they include their starting and/or 

their ending timepoints or not: [T1, T2] (closed-closed), [T1, T2) (closed-open), (T1, T2] (open-

closed), and (T1, T2) (open-open). Without loss of generality, TAU Model supports only closed-

open periods, with which it is possible to model any other category. For example, the period 

[T1, T2] is equivalent to the period [T1, T2+1 "granule"). The meaning of "1 granule" depends 

on the granularity of the period. For instance, if the granularity is day then the period [T1, T2] 

is equivalent to the period [T1, T2+1*DAY).  

Temporal Element: The Temporal Element data type is used to represent a finite union of 

disjoint periods. Temporal elements are closed under the set theoretic operations of union, 

intersection and complementation. 

temporalElement g =d te setperiodg| i, j  ij tei  tej
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2 Appendix B – the Spatial Data Model Adopted by HERMES-MDC 

2.1 Description of Spatial Data Types 

The spatial data model adopted by Oracle10g is a hierarchical structure consisting of 

elements, geometries, and layers, which correspond to representations of spatial data. Layers 

are composed of geometries, which in turn are made up of elements. For example, a point 

might represent a building location, a line string might represent a road or flight path, and a 

polygon might represent a state, city, or zoning district. 

Element: An element is the basic building block of a geometry. The supported spatial element 

types in the object-relational model are points, simple, arc (circular arcs) and compound 

linestrings and polygons, as well as circles and rectangles as sub-cases of polygon geometries. 

Figure 69 illustrates the supported geometric primitive types. Point is the simplest geometry, 

which consists of one coordinate. Each coordinate in an element is stored as a (x, y) pair often 

corresponding to longitude and latitude. LineStrings are composed of one or more pairs of 

points that define line segments. Polygons are composed of connected linestrings that form a 

closed ring and the interior of the polygon is implied. 

 yy'

xx'

Arc LineString

RectangleCircleCompound LineString

Compound Polygon

with hole
Arc PolygonPoint

Polygon

LineString

  

Figure 69 Primitive Geometry Types Supported by Oracle10g 

As it is obvious in Figure 69, arc and compound types generalize the LineString and Polygon 

types, to represent geometries with arbitrary interpolations but the same topology. Self-

crossing polygons are not supported although self-crossing linestrings are (see Figure 70). If a 

linestring crosses itself, it does not become a polygon. A self-crossing linestring does not 

have any implied interior. The exterior ring and the interior ring of a polygon with holes are 

considered as two distinct elements that together make up a complex polygon. 
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Figure 70 Self-crossing LineString & Polygons 

Geometry: A geometry (or geometry object) is the representation of a spatial feature, modelled as 

an ordered set of primitive elements. A geometry can consist of a single element, which is an 

instance of one of the supported primitive types, a homogeneous or heterogeneous collection 

of elements. A multipolygon, such as one used to represent a set of islands, is a homogeneous 

collection. A heterogeneous collection is one in which the elements are of different types.  

Layer: A layer is a heterogeneous collection of geometries having the same attribute set. For 

example, one layer in a Geographical Information System (GIS) might include topographical 

features, while another might describe population density, and a third describes the network 

of roads and bridges in the area (lines and points). Each layer's geometries are stored in the 

database in standard tables. 

2.2 Object Orientation and Geometry Hierarchy 

Until now we have clarified all the geometric types that our model supports. In Figure 71, one 

can see the geometry interface hierarchy adopted by the proposed spatial model and 

developed as an extension of the Open GIS geometry model [OGIS]. In the proposed model, 

a geometry object can be either a simple geometry or a geometry collection. A simple 

geometry is defined as previously, while a geometry collection is a heterogeneous collection 

of points, linestrings and polygons. More specific types like multipoint, multicurve and 

multisurface are introduced to represent homogeneous collections of points, linestrings and 

polygons respectively for easier geospatial analysis. 

In Figure 71, the white blocks are helper interfaces i.e., Segment, LinearSegment, 

CircularArc, Spline and other potential interpolations of a Segment. The dark-shaded blocks 

are the Open GIS types i.e., Geometry, Point, Curve, Surface, LineString, Polygon, 

GeometryCollection, MultiPoint, MultiCurve, MultiSurface, MultiLineString and 

MultiPolygon. The light-shaded blocks are the extended types i.e., CurveString, 

CurvePolygon, MultiCurveString and MultiCurvePolygon. 

The Curve, Surface, Multicurve and Multisurface are intermediate abstract types that make 

this model more flexible for expansion. A curve is an arbitrary topologically one-dimensional 
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geometry object. A surface is an arbitrary topologically two-dimensional geometry object that 

may or may not be plane. A multicurve and a multisurface represent collections of curves and 

surfaces, respectively. 

Geometry

Segment

MultiCurvePolygonMultiCurveString

MultiSurfaceMultiCurveMultiPoint

PolygonLineString

CurvePolygonCurveString

Geometry CollectionSurfaceCurvePoint

SplineCircularArcLinearSegment

MultiPolygonMultiLineString

.......

 

Figure 71 Geometry Interface Hierarchy 

The proposed geometry interface hierarchy is fully compatible with the Open GIS model 

because the existence of the extended types does not affect the inheritance relationships when 

developers implement linear interfaces only. In fact, the new CurveString and CurvePolygon 

interfaces generalize the LineString and Polygon interfaces respectively, to represent 

geometries with arbitrary interpolations but the same topology as traditional Open GIS 

geometries. 

2.3 Structures for Spatial Data Types 

In the spatial object-relational model, the geometric description of a spatial object is stored in 

a single row, in a single column of object type SDO_GEOMETRY (defined under the MDSYS 

Oracle user) in a user-defined table. Any table that has a column of type SDO_GEOMETRY must 

have another column, or set of columns, that define a unique primary key for that table. This 

object type corresponds to the most general type defined in the interface hierarchy of Figure 

71. Each subtype is declared and stored in a database table as an SDO_GEOMETRY object and 

the knowledge of which sub-type is or what its special characteristics are, are embodied in the 

structure of this generic object. Oracle Spatial defines SDO_GEOMETRY object type as:  

CREATE TYPE SDO_GEOMETRY AS OBJECT ( 

SDO_GTYPE NUMBER,  

SDO_SRID NUMBER, 
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SDO_POINT SDO_POINT_TYPE, 

SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY, 

SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY ); 

The sections that follow describe the semantics of each SDO_GEOMETRY attribute, and some 

usage considerations.  

SDO_GTYPE indicates the type of the geometry. Valid geometry types correspond to those 

specified in the geometry interface hierarchy. The following table shows the valid SDO_GTYPE 

values and the correspondence between the names and semantics. 

 Value Geometry Type Description 

d000  UNKNOWN_GEOMETRY  Spatial ignores this geometry 

d001  POINT  Geometry contains one point 

d002  LINESTRING  Geometry contains one line string 

d003  POLYGON  Geometry contains one polygon with or without 

holes 

d004  COLLECTION  Geometry is a heterogeneous collection of 

elements 

d005 MULTIPOINT  Geometry has multiple points 

d006 MULTILINESTRING  Geometry has multiple linestrings 

d007 MULTIPOLYGON  Geometry has multiple, disjoint polygons (more 

than one exterior boundary) 

Table 1 Valid SDO_GTYPE Values 

For a polygon with holes, the user should enter the exterior boundary first, followed by any 

interior boundaries. In a multi-polygon all polygons in the collection must be disjoint. The d 

in the Value column of the previous table is the number of dimensions: 2, 3, or 4. For example, 

a value of 2003 indicates a 2-dimensional polygon. For the time only 2-dimensional 

geometries are supported. The number of dimensions reflects the number of coordinates used 

to represent each vertex (for example, (x,y) for 2-dimensional objects or (x,y,z) for 3-

dimensional objects). Points and lines are considered to be 2-dimensional objects. In any 

given layer (column), all geometries must have the same number of dimensions. For example, 

we cannot mix 2-dimensional and 3-dimensional data in the same layer. 
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SDO_SRID is intended to be a foreign key in a spatial reference system definition table, in 

order to integrate support into Oracle10g for storing and manipulating SDO_GEOMETRY 

objects in a variety of coordinate systems.  

SDO_POINT is defined using an object type with attributes x, y and z of type NUMBER. If 

the SDO_ELEM_INFO and SDO_ORDINATES arrays are both null, and the SDO_POINT 

attribute is non-null, then the x and y values are considered to be the coordinates for a point 

geometry. Otherwise the SDO_POINT attribute is ignored. 

SDO_ELEM_INFO is defined using a varying length array of numbers. This attribute helps 

to interpret the ordinates stored in the SDO_ORDINATES attribute (see section 3.2.1.5). Each 

triplet set of numbers is interpreted as follows:  

SDO_STARTING_OFFSET indicates the offset within the SDO_ORDINATES array where 

the first ordinate for this element is stored.  

SDO_ETYPE indicates the type of the element. Valid values are 0 through 5, as well as the 

following: 1003 and 2003 (variants of 3), and 1005 and 2005 (variants of 5). SDO_ETYPE 

values 1, 2, and 3 concern simple elements. They are defined by a single triplet entry in the 

SDO_ELEM_INFO array. Moreover, the following are considered variants of type 3, with the 

first digit indicating exterior (1) or interior (2):  

1003: exterior polygon ring (must be specified in counter-clockwise order)  

2003: interior polygon ring (must be specified in clockwise order)  

SDO_ETYPE values 4 and 5 concern compound elements. They contain at least one header triplet 

with a series of triplet values that belong to the compound element. The elements of a 

compound element are contiguous. The last point of a subelement in a compound element is 

the first point of the next subelement. The point is not repeated.  

SDO_ETYPE SDO_INTERPRETATION Meaning 

0 0 Unsupported element type. Ignored by the 

Spatial functions and procedures. 

1 1 Point type. 

1 n >1 Point cluster with n points. 

2 1 Line string whose vertices are connected by 
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straight-line segments. 

2 2 Line string made up of a connected sequence of 

circular arcs. 

3 1 Simple polygon whose vertices are connected by 

straight-line segments.  

3 2 Polygon made up of a connected sequence of 

circular arcs that closes on itself. 

3 3 Rectangle type. A bounding rectangle such that 

only two points, the lower-left and the upper-

right, are required to describe it. 

3 4 Circle type. Described by three points, all on the 

circumference of the circle.  

4 n > 1 Line string with some vertices connected by 

straight-line segments and some by circular arcs.  

5 n > 1 Compound polygon with some vertices 

connected by straight-line segments and some by 

circular arcs.  

Table 2 Values and Semantics of SDO_ELEM_INFO 

SDO_INTERPRETATION can mean one of two things, depending on whether or not 

SDO_ETYPE is a compound element. If the SDO_ETYPE is a compound element (4 or 5), 

this field specifies how many subsequent triplet values are parts of the element. If the 

SDO_ETYPE is not a compound element (1, 2, or 3), the interpretation attribute determines 

how the sequence of ordinates for this element is interpreted. For example, a line string or 

polygon boundary may be made up of a sequence of connected straight-line segments or 

circular arcs. If a geometry consists of more than one element, then the last ordinate for an 

element is always one less than the starting offset for the next element. The last element in the 

geometry is described by the ordinates from its starting offset to the end of the 

SDO_ORDINATES varying length array. The semantics of each SDO_ETYPE element and 

the relationship between the SDO_ELEM_INFO and SDO_ORDINATES varying length 

arrays for each of these SDO_ETYPE elements are given in the following table. 
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Each circular arc in the geometries is described using three coordinates: the arc's starting 

point, any point on the arc, and the arc's end point. The coordinates for a point designating the 

end of one arc and the start of the next arc are not repeated. For example, five coordinates are 

used to describe a linestring made up of two connected circular arcs. Points 1, 2, and 3 define 

the first arc, and points 3, 4, and 5 define the second arc, where point 3 is only stored once. 

For polygon geometries the user needs to specify a point for each vertex, and the last point 

specified must be identical to the first (to "close" the polygon). For example, for a 4-sided 

polygon, we need to specify 5 points, with point 5 the same as point 1. 

For compound elements the value, n, in the interpretation column specifies the number of 

contiguous subelements that make up the geometry. The next n triplets in the 

SDO_ELEM_INFO array describe each of these subelements. The subelements can only be of 

SDO_ETYPE 2. The end point of a subelement is the start point of the next subelement, and it 

must not be repeated. 

SDO_ORDINATES is defined using a varying length array of NUMBER type that stores the 

coordinate values that make up the boundary of a spatial object. This array must always be 

used in conjunction with the SDO_ELEM_INFO varying length array. The values in the array 

are ordered by dimension. For example, a polygon whose boundary has four 2-dimensional 

points is stored as {x1,y1, x2,y2, x3,y3, x4,y4, x1,y1}.  

The values in the SDO_ORDINATES array must all be valid and non-null. There are no 

special values used to delimit elements in a multi-element geometry. The start and end points 

for the sequence describing a specific element are determined by the STARTING_OFFSET 

values for that element and the next element in the SDO_ELEM_INFO array as explained 

previously. 

Usage considerations: The Spatial Data Cartridge user should use the SDO_GTYPE values 

as shown in table 1. The Spatial component enforces some geometry consistency constraints 

and more specifically, the following:  

For SDO_GTYPE values d001 and d005, any subelement not of SDO_ETYPE 1 is ignored.  

For SDO_GTYPE values d002 and d006, any subelement not of SDO_ETYPE 2 or 4 is 

ignored.  

For SDO_GTYPE values d003 and d007, any subelement not of SDO_ETYPE 3 or 5 is 

ignored. (This includes SDO_ETYPE variants 1003, 2003, 1005, and 2005). 
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2.4 Formal Definition of Pure Spatial Types 

This section describes formally in terms of set theory the unique object type that represents all 

the different geometric constructs adopted in our spatial model. 

ST =  SDO_GEOMETRY 

Before introducing the constraints and the interdependencies between the element types that 

compose the SDO_GEOMETRY object, let us first define these components, in order to associate 

conceptually their formal description with their linguistic one in Section 12.3. The reader 

should have in mind that even though the spatial model supports geometries of higher 

dimension than two, we are interested in 2-Dimensional spatial objects only. 

SDO_GTYPE_TYPE = {gt: ushort | 2000 gt 2007} 

SDO_POINT_TYPE = {(x, y) | x, y  double} 

SDO_ELEM_INFO_ARRAY = {set (so, et, ip) | so  SDO_STARTING_OFFSET  et  SDO_ETYPE  ip 

 SDO_INTERPRETATION   i, j  i  j  soi soj } 

where 

SDO_STARTING_OFFSET={so:ulong | 1 so LAST(ORD)} 

 SDO_ETYPE = {et: ushort | 0 et 5  et  {1003, 2003, 1005, 2005}} 

 SDO_INTERPRETATION = {ip: ushort} 

SDO_ORDINATES = {set x | x double, |set x|=2k, k 0, k ulong } 

As such SDO_GEOMETRY is defined as follows: 

SDO_GEOMETRY =d { SDO_GTYPE: SDO_GTYPE_TYPE, 

                    SDO_SRID: ushort, 

                    SDO_POINT: SDO_POINT_TYPE, 

                    SDO_ELEM_INFO: SDO_ELEM_INFO_ARRAY, 

                    SDO_ORDINATES: SDO_ORDINATES_ARRAY | 

/* Due to space limitations we use the following abbreviations: 

  SDO_GTYPE_TYPE:=GTYPE 

  SDO_POINT_TYPE:=PTYPE 

  SDO_ELEM_INFO_ARRAY:=ELEM 

  SDO_ORDINATES_ARRAY:=ORD */ 
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( gt  GTYPE  gt  {2001, 2005}  GTYPE   (so, et, ip)  ELEM: et=1)  

( gt  GTYPE  gt  {2002, 2006}  GTYPE   (so, et, ip)  ELEM: et=2  et=4)  

( gt  GTYPE  gt  {2003, 2007}  GTYPE   (so, et, ip)  ELEM: et=3  et=5)  

( gt  GTYPE  gt=2001  (PTYPE  (ELEM =  ORD =))  (PTYPE=  (ELEM =(1, 1, 1)  

|ORD|=2)))  

( gt  GTYPE  gt=2002 |ORD|  4  (ORD1  ORD LAST(ORD)-1  ORD2  ORD LAST(ORD) )  ( j=2k+1, k 

0, k ulong: point (ORDj, ORDj+1)  point (ORDj+2, ORDj+3))  ( j=2k+1, k 0, k ulong: collinear (segment 

(point (ORDj, ORDj+1), point (ORDj+2, ORDj+3)), segment (point (ORDj+2, ORDj+3), point (ORDj+4, ORDj+5))  

overlap(segment (point (ORDj, ORDj+1), point (ORDj+2, ORDj+3)), segment (point (ORDj+2, ORDj+3), point 

(ORDj+4, ORDj+5)))  ( j=2k+1, k 0, k ulong: arcline ((point (ORDj, ORDj+1), point (ORDj+2, ORDj+3), 

point (ORDj+4, ORDj+5))  collinear ((point (ORDj, ORDj+1), point (ORDj+2, ORDj+3), point (ORDj+4, 

ORDj+5))))  

( gt  GTYPE  gt=2003  ( (so, et, ip)  ELEM: ip=3  parallel (segment (point (ORDso, ORDso+1), 

point (ORDso+2, ORDso+3)), xx‟)  parallel (segment (point (ORDso, ORDso+1), point (ORDso+2, ORDso+3)), yy‟)) 

 ( (so, et, ip)  ELEM: ip=4  collinear ((point (ORDso, ORDso+1), point (ORDso+2, ORDso+3), point 

(ORDso+4, ORDso+5)))  ( j, 1 j |ELEM|DIV3, j ulong (soj, etj, ipj)  ELEM: etj=3  etj=5  Polygonj=d 

{ORDsoj,…, ORDsoj+1-1}  ORD  linestringsOfPolygonj=d {set linestring: ORDk,…,ORDlsoj k l 

soj+1-1  l, m  linestring: l=next(m), lm  meet (l, m)  intersect (l, m)  touch (l, m)  (ORDsoj= 

ORDsoj+1-2  ORDsoj+1= ORDsoj+1-1)   linestring: (v) rules applied to ORDk,…,ORDlinstead to all 

ORD}   m, 1 m: inside(Polygonm, Polygon1)  counter-clockwise(Polygon1)  clockwise(Polygonm)   m1, 

m2 1 m1  1 m2: m1m2 disjoint(m1, m2)))  

( gt  GTYPE  gt=2004   j, 1 j |ELEM|DIV3, j ulong: (etj=2  etj=4  geometryj(ORDsoj,…, 

ORDsoj+1-1) follows (v) rules) (etj=3  etj=5  geometryj(ORDsoj,…,ORDsoj+1-1) follows (vi) rules  

unique(geometryj(ORDsoj,…,ORDsoj+1-1)))  

( gt  GTYPE  gt=2005   j, 1 j |ELEM|DIV3, j ulong: etj=1  ipj=1  soj=2j-1  

|ORD|=2|ELEM|DIV3  unique(point(ORDsoj, ORD soj+1-1)))  

( gt  GTYPE  gt=2006   j, 1 j |ELEM|DIV3, j ulong: linestringj(ORDsoj,…, ORDsoj+1-1) follows (v) 

rules  unique(linestringj (ORDsoj,…, ORDsoj+1-1)))  

( gt  GTYPE  gt=2007   i, j, 1 i, j |ELEM|DIV3, i, j ulong: i j  disjoint(polygoni, polygonj)  

polygonj(ORDsoj,…, ORDsoj+1-1) follows (vi) rules  unique(polygonj(ORDsoj,…, ORDsoj+1-1))) 

} 

The constraints (i) to (iii) describe formally some usage considerations, while the rules from 

(iv) to (x) illustrate possible interrelations between the constituent types of the 
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SDO_GEOMETRY object for each one of the geometries that can be represented by this object. 

More specifically, the (iv) rule depicts the two possible ways to define a point geometry and 

(v) exemplifies that in order to construct a valid linestring the size of the ordinates array 

should be at least four (namely two points) and the first point must not coincide with the last 

point, as this is the case that differentiates a simple polygon from a linestring. What is more, 

each pair of sequential points must be different and for each triplet of points, if these points 

are intended to describe two sequential linear segments then we require that there are no such 

co-linear overlapping segments, otherwise if these points describe just an arc-segment then 

we require that these points are not co-linear. 

The (vi) set theory proposition describes the constraints that should stand in case the 

SDO_GEOMETRY object models a polygon geometry. Firstly ensures the validity of rectangular 

and circle geometries, which are special cases of a polygon. This is accomplished by not 

permitting parallelism between the segment that is formed by the lower left and upper right 

point that define a rectangular and the xx‟ or the yy‟ axis; and by forbidding co-linearity 

between the three points needed to define a circle. 

For simple polygons the model requires that the first polygon-element described in the 

elements-info array must be the exterior boundary that will include one or more possible 

disjoint hole-polygons. The points that form the exterior boundary in the ordinates array must 

be specified in counter-clockwise order, while points composing hole-polygons must be 

specified in clockwise order. Furthermore, the linestring subelements that describe complex 

interpolations of the boundary of a polygon must meet (the end point of a linestring is the 

same with the starting point of the next linestring), must not intersect in their interior (a point 

other than an end point), must not touch (the end point lies in the interior of the other 

linestring) and the starting point of the first linestring must be equal with the end point of the 

last linestring. Finally, each of these linestring sub-elements must fulfil the constraints 

imposed for linestring geometries in (v). 

The rules described in (vii) impose that, for each distinct geometry object that is integrated in 

a heterogeneous collection, the corresponding constraints must stand depending on the kind 

of geometry. For example, if the collection has a linestring, then the (v) constraints must stand 

for this linestring. Similarly, propositions from (viii) to (x) require unique representation and 

existence of a geometry object inside a homogeneous collection and validity of each of them 

as this is implied by the rules that conform to its type. An additional rule that is enforced in 

the case of a multi-polygon is that either the exterior boundaries of the polygons composing 
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the collection are disjoint or the exterior boundary of a polygon is inside a hole of another 

polygon. 
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3 Appendix C – Formal Definition of Spatio-Temporal Moving Types 

In order to formally define in terms of set theory the moving types introduced in this paper we 

follow a down-top approach, meaning that we first describe the simpler data types and 

subsequently we define the more complex data types. In this section we just present the 

formal definitions while their linguistic explanations have been given in section. 

MT =  Moving_Point    Moving_LineString    Moving_Rectangle    Moving_Circle    

Moving_Polygon    Moving_Collection    Moving_Object . 

First of all let us define the unit moving types, which are the basic building components of the 

spatio-temporal data types. The simpler of the unit moving types, the Unit_Moving_Point, upon 

which, is based the definition of all the others, needs for its construction two kind of objects, 

namely the D_Period_Sec and the Unit_Function. The D_Period_Sec is formally described in 

Appendix B as the period SECOND type. The Unit_Function has been defined earlier, as such, 

Unit_Moving_Point =d p: period SECOND, m: Unit_Function  

Unit_Moving_Rectangle =d { ll: Unit_Moving_Point, ur: Unit_Moving_Point | equal (ll.p, ur.p) } 

Unit_Moving_Circle =d { f: Unit_Moving_Point, s: Unit_Moving_Point, t: Unit_Moving_Point | equal (f.p, 

s.p, t.p) } 

Unit_Moving_Segment =d { b: Unit_Moving_Point, e: Unit_Moving_Point, m: Unit_Moving_Point, 

kind:TypeOfSegment | (kind=SEG  equal (b.p, e.p))  (kind =ARC  equal (b.p, e.p, m.p)) }, where  

TypeOfSegment  = { SEG, ARC } 

Unit_Moving_Linestring =d { l: setUnit_Moving_Segment |  i, j  ulong: i j  equal (li.b.p, lj.e.p) } 

Unit_Moving_Polygon =d {  l: setUnit_Moving_Segment, hole:boolean |  i, j  ulong: i j  equal (li.b.p, 

lj.e.p) } 

Having defined all the unit-moving types we are now ready to formalize the description of 

our moving types: 

Moving_Point =d { p: setUnit_Moving_Point |  i, j  ulong, 1 i, j |setUnit_Moving_Point|: j= i+1  

pi.p < pj.p  overlaps(pi.p, pj.p)   t  double: inside(t, pi.p)  at_instant(p, t)  

SDO_GEOMETRYSDO_GTYPE=2001 /*point geometry*/} 

Moving_Rectangle =d { r: setUnit_Moving_Rectangle |  i, j  ulong, 1 i, j |setUnit_Moving_Rectangle|: 

j= i+1  ri.ll.p < rj.ur.p  overlaps(ri.ll.p, rj.ur.p)   t  double: inside(t, ri.ll.p)  at_instant(r, t)  

SDO_GEOMETRYSDO_GTYPE=2003  SDO_ELEM_INFO=(1, 3, 3) /*rectangle geometry*/ } 
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Moving_Circle =d { c: setUnit_Moving_Circle |  i, j  ulong, 1 i, j |setUnit_Moving_Circle|: j= i+1  

ci.f.p < cj.s.p  overlaps(ci.f.p, cj.s.p)   t  double: inside(t, ci.f.p)  at_instant(c, t)  

SDO_GEOMETRYSDO_GTYPE=2003  SDO_ELEM_INFO=(1, 3, 4) /*circle geometry*/ } 

Moving_LineString =d { line: setUnit_Moving_LineString |  i, j  ulong, 1 i, j 

|setUnit_Moving_LineString|: j= i+1  linei.l1.b.p < linej.l1.e.p  overlaps(linei.l1.b.p, linej.l1.e.p)   t  

double: inside(t, linei.l1.b.p)  at_instant(line, t)  SDO_GEOMETRYSDO_GTYPE=2002 /*linestring geometry*/ } 

Moving_Polygon =d { pol: setUnit_Moving_Polygon |  i, j  ulong, 1 i, j |setUnit_Moving_Polygon|: j= 

i+1  poli.l1.b.p < polj.l1.e.p  overlaps(poli.l1.b.p, polj.l1.e.p)   t  double: inside(t, poli.l1.b.p)  

at_instant(pol, t)  SDO_GEOMETRYSDO_GTYPE=2003 /*polygon geometry*/ } 

In order to define the Moving_Collection and subsequently the Moving_Object data types, we 

first need to describe formally the multi object types for each one of the moving types: 

Multi_Moving_Point =d { multi_mpoint: set Moving_Point |  i, j  ulong   t  double: inside(t, 

multi_mpointi.pj.p)  i (at_instant(multi_mpointi, t))  SDO_GEOMETRYSDO_GTYPE=2005 /*multi-point 

geometry*/ } 

Multi_Moving_LineString =d { multi_mline: set Moving_LineString |  i, j  ulong   t  double: inside(t, 

multi_mlinei.linej.l1.b.p)  i (at_instant(multi_mlinei, t))  SDO_GEOMETRYSDO_GTYPE=2006 /*multi-linestring 

geometry*/ } 

Multi_Moving_Circle =d { multi_mcircle: set Moving_Circle |  i, j  ulong   t  double: inside(t, 

multi_mcirclei.cj.f.p)  i (at_instant(multi_mcirclei, t))  SDO_GEOMETRYSDO_GTYPE=2007 /*multi-polygon 

geometry*/ } 

Multi_Moving_Rectangle =d { multi_mrectangle: set Moving_Rectangle |  i, j  ulong   t  double: 

inside(t, multi_mrectanglei.rj.ll.p)  i (at_instant(multi_mrectanglei, t))  SDO_GEOMETRYSDO_GTYPE=2007 

/*multi-polygon geometry*/ } 

Multi_Moving_Polygon =d { multi_mpolygon: set Moving_Polygon |  i, j  ulong   t  double: inside(t, 

multi_mpolygoni.polj.l1.b.p)  i (at_instant(multi_mpolygoni, t))  SDO_GEOMETRYSDO_GTYPE=2007 /*multi-

polygon geometry*/ } 

As such, Moving_Collection =d {  multi_mpoint: Multi_Moving_Point,  

multi_mline: Multi_Moving_LineString,  

multi_mcircle: Multi_Moving_Circle,  

multi_mrectangle: Multi_Moving_Rectangle,  

multi_mpolygon: Multi_Moving_Polygon |  

 i, j  ulong   t  double: inside(t, multi_mpointi.pj.p)  inside(t, multi_mlinei.linej.l1.b.p)  inside(t, 

multi_mcirclei.cj.f.p)  inside(t, multi_mrectanglei.rj.ll.p)  inside(t, multi_mpolygoni.polj.l1.b.p)  
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 [ (i (at_instant(multi_mpointi, t))) (i (at_instant(multi_mlinei, t))) (i (at_instant(multi_mcirclei, t))) 

(i (at_instant(multi_mrectanglei, t)))  (i (at_instant(multi_mpolygoni, t))) ]  

SDO_GEOMETRYSDO_GTYPE=2004 /*collection geometry*/ }

Moving_Object =d {  mobject: Moving_Object,  

mpoint: Moving_Point, 

mline: Moving_LineString, 

mcircle: Moving_Circle, 

mrectangle: Moving_Rectangle, 

mpolygon: Moving_Polygon, 

mcolection: Moving_Collection, 

geometry: SDO_GEOMETRY, 

gtype: GeometryType, 

optype: string, 

arg1: ushort, 

arg2: ushort, 

input: Union_Input | section<> }  

where 

 GeometryType  = { MOBJECT, MPOINT, MLINE, MCIRCLE, MRECTANGLE, MPOLYGON, 

MCOLLECTION } 

Union_Input =d mask: string, tolerance: double, distance: double  
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4 Appendix D – Description of HERMES-MDC’s operations 

4.1 Maintaining the Database Consistent 

The two subsequent sections present how HERMES-MDC facilitates a user checking the 

construction data of two moving objects and as such maintaining the database in a consistent 

state: 

4.1.1 Validation of a Moving LineString 

In the following figure we demonstrate a series of visual transformations (virtual movements) 

of a moving linestring. The corresponding linguistic description of the figure as well as events 

raised by HERMES-MDC is given in Table 3. By this way we show special features, interesting 

and degenerated cases as well as rules and constraints that we impose in this type. HERMES-

MDC identifies and reports such phenomena in order to maintain the consistency of the 

database. In the figure below the black solid lines represents snapshots of the moving objects. 

The various spatio-temporal transformations Ti that are of interest are depicted by the grey 

dashed arrows from some initial positions of the unit-moving points to some others (that are 

differently coloured). 

Spatio-Temporal 

Transformations 

HERMES-MDC Events 

T1: u_m_p2  (4, 4); Raises an application error because u_m_p2, u_m_p3 & u_m_p4 that define 

an arc segment are becoming co-linear. 

T2: u_m_p6  (7.5, 6.5); Raises an application error because u_m_p6 is lying on an interior point of 

the segment defined by u_m_p4 & u_m_p5. In other words, segments 

(u_m_p4, u_m_p5) & (u_m_p5, u_m_p6) overlap. 

T3: u_m_p6  (12, 8); Despite that u_m_p4, u_m_p5 & u_m_p6 are becoming co-linear and as such 

two consequent linear segments could be replaced by only one, this is an 

acceptable case. 

T4 & T5: u_m_p6 & u_m_p7  (10, 

6); 

Raises an application error due to that u_m_p6 & u_m_p7 that define a line 

segment are becoming the same point and as such the segment is 

degenerated to a point. 

T6: u_m_p7  (7.5, 6.5); Even though u_m_p7, which is the last unit-moving point for the moving 

linestring, touches the interior of another segment, this is an acceptable 

case. 

T7: u_m_p7  (4, 6); Despite the fact that u_m_p7, which is the last unit-moving point for the 
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moving linestring, crosses another segment, this is an acceptable case. 

T8: u_m_p7  (14, 7); &  

 u_m_p6  (15, 5); 

Raises an application error due to that the trajectories of u_m_p6 & u_m_p7, 

which are sequential unit-moving points, are intersecting, and this is a 

criterion that the corresponding unit-moving segment is rotating, something 

we do not accept. 

T10 & T11: u_m_p1 & u_m_p7  (7, 

2); 

Raises an application error because u_m_p1 & u_m_p7, which are the first 

and last (respectively) unit-moving points for the moving linestring, are 

moving to the same point and as such they form a closed polygon. 

Table 3 Spatial Validation of a Moving LineString 
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Figure 72 Spatial Validation of a Moving LineString 

4.1.2 Validation of a Moving Polygon 

As previously in the case of a Moving_LineString, here we follow exactly the same technique 

to demonstrate the check_degeneracies and validate_geometry operations that perform a spatial 

consistency check upon a Moving_Polygon. 

Spatio-Temporal 

Transformations 

HERMES-MDC Events 

T1: u_m_p1  (3, 1.5); Raises an application error due to that the moving polygon is not “closed”, 

meaning that the first unit-moving point is not the same with the last one. 

T2: u_m_p2  (5, 5); Despite that u_m_p1, u_m_p2 & u_m_p3 are becoming co-linear and as such 

two consequent linear segments (u_m_p1, u_m_p2) & (u_m_p2, u_m_p3) 



Pelekis et. al.:  The HERMES MOD Engine 110 

 

could be replaced by only one (u_m_p1, u_m_p3), this is an acceptable case. 

T3: u_m_p4  (9.5, 7); Raises an application error because u_m_p3, u_m_p4 & u_m_p5 that define 

an arc segment are becoming co-linear. 

T4: u_m_p7  (13, 7); Raises an application error due to that u_m_p7 crosses another segment. 

Self-intersection of unit-moving segments is forbidden in a moving polygon. 

T5: u_m_p7  (13, 6); Raises an application error due to that u_m_p7 touches the interior of 

another segment. Similar situation as the previous one. 

T6: u_m_p7  u_m_p8; Raises an application error due to that u_m_p7 & u_m_p8 that are 

components of an arc segment are becoming the same point and as such 

there are not three different unit-moving points to define the arc. The same 

case can be noticed when a moving segment is degenerated to a point. 

T7: u_m_p9  (11/3, 4); Raises an application error because u_m_p9 that is one of the vertices of a 

hole; touches the exterior boundary of the polygon. 

T8: u_m_p9  (3, 6); Raises an application error because u_m_p9 crosses the boundary of the 

polygon and as such the hole that belongs to, intersects with the exterior 

polygon. 

T9: u_m_p10  (11, 4); 

T10: u_m_p10  u_m_p15 

Both transformations raise an application error because the first implies that 

two hole-polygons are intersecting, while the second that these interior 

polygons are touching. 

T11: u_m_p12  (15, 6); 

T12: u_m_p13  (16, 6); 

T13: u_m_p14  (15, 4); 

T14: u_m_p15  (16, 3); 

These transformations also raise an application error because they are 

transferring an interior hole-polygon outside the exterior boundary. 

Table 4 Spatial Validation of a Moving Polygon 
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Figure 73 Spatial Validation of a Moving Polygon 

4.2 Predicates Modeling Topological Relationships 

The user can specify the kind of topological relationships that he requires to check via a mask 

parameter. The following mask relationships can be tested in HERMES-MDC:  

ANYINTERACT - Returns TRUE if the objects are not disjoint.  

CONTAINS - Returns CONTAINS if the argument moving object is entirely within the caller 

object and the object boundaries do not touch, at the given instance of time; otherwise, returns 

FALSE.  

COVEREDBY - Returns COVEREDBY if the parameter object is entirely within the caller object 

and the object boundaries touch at one or more points; otherwise, returns FALSE.  

COVERS - Returns COVERS if the argument object is entirely within the caller object and the 

boundaries touch in one or more places; otherwise, returns FALSE.  

DISJOINT - Returns DISJOINT if the objects have no common boundary or interior points; 

otherwise, returns FALSE.  

EQUAL - Returns EQUAL if the objects share every point of their boundaries and interior, 

including any holes in the objects; otherwise, returns FALSE.  

INSIDE - Returns INSIDE if the argument object is entirely within the caller object and the 

object boundaries do not touch; otherwise, returns FALSE.  
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OVERLAPBDYDISJOINT - Returns OVERLAPBDYDISJOINT if the objects overlap, but their 

boundaries do not interact; otherwise, returns FALSE.  

OVERLAPBDYINTERSECT - Returns OVERLAPBDYINTERSECT if the objects overlap, and their 

boundaries intersect in one or more places; otherwise, returns FALSE.  

TOUCH - Returns TOUCH if the two objects share a common boundary point, but no interior 

points; otherwise, returns FALSE.  

Values for mask can be combined using a logical boolean operator. For example, „INSIDE + 

TOUCH‟ returns „INSIDE + TOUCH‟ or „FALSE‟ depending on the outcome of the test. 

Generally, the “relate” function can return the following types of answers:  

If we pass a mask listing one or more relationships, the function returns the name of the 

relationship if it is true for the pair of geometries. If all of the relationships are false, the 

procedure returns FALSE.  

If we pass the DETERMINE keyword in mask, the function returns the one relationship keyword 

that best matches the geometries. DETERMINE can only be used when the relate predicate is in 

the SELECT clause of the SQL statement.  

If we pass the ANYINTERACT keyword in mask, the function returns TRUE if the two geometries 

are not disjoint.  

4.3 Projection and Interaction to Temporal and/or Spatial Domain 

The signatures of the object methods as these are defined for the Moving_Object type that 

HERMES-MDC provides for handling the projection and interaction of moving types to 

temporal and/or spatial domain are given in Section 4.4. Here we present the algorithms of an 

interesting as well as representative subset of these methods. 

Below the reader can find an abstract description of the algorithm of the at_instant operation 

for a Moving_Object in the form of PL/SQL-like pseudo-code. Due to space limitations we 

present only the parts of the algorithm that have to do with Moving_Polygon and 

Moving_Collection objects as these are more interesting. Also, we do not present the 

algorithms but just the function calls for all the time-specific operations developed in TAU TLL 

Data Cartridge. The reader interested in these operations is referred to [Pel02]. 
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FUNCTION at_instant(tp TAU_TLL.D_Timepoint_Sec) return Union_Output is 

result Union_Output; 

geom MDSYS.SDO_GEOMETRY; 

geom1 MDSYS.SDO_GEOMETRY; 

geom2 MDSYS.SDO_GEOMETRY; 

BEGIN 

 IF m_object.gtype IS NOT NULL THEN 

  SWITCH (m_object.gtype) 

        CASE 'MOBJECT': 

             result :=  m_object.at_instant(tp); 

         CASE 'MPOINT': 

             geom := m_object.m_point.at_instant(tp); 

         CASE 'MLINE': 

             geom := m_object.m_line.at_instant(tp); 

         CASE 'MCIRCLE': 

             geom := m_object.m_circle.at_instant(tp); 

         CASE 'MRECTANGLE': 

             geom := m_object.m_rectangle.at_instant(tp); 

         CASE 'MPOLYGON': 

             geom := m_object.m_polygon.at_instant(tp);  

  CASE 'MCOLLECTION': 

             geom := m_object.m_collection.at_instant(tp); 

  END SWITCH; 

           result := Construct Union_Output from geom or result.geom; 

      ELSE 

         IF m_object.optype is unary THEN 

               SWITCH (m_obj.arg1) 

            CASE 1: result :=  m_object.at_instant(tp); 

                 CASE 2: geom := m_object.m_point.at_instant(tp); 
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               ... 

            CASE 7: geom := m_object.m_collection.at_instant(tp); 

         CASE 8: geom := geometry; 

        END SWITCH; 

              result := invoke_unary_operation(m_object.optype, geom1 or result.geom, m_object.input); 

          ELSIF m_object.optype is binary THEN 

             SWITCH (m_object.arg1) 

            CASE 1: result := m_object.at_instant(tp); 

                 CASE 2: geom1  := m_object.m_point.at_instant(tp); 

                ... 

            CASE 7: geom1  := m_object.m_collection.at_instant(tp); 

      CASE 8: geom1  := m_object.geometry; 

        END SWITCH; 

              SWITCH (m_object.arg2) 

            CASE 1: result := m_object.at_instant(tp); 

                  CASE 2: geom2  := m_object.m_point.at_instant(tp); 

               ... 

            CASE 7: geom2  := m_object.m_collection.at_instant(tp); 

      CASE 8: geom2  := m_object.geometry; 

        END SWITCH; 

              result := invoke_binary_operation(m_object.optype, geom1, geom2, m_object.input); 

          ELSE 

              raise_application_error('At_Instant operation is invalid for this kind of Moving_Object'); 

          END IF; 

    END IF; 

    return result; 

END; 

Figure 74 The at_instant algorithm for a Moving_Object 
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The pseudo-code of the at_instant operation for a Moving Polygon is given below: 

           FUNCTION at_instant(tp TAU_TLL.D_Timepoint_Sec) return Sdo_Geometry is 

            t double; 

   BEGIN 

           IF check_periods_equality() <> TRUE THEN 

raise_application_error('Periods in at least one entry of the nested table of type Unit_Moving_Polygon are 

NOT equal'); 

           END IF; 

 

           IF check_sorting() <> TRUE THEN 

raise_application_error(„Periods in the nested table of type Unit_Moving_Polygon are NOT sorted'); 

           END IF; 

 

           IF check_disjoint() <> TRUE THEN 

raise_application_error(„Periods in the nested table of type Unit_Moving_Polygon are NOT disjoint'); 

           END IF; 

 

    /* OPTIONAL -  IF check_meet() <> TRUE THEN 

raise_application_error(„Periods in the nested table of type Unit_Moving_Polygon do NOT meet'); 

           END IF; */ 

 

           i := pol.FIRST;  -- get subscript of first unit moving polygon 

           WHILE i IS NOT NULL LOOP 

               contain_flag := pol(i).b.p.f_contains(pol(i).b.p, tp); --Check if tp is “inside” the period of pol(i) 

               IF contain_flag = TRUE THEN 

                    t := tp.get_Abs_Date(); -- Map Timepoint object to real number (instant on time-line). 

                    result := merge_polygons(i, t); 

        // The merge_polygons algorithm is given in Figure 76 

                      exit; 
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                END IF; 

 

                i := pol.NEXT(i);  -- get subscript of next unit moving polygon 

            END LOOP; 

 

           IF result is not null THEN 

               err_msg := VALIDATE_GEOMETRY(result); 

               IF err_msg = 'TRUE' THEN 

                   return result; 

               ELSE 

                   raise_application_error('Geometry validation failed'||err_msg); 

               END IF; 

           ELSE 

raise_application_error('The Timepoint is NOT contained in any of the Periods in the nested table of type 

Unit_Moving_Polygon'); 

           END IF; 

 

        END; 

Figure 75 The at_instant algorithm for a Moving_Polygon 

 

The algorithm merge_polygons invoked in the at_instant method of a Moving_Polygon is 

given in Figure 76: 

          

                       

                       FUNCTION merge_polygons (i, integer, t double) return Sdo_Geometry is 

                       BEGIN 

            LOOP FOREVER 

                    j := pol(i).l.FIRST;  -- get subscript of first moving segment 

                   WHILE j IS NOT NULL LOOP 

           Interpolate the Unit_Moving_Points of current moving segment at instance t 
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           Add the description of the linestring element in the Elem_Info_Array 

           Add the corresponding co-ordinates in the Ordinates_Array 

           Check for degenerecies in the linestring element 

                       j := pol(i).l.NEXT(j);  -- get subscript of next moving segment 

                   END LOOP; 

 

                   result := Construct the polygon formed by the Elem_Info_Array & Ordinates_Array; 

            Check for degenerecies in the polygon geometry; 

 

                   IF i <> pol.LAST THEN 

                       i := i + 1; 

                       Initialize flags & local variables; 

             Extend Elem_Info_Array & Ordinates_Array for probable addition of holes; 

 

                       IF pol(i).hole = FALSE THEN 

                           return result; 

                       END IF; 

                   ELSE 

                       return result; 

                   END IF; 

                END LOOP; 

             END; 

 

Figure 76 The merge_polygons algorithm 

The pseudo-code of the at_instant operation for a Moving_Collection is given below: 

         FUNCTION at_instant(tp TAU_TLL.D_Timepoint_Sec) return Sdo_Geometry is 

         BEGIN 

FOR each m_collection.multi_moving_type in {multi_mpoint, multi_mline, multi_mcircle, multi_mrectangle, 

multi_mpolygon} 

                   i := m_collection.multi_moving_type.FIRST;  -- get subscript of first element 
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              WHILE i IS NOT NULL LOOP 

             mtype := m_collection.multi_moving_type(i); 

                IF i = 1 AND result IS NULL THEN 

                        current_homogeneous_collection := mtype.at_instant(tp); 

                     ELSE 

                        current_geom := mtype.at_instant(tp); 

current_homogeneous_collection:=ADD(current_homogeneous_collection, current_geom); 

                   END IF; 

 

                      i := m_collection.multi_moving_type.NEXT(i);  -- get subscript of next element 

                  END LOOP; 

 

heterogeneous_collection:=ADD(heterogeneous_collection, current_homogeneous_collection); 

             END FOR; 

     

     return heterogeneous_collection; 

    END;  

Figure 77 The at_instant algorithm for a Moving_Collection 

Figure 78 depicts the algorithm of the at_period operation for the case of a 

Moving_LineString object. 

 

FUNCTION at_period(p TAU_TLL.D_Period_Sec) return Moving_LineString is 

new_line set<Unit_Moving_LineString>; 

new_p TAU_TLL.D_Period_Sec; 

BEGIN 

 i := line.FIRST;  -- get subscript of first Unit_Moving_LineString 

 WHILE i IS NOT NULL LOOP 

  /* Check if period that characterizes the current Unit  

  Moving LineString overlaps with the argument period */ 
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  overlaps_flag := line(i).b.p.f_overlaps(line(i).b.p, p); --Check if  p “overlaps” the period of line(i) 

   

  /* If YES take the period formed as the intersection of the two  

  overlapped periods and update every Unit_Moving_Point */ 

  IF overlaps_flag = TRUE THEN 

   new_p := line(i)b.p.intersects(line(i).b.p, p); 

 

   j := line(i).l.FIRST;  -- get subscript of first element 

   WHILE j IS NOT NULL LOOP 

    line(i).l(j).b.p := new_p; 

    line(i).l(j).e.p := new_p; 

    line(i).l(j).m.p := new_p; 

 

    j := line(i).l.NEXT(j); 

   END LOOP; 

 

   new_line(i) := line(i); 

  END IF; 

 

  i := line.NEXT(i);  -- get subscript of next Unit_Moving_LineString 

 END LOOP; 

 

 return  Moving_LineString(new_line); 

END; 

Figure 78 The at_period algorithm for a Moving_LineString 

 

In Figure 79, we provide the reader with the pseudo-code of the at_temp_element operation 

for the case of a Moving_Point object, where it is obvious the different strategy of restricting 

the temporal domain with a temporal element, rather than with a period. 
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FUNCTION at_temp_element(te TAU_TLL.D_Temp_Element_Sec) return Moving_Point is 

new_point set<Unit_Moving_Point>; 

intersection_te TAU_TLL.D_Temp_Element_Sec; 

new_period TAU_TLL.D_Period_Sec; 

BEGIN 

 new_point := p; 

 

 /* First find the temporal element object that is the intersection of the argument  

 temporal element with the temporal element returned by f_temp_element function */ 

 intersection_te := intersection(f_temp_element(), te); 

 

 /* For each period <new_period> composing the previous resulted temporal element,  

 update those periods of the Unit Moving Points that "contain" the <new_period>. */ 

 k := intersection_te.te.FIRST; -- get the subscript of first period of the temporal element 

 WHILE k IS NOT NULL LOOP 

  new_period := intersection_te.te(k); 

 

  i := new_point(i).FIRST; 

  WHILE i IS NOT NULL LOOP 

   contain_flag := new_point(i).p.f_contains(new_point(i).p, new_period); 

   IF contain_flag = 1 THEN 

    new_point(i).p := new_period; 

   END IF; 

 

  i := new_point.NEXT(i); 

  END LOOP; 

 

  k := intersection_te.te.NEXT(k); -- get the subscript of next period of the temporal element 

 END LOOP; 



Pelekis et. al.:  The HERMES MOD Engine 121 

 

 

 return Moving_Point(new_point); 

END; 

Figure 79 The at_temp_element algorithm for a Moving_Point 

 

In Figure 80 we provide the reader with the pseudo-code of the f_traversed operation for the 

case of a Moving_LineString object. We should mention that the current implementation 

supports only time-changing geometries whose vertices move linearly. What is more, the 

soundness of the algorithm presumes that during the period associated with the linear 

functions describing the motion of the vertices, rotation of the segments is forbidden by a 

condition of the model. 

FUNCTION f_traversed return MDSYS.SDO_GEOMETRY is 

result, prev_result, line_1, line_2 MDSYS.SDO_GEOMETRY; 

tp_curr TAU_TLL.D_Timepoint_Sec; 

BEGIN 

 i := line.FIRST; -- get subscript of first unit moving linestring; 

 WHILE i IS NOT NULL LOOP 

tp_curr := line(i).l(1).b.p.b; -- get the first instant of the period of the current unit moving linestring; 

line_1 := at_instant(tp_curr); -- Project the Moving LineString at the spatial domain at this time point; 

  -- Access the Elem_Info_Array & Ordinates_Array of line_1; 

  tp_curr := f_decr( line(i).l(1).b.p.e );  -- get the last instant of the period of the current unit moving 

linestring; 

line_2 := at_instant(tp_curr); -- Project the Moving LineString at the spatial domain at this time point; 

  -- Access the Elem_Info_Array & an Ordinates_Array of line_2; 

-- Initialize an Elem_Info_Array & an Ordinates_Array object for constructing the traversed polygon; 

-- Depending on the type of the projected linestrings (1 & 2) construct an Elem_Info_Array that will represent a 

 polygon geometry with elements the union of the elements of the Elem_Info_Arrays of line_1 & line_2; 

-- Similarly, construct an Ordinates_Array that will represent a polygon geometry, whose boundary will be 

composed by the two projected lines connected at their end points by linear segments; 

  For example... 
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  IF line_1 & line_2 are linearly interpolated THEN 

   -- Construct Elem_Info_Array for a linerly interpolated polygon; 

-- Extend the Ordinates_Array as the size of the Ordinates_Array of line_1 and transfer all the ordinates  from 

the second to the first array; 

   ordinates.EXTEND(ordinates_1.LAST); 

   WHILE ordinates_offset_1 IS NOT NULL LOOP 

    ordinates(ordinates_offset_1) := ordinates_1(ordinates_offset_1); 

    ordinates_offset_1 := ordinates_1.NEXT(ordinates_offset_1); 

   END LOOP; 

 

-- Extend the Ordinates_Array as the size of the Ordinates_Array of line_2 and transfer all the ordinates  from 

the second to the end of the first array; 

   ordinates.EXTEND(ordinates_2.LAST); 

   WHILE ordinates_offset_2 IS NOT NULL LOOP 

    ordinates(ordinates_1.LAST + ordinates_offset_2) := ordinates_2(ordinates_offset_2); 

    ordinates_offset_2 := ordinates_2.NEXT(ordinates_offset_2); 

   END LOOP; 

 

   ordinates.EXTEND(2); -- Connect first point to last point to form a polygon 

   ordinates(ordinates_1.LAST + ordinates_2.LAST + 1) := ordinates_1(1); 

   ordinates(ordinates_1.LAST + ordinates_2.LAST + 2) := ordinates_1(2); 

 

   result := Construct the traversed polygon formed by the Elem_Info_Array & Ordinates_Array; 

  ELSIF line_1 & line_2 are arc-interpolated OR are compound linestrings THEN 

   Similarly... 

  END IF; 

 

-- The final traversed polygon is the union of the traversed areas at all time periods for which the Moving 

LineString is defined; 

  IF i <> line.FIRST THEN 

   result := UNION(prev_result, result); 
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  END IF; 

 

  prev_result := result; 

  i := line.NEXT(i); -- get subscript of last unit moving linestring 

 END LOOP; 

 return result; 

END; 

Figure 80 The f_traversed algorithm for a Moving_LineString 

 

4.4 Signatures of operations 

The signatures of the UTILITIES package: 

PACKAGE utilities AS TYPE CursorType IS REF CURSOR; 

     

    -- Checks if three point are co-linear 

    FUNCTION check_colinear (x1 NUMBER, y1 NUMBER, x2 NUMBER, y2 NUMBER, x3 

NUMBER, y3 NUMBER) RETURN BOOLEAN; 

    -- Checks if the segment defined by the first two points overlaps with 

the segment defined by the last two points 

    FUNCTION check_overlap (x1 NUMBER, y1 NUMBER, x2 NUMBER, y2 NUMBER, x3 

NUMBER, y3 NUMBER) RETURN BOOLEAN; 

    -- Prints a MDSYS.SDO_GEOMETRY 

    PROCEDURE print_geometry (geom MDSYS.SDO_GEOMETRY, descr VARCHAR2); 

    -- Adds two angles 

    FUNCTION add_angles (angle1 NUMBER, angle2 NUMBER) RETURN NUMBER; 

    -- Adds two angles 

    FUNCTION is_angle_between (min_angle NUMBER, angle NUMBER, max_angle 

NUMBER) RETURN BOOLEAN; 

    -- Returns the angle (in degrees) between the segment defined by the 

two points (arguments) and the xx' axis 

    FUNCTION direction (x1 NUMBER, y1 NUMBER, x2 NUMBER, y2 NUMBER) RETURN 

NUMBER; 

    -- Returns the angle (in degrees) between the segment defined by the 

two points (arguments) and the xx' axis 

    FUNCTION direction (geom1 MDSYS.SDO_GEOMETRY, geom2 MDSYS.SDO_GEOMETRY) 

RETURN NUMBER; 

    -- Returns the angle (in degrees) between the segment defined by the 

two points (arguments) and the xx' axis 

    FUNCTION get_tan (geom1 MDSYS.SDO_GEOMETRY, geom2 MDSYS.SDO_GEOMETRY) 

RETURN NUMBER; 

    -- Returns the angle (in degrees 0-180) between the segment defined by 

the points Q_start -> Q_end and the segment defined by the points S_start -

> S_end 

    FUNCTION angle (q_start MDSYS.SDO_GEOMETRY, q_end MDSYS.SDO_GEOMETRY, 

s_start MDSYS.SDO_GEOMETRY, s_end MDSYS.SDO_GEOMETRY) RETURN NUMBER; 

    -- Returns the angle (in degrees) between the segment defined by the 

points Q_start -> Q_end and the S_angle 

    FUNCTION angle2(Q_angle number, S_angle number) return number; 
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    -- Returns the angle (in degrees 0-360) between the segment defined by 

the points Q_start -> Q_end and the segment defined by the points S_start -

> S_end 

    FUNCTION angle3 (q_start MDSYS.SDO_GEOMETRY, q_end MDSYS.SDO_GEOMETRY, 

s_start MDSYS.SDO_GEOMETRY, s_end MDSYS.SDO_GEOMETRY) RETURN NUMBER; 

    -- Returns the distance between two points 

    FUNCTION distance (x1 NUMBER, y1 NUMBER, x2 NUMBER, y2 NUMBER) RETURN 

NUMBER; 

    -- Sorts the multi-point argument geometry according to the direction 

of a single linestring (segment) 

    FUNCTION f_sort (mpoint IN OUT MDSYS.SDO_GEOMETRY, line 

MDSYS.SDO_GEOMETRY) RETURN MDSYS.SDO_GEOMETRY; 

    -- Returns the points being at odd positions 1,3,5 etc 

    FUNCTION get_odd_points (multipoint MDSYS.SDO_GEOMETRY) RETURN 

MDSYS.SDO_GEOMETRY; 

    -- Returns the points being at odd positions 2,4,6, etc 

    FUNCTION get_even_points (multipoint MDSYS.SDO_GEOMETRY) RETURN 

MDSYS.SDO_GEOMETRY; 

    -- Transfers linestring S according to the first point of linestring Q. 

    FUNCTION transfer(Q MDSYS.SDO_GEOMETRY, S IN OUT MDSYS.SDO_GEOMETRY) 

return MDSYS.SDO_GEOMETRY; 

    FUNCTION transfer2(Q MDSYS.SDO_GEOMETRY, S IN OUT MDSYS.SDO_GEOMETRY) 

return MDSYS.SDO_GEOMETRY; 

    -- Computes the cost (area in m^2) for transfering segment Q towards S. 

    FUNCTION transfer_cost(Q MDSYS.SDO_GEOMETRY, S MDSYS.SDO_GEOMETRY, dir 

number) return number; 

    -- Constructs a segment (single linestring) from the two argument 

points 

    FUNCTION f_segment(xi number, yi number, xe number, ye number) return 

MDSYS.SDO_GEOMETRY; 

    -- Returns the number of the segment of the linestring where the point 

resides. The algorithm starts from from segment with number "old_pos" 

    FUNCTION position(line MDSYS.SDO_GEOMETRY, x number, y number, old_pos 

pls_integer) return pls_integer; 

    -- Checks if Q's (PQ) or S's (PS) point "sees" the last segment of 

Q_line or S_line without intersecting the previous segments of the latter 

    FUNCTION BadSegment(Q_line MDSYS.SDO_GEOMETRY, S_line 

MDSYS.SDO_GEOMETRY, PQx number, PQy number, PSx number, PSy number) return 

boolean; 

    -- Smooth linestring 

    PROCEDURE SmoothLine(L IN OUT MDSYS.SDO_GEOMETRY); 

    -- Spatial Similarity 

    FUNCTION LIP(Q MDSYS.SDO_GEOMETRY, S IN OUT MDSYS.SDO_GEOMETRY, trans 

boolean, Q_LEN number, S_LEN  number) return number; 

    -- Integrates LIP 

    FUNCTION FindBadSegments(Q IN OUT MDSYS.SDO_GEOMETRY, S IN OUT 

MDSYS.SDO_GEOMETRY, trans boolean, policy pls_integer, Q_LEN number, S_LEN   

number) return number; 

    -- Second policy 

    FUNCTION GenLIP(Q IN OUT MDSYS.SDO_GEOMETRY, S IN OUT 

MDSYS.SDO_GEOMETRY, trans boolean, policy pls_integer, Q_LEN number, S_LEN    

number) return number; --, avg_sim  IN OUT number, NoLIPgrams IN OUT 

pls_integer 

    -- Direction Distance 

    FUNCTION DDIST(Q IN OUT MDSYS.SDO_GEOMETRY, S IN OUT 

MDSYS.SDO_GEOMETRY, policy pls_integer) return number; 

    -- Computes MDI 

    FUNCTION compute_MDI (startQ_tp TAU_TLL.D_Timepoint_Sec, endQ_tp 

TAU_TLL.D_Timepoint_Sec, startS_tp TAU_TLL.D_Timepoint_Sec, endS_tp 

TAU_TLL.D_Timepoint_Sec, delta TAU_TLL.D_Interval) return number; 
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END; 

The signatures of the Unit_Moving_Point object methods: 

TYPE unit_moving_point AS OBJECT ( 

   -- Time period with granularity second where Unit function is valid 

   p   tau_tll.d_period_sec, 

   -- Motion during period p 

   m   unit_function, 

   -- ###### MEMBER FUNCTIONS ##### 

   -- Polynomial of first degree 

   MEMBER FUNCTION f_plnml_1 (tp tau_tll.d_timepoint_sec) RETURN coords, 

   -- Polynomial of first degree 

   MEMBER FUNCTION r_f_plnml_1 (x NUMBER, y NUMBER) RETURN 

tau_tll.d_timepoint_sec, 

   -- 

   MEMBER FUNCTION f_plnml_3_1 (tp tau_tll.d_timepoint_sec) RETURN coords, 

   -- 

   MEMBER FUNCTION f_plnml_3_2 (tp tau_tll.d_timepoint_sec) RETURN coords, 

   -- 

   MEMBER FUNCTION r_f_plnml_3_x (x NUMBER, y NUMBER) RETURN 

tau_tll.d_timepoint_sec, 

   -- Depending on the "descr" of the Unit_Function invokes the appropriate 

function 

   MEMBER FUNCTION f_interpolate (tp tau_tll.d_timepoint_sec) RETURN 

coords, 

   -- Returns the timepoint that corresponds to a specific xy coords 

   MEMBER FUNCTION get_time_point (x NUMBER, y NUMBER) RETURN 

tau_tll.d_timepoint_sec, 

   -- Checks if this unit_moving_point contains the given (x, y) 

   MEMBER FUNCTION f_contains (x NUMBER, y NUMBER) RETURN BOOLEAN, 

   -- Gets the speed at the given timepoint 

   MEMBER FUNCTION get_speed (tp tau_tll.d_timepoint_sec) RETURN NUMBER, 

   -- Get (x, y) of the  

   MEMBER FUNCTION get_midle_point RETURN coords 

)  

 

The signatures of the Moving_Point object methods: 

TYPE moving_point AS OBJECT ( 

   -- A series of Unit_Moving_Point defining the consequent parts of a 

Moving_Point 

   u_tab   moving_point_tab,        -- previous name of the attribute was 

"p" 

   --The trajectory id should be placed in the moving object so as to be 

retrieved by 

   --ODCIIndexUpdate and ODCIIndexInsert 

   traj_id Integer, 

   -- Returns moving point as a CLOB 

   -- ###### MEMBER FUNCTIONS ##### 

   MEMBER FUNCTION to_clob RETURN CLOB, 

   -- Returns moving point as a string 

   MEMBER FUNCTION to_string RETURN VARCHAR2, 

   -- Prints moving point to standard output 

   MEMBER PROCEDURE print_moving_point, 

   -- Add a unit_moving_point 

   MEMBER PROCEDURE add_unit (new_unit unit_moving_point), 

   -- Merge two Moving_Points 
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   MEMBER FUNCTION merge_moving_points (mp1 moving_point, mp2 moving_point) 

RETURN moving_point, 

   --Checks if there is an ascending sorting of the periods in the nested 

table 

   MEMBER FUNCTION check_sorting RETURN BOOLEAN, 

   --Checks if even one period in the nested table overlaps with the next 

in order period...THEN returns FALSE 

   MEMBER FUNCTION check_disjoint RETURN BOOLEAN, 

   --Checks if even one period in the nested table does NOT meets with the 

next in order period...THEN returns FALSE 

   MEMBER FUNCTION check_meet RETURN BOOLEAN, 

   -- Returns that Unit_Moving_Point that corresponds to a specific 

timepoint 

   MEMBER FUNCTION unit_type (tp tau_tll.d_timepoint_sec) RETURN 

unit_moving_point, 

   -- Sorts the multi-point argument geometry by time 

   MEMBER FUNCTION sort_by_time (mpoint IN OUT MDSYS.SDO_GEOMETRY) RETURN 

MDSYS.SDO_GEOMETRY, 

   -- Return the enter and leave points of the moving point for a given 

geometry 

   MEMBER FUNCTION get_enter_leave_points (geom MDSYS.SDO_GEOMETRY) RETURN 

MDSYS.SDO_GEOMETRY, 

   -- Returns a MDSYS.SDO_GEOMETRY of Point type as the result of 

Mapping/Projecting the Moving_Point at a specific timepoint 

   MEMBER FUNCTION at_instant (tp tau_tll.d_timepoint_sec) RETURN 

MDSYS.SDO_GEOMETRY, 

   -- Returns a moving point restricted at a specific period 

   MEMBER FUNCTION at_period (per tau_tll.d_period_sec) RETURN 

moving_point, 

   -- Returns a moving point restricted at a specific temporal element 

   MEMBER FUNCTION at_temp_element (te tau_tll.d_temp_element_sec) RETURN 

moving_point, 

   -- Restricts the moving point at the space specified by the linestring 

parameter which is supposed to be part of his route 

   MEMBER FUNCTION at_linestring (line MDSYS.SDO_GEOMETRY) RETURN 

moving_point, 

   -- Returns tha last valid timepoint of the lifespan of the moving point 

   MEMBER FUNCTION f_final_timepoint RETURN tau_tll.d_timepoint_sec, 

   -- Returns tha first valid timepoint of the lifespan of the moving point 

   MEMBER FUNCTION f_initial_timepoint RETURN tau_tll.d_timepoint_sec, 

   -- Returns the timepoint that corresponds to a specific xy coords 

   MEMBER FUNCTION get_time_point (x NUMBER, y NUMBER) RETURN 

tau_tll.d_timepoint_sec, 

   -- Returns a linestring geometry representing the points that this 

moving point traverses! NOTE: For linear motions use "f_trajectory2" 

   MEMBER FUNCTION f_trajectory RETURN MDSYS.SDO_GEOMETRY, 

   MEMBER FUNCTION f_trajectory2 RETURN MDSYS.SDO_GEOMETRY, 

   -- Returns a temporal element constructed by the union of the periods 

for which the moving point is defined 

   MEMBER FUNCTION f_temp_element RETURN tau_tll.d_temp_element_sec, 

   -- Returns the instanced point as this is defined at the first valid 

second  

   MEMBER FUNCTION f_initial RETURN MDSYS.SDO_GEOMETRY, 

   -- Returns the instanced point as this is defined at the last valid 

second 

   MEMBER FUNCTION f_final RETURN MDSYS.SDO_GEOMETRY, 

   -- Returns the angle of the moving point' s direction 

   MEMBER FUNCTION f_direction (tp tau_tll.d_timepoint_sec) RETURN NUMBER, 

   -- Returns TRUE for objects being in front of moving point at the given 

timepoint 
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   MEMBER FUNCTION f_front (geom MDSYS.SDO_GEOMETRY, tp 

tau_tll.d_timepoint_sec, angle_min   NUMBER, angle_max   NUMBER) RETURN 

NUMBER, 

   -- Returns TRUE for objects being behind of moving point at the given 

timepoint 

   MEMBER FUNCTION f_behind (geom MDSYS.SDO_GEOMETRY, tp 

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER, 

   -- Returns TRUE for objects being left of moving point at the given 

timepoint 

   MEMBER FUNCTION f_left (geom MDSYS.SDO_GEOMETRY, tp 

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER, 

   -- Returns TRUE for objects being right of moving point at the given 

timepoint 

   MEMBER FUNCTION f_right (geom MDSYS.SDO_GEOMETRY, tp 

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER, 

   -- Returns TRUE for objects being north of moving point at the given 

timepoint 

   MEMBER FUNCTION f_north (geom MDSYS.SDO_GEOMETRY, tp 

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER, 

   -- Returns TRUE for objects being south of moving point at the given 

timepoint 

   MEMBER FUNCTION f_south (geom MDSYS.SDO_GEOMETRY, tp 

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER, 

   -- Returns TRUE for objects being east of moving point at the given 

timepoint 

   MEMBER FUNCTION f_east (geom MDSYS.SDO_GEOMETRY, tp 

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER, 

   -- Returns TRUE for objects being west of moving point at the given 

timepoint 

   MEMBER FUNCTION f_west (geom MDSYS.SDO_GEOMETRY, tp 

tau_tll.d_timepoint_sec, angle_min NUMBER, angle_max NUMBER) RETURN NUMBER, 

   -- Returns TRUE when the moving point is between the multi-geometry at 

the given timepoint 

   MEMBER FUNCTION f_between (geom MDSYS.SDO_GEOMETRY, tp 

tau_tll.d_timepoint_sec) RETURN NUMBER, 

    -- Returns the rate of change of the Euclidean distance (speed) that 

the moving point traverses at a specific time point 

   MEMBER FUNCTION f_speed (tp tau_tll.d_timepoint_sec) RETURN NUMBER, 

    -- Generates a buffer polygon around an instanced point at a specific 

timepoint 

   MEMBER FUNCTION f_buffer (distance NUMBER, tolerance NUMBER, tp 

tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY, 

    -- Computes the distance between two moving points instanced at a 

specific timepoint. 

    -- The distance between two geometry objects is the distance between 

the closest pair of points or segments of the two objects 

   MEMBER FUNCTION f_distance (moving_point moving_point, tolerance NUMBER, 

tp tau_tll.d_timepoint_sec) RETURN NUMBER, 

    -- Computes the distance between a moving point instanced at a specific 

timepoint and another geometry type. 

    -- The distance between two geometry objects is the distance between 

the closest pair of points or segments of the two objects 

   MEMBER FUNCTION f_distance (geom MDSYS.SDO_GEOMETRY, tolerance NUMBER, 

tp tau_tll.d_timepoint_sec) RETURN NUMBER, 

    -- Determines if this moving point is within some specified Euclidean 

distance from other moving objects at  a specific timepoint 

   MEMBER FUNCTION f_within_distance (distance NUMBER, moving_point 

moving_point, tolerance NUMBER, tp tau_tll.d_timepoint_sec) RETURN 

VARCHAR2, 

    -- Determines if this moving point is within some specified Euclidean 

distance from other geometry objects at a specific timepoint 



Pelekis et. al.:  The HERMES MOD Engine 128 

 

   MEMBER FUNCTION f_within_distance (distance NUMBER, geom 

MDSYS.SDO_GEOMETRY, tolerance NUMBER, tp tau_tll.d_timepoint_sec) RETURN 

VARCHAR2, 

    -- Examines current Moving_Point to determine its spatial relationship 

with another moving point 

   MEMBER FUNCTION f_relate (MASK VARCHAR2, moving_point moving_point, 

tolerance NUMBER, tp tau_tll.d_timepoint_sec) RETURN VARCHAR2, 

    -- Examines current Moving_Point to determine its spatial relationship 

with other geometry objects 

   MEMBER FUNCTION f_relate (MASK VARCHAR2, geom MDSYS.SDO_GEOMETRY, 

tolerance NUMBER, tp tau_tll.d_timepoint_sec) RETURN VARCHAR2, 

    -- Returns a geometry object that is the topological intersection (AND 

operation) of an instanced point with another moving point at a specific 

timepoint 

   MEMBER FUNCTION f_intersection (moving_point moving_point, tolerance 

NUMBER, tp tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY, 

    -- Returns a geometry object that is the topological intersection (AND 

operation) of an instanced point at a specific timepoint with another 

geometry object 

   MEMBER FUNCTION f_intersection (geom MDSYS.SDO_GEOMETRY, tolerance 

NUMBER, tp tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY, 

    -- Returns a moving point that is the restriction (intersection) of the 

calling moving point inside the polygon argument 

   MEMBER FUNCTION f_intersection (geom MDSYS.SDO_GEOMETRY, tolerance 

NUMBER) RETURN moving_point, 

    -- Returns a moving point that is the restriction (intersection) of the 

calling moving point inside the polygon argument 

   MEMBER FUNCTION f_intersection2 (geom MDSYS.SDO_GEOMETRY, tolerance 

NUMBER) RETURN moving_point, 

    -- Computes the linestring and the period that is the restriction 

(intersection) of the calling moving point inside the polygon argument 

   MEMBER PROCEDURE f_intersection (geom MDSYS.SDO_GEOMETRY, line_inside 

OUT MDSYS.SDO_GEOMETRY, period_inside OUT tau_tll.d_period_sec, tolerance 

NUMBER), 

    -- Returns a moving point (and the corresponding linestring and period) 

that is the restriction (intersection) of the calling moving point inside 

the polygon argument 

   MEMBER FUNCTION f_intersection (geom MDSYS.SDO_GEOMETRY, line_inside OUT 

MDSYS.SDO_GEOMETRY, period_inside OUT tau_tll.d_period_sec, tolerance 

NUMBER) RETURN moving_point, 

    -- Returns a geometry object that is the topological union (OR 

operation) of an instanced point with this moving point at a specific 

timepoint 

   MEMBER FUNCTION f_union (moving_point moving_point, tolerance NUMBER, tp 

tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY, 

    -- Returns a geometry object that is the topological union (OR 

operation) of an instanced point at a specific timepoint with another 

geometry object 

   MEMBER FUNCTION f_union (geom MDSYS.SDO_GEOMETRY, tolerance NUMBER, tp 

tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY, 

    -- Returns a geometry object that is the topological symmetric 

difference (XOR operation) of an instanced point with this moving point at 

a specific timepoint 

   MEMBER FUNCTION f_xor (moving_point moving_point, tolerance NUMBER, tp 

tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY, 

   -- Returns a geometry object that is the topological symmetric 

difference (XOR operation) of an instanced point at a specific timepoint 

with another geometry object 

   MEMBER FUNCTION f_xor (geom MDSYS.SDO_GEOMETRY, tolerance NUMBER, tp 

tau_tll.d_timepoint_sec) RETURN MDSYS.SDO_GEOMETRY, 
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    -- Returns the points(sorted by time) that the moving point enters 

inside the area of the polygon argument 

   MEMBER FUNCTION f_enterpoints (geom MDSYS.SDO_GEOMETRY) RETURN 

MDSYS.SDO_GEOMETRY, 

    -- Returns the points(sorted by time) that the moving point leaves the 

area of the polygon argument 

   MEMBER FUNCTION f_leavepoints (geom MDSYS.SDO_GEOMETRY) RETURN 

MDSYS.SDO_GEOMETRY, 

    -- Returns the timepoint that the moving point entered the given 

polygonal geometry 

   MEMBER FUNCTION f_enter (geom MDSYS.SDO_GEOMETRY) RETURN 

tau_tll.d_timepoint_sec, 

    -- Returns the timepoint that the moving point left the given polygonal 

geometry 

   MEMBER FUNCTION f_leave (geom MDSYS.SDO_GEOMETRY) RETURN 

tau_tll.d_timepoint_sec, 

    -- Returns the average speed of a moving point during its lifespan 

    MEMBER FUNCTION f_avg_speed RETURN NUMBER, 

    -- Returns the average acceleration of a moving point during its 

lifespan 

    MEMBER FUNCTION f_avg_acceleration RETURN NUMBER, 

    -- Returns the average direction of a moving point during its lifespan 

    MEMBER FUNCTION f_avg_direction RETURN NUMBER, 

    -- Transfers moving point to the starting point of Sm. The translation 

is dx on XX' and dy in YY' 

    MEMBER FUNCTION transfer2(Qm moving_point, Sm IN OUT moving_point) 

return moving_point, 

    -- Returns the timepoint when the moving point passes from (x,y). The 

algorithm starts looking from "old_pos" 

    MEMBER FUNCTION f_timepoint(line MDSYS.SDO_GEOMETRY, x number, y 

number, old_pos pls_integer,  new_pos OUT pls_integer) return 

TAU_TLL.D_Timepoint_Sec, 

    -- Returns the Locality In-between Polylines=projections of the two 

moving points 

    MEMBER FUNCTION LIP(m_point Moving_Point, trans boolean) return number, 

    -- Returns the Spatio-Temporal Distance between two moving points 

    MEMBER FUNCTION STLIP(S IN OUT Moving_Point, trans boolean, t 

TAU_TLL.D_Interval, Q_LEN number, S_LEN   number, kapa number) return 

number, 

    -- Returns the Speed-Pattern STLIP between two moving points following 

arbitrary trajectories 

    MEMBER FUNCTION SPSTLIP(S IN OUT Moving_Point, trans boolean, t 

TAU_TLL.D_Interval, Q_LEN number, S_LEN number) return number,  

    -- Returns the Direction Distance between the spatial projections of 

two moving points 

    MEMBER FUNCTION DDIST(m_point Moving_Point, policy pls_integer) return 

number, 

    -- Returns the Direction Distance between two moving points 

    MEMBER FUNCTION TDDIST(S IN OUT Moving_Point, policy pls_integer) 

return number, 

    -- Integrates STLIP 

    MEMBER FUNCTION GenSTLIP_OSP(S_M IN OUT Moving_Point, trans boolean, 

policy pls_integer, Q_LEN number, S_LEN number, kapa number, delta number) 

return number 

 

) 
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5 Appendix E – Description of HERMES TB–TREE PL/SQL 

Implementation Building Blocks 

Hereafter, we discuss the basic principles that have been fostered in our effort to embody the TB-Tree index in 

the Oracle ORDBMS. We will present in detail the primitive data types (objects) that have been defined to serve 

as the building blocks and primary storage elements of the underlying structure. Moreover, we proceed by 

discussing the OR database tables involving the index and the way they relate to the primary table where moving 

object trajectories are stored.  

 

Types Description 

tbX The tbX collection type is a varray of size 3 used to hold triplets (x,y,t) of the 
points taking part in a moving object’s trajectory formation 

tbPoint The tbPoint is defined as an object  with x of tbX type as its only attribute  
tbMBB The tbMBB is an object that represents the Minimum Bounding Box of a 

tree node. Its attributes (MinPoint, MaxPoint) are both of tbPoint type and 
represent the lower left and upper right of the box 

tbTreeLeafEntry The tbTreeLeafEntry is an object involving the entries of leaf nodes. Each 
such entry has two attributes: MBB of tbMBB type and Orientation of 
integer type. The first involves the box defined by a moving object’s 
trajectory segment while the latter denotes the orientation of the segment 
in the MBB 

tbTreeNodeEntry The tbTreeNodeEntry is an object involving the entries of internal (non-
leaf) nodes. Each such entry has two attributes: MBB of tbMBB type and Ptr 
of integer type. The first involves the box defined by the MBB of all the 
entries of its child node, while the second denotes the identifier of the 
current entry’s child 

NodeEntries The NodeEntries collection type is a varray of size 155 (hard coded for 
block size=8192 Bytes) used to hold an internal node’s entries. The size of 
the varray was defined so as to ensure that the entries (plus any additional 
attributes) of the node will fit in one disk block 

LeafEntries The LeafEntries collection type is a varray of size 155 (hard coded for block 
size=8192 Bytes) used to hold a leaf node’s entries. The size of the varray 
was defined so as to ensure that the entries (plus any additional attributes) 
of the node will fit in one disk block 

LeafEntries2 Same as LeafEntries but this time the collection type is defined as a nested 
table. The reason is that when processing leaf entries in memory (i.e during 
their insertion in the leaf node) we need a structure the size of which is not 
known in hand. Furthermore, the design of certain operators where those 
entries are processed does not make any assumption about a fixed disk 
block size. Eventually, we would need a varray to store leaf entries since 
nested tables do not guarantee the insertion and storage of the entries in 
the sorted form that have been arranged during insertion algorithm 
execution. Obviously, this gives us the advantage that a change of the page 
size will only need the modification of the varray’s dimension in 
LeafEntries, NodeEntries 

tbTreeNode The tbTreeΝοde is an object representing the internal node itself. Its 
attributes involve: 1) ptrParentNode of integer type which is a pointer to 
the parent of the current node used to ascend the tree when necessary, 2) 
ptrCurrentNode of integer type which is the current node’s identifier 
encapsulated in the object to facilitate implementation issues, 3) counter of 
integer type to hold the number of the current node entries. This is 
extremely useful since we are able to know in hand the number of entries 
in the node instead of using the .COUNT collection operator to count the 
number of entries every time the node is used. 4) tbTreeNodeEnties of 
NodeEntries type which involves the entries of the node as were previously 
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described 
tbTreeLeaf The tbTreeLeaf is an object representing the internal node itself. Its 

attributes involve: 1) MoID of type integer which is the global identifier of a 
trajectory 2) the rowid (varchar2!) of the moving object whose partial trajectory is 
contained in the leaf. This is used by the ODCIINDEXFETCH to return batches 

of base table rows, 3) ptrParentNode of integer type which is a pointer to the 
parent of the current node used to ascend the tree when necessary, 4) 
ptrCurrentNode of integer type which is the current node’s identifier 
encapsulated in the object to facilitate implementation issues, 5) 
PtrPreviousNode of type integer which is a pointer to the node with the 
parts of the trajectory preceding those of the current node 6) PtrNextNode 
of type integer which is a pointer to the node with the next parts of the 
trajectory, 7) counter of integer type to hold the number of the current 
node’s entries. The utility of the attribute has already been discussed, 8) 
tbTreeLeafEntries of LeafEntry type which involves the entries of the leaf 
as were previously described  

tbTreeLeaf2 Same as before, but this time we use LeafEntries2 
tbMovingObject The tbMovingObject is an object with 2 attributes. The first one –ID- 

denotes the identifier of a stored trajectory while the second – ptrLastleaf - 
involves the identifier of the node where the last entries of the trajectory 
are kept 

tbMovingObjectsCollection A nested table of tbMovingobject used in function and operator 
implementations 

tbMovingObjectEntry Type tbMovingObjectEntry is a 3 - dimensional moving object line segment 
containing the object`s id and the points 

tbMovingObjectEntries A nested table of tbMovingobjectEntry 
IDS A nested table of integers used to hold IDs of moving objects 
mp_Array A nested table of hermes.moving_object type. This type is used as the 

return type of query functions. For instance, performing a range query, we 
expect parts of moving objects as the answer. These trajectory parts are 
stored in an array of mp_array type and are returned to the user in that 
form 

Geom_tbl Same as above but this time we use a nested table of geometries. The utility 
is the same as in the mp_Array case. The only difference is the 
transformation of moving_object into geometry so that it can be projected 
on a map 

PriorityQueueNode This is an object that constitutes the building block of a priority queue data 
structure. Such kind of node should be modeled as hybrid since it can hold 
features involving a tbTreeNode or TbTreeLeaf object.  Its attributes are as 
follows: 1) Ptr integer, for tbtreenodeentry this is a pointer to the child leaf, 
2) MBB tbMBB, for tbtreenodeentry this is the MBB of the entry, 3) Id 
number, the id of the moving object, 4) P1 tbPoint, the first point of a 
moving object entry, 5) P2 tbPoint, the last point of a moving object entry, 
6) EType varchar2(20), the type of the entry in {x for null, 
tbMovingobjectEntry, tbTreenodeEntry}, 7) Dist number, the distance of 
the queue entry calculated by the MinDistLine2D function, and PtrNext 
integer, PtrPrevious integer, PtrCurrent integer, Trajectory 
tbMovingObjectEntries  

QueueEntries A nested table of PriorityQueueNode type used to keep the entries of the 
respective structure 

PriorityQueue The priority queue is intended to hold line segments of trajectories, 
ordered based on their 2D distance from a given trajectory or point. It is 
therefore useful to note here that its utility involves the implementation of 
IncPointNNSearch and IncTrajectoryNNSearch as well as their variations, 
namely mv_IncPointNNSearch, mv_ IncTrajectoryNNSearch. The attributes 
of the queue are as follows: 1) Entries of QueueEntries type to hold the 
actual entries of the queue, 2) counter of integer type which is used to hold 
the current number of entries in the queue as nodes are inserted or 
extracted (deleted), 3) Last of integer type which is a pointer to the tail of 
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the queue, 4) while top is a pointer to the first element of the queue. The 
object is equipped with member functions used for initializing, enqueueing 
and dequeueing entries 

TBTree_IdxType_Im This object is the actual interface based on which our custom index type is 
built. Based on the extensible indexing capabilities provided by the oracle 
ordbms each such object should own the following functions: 1) 
ODCIIndexCreate which is a function that creates the index tables (i.e 
tbtreeidx_leaf, tbtreeidx_non_leaf) and populates the data already inserted 
in the table (mpoints) on which the index is created, 2) ODCIIndexInsert 
which a function that performs insertions in the tree triggered by the 
insertion of a new trajectory on the main table, 3) ODCIIndexUpdate which 
is a function that updates the tree every time a new trajectory segment (i.e 
unit_moving_point) is inserted, 4) ODCIIndexDelete to adjust the tree upon 
the occurrence of a deletion (not implemented), 5) The ODCIGetInterfaces 
function returns the list of names of the interfaces implemented by the 
type. To specify the current version of these interfaces, the 
ODCIGetInterfaces routine must return'SYS.ODCIINDEX2' in the OUT 
parameter, 6) The ODCIIndexDrop function drops the tables that store the 
index data. This method is called when a DROP INDEX statement is issued, 
7) The ODCIIndexStart is a function that prepares the execution of an 
operator by determining the rowids of the base table that need to be 
fetched. Note that we need a new ODCIIndexStart for each operator that 
will be later defined.  8) The ODCIIndexFetch function fetches the base 
table rows as they are determined by a corresponding ODCIIndexStart 
function, 9) The ODCIIndexClose function completes the execution of a 
custom operator  

Table 5: Defined types and corresponding description 

Having described the basic data types defined to serve the implementation purposes of the index 
structure as well as the operations and functions built upon it, we will proceed by referring to the 
basic tables the tuples of which constitute the primary storage elements of trajectory and index 
data. Note beforehand that it is crucial for the table names to remain as are, since they are hard 
coded in the index implementation packages, functions and operands.   
Table Name Description 

mpoints This table is used to store the trajectories of moving objects. Its attributes 
involve the object and trajectory id and the actual trajectory of 
hermes.moving_point type. Note that the trajectory id (traj_id) should be 
unique and practically is attributed as a sequence of increasing integers 
based on the trajectory insertion order. Mpoints should be manually defined 
and constitutes the table on which the tb-tree index will be created 

movingobjects The movingobjects table is an auxiliary one which is used to store a pointer 
to the index leaf where the last part of a trajectory is stored. As such it 
aparts from 2 columns for ID, pointer integer values. Note that this table is 
automatically created/dropped upon the index creation/drop 

Tbtreeidx_non_leaf This is the table where the internal nodes of the tree are stored. Any 
additional column is just a copy of a certain object attribute and it is used for 
fast access. Note that this table is automatically created/dropped upon the 
index creation/drop 

tbTreeidx_leaf This is the table where the leaf nodes of the tree are stored. Any additional 
column is just a copy of a certain object attribute and it is used for fast 
access. Note that this table is automatically created/dropped upon the index 
creation/drop 

mv_tbl This table is an auxiliary one since it is used to store the geometries returned after 
the execution of functions such as mv_query_window, 
mv_IncTrajectoryNNSearch, mv_IncPointNNSearch, mv_query_window2. The 
aforementioned functions will execure the posed query, store the results in mv_tbl 
and the mapviewer interface will then issue a select * statement to visualize them. 
After the visualization they should be deleted so that the mv_tbl will be empty for 
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the next query answers. 

 
5.1 TB – TREE PL/SQL Implementation Packages 

 
tbFunctions package 
 
Function/ Procedure Parameters Return type Description 

MoAdd IMO 
tbMovingObject 

 A procedure which adds or updates the 
MovingObjects Table 

UpdateTreeHeight — — A procedure that updates the tree height (a 
system parameter that is stored in 
movingobjects table) when the root of the 
tree is split 

Savenode Node tbtreeleaf, 
leaftab varchar2, 
existence boolean 

— A procedure used to save or update an 
internal node of the tree to the corresponding 
table 

Saveleaf Node tbtreeleaf, 
leaftab varchar2, 
existence boolean 

— A procedure used to save or update a leaf 
node of the tree to the corresponding table 

TBINSERT POINT1 
TBPOINT, 
POINT2 
TBPOINT, 
MOVINGOBJECTI
D INTEGER,   RID 
varCHAR2, leaftab 
VARCHAR2, 
nodetab 
VARCHAR2 

— The Insertion Method of the TB-Tree 

ChooseLastLeaf nodetab varchar2, 
leaftab varchar2 

tbTreeLeaf A function that descents the TB-tree until it 
finds the last (right-most) leaf node which is 
finally returned 

Includes SourceMBR tbMBB, 
InsertedMBR 
tbMBB, Dimensions 
integer 

Boolean A function that returns true if a SourceMBR 
includes an InsertedMBR 

AdjustTree L tbTreeLeaf,   LL 
tbTreeLeaf, nodetab 
varchar2, leaftab 
varchar2 

tbTreeNode Algorithm AdjustTree by Antonin Guttman 

LCoveringMBB Node tbTreeLeaf tbMBB A function that calculates the covering 
rectangle of a rTree Leaf Node 

NCoveringMBB Node tbTreeNode tbMBB A function that calculates the covering 
rectangle of a rTree internal Node 

OVERLAPS1D SourceMin Number, 
SourceMax Number, 
InsertedMin 
Number, 
InsertedMax 
Number 

boolean A function that returns true if the 
SourceMBR overlaps the InsertedMBR in 1 
dimension 

TBMAX A1 NUMBER,  A2 
NUMBER 

NUMBER A function that finds the maximum between 
2 numbers 

TBMIN A1 NUMBER,  A2 
NUMBER 

NUMBER A function that finds the minimum between 2 
numbers 

Equals P1 tbPoint,      P2 
tbPoint 

Boolean A function that returns true if tbPoints P1 
and P2 are very close (are equal..) 

HFINDNODE IDD integer,    P1 tbTreeLeaf A function which uses the hashed structure 
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TBPOINT,  tab 
varchar2 

containing each trajectory's last position 
(moving objects table) and returns the 
appropriate leaf 

READLEAFNODE PTRNODE 
varchar2,        tab 
varchar2 

TBTREELEAF A function used to read a LEAF node from 
the corresponding table 

READNODE PTRNODE 
varchar2,        tab 
varchar2 

TBTREENOD
E 

A function used to read an internal tree node 
from the corresponding table 

ConstructEntry Ent tbTreeLeafEntr, 
Id integer 

tbMovingObject
Entry 

A function to convert a 3D R-tree entry to a 
3D entry with starting point the (X1,Y1,T1) 
and ending point the (X2,Y2,T2) 

Overlapss sourceMBb TBMBB, 
insertedMBb 
TBMBB, 
Dimensions integer 

boolean General overlap function. It checks if overlap 
does exist in 1 to 3 dimensions based on a 
given (dimension) parameter 

leafentry_to_unit_mov
ing_point 

tble tbtreeleafentry hermes.unit_mo
ving_point 

A function that transforms a tb tree leaf entry 
to the corresponding 
hermes.unit_moving_point 

tb_mp_in_spatiotemp
oral_window 

geom 
MDSYS.SDO_GEO
METRY,          tp 
tau_tll.D_period_sec 

hermes.mp_Arra
y 

A function that returns the partial trajectories 
of all moving points restricted in a certain 
spatiotemporal window 
(Note: This is the operator used to extract 
statistics for the cuboids during the ETL 
procedure) 

mv_query_window geom 
MDSYS.SDO_GEO
METRY,tp 
tau_tll.D_period_sec 

— Same as tb_mp_in_Spatiotemp_Wind but 
returns an array of SDO_GEOMETRIES to 
be used in mapviewer 

ConstructMBB Ent 
tbMovingObjectEntr
y 

tbMBB A function that returns the MBB of a given 
tbMovingObjectEntry 

Distance2D P1 tbPoint,      P2 
tbPoint 

integer A function that calculates the squared 
distance between two points 

MinDist2D Point tbPoint, MBB 
tbMBB 

integer A function that returns the minimum distance 
between a point and an MBB 

ActualDist2D Point tbPoint, P1 
tbPoint,      P2 
tbPoint 

integer A function that calculates the actual distance 
of a point from a straight line 

Intersects2D Line1 
tbMovingObjectEntr
y,          Line2 
tbMovingObjectEntr
y 

Boolean A function that returns true if two line 
segments intersect 

MinDistLine2D Line 
tbMovingObjectEntr
y,           MBB 
tbMBB 

integer A function that returns the minimum distance 
between a line and an MBB 

ActualLineDist2D Line1 
tbMovingObjectEntr
y,          Line2 
tbMovingObjectEntr
y 

number A function that calculates the minimum 
horizontal distance between two 3d lines 

IncPointNNSearch 
Error! Reference source 
not found. 

QueryPoint 
tbMovingObjectEntr
y,                  k 
integer 

tbMovingObject
Entries 

This is a function (actually operator) that acts 
as follows: given a static point, it returns the k 
trajectory segments that are closer to it 

GetTrajectoryPart Trajectory 
tbMovingObjectEntr
ies,          iMBB 

tbMovingObject
Entries 

Algorithm GetTrajectoryPart retrieves the 
part of the trajectory temporaly contained 
inside the temporal component of iMBR 
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tbMBB, traj_size 
integer 

MinDistTrajectory2D Trajectory 
tbMovingObjectEntr
ies,         MBB 
tbMBB, traj_size 
integer 

number A function that returns the minimum distance 
between a trajectory and a MBB 

IncTrajectoryNNSear
ch Error! Reference 
source not found. 

QueryTrajectory 
hermes.moving_poin
t,                k number 

tbMovingObject
Entries 

This is a function (actually operator) that acts 
as follows: given a trajevtory segments, it 
returns the k trajectory segments that are 
closer to it 

mv_IncTrajectoryNN
Search 

t_id integer,      k 
number 

— Same as IncTrajectoryNNSearch but this time 
the results are stored in the mv_tbl to be later 
visualized on the map 

mv_IncPointNNSearc
h 

x number,          y 
number,        t1 
tau_tll.d_timepoint_s
ec,          t2 
tau_tll.d_timepoint_s
ec,            k integer 

— Same as IncPointNNSearch but this time the 
results are stored in the mv_tbl to be later 
visualized on the map 

tb_Topological_Query geom 
MDSYS.SDO_GEO
METRY,          tp 
tau_tll.D_period_sec,            
mask varchar2 

IDS A function that returns the trajectory IDs that 
(enter, leave, enter/leave) a certain region 
within a given time period 

 
 


