

MASTER IN TECHNOLOGY & INNOVATION MANAGEMENT (MTIM)

SCHOOL OF PRODUCTION ENGINEERING AND MANAGEMENT

TECHNICAL UNIVERSITY OF CRETE

BIG DATA ANALYTICS FOR SMARTER CITIES:

METHOD – ARCHITECTURE – ALGORITHMIC APPARATUS

EIRINI KONTAKI

M.SC. DISSERTATION

FEBRUARY 24TH, 2020

ABSTRACT
A smart city is a concept that integrates multiple Information and Communication Technology
(ICT) solutions to efficiently manage city’s assets. City’s assets include, but are not limited to,
transportation systems, waste management, water management, safety systems, local
departments’ information systems and other community services. In addition, the concept of
the smart city is to make traditional networks and services more efficient with the use of
technologies, including Internet of Things (IoT) and Big Data, to improve the quality of people’s
life and to boost the operation of city’s businesses. Moreover, a smart city is an inherently
distributed setting composed of a number of sites. Sites may range from conventional or
modern data gathering devices, such as sensors, RFIDs, smartphones, and so on, which collect
streams of relevant data, to intermediate routers that convey these data to local departments’
systems and finally to city authorities’ data centers. Valuable information hidden in the
streaming data gathered by the distributed setting should be provided in real-time and in a
continuous fashion to timely support decision making procedures. However, extracting value,
in the form of analytics, out of the massive flows of data that stream-in, such a distributed
setting is an intriguing task.

This thesis focuses on highlighting the importance of big data analysis in a smart city context
by reviewing existing technologies that enable city authorities to produce valuable insights
and facilitate the decision-making process both in the short and in the long run. More
specifically, we identify the needs of the city’s core systems, to facilitate its operational
activities and coordinate its services, approaching a smart city as an instrumented city. We
consider instrumentation as the process in which an interconnected system provides solutions
and shares data to enable collaboration across entities and domains for the benefit of the
society and its people, as well. This work analyzes arising issues in three vertical city domains:
(i) smart transportation, (ii) smart resources and (iii) smart environment and outlines potential
benefits associated with IoT-powered cities that handle large amounts of data. In this
direction, we incorporate all the above in a fully-fledged architectural design proposal tailored
for smart cities. After a thorough study on existing big data technologies, we provide indicative
solutions using big data platforms addressing specific technical requirements and review
existing algorithms that can be implemented with such platforms.

As an in-depth investigation, we selected the setup of Heraklion Smart City as a case study to
exemplify the advantages in terms of business’s logic efficiency using big data technologies
along with the aforementioned solutions methodology and proposed architecture. In this
context, we present the processing pipeline of big data on various Heraklion city’s core
systems including parking, water and air quality monitoring, reporting future benefits for the
stakeholders.

III

Acknowledgments

I wish to thank the members of my dissertation committee: Prof. Minos Garofalakis, Dr.
Nikolaos Giatrakos and Prof. Nikolaos Matsatsinis for generously offering their time, support,
guidance and good will throughout the preparation and review of this document. I especially,
owe my gratitude to Dr. Nikolaos Giatrakos for his intellectual enrichment, thoughtful and
generous criticism and strong support. He provided me with valuable guidance and motivated
me to improve my research skills with his close attention to my work and critical thinking.
Moreover, I would like to express my sincere gratitude to Prof. Constantine Stephanidis for
his support and encouragement throughout my studies.

I am also grateful to my beloved husband, Manos Zidianakis, who provided me with incredible
support, encouragement and advice. This thesis was enriched significantly through our fruitful
discussions, while his guidance was invaluable in order to shape this work to its current state.

I owe my thanks to my colleagues and friends, Ioanna and Argiro for their valuable comments
during the preparation process of my thesis presentation.

Finally, I would like to thank my parents, Katerina and Nikos, who supported me from the
beginning of my studies and never stop giving of themselves in countless ways, as well as my
two brothers, Petros and Manos, who are always there for me. The last word goes to Giorgos,
my baby boy, who has been the light of my life for the last nine months and who has given me
the extra strength and motivation to prove that there is nothing that cannot be done.

Table of Contents
ABSTRACT II

1 INTRODUCTION 1

1.1 The rising need of smart cities 1

1.2 IoT-based smart cities 1

1.3 Big Data in smart city’s ICT network 3

1.4 Contribution 4

1.5 Thesis outline 4

2 A SMART CITY’S ICT NETWORK 6

2.1 Main sources of data generation in a Smart City Infrastructure 6

2.1.1 Smart Devices 6

2.1.2 Web Services 7

2.1.3 Sensor devices 7

3 Smart City Focus Areas 9

3.1.1 Smart Transportation Management 9

3.1.1.1 Road traffic monitoring 9

3.1.1.2 Parking management 11

3.1.2 Smart Resource Management 13

3.1.2.1 Water management 13

3.1.2.2 Waste management 15

3.1.3 Smart Environmental Management 17

3.1.3.1 Air Quality Monitoring 18

3.1.3.2 Weather Monitoring 19

4 BUSINESS OBJECTIVES AND KEY PERFORMANCE INDICATORS 21

4.1 Business Objectives for Smart Transportation 23

4.2 Business Objectives for Smart Resources 24

4.3 Business Objectives for Smart Environment 25

5 TOWARDS ACHIEVING THE BUSINESS OBJECTIVES 26

5.1 Big data processing pipeline 26

5.2 Business logic scenarios for big data processing pipelines 28

5.3 Big Data volume analysis 30

5.4 Technological Challenges 31

5.4.1 Challenge 1: Horizontal scalability 31

5.4.2 Challenge 2: Vertical scalability 32

5.4.3 Challenge 3: Federated scalability - Communication reduction 33

V

5.4.4 Challenge 4: Fast setup of new big data processing pipelines 33

5.4.5 Challenge 5: Cross platform execution of big data analytics tasks 34

5.4.6 Challenge 6: Optimized big data pipelines’ execution over heterogeneous
clusters or clouds 34

6 PROPOSED ARCHITECTURAL FRAMEWORK 35

6.1 A Generic Architectural Framework 35

6.2 Architectural Framework Materialization 39

6.2.1 Platforms for Workflow Design Facilities and Cross Platform Optimization 40

6.2.2 Visualization and Analytics 41

6.2.3 Optimizer Components 44

6.2.4 Big Data Management Platforms 46

6.2.4.1 Data Ingestion Layer 46

6.2.4.2 Batch Layer 48

6.2.4.3 Speed Layer 50

6.2.4.4 Serving Layer 52

7 ALGORITHMIC APPARATUS & IMPLEMENTATIONS 53

7.1 In-situ Processing Algorithms & Implementations 53

7.2 In-network Processing Algorithms & Implementations 55

7.3 Data Summarization Techniques & Implementations 55

7.4 Machine Learning and Data Mining Algorithms and Libraries 58

8 CASE STUDY: HERAKLION SMART CITY 64

8.1 Identifying the needs of Heraklion city 64

8.2 The IoT infrastructure 66

8.3 The WSN architecture 66

8.4 Data processing pipelines for Heraklion Smart City 68

8.4.1 Parking management using Apache Storm 68

8.4.2 Water management using Apache Spark 72

8.4.2.1 Water level and water quality monitoring in city’s water reservoirs 72

8.4.2.2 Water leakage detection 73

8.4.3 Environmental monitoring using Apache Flink 76

8.5 Using Apache Beam for cross platform data processing 80

9 CONCLUSION AND FUTURE WORK 84

REFERENCES 85

List of Figures
FIGURE 1: THE CORE DOMAINS IN A SMART CITY FRAMEWORK (SOURCE: DELOITTE INSIGHTS) 2
FIGURE 2: A SMART ON-ROAD TRAFFIC MANAGEMENT INFRASTRUCTURE (SOURCE: SCIENCESOFT) 10
FIGURE 3: SMART CITY PILOT PROJECT FOR PARKING OPTIMIZATION ... 12
FIGURE 4: A SMART PARKING INFRASTRUCTURE USING MAGNETIC SENSORS (SOURCE: LIBELIUM) 13
FIGURE 5: AN EXAMPLE OF SMART WATER NETWORK INFRASTRUCTURE .. 14
FIGURE 6: COMMON SITUATION OF GARBAGE CANS' FILLING STATUS IN TODAYS' CITIES ... 16
FIGURE 7: SCENARIO FOR MUNICIPAL WASTE MANAGEMENT17
FIGURE 8: MOBILE APPLICATION EXAMPLES ILLUSTRATING AIR POLLUTION VALUES AND PROTECTION RECOMMENDATIONS

 ... 18
FIGURE 9: INDICATIVE APPLICATION EXAMPLE FOR SUN PROTECTION .. 20
FIGURE 10: A CLOUD-COMPUTING INFRASTRUCTURE BASED ON IBM ASPERA SOFTWARE .. 27
FIGURE 11: DATA ANALYTIC PIPELINE .. 27
FIGURE 12: FRAMEWORK ARCHITECTURE. ADDRESSING THE REQUIREMENTS ARISING FROM THE TECHNOLOGICAL

CHALLENGES .. 35
FIGURE 13: FRAMEWORK ARCHITECTURE. A MORE FOCUSED ANALYSIS .. 37
FIGURE 14: LAMBDA ARCHITECTURE FROM A HIGH-LEVEL PERSPECTIVE.. 38
FIGURE 15: FRAMEWORK ARCHITECTURE. BIG DATA PLATFORMS .. 39
FIGURE 16: THE BEAM MODEL – DATA PROCESSING PIPELINES (SOURCE: DATA SCIENCE CENTRAL) 40
FIGURE 17: VISUAL ANALYTICS TOOLS: AN EXAMPLE OF KIBANA .. 41
FIGURE 18: VISUAL ANALYTICS TOOLS: AN EXAMPLE OF GRAFANA ... 42
FIGURE 19: VISUAL ANALYTICS TOOLS: AN EXAMPLE OF APACHE ZEPPELIN .. 42
FIGURE 20: VISUAL ANALYTICS TOOLS: AN EXAMPLE OF ZOOMDATA .. 43
FIGURE 21: VISUAL ANALYTICS TOOLS: AN EXAMPLE OF TABLEAU ... 43
FIGURE 22: VISUAL ANALYTICS TOOLS: AN EXAMPLE OF QLIK ... 44
FIGURE 23: HIGH-LEVEL FLOW OF MESOS RESOURCE ALLOCATION .. 46
FIGURE 24: FRAMEWORK ARCHITECTURE. A MORE FOCUSED ANALYSIS BASED ON SPECIFIC TOOLS 48
FIGURE 25: AN RDD DISTRIBUTED ACROSS THE WORKER NODES (SOURCE: DEVOPS) ... 49
FIGURE 26: DATA STREAM IN APACHE FLINK (TASK MANAGER) .. 51
FIGURE 27: CORE COMPONENTS OF THE FLINK CEP LIBRARY .. 51
FIGURE 28: GEOMETRIC MONITORING METHOD RATIONALE .. 54
FIGURE 29: EXAMPLE OF DIFFERENT PUSH-PULL APPLICATION FOR AN AND OPERATOR RECEIVING 3 EVENTS (E1, E2, E3) AT

INPUT ... 55
FIGURE 30: CLUSTERING OUTPUT DEPICTING TRAFFIC PROPAGATION RELATIONSHIP .. 60
FIGURE 31: CLUSTERING OUTPUT DEPICTING TRAFFIC SPLIT RELATIONSHIP .. 61
FIGURE 32: CLUSTERING OUTPUT DEPICTING TRAFFIC MERGE RELATIONSHIP ... 61
FIGURE 33: RANDOM FOREST ALGORITHM GRAPH .. 62
FIGURE 34: SUPPORT VECTOR MACHINE ALGORITHM .. 63
FIGURE 35: K-NEAREST NEIGHBORS (KNN) ALGORITHM... 63
FIGURE 36: THE HERAKLION SMART CITY ECOSYSTEM .. 66
FIGURE 37: PILOT SENSOR INFRASTRUCTURE IN HERAKLION CITY (SOURCE: WWW.SMARTCITY.HERAKLION.GR).............. 67
FIGURE 38: A DATABASE SCHEMA APPROACH ... 67
FIGURE 39: AN APACHE STORM TOPOLOGY FOR PARKING MONITORING (LOGICAL VIEW) ... 68
FIGURE 40: TUPLES EMITTED THROUGHOUT THE APACHE STORM TOPOLOGY .. 69
FIGURE 41: A DATA PIPELINE FOR WATER MONITORING IN HERAKLION CITY ... 74
FIGURE 42: TUPLES EMITTED THROUGHOUT THE SPARK TOPOLOGY ... 75
FIGURE 43: A PHYSICAL DATAFLOW PLAN FOR AIR QUALITY MONITORING ... 77
FIGURE 44: TUPLES EMITTED THROUGHOUT THE APACHE FLINK TOPOLOGY .. 78
FIGURE 45: A DATA PROCESSING PIPELINE WITH THE BEAM MODEL .. 81
FIGURE 46: PCOLLECTIONS EMITTED THROUGH THE BEAM PIPELINE .. 82

VII

List of Tables

TABLE 1: DIFFERENT SENSING TECHNOLOGIES ... 8
TABLE 2: SUB-DIMENSIONS OF KPIS .. 9
TABLE 3: MEASURABLE OBJECTIVES – KEY PERFORMANCE INDICATORS (KPIS) .. 22
TABLE 4: DATA VOLUMES EXTRACTED FROM A SMART CITY IOT INFRASTRUCTURE... 30
TABLE 5: EXEMPLARY DATA SUMMARIZATION TECHNIQUES AND THEIR UTILITY IN THE SMART CITY CONTEXT 56
TABLE 6: MEASURED PARAMETERS PER AREA OF INTEREST ... 66

 Eirini Kontaki

1 Introduction

1 INTRODUCTION

1.1 The rising need of smart cities

During the past decades, the planet has witnessed rapid urbanization and overpopulation
growth with the world’s population reaching 7.7 billion in mid-2019. According to [180], the
global population is expected to reach 8.5 billion in 2030, 9.7 billion in 2050 and 10.9 billion
in 2100, while by 2050 the population that lives in urban areas will be increased reaching 70%
of the total population globally [155].

Urbanization is considered as one of the main driving forces for the change of ecosystem
services, including water and energy consumption, that lead directly to climate change. The
World Health Organization (WHO) [178] reports that rapid, unplanned and unsustainable
patterns of urban development are making developing cities focal points for many emerging
environment and health hazards. As urban populations grow, the quality of global ecosystems
and the urban environment will play an increasingly important role in public health with
respect to issues ranging from waste disposal to provision of safe water and sanitation.

Cities, despite their population size, need to become more resource efficient and technology
driven in order to mitigate their impact and exploit innovative solutions towards enhancing
urban sustainability throughout the world. According to [99], a sustainable city is based on the
following four main aspects:

● Economic: The ability to generate income and employment for the livelihood of the
inhabitants.

● Social: The ability to ensure well-being (safety, health, education, etc.) of the citizens can
be equally delivered despite differences in class, race or gender.

● Environmental: The ability to protect future quality and reproducibility of natural
resources.

● Governance: The ability to maintain social conditions of stability, democracy, public
participation in online city services, and justice.

1.2 IoT-based smart cities

According to [31], sustainable cities lack of innovative solutions based on Internet of Things
(IoT) applications in several urban domains where such solutions can have a substantial
contribution to the goals of environmentally sustainable development. In this context, smart
cities come to focus on searching greener and more energy efficient urban dynamics by
integrating Information and Communication Technologies (ICTs). Smart cities were firstly
introduced as a concept in scientific publications in 1992 and emerged as a fast-growing topic
of scientific enquiry [124]. Since then, many different perceptions of smart cities prevail with
a divergence and lack of cohesion. However, smart cities appear to be the hottest emerging
research and business topic of the 21st century [38].

IoT-based cities become instrumented and interconnected in a way to properly confront with
challenges and threats to their core systems. They deploy a mechanism that assists

2 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

stakeholders to comprehend existing problems, to extract the necessary knowledge and take
the appropriate actions.

One of the leading tech companies, IBM, underlines that cities need to become smarter by
seizing opportunities through managing the resources efficiently and giving the accurate
information in order to prevent an unexpected event [3]. It also reports that cities can become
smarter when using new technologies to transform their core systems and optimize the use
of limited resources. Pervasive new technologies provide a much greater scope for
instrumentation, interconnection and intelligence of a city’s core systems.

One of the core mechanisms of smart cities is a self-monitoring and self-response system,
enabling them to identify and fix problems promptly, recover rapidly from disasters, gather
data to make better decisions and deploy resources effectively [125].

The overall smart cities’ objective is to manage assets and resources efficiently in areas such
as transportation, health, education, air quality, energy and water services [42]. In that, smart
cities aim to enhance the quality of life by facilitating everyday activities in order to support
future generations with respect to economic, social and environmental aspects.

Figure 1: The core domains in a smart city framework (Source: Deloitte insights [52])

ICTs are key drivers of smart city initiatives [96] and enhance the management and functioning
of a city since they offer a number of potential opportunities [133]. Towards that direction,
national governments and local authorities strongly support technological growth by
integrating ICT solutions to municipality and city landscapes, thus absorbing the concept of a

 Eirini Kontaki

3 Introduction

smart city [44]. It is worth pointing out that little effort has been made globally towards facing
environmental aspects with the assistance of advanced technological solutions [32, 95, 109].

1.3 Big Data in smart city’s ICT network

Since digitization has become an integral part of everyday life and many cities have already
adapted technologies in order to meet the aforementioned needs, data collection has resulted
in the accumulation of huge amounts of data that can be used in various beneficial application
domains. Data is being generated from multiple sources, such as sensor and smart devices,
cameras, smart phones, social media, commercial transactions, advertising application and so
on. All this is made possible due to the continuous and rapid diffusion of electronic devices
capable of retrieving and transmitting data, which have supported the growth of the Internet
of Things (IoT) [124, 173]. Smart cities’ IoT-like infrastructure allows data to be collected: (a)
in huge volumes, (b) in the form of continuous, volatile, high speed data streams and (c) in
both structured and unstructured format in multiple modalities (video, image, GPS, time
series). Data is so complex that it is difficult to ingest, store, manage and process using
traditional database and software tools [112]. Gartner, a leading research and advisory
company in Information Technology, summarizes big data as high volume, high velocity
and/or high variety information assets that demand cost-effective, innovative forms of
information processing that enable enhanced insight, decision-making, and process
automation [68].

Adapting an ICT network in a smart city setup implies the use of different computing
technologies depending on the requirements and the demand on different sectors. New
technological advances allow wireless communications offering great standardization of low-
power communication protocols, which make it possible to obtain sensor data almost
everywhere and at any time. A smart city network comprises a number of technological
components, including the physical sensor infrastructure, the network infrastructure, an IoT
middleware for digesting heterogeneous data streaming in from the network, data processing
and analytics platforms and visualization tools illustrating the outcomes extracted from
analytics procedures [103].

Although there are many different domains where big data find application in, this thesis
focuses on their impact in smart cities towards a sustainable economic growth and an
enhanced life quality.

4 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

1.4 Contribution

Smart cities constitute the cornerstone towards creating sustainable urban dynamics to
mitigate excessive resource consumption for the benefit of the environment and human well-
being. This thesis focuses on highlighting the importance of big data analysis in a smart city
context by reviewing existing technologies that enable city authorities to produce valuable
insights and facilitate the decision-making process both in the short and in the long run.

Towards that direction, this work:

(i) emphasizes on specific smart city focus areas (i.e., transportation, resource and
environmental management) presenting the benefits of the provision of ICTs,

(ii) presents usual problems related to the aforementioned focus areas,
(iii) reviews existing technological solutions with a reference to existing sensing

technologies,
(iv) analyzes and translates usual problems into business objectives and key

performance indicators,
(v) underlines the technological challenges of utilizing large amounts of data and

interprets them in technical requirements,
(vi) provides an in-depth analysis of existing technologies for big data processing,
(vii) incorporates the technical requirements into a full-fledged architecture of a smart

city in refer to existing technologies for big data analysis and
(viii) summarizes algorithmic suites that can be implemented with the suggested

technologies for big data analysis.
(ix) The aforementioned are pursued through a real smart city scenario of Heraklion city,

according to which we design big data processing pipelines for a number of core
services such as parking, water and air quality monitoring, reporting future benefits
for the stakeholders.

1.5 Thesis outline

In Chapter 2, we present the ICT network of a distributed setting with a reference to different
sensing technologies that are commonly used in various smart environments.

In Chapter 3, we introduce the aspects of the main smart city domains on which we are going
to focus (i.e., transportation, resources and environmental aspects) and identify potential
issues and difficulties towards realizing the concept of a sustainable city infrastructure. In
addition, we report indicative examples of existing technologies adopted by smart cities
setups based on the literature underlining the physical structure of the ICT network with a
reference to existing sensing technologies.

In Chapter 4, we analyze and translate the reported issues into business objectives and key
performance indicators that need to be served by big data analytics tasks.

Chapter 5 introduces the business logic scenarios for big data processing pipelines by
presenting indicative configuration examples in terms of data recording and reporting
intervals followed by the data flow, application logic and the mechanism that will
communicate the data to the stakeholders. Moreover, this chapter underlines the

 Eirini Kontaki

5 Introduction

technological challenges of utilizing large amounts of data and translate them into specific
technical requirements.

In Chapter 6, we incorporate all the above in a full-fledged architectural design proposal
tailored for smart cities and analyze indicative solutions on big data platforms according to
the specific requirements.

Chapter 7 reviews existing algorithms and algorithmic suites that are generic enough to
accommodate broad categories of analytics tasks useful within a smart city context. Through
this chapter, we provide specific algorithmic solutions that can be implemented within the
aforementioned big data platforms in various parts of the proposed architecture.

Finally, Chapter 8 focuses on exemplifying the presented methodology, architecture and
algorithmic apparatus with a real case study, the Heraklion Smart City, by elaborating
indicative big data pipelines of big data platforms and reporting future benefits.

6 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

2 A SMART CITY’S ICT NETWORK
The evolutionary ICT landscape that is progressively embedded in everyday life environments
encompasses large amount of smart computing technologies. Harrison et al. [90] refers to
smart computing as the integrated hardware, software and network technologies that provide
Information Technology systems with real-time information and advanced analytics aiming to
assist humanity to make more efficient and intelligent decisions in a proactive fashion.

ICTs are able to record and process raw data, extracted among the various city services (e.g.,
transportation, health, education, police, water, etc.), and eventually transmit them via
wireless or wired network infrastructure to city authorities’ data centers, public or hybrid
clouds. There, powerful computing resources or High Performance Computing (HPC)
infrastructures are able to handle such large amounts of information. The main challenge is
to ensure that big smart city data processing will be horizontally (i.e., adding more nodes to a
system) and vertically (i.e., adding more resources to a single node) scalable. This should be
achieved with respect to both the accumulated data volumes and the number of employed
devices collecting relevant streams of data, resilient to changes. Data processing should not
only serve city authorities’ mission but also remain open for third party innovation in the city,
by offering functionality and open data middleware technologies (i.e., Application
Programming Interfaces) [24, 103].

The analysis in the following chapter is based on the architectural approach adopted by the
authors of [103]:

(a) The physical sensor infrastructure,
(b) The network infrastructure for communicating and fusing sensor data,
(c) An IoT middleware for digesting potentially heterogeneous information streaming in

from the network,
(d) Data processing and analytics platforms within data centers and clouds, and
(e) Visualization tools that present the outcomes of analytics tasks so that the value

extracted out of the analytics procedures is presented in a comprehensive fashion.

2.1 Main sources of data generation in a Smart City Infrastructure

A smart city infrastructure generates an enormous amount of data that need to be handled,
stored and made available. The main sources of data generation are smart devices, web
services and sensing devices.

2.1.1 Smart Devices

Smart mobile devices (smartphones, tablets) constitute nowadays, a very common source of
data gathering anywhere and anytime at a very low cost. Smartphones are used for many
purposes to cover different needs. Modern smartphones are equipped with sensing
technologies, such as image sensors, sound and touch sensors, accelerometers, GPS,
gyroscopes and magnetometers. They are able to generate various information regarding an
individual’s location, orientation, health, daily movement, etc. Over 5 billion people around
the world use smartphones every day to make calls, communicate through social media and

 Eirini Kontaki

7 A Smart City’s ICT Network

search for information, while it is estimated that the accumulated digital world of data will
increase from 33 zettabytes in 2018 to around 175 zettabytes by 2025 [160].

2.1.2 Web Services

Web services, such as social media, generate huge amounts of data that may be of interest in
a smart city environment. However, the data veracity and quality should be carefully taken
into account before being used. Web services generate unstructured data, which contain a
significant amount of uncertain and imprecise data. Techniques such as semantic web and
linked data [57] have been exploited in order a smart city’s stakeholders to be able to obtain
information from websites, as well [150].

2.1.3 Sensor devices

Nowadays, sensors of any size together with actuators and microelectronic processors are
installed to everyday objects towards adapting ICTs in smart environments. In general, smart
sensor devices or sensor nodes are capable of measuring data input from the physical
environment and intercommunicate through wireless connection with each other comprising
a Wireless Sensor Network (WSN) infrastructure [30]. Sensing devices generate data either
through periodic observations or through event-based observations. IoT devices programmed
with the former contain information on a configurable frequency basis, whereas event-based
observations [71, 62] are reported only upon the detection of a change in the parameter they
measure [115].

The main components of a sensor node are (i) sensory devices, (ii) processors, (iii)
transceivers, and (iv) the energy source. Sensor nodes can serve as the sources of smart city
data per se, or as relay nodes forwarding required information to intermediate backbone
routers. Deploying low-cost sensors and various types of smart objects to collect data from
public infrastructure, allows smart cities to increase operational efficiency by obtaining a
picture of the actual physical realm in a timely fashion.

In Table 1, we present different types of sensing devices that can be used in various application
areas in a city in refer to the type of energy they detect as signals [32]. Additionally, each
sensor type is classified to one or more smart city focus areas that are going to be explicitly
discussed in the following chapter.

8 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Table 1: Different sensing technologies
Sensor types Examples Application areas

Location sensors GPS, active badges Road traffic monitoring,
Waste management

Optical/vision sensors Photo-diode, color sensor, IR and
UV sensor

Road traffic monitoring,
Air pollution intensity

Image sensor Stereo-type camera, infrared Road traffic monitoring, Parking
management

Sound sensors Microphones/ultrasonic sensors Road traffic monitoring,
Parking management,
Water management,
Waste management

Temperature sensors Thermometers Weather management
Humidity sensors Electrolyte sensor, polymer-based

sensors, hygrometers
Weather management

Chemical sensors Gas sensors, dissolved oxygen (DO)
sensor, conductivity sensor,
turbidity sensor and pH/ oxidation
reduction potential (ORP) sensor

Waste management,
Air pollution intensity,
Water monitoring

Meteorological sensors Barometer, pressure gauges Weather monitoring
Motion sensors Speedometer, mercury switches,

tachometer
Road traffic monitoring

Physical movement
sensors

Accelerometers Road traffic monitoring

Identification and
traceability sensors

RFID, NFC Road traffic monitoring
Waste management

Magnetic field sensors Magnetic sensor Road traffic monitoring
Parking management

The selection of the appropriate sensors in a given context conceals important challenges that
need to be taken into account including, but not limited to, the accuracy, environmental
conditions, range, calibration, resolution, cost, robustness and repeatability.

 Eirini Kontaki

9 Smart City Focus Areas

3 Smart City Focus Areas
In this chapter, we introduce three distinct areas of a smart city, related to transportation,
resources and environmental aspects, subdivided into six vertical sectors, referred to as sub-
dimensions in Table 2. Specifically, we underline the importance of the deployment of ICTs in
terms of the environmental impact and human well-being, while we project potential benefits
towards a more efficient resource management. The presented focus areas will constitute the
focal point of this work in terms of leveraging big data with an emphasis on extracting
knowledge that may prove valuable to governments and city authorities.

Table 2: Sub-dimensions of KPIs

Dimension label Dimension Sub-dimension label Sub-dimension
D1 Smart

Transportation
D1.1 Road traffic monitoring
D1.2 Parking management

D2 Smart
Resources

D2.1 Water management
D2.2 Waste management

D3 Smart
Environment

D3.1 Air pollution
D3.2 Weather monitoring

3.1.1 Smart Transportation Management
Mobility is one of the most important facilities to support the functioning of any urban area
[154]. However, it is a fact that transport produces negative impacts affecting the life quality
in cities, causing air pollution, street congestion, time and fuel consumption, while it entails
high transfer costs. In this context, smart mobility is considered an important aspect to focus
on enabling city authorities to locate traffic bottlenecks, through efficient road traffic
monitoring and parking management, and adapt proactive measures for congestion
mitigation.

The key stakeholders regarding the initiatives of smart mobility can be classified into public
transport authorities, private companies, citizens, environmental agencies, as well as public
bodies and local governments.

3.1.1.1 Road traffic monitoring

Traffic congestion can be caused by physical bottlenecks, traffic incidents, work zones, traffic
control devices, special events or weather conditions. Congestion has a negative impact on
both the economy and the environment. Therefore, municipalities tend to adapt ICTs to
monitor and mitigate congestion. Smart technological infrastructures provide necessary and
real-time information that upon being analyzed can decrease the exposure of vehicles to
highly congested areas and recommend efficient driving patterns.

In order to achieve the above, wireless network sensors distributed along a city center are
considered an effective solution for large areas coverage in comparison to wired sensors
networks that require high deployment and maintenance costs [149]. A wireless sensor
network allows multiple sensory devices to be networked together and share geographically
distributed information through wireless communication protocols and are able to detect the
presence, speed, density and occupancy ratios of vehicles. Moreover, fetching GPS data from
drivers’ smart devices or even historical data, smart solutions for traffic management can

10 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

predict through machine learning techniques, which areas are more prone to traffic
congestion and thus take measures to prevent it.

Figure 2: A smart on-road traffic management infrastructure (Source: ScienceSoft [145])

Roads equipped with tags and sensors forward important information to traffic control sites
and transportation vehicles to better route the traffic and provide citizens and authorities with
real-time transportation information [24]. Magnetic sensors are the most widely used sensors
in the transportation field especially in cases of moving vehicles detection. They are
considered sensitive, robust on demanding weather conditions (e.g., fog, rainfall, snow,
storm, etc.) and easy to maintain [184, 43, 129]. These sensors are able to detect magnetic
anomalies in Earth’s magnetic field originating from the presence of cars and are based on
magnetoresistors, which can obtain information such as the number of vehicles and speed
statistics [103, 149]. Alternative sensors for vehicle detection are optical sensors [105], RFID
and NFC [24], acoustic sensors and video cameras, although they have been proven less
accurate and robust than magnetic sensors [184].

The authors of [43] present the physical architecture of a prototype wireless sensor network
in a traffic surveillance system consisted of a number of sensor nodes and a single access
point. The latter has superior computation resources, enhanced radio communication and
unlimited power supply. A processor processes the raw data in the sensor node to extract
useful information. In the specific setup, the output of the sensor node is transmitted to the

 Eirini Kontaki

11 Smart City Focus Areas

access point through either a direct communication or a multi-hop communication across
other sensor nodes. Eventually, the access point processes the data collected from all the
nodes in the network to extract more information and visualize them into a meaningful format
in order this information to be shared to the stakeholders (i.e., end-users, GPS transceivers,
radiophones, authorities, etc.).

In addition, smart cities are able to confront high volumes of traffic congestions through
interconnected smart traffic lights consisted of sensors able to collect information about
traffic flow patterns, such as vehicle speed, traffic density, waiting time at the lights and traffic
jams [6]. For instance, whenever a traffic management platform receives a congestion alert
from the sensor nodes, it sends a command to the traffic lights’ actuators to alter the signals
and re-route part of the traffic.

Dublin city, in terms of the initiative Smart Dublin [152], has embedded in the city’s traffic
lights a system that dynamically responds to congestion using sensors at traffic intersections
to detect the number of vehicles in each lane and the number of pedestrians waiting at the
signals. Additionally, Los Angeles, as being one of the most traffic-affected cities in the world,
is deploying a network of smart controllers to make automatic traffic lights adjustments,
reacting to changing traffic conditions in real time. The system uses magnetic sensors in the
road to measure the flow of traffic, cameras and a centralized computer system that makes
constant adjustments to keep cars moving as smoothly as possible [145, 163].

Moreover, a number of sensors allocated in the city center of Santander and embedded under
the asphalt, collect data on rainfall and road traffic, which is sent to a control center to help
the city provide services more efficiently [161]. Specifically, in the SmartSantander testbed
[42] a sensor node wakes up within predefined time intervals, takes readings from the sensors,
transmits the data, and returns to sleep mode in order to save more power. Every minute,
traffic intensity information is provided with the node ID and its localization (latitude and
longitude), while the current occupancy and the number of vehicles on the lane are recorded
[170].

In such cases, big data analytics are essential in order to build an intelligent decision system
installed in a data center. They process the extracted values in order to make decisions and
send the appropriate instructions to the lights and signals. Additional smart traffic light
systems, adapting different smart city technologies (e.g. magnetic sensors, car’s on-board
software and GPS, cameras, etc.), have already been tested and installed in Pittsburgh, USA
with over 20% of reduced emissions due to reduced traffic jams and waiting times [6], in
Santander, Spain [42], in Oulu, Finland [108] and so on.

3.1.1.2 Parking management

Finding a parking place given the rapidly increasing number of vehicles in large urban centers
makes smart parking systems an inevitable need towards reducing the traffic congestion, time
and fuel consumption. This raises also serious problems of pollution and noise that need to
be mitigated. According to the survey of [116], smart parking systems include parking
availability monitoring, parking reservations and dynamic pricing schemes to benefit the
drivers, the parking operators and the municipal police. Moreover, the authors of [85] present
parking predictive models including a comparison of static and dynamic models that were

12 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

used to address parking lot management providing decision support to drivers that need to
reach their destination in the shortest time possible. An indicative pilot IoT-based setup
introduced by Deutsche Telekom is illustrated in Figure 3 [58].

Figure 3: Smart city pilot project for parking optimization

According to the setup in Figure 3, the following main components are considered necessary
in order to collect and process data in an integrated parking management infrastructure:

 Parking Sensor Nodes: Indicative types of sensors proposed in the past for parking
monitoring include infrared sensors, ultrasonic sensors and image sensors [184, 107,
40], however, each one of them introduces restrictions that can lead to erroneous
judgments. On the other hand, magnetic sensors have been used and installed in situ
in cities such as Heraklion [103] and Barcelona [26] and have been reported as more
precise and robust for the collection of parking availability information [149, 138].
Magnetic sensors are installed along the public roads (on-street parking) and in
designated parking areas, while they provide information in predefined intervals
regarding the occupation status of the specific parking spots.

 Processing Unit: It comprises a processor (e.g. Raspberry pi, Orange pi, Arduino, etc.)
that collects the data extracted from the nodes, processes and transmits the
information to the data servers.

 Cloud platform: A central data center based on cloud computing platforms that allow
online storage of all the records related to parking areas.

 Mobile application: A mobile application with an embedded navigation system can
be proven a cost and time saver for drivers that need to find a parking place with the
least effort. All the necessary information can be visualized in an intuitive way for
the end-users, illustrating the parking spots that are occupied or available on a real-

 Eirini Kontaki

13 Smart City Focus Areas

time parking map. The information provided can be personalized according to the
audience that is addressed (e.g. authorities, citizens, municipal police, etc.).
Moreover, a dedicated web application deployed by the authors of [103] aims to
facilitate the municipal police to track cars that park in prohibited areas, such as
parking lots for individuals with disabilities, pedestrian crossings and other.

Figure 4: A smart parking infrastructure using magnetic sensors (source: Libelium)

3.1.2 Smart Resource Management

Pervasive sensing technologies enable techniques to optimize resource allocation in a city
context through data that provide necessary information to predict and avoid disastrous
events (e.g. floods, water contamination, etc.) or even confront with every day challenges
including waste collection and irrigation.

3.1.2.1 Water management

The issues arising regarding water management are twofold. Τhe integration of technologies,
such as smart pipes and sensor networks, smart metering and Global Positioning System (GPS)
coordinates, are essential for smart cities in order to be able to mitigate: (a) problems in the
urban water sector and prevent water contamination and (b) excessive water consumption
and water loss from leaks. Daily, monthly and yearly reports are necessary to draw important
conclusions towards that direction.

Since water covers a 71% of the Earth’s surface, it is a vital resource for the humanity and the
environment itself. However, climate change along with rapid urbanization and inappropriate
urban planning have led to water-related issues that call for immediate action adopting
strategies for a smart water resource management. Such issues may include flooding
disasters, water pollution and water shortages [130]. Cutting-edge ICTs are able to monitor
water in polluted and contaminated areas (i.e., the quality and quantity of water in rivers and
lakes), caused by agricultural fertilizers, industrial wastes, etc., in order important decisions
to be made promptly to protect citizens from consuming contaminated drinking water in a
timely manner [127, 41].

14 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Specifically, studies suggest that approximately 783 million people lack access to clean water,
2,5 billion lack access to adequate sanitation, and 6 to 8 million are dying per year due to
water-related diseases and disasters [98]. More specific, smart water management systems
aim to provide access to safe water, to manage demand and supply, and to develop a pricing
mechanism.

Moreover, in case limited quantities in water reservoirs are foreseen, municipalities could
monitor relentless consumption, while at the same time the quality of drinking water needs
to be continuously controlled to protect people from contamination. To tackle these issues,
governments and municipalities have activated water management systems that aim at
planning, developing, distributing and managing the optimum use of water resources [144].
Yet nowadays, many cities lack of water ICT standards in a way that water consumption,
distribution, system identification and equipment maintenance cannot be properly monitored
and controlled. However, the provision of IoT technologies in water management can lead to
energy costs reduce and minimization of human intervention. With the use of sensors (e.g.
water leak sensors) and actuators, real-time data can be monitored and proactive
improvements can take place in water management infrastructures. An indicative example of
a smart water infrastructure, introduced by [158], is presented in Figure 5.

Figure 5: An example of Smart Water Network infrastructure

The report of [148] has presented an IoT-based solution comprising three main components
that are considered necessary to collect and process data in a typical water management
infrastructure:

i. Sensors: Installations of specialized sensors across the water grid accompanied with
microcontrollers (e.g., Arduino, Raspberry Pi) that are able to collect information (i.e.,
water level, water temperature, conductivity, etc.) and through a communication
device to forward it to a central server.

 Eirini Kontaki

15 Smart City Focus Areas

ii. Centralized server: The sensors transmit data to a local server and a central server
fetches processes and extracts useful information. Data are then translated into
measurable results through data analytics platforms. For instance, if a leakage occurs
and the chemical composition of water changes, the cloud platform triggers an output
defined by the users.

iii. Data visualization tools: With the use of a cloud platform, the extracted results can
be easily illustrated in a comprehensive way, through a web interface, allowing
authorities to manage the water supply infrastructure more efficiently and solve
upcoming issues proactively.

Dedicated sensors installed in water reservoirs can be used to record the quality and quantity
of water (i.e., water level, water temperature, conductivity, PH and ions {NH4+, NO3−, Cl−,
and Ca2+}), thus providing meaningful results to stakeholders, such as municipal authorities
and citizens [103]. For instance, a number of sensors deployed at different levels (e.g. 20%,
40%, 60% and 80%) in water tanks can provide through a communication protocol the
appropriate information to data servers, through which notifications will be sent to
stakeholders whenever the water level goes below the threshold.

An indicative example introduced by [41], is a water monitoring system installed in Bristol city
that controls the water quality. The system comprises a multi-sensor (i.e., a dissolved oxygen
(DO) sensor, a conductivity sensor, a turbidity sensor and a pH/ oxidation reduction potential
(ORP) sensor) and a camera based on a wireless sensor network solution.

Another example is deployed by SmartSantander [172]. Through its smart water initiative the
city mitigates water consumption costs by empowering residents to manage their water use
through a smartphone app. They have access to real-time data on water quality and
consumption, track trends over time, and receive service alerts.

Moreover, smart water meters installed in buildings’ water supply infrastructure could
indicate excessive consumption, leakage identification and so on. Addressing this issue,
actuators are able to monitor the water consumption per household and control the water
flow in cases of excessive usage during periods that the water reserves of the city are below
limits [148].

3.1.2.2 Waste management

Nowadays, waste collection is an arising matter that needs to be triggered in respect to
dynamic route optimization for routes followed by waste collecting trucks, cost efficiency and
environmental pollution. Oftentimes, waste containers are emptied from cleaners at certain
intervals, according to their daily routines regardless whether they are filled up or semi-empty
(Figure 6) [65]. This is not a very efficient approach since it leads to the unproductive use of
waste containers and unnecessary fuel consumption by waste collecting trucks. This aspect,
might also affect the urban living having both an environmental and a socioeconomic impact.

16 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Figure 6: Common situation of garbage cans' filling status in todays' cities

Advanced technologies enable municipalities to use intelligent ways focusing on managing the
waste cost efficiently, being more environmentally responsible, including waste recycling and
re-use processing, and thus improve the human well-being [7]. Sensoneo, an enterprise
specialized in smart waste management solutions [146] underlines that this can be achieved
through embedded monitoring systems providing cities and businesses with data-driven
decision-making, and optimization of waste collection schedules and routes, frequencies,
vehicle load and trash container load. Pick-up services depending on real-time requirements
could optimize the routing operations of the cleaning service. IoT components incorporated
into trucks with surveillance systems that monitor the recycled waste and into waste
containers to gather data about the level of the waste, can offer a more efficient process of
waste collectors. Such components include, but are not limited to, RFIDs, sensors, cameras,
and actuators [120].

According to [7], a waste management network may consist of:

(a) the physical infrastructure that involves among others the waste bins, waste location,
the fleet of trucks, recycling and processing of recyclable waste,

(b) the IoT infrastructure that includes technologies such as RFID tags, Near Field
Communications (NFC), sensors (e.g. capacity, weight, temperature, humidity and
chemical sensors), Wireless Sensor Networking (WSN) for broader communication,
actuators, cameras, GPS and a cloud server able to collect the data and communicate
them to end-users, and

(c) software analytics, which involve: (i) dynamic scheduling and routing processing, (ii) GPS
coordinates that focus on the processing of spatiotemporal information and (iii) decision
support systems.

Smart waste monitoring systems presented by [64, 119], integrate sensor nodes in every trash
container in order to measure the fullness and capacity of each bin. The sensors report the

 Eirini Kontaki

17 Smart City Focus Areas

collected data to a central gateway node installed in every sensor cluster, which forwards the
information to a back-end server through wireless internet connection. Sensor clusters are
consisted of sensor nodes installed in a specific range and density within predefined
geographic areas. The data collected and stored to data centers can be analyzed and visualized
with the assistance of an analytics module and afterwards can be send through a web platform
or a mobile application to the city’s cleaning service.

Figure 7: Scenario for municipal waste management proposed by [65]

A real use case adopted by Dublin Smart City [152] concerns smart bins that are able to provide
real time information to the waste division collectors and send e-mails whenever the waste
reaches 85% capacity. A smart compaction module, installed in each bin, accumulates the
trash towards improving the efficiency of the public waste collection service.

In addition, Nordsens solution [131] deploys the appropriate infrastructure to city’s waste
containers aiming to minimize collection costs and manage the collection time. More specific,
it monitors the fill levels of waste containers, equipped with optical sensors able to generate
3D depth maps of a bin’s content. The extracted data are gathered and analyzed in an effort
to optimize routing and navigation for collections, while it predicts waste generation patterns.

Moreover, the city of Stockholm [156] has installed more than 150 smart bins based on solar-
powered software, mobile devices and sensors that report in real time when they are about
to become full and need to be emptied. These leads to more efficient waste collection services
with fewer garbage collection runs, lower costs and reduced emissions.

3.1.3 Smart Environmental Management

In this section, we refer to specific environmental sustainability issues that arise due to various
human factors. Such issues can be proactively forecasted through proper observations of
weather and air quality data in order to prevent health or environmental problems from
expanding.

18 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

3.1.3.1 Air Quality Monitoring

Air pollution is being a major environmental challenge that causes many hazardous effects on
both humans and the environment. Health issues as well as global warming effects increase
due to the intensive air pollution stemming mostly from transportation, road traffic, home
heating and industrial emissions in urban centers. The World Health Organization reports that
ambient air pollution accounts for million deaths per year due to stroke, heart disease, lung
cancer and chronic respiratory diseases [179].

ICTs have been adapted in order to monitor, forecast and report the status of ambient air
pollution in smart cities using cutting-edge technologies able to measure a large amount of
data and extract valuable results. The aim is to provide real-time air quality information to
inform people and guide their daily decision-making. Such data should be accessible to
stakeholders, including vulnerable groups of people (e.g. elderly, individuals with chronic
diseases, genetic susceptible, etc.), environmental scientists, prefectural civil protection
agencies and policy makers, while advanced warnings of potential health-damaging events in
the form of national air quality indices could be also made available [106, 136]. An example of
real-time mobile applications, is presented in Figure 8 [117]. Real-time information can help
advice the public to take proper actions according to their individual health needs and also
raise public awareness adapting more environment-friendly solutions (e.g. using vehicles with
less CO2 emissions, home heating, etc.) [183]. Based on low-cost and accurate sensors, smart
cities are able to deploy a ubiquitous monitoring system using WSN nodes distributed at large
geographic areas. This system could constitute an informative tool for the public able to notify
stakeholders, through proactive alert services, forecasting and warnings, aiming to protect
especially people of high risk.

Figure 8: Mobile application examples illustrating air pollution values and protection recommendations

 Eirini Kontaki

19 Smart City Focus Areas

In the past, various sensing technologies have been proposed aiming to monitor air pollutants,
such as gases (e.g. SO2, NO, NO2, CO2, O3), smoke concentration, and dust particles
accumulated in urban centers. MESSAGE project [122] was deployed to monitor air pollutants
in the city of Cambridge using a combination of dedicated sensors attached on street- and
traffic lights. Additionally, OPENSENSE [134] has developed a network of fixed and mobile
sensors mounted on trams and public buses in Zurich and Lausanne by using, among others,
electrochemical gas sensors (NO2, CO, SO2, H2S) and optical particulate matter detectors. In
this context, data can be aggregated through monitoring stations that cover different regions
and indirect data sources, such as historical time-series data, social network tweets, real-time
traffic data, and city layout [8].

The IoT infrastructure for air quality monitoring deployed by [103] comprises an integrated
sensor node network (including the appropriate sensors, microcontrollers and transceivers),
a data center (could be cloud-based) that stores and processes the extracted data and an API
for mobile and web interfaces that illustrates the results. An alerting and prediction system is
hosted in the main server to process streaming data from the database and provide timely
notifications based on machine learning libraries.

In addition, , air quality sensors were installed near schools, in urban centers, near major
roads, on public lighting infrastructure and so on, enabling authorities to monitor the
generated data and apply measures to reduce industrial pollution, as well as vehicle and
commercial building carbon emissions. In this context, cities could emphasize on expanding
public transport, imposing restricted car access in city centers, forcing stricter vehicle emission
standards, promoting renewable energy resources, etc.

3.1.3.2 Weather Monitoring

Weather monitoring and forecasting also plays an important role on the everyday life due to
its numerous applications in agriculture, farming, fishery, shipping, military operations, etc.
[54]. The integration of ICTs in weather monitoring systems, able to process both real-time
and historic data, can lead meteorologists to important conclusions regarding environmental
threats that may affect the planet in the long run. At the same time, giving access to
information such as ambient temperature, ambient humidity, atmospheric pressure, wind
speed, wind direction and luminosity, smart cities may protect, among others, susceptible
groups of people to expose themselves to extreme weather conditions. An indicative example
of an application developed by [123] that aims to inform citizens about the weather status is
illustrated in Figure 9. In addition, through temperature and humidity observations a city,
applying the appropriate technological mechanisms, is able to predict the energy load from
its own buildings, inform and encourage citizens to use renewable energy sources [151].

20 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Figure 9: Indicative application example for sun protection

The report of [147] presents a Sensor Node consisted of (i) meteorological sensors
(temperature, humidity, wind speed and direction, rain, and atmospheric pressure sensors),
(ii) a low power microcontroller that processes the sensor readings and (iii) a wireless
transceiver that transmits the data to a database. An additional API platform allows the data
to be transferred from the database to a web interface or a mobile application. In that way,
stakeholders, including farmers, gardeners, meteorologists and people suffering from health
diseases, could be properly informed about extreme weather conditions and potential
disastrous events (e.g. floods, storms, etc.).

 Eirini Kontaki

21 Business Objectives and Key Performance Indicators

4 BUSINESS OBJECTIVES AND KEY PERFORMANCE INDICATORS

In the previous chapter, we introduced the focus areas that we are going to exploit in this
work presenting the benefits of the provision of ICTs. As a next step, we need to analyze and
translate usual problems related to the aforementioned domains into concrete objectives.

Specifically, this chapter aims at presenting the business logic that will facilitate IoT-based
cities to mitigate resource consumption by setting specific goals. To that end, we define the
appropriate business objectives together with a set of Key Performance Indicators (KPIs) that
will enable stakeholders to assess how the use of ICTs has an impact on the environmental
sustainability of smart cities focusing on (a) Smart Transportation Management, (b) Smart
Resources Management and (c) Smart Environmental Management.

Identifying Key Performance Indicators (KPIs) of technologies established in smart city
infrastructures aims at making cities smarter and more sustainable, while they provide cities
all the means for self-assessment. The KPIs presented in this chapter enable stakeholders
develop strategies and understand the progress related to the use of ICTs in smart sustainable
cities, while managing the city assets efficiently. As [99] indicates, the selection of KPIs for ICTs
in smart cities is based on the following principles.

➢ Comprehensiveness: The set of indicators should cover all the aspects of smart
sustainable cities. The indicators for evaluation should be aligned to the measured
subject, i.e., the impact of technologies on the sustainability of cities.

➢ Comparability: The KPIs should be defined in a way that the data can be compared
scientifically between different cities according to different phases of urban
development. It should also be possible to extend and amend the set of KPIs according
to the actual stage of development.

➢ Availability: The KPIs should be quantitative, while historic and current data should
be either available or easy to collect.

➢ Independency: The KPIs in the same dimension should be independent or almost
orthogonal in order overlaps of KPIs to be avoided.

➢ Simplicity: The indicators should be clearly formulated and easy to understand. The
calculation of the associated data should be intuitive and simple.

➢ Timeliness: is the ability to produce KPIs with respect to emerging issues in smart
cities.

According to [99], Key Performance Indicators can be utilized by:

o Cities and municipal administrations, including policy-making organizations, and
government sectors, enabling them to develop strategies and understand the
progress related to the use of ICTs.

o City inhabitants and non-profit organizations, enabling them to understand the
development and progress of smart cities with respect to the impact of ICT.

o Development and operation organizations of smart cities, including planning unit and
service providers, operation and maintenance organizations, helping them fulfill the

22 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

tasks of sharing information related to the use of ICT and its impact on the
sustainability of cities.

o Evaluation agencies and academia, supporting them in selection of relevant KPIs for
assessing the contribution from ICT in the development of smart cities.

In an effort to identify the KPIs of technologies established in the presented focus areas in an
IoT-based city infrastructure, Table 3 summarizes some indicative examples of hypothetical
current and target performance that the provision of ICT technologies and the utilization of
big data processing platforms aim to accomplish. A further analysis of the objectives in Table
3 will follow in the next chapter.

Table 3: Measurable Objectives – Key Performance Indicators (KPIs)

Objective
Current
Performance

Target
Performance

Influence on Business KPIs

Reduced on-road
congestion (as less
as possible)

minutes seconds

- Reduced number of vehicles on
the road

- Reduced waiting time at traffic
lights

- Minimize time intervals while
searching for parking

Parking monitoring
(as precise as
possible)

thousands of
illegal parking per
year

tens of illegal
parking per
year

- Reduced illegal parking

Water monitoring
(as precise as
possible)

tens of tons per
year

tons per year
- Reduced water leakage
- Water supply network monitoring

millions of
infections per year

hundreds of
infections per
year

- Reduced disease transmissions
through water contamination

Reduced
environmental
pollution (as less as
possible)

Manual monitoring
Automated
monitoring

- Efficient waste collection services
- Automated monitoring system for

recycling items
- Decreased exposure of vulnerable

groups to air pollution

Weather forecasts
(as precise as
possible)

Automated
monitoring

Automated
monitoring

- Reduced disasters caused by
extreme weather conditions

- Reduced health incidents due to
high temperature and humidity

 Eirini Kontaki

23 Business Objectives and Key Performance Indicators

4.1 Business Objectives for Smart Transportation

After a thorough literature review presented in Chapter 3 and taking into consideration the
serious problems arising from overpopulated cities, the authors underline the most significant
business objectives aiming to mitigate excessive resource consumption and create more
sustainable urban dynamics with the provision of ICTs.

BO1. Reduced congestion rates through early warnings

Road surveillance cameras, personal mobile devices and integrated on-road sensor
technologies allow authorities to monitor the driving behavior and suggest efficient driving
patterns. In particular, drivers can avoid intense congestion through message signs, real-time
notices through the media (e.g., radio) or updated suggestions for alternative routes provided
through Global Positioning Systems (GPS) embedded in vehicles and mobile devices. The road
status can be provided by road surveillance cameras, intelligent traffic lights, personal mobile
devices and integrated on-road sensor technologies able to monitor the driving behavior.

BO2. Reduced waiting time at traffic lights

Smart traffic lights established in large urban centers conquer environmental pollution
stemming from traffic congestion due to increased redundant waiting times [66]. Parameters
such as the vehicle speed, traffic density and waiting time, can be monitored and processed
in order dynamic commands to be transmitted to traffic lights and operate more efficiently
and effectively. At the same time, dynamic response to congestion can be provided to drivers
through early notifications while alternative routes can be suggested according to vehicles’
geospatial position.

BO3. Minimized time intervals while searching for parking

Vehicles need long time intervals to spot a parking space. An automatic notification system
for the nearest available parking lots to their final destination, including people with special
needs, could allow drivers to minimize not only these time intervals but also fuel consumption.
The geographic location of sensor nodes installed in different spots could extract the
appropriate data to inform drivers where free parking lots can be found. Presenting all the
available parking lots of an area facilitates both drivers and parking companies.

BO4. Reduced illegal parking

Illegal parking is a common habit and can lead to reduced traffic speeds, congestion and
accidents especially in large cities. Smart monitoring systems, able to control the status of
prohibited parking (on-road) spots, automatically notify the municipal police to take
immediate actions and thus enforce citizens’ compliance with parking regulations. Parking
regulation enforcement raises the conscience of citizens towards respecting road regulations
and in that way, it facilitates street management and eliminates traffic congestion and road
accidents.

24 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

4.2 Business Objectives for Smart Resources

BO5. Reduced water leakage

Reduced water leakage can be achieved through monitoring the water supply network in
order to act immediately when a breakdown in the network appears or to take proactive
actions beforehand. An automated monitoring system triggers an alert notification (e-mail,
SMS) whenever the water level goes below a predefined threshold or in case it has uncommon
behavior.

BO6. Water level monitoring

Monitoring of the water level of seas, rivers and lakes during the rainy seasons can mitigate
potential inconvenience, such as floods or drought. In case of water scarcity during the dry
seasons, citizens could be informed to consume less amounts of water. Additionally, smart
water supply networks can be automatically adjusted in a way to supply limited quantity of
water in buildings whenever needed.

BO7. Water quality monitoring

The continuous measurement of the water resources’ (i.e., rivers, lakes, etc.) quality will
prevent citizens from hazardous water usage. In case of uncommon indications, the
government or municipalities can get properly informed to take protective measures and
prevent citizens from consuming contaminated drinking water thus avoiding disease
transmissions.

BO8. Efficient waste collection services

Optimizing the waste collection routes can facilitate the cleaning service insuring cost
efficiency. Waste collection services can be notified in real-time with push notifications based
on GPS coordinates of the mobile devices of truck drivers, whenever bins are overflowed with
trash and need immediate intervention.

Furthermore, a dedicated mobile application will enable citizens to share the status of waste
containers, in case they are full and require immediate actions, along with the geographic
position of the specific item. Both a web-based platform monitored by stakeholders and a
mobile application used by the cleaning service could be automatically updated.

BO9. Automated monitoring system for recycling items

Frequently, people accidentally or not knowing put non-recyclables in recycling bins, which
unfortunately breaks down the recycling process. Sensors integrated in the trucks could scan
the recycling trash and identify the existence of organic elements. In case non-recyclable items
are identified, an automated monitoring system can inform the waste collectors to return the
trash back to the household.

 Eirini Kontaki

25 Business Objectives and Key Performance Indicators

4.3 Business Objectives for Smart Environment

BO10. Protect vulnerable groups from exposure to high concentrations of air pollutants

High accumulations of particles and toxic substances (e.g., carbon release steaming from
increased use of fireplaces, industrial emissions, etc.) on air worsen the health condition of
people with respiratory and allergic diseases. People with respiratory and allergic diseases,
including asthma, bronchitis and pneumonia, are prone to high concentrations of air
pollutants both in developed and less-developed cities. A dedicated alerting system based on
geospatial-referenced data could proactively inform susceptible end-users to avoid exposure
to areas with intense pollutant concentration. Push notifications can be send whenever the
values exceed a predefined threshold, providing: (a) the status of air quality, (b) the level of
hazardous substances (e.g. CO2) in the atmosphere, (c) suggestions for alternative routes to
be followed and (d) forecasts emphasizing on extreme pollution events.

BO11. Reduced disasters caused by extreme weather conditions

Monitoring and forecasting weather conditions can be proven very valuable for smart cities
through automated alerts addressed to stakeholders, including citizens, farmers,
municipalities and meteorologists. Rain and wind forecasts allow citizens to avoid accidents
and protect their property (houses, farming, etc.) from extreme weather events such as
floods, storms, hurricanes and drought.

BO12. Reduce health incidents due to high temperature and humidity

High levels of temperature and humidity may have a negative impact to people with health
issues, particularly to those afflicted with cardiovascular diseases, senior citizens and people
with disabilities. For that reason, forecasts of these parameters (e.g. excessive humidity, very
high/low temperatures, etc.) could be forwarded to the vulnerable with the appropriate
warnings about upcoming extreme weather conditions in order to act proactively.

26 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

5 TOWARDS ACHIEVING THE BUSINESS OBJECTIVES

5.1 Big data processing pipeline

A big data processing pipeline typically consists of four distinct phases, not necessarily
sequential: (a) data generation, (b) data acquisition, (c) data storage and (d) data analysis [97,
60]. Each of these phases encapsulate challenges, which if not efficiently surmounted, big data
will not be easily explored in order to deliver valuable results and facilitate the decision-
making process. More specifically:

1. Data generation refers to the way data is generated from various data sources
including sensor networks. Nowadays, most of the data used to understand cities
originate from digital sensors and are available in various forms, with temporal tags
as well as geotags in many instances.

2. Data acquisition: One challenge that arises during the acquisition of data is to define
the filters that should be deployed in order valuable data to be further processed and
less important data to be discarded. In this phase, the appropriate metadata that will
describe the form of the data recorded and the way they are recorded and measured
will be automatically generated [113].

3. Data storage concerns persistently storing and managing large-scale datasets. Cloud
Computing offers many benefits in terms of data storage, although it entails many
challenges. Transferring data to the cloud can be proven a slow and unreliable process
when using traditional transfer software technologies. An exemplary cloud computing
architecture is illustrated in Figure 10, inspired by IBM.

4. Data analysis. There is a general challenge that arises in the foreground regarding
leveraging big data gathered through ICT in smart cities. Cities have ended up with a
vast amount of data and yet without any capability to use these data and without
being able to extract information towards taking better decisions for the public good.
To interpret such data, data-mining techniques together with visualization tools needs
to be exploited and extended through which the visualization of correlations and
patterns will be essential. Big data visualization brings opportunities of presenting
data in a meaningful and intuitive way.

 Eirini Kontaki

27 Towards Achieving the Business Objectives

Figure 10: A cloud-computing infrastructure based on IBM Aspera software [126]

In an effort to enrich the aforementioned architecture, the authors of [28] have introduced
an abstract data analytic pipeline, depicted in Figure 11. However, according to [142] a typical
big data pipeline often consists of many separate solutions that cover one or more steps of
the pipeline.

Figure 11: Data analytic pipeline

28 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

5.2 Business logic scenarios for big data processing pipelines

In this chapter, we outline indicative business logic scenarios for big data processing pipelines
in order to materialize the aforementioned business objectives. More specifically, for each
focus area, we underline an indicative configuration example of the available sensors in terms
of data recording and reporting intervals followed by the data flow, application logic and the
mechanism that will communicate the data to the stakeholders.

Road traffic monitoring:

 Record and count the number of vehicles passing certain points Every 1 min
(through on-road sensor installations)

 Record the number of vehicles waiting in front of traffic lights Every 1 min
 Transmit the number of vehicles passing a certain point Every 3 min
 Transmit the number of vehicles standing in front of traffic lights Every 2 min
 If sensors return value equal to zero, then they send a notification to the server. That

constitutes an indication that either cars do not change position due to traffic or no
cars pass from the specific point at all. This information in correlation with other
measurements of parameters such as CO2 emissions can lead to more precise results.

 If the congestion takes place near to an intersection, the nearest traffic lights will be
appropriately adjusted to mitigate traffic congestion.

 The server will calculate and estimate alternative and shorter routes for the drivers to
follow. This information can be (a) presented through variable-message signs (VMS)
on the road, (b) broadcasted through radio frequencies (TA) or (c) delivered to in-car
navigation systems.

 The server will provide a dedicated API making traffic information open to the public.

Parking monitoring:

 Record sensor status (available or occupied) and type of parking place
(PWD - people with disabilities or PWND - people with no disabilities) Every 1 min
(through sensors embedded in the asphalt in parking lots positions)

 Record start_time and end_time when sensor’s status becomes occupied
 Transmit the current sensor status and type of parking place to the server Every 5 min
 Check if a sensor status remains occupied for longer than the permitted time range

and maximum stay
 Every time sensor’ status changes, the corresponding signal will be send to the server
 Every time the sensor status remains occupied longer than the time range and the

maximum stay and the sensor status is occupied, a warning will be sent to the server
 Whenever the sensor type is PWD and the parking place is available this information

will be forwarded to the server
 The server will provide a dedicated API so as end-users to be informed through a

mobile application
 Every time a sensor installed in prohibited parking spaces is occupied, an emergency

notification will be forwarded to the server
 The server will propagate the event to the municipal police through available

communication channels (Rest API)

 Eirini Kontaki

29 Towards Achieving the Business Objectives

Water leakage detection:

 Record the water flow and pressure Every 5 sec
(through sensors installed in a city’s water supply network)

 Transmit the mean average of the aggregated data to the server Every 5 min
 If the water pressure in certain spots of the pipeline network deviates from the normal

values, then an alert will be sent to the municipal water authority

Water level monitoring in water tanks:

 Record the water quantity consumed per household Every 30 min
(through sensors installed in the pipes of the water supply network of each building)

 Record the water level of the city’s water tanks Every 10 min
 Transmit the mean average of the aggregated data to the server Every 30 min
 If water level in water tanks is below threshold, then sensors will send data to the

server
 If the water quantity consumed per household exceeds normal values, then sensors

will send data to the server
 The server will send a signal and activate valve actuators, embedded in the pipes in

different city territories, to control the water flow
 The server will propagate the event to municipal water authorities through available

communication channels (Rest API)

Water quality monitoring in water tanks:

 Record the water quality parameters in water tanks Every 10 min
(through sensors installed in water tanks of a city and in households)

 Transmit the data to the server Once a day
 In case the values of specific measurements (i.e. temperature, conductivity, pH, water

height, or chloride, ammonium, nitrate and calcium ions, etc.) exceed for instance two
or three standard deviations (95% - 99.7%) from the mean of the total number of
values, that indicates that there are non-normally distributed variables. Therefore, an
emergency notice will be forwarded to municipal authorities through a dedicated
mobile/web application.

Waste management:

 Record the status of trash cans and waste containers Every 5 min
(through embedded sensors in containers able to track different capacity levels:
10%, …, 80%, 90%, 100%)

 Transmit the data to the server Every 60 min
 If the level of the trash exceeds 90% of the bins’ total capacity, then an alert will be

forwarded to the waste collection service through a dedicated mobile app
 Citizens will be able to use the mobile app to inform waste collectors regarding

overloaded trash cans or containers based on GPS coordinates
 The server will calculate and estimate optimized routes for the city’s cleaning service

through a web platform or a mobile application based on GPS routing.

30 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Air quality monitoring:

 Record values indicating air quality Every 5 min
 Transmit the data to the server Every 30 min
 If sensors detect high levels of air pollutants (e.g. SO2, NO, NO2, CO2, O3, smoke

concentrations, etc.), then emergency notifications will be transmitted to the server
 The server will forward the information to a mobile application available for citizens

with health issues and through a web interface giving access to professionals, e.g.
environmental scientists, prefectural civil protection agencies, etc.

Weather monitoring:

 Record values of weather parameters Every 1 min
 Transmit the mean average of the aggregated data to the server Every 5 min
 If sensors detect indications of weather conditions that exceed predefined thresholds,

then notifications will be instantly transmitted to the server
 The server will forward the information to registered users with health issues through

a dedicated mobile application and make it available to stakeholders, such as
meteorologists, farmers, etc. through a web interface

5.3 Big Data volume analysis

The following table comprises an estimation of the data volume generated from a sensor
network in the aforementioned focus areas. In addition, it presents an estimated range of
sensors that can be installed in a smart city setup, in accordance with the existing
infrastructure of the biggest urban centers. More specific, some indicative published records
include ca. 12.500 intersections with traffic signals in New York City (NYC) [128], 18,6 million
parking spaces in Los Angeles [121], 17.000 water tanks scattered throughout NYC [2] and
3.600 installed air quality sensors across Newcastle [5]. As reported by Data-Smart City
Solutions [51], Environmental Defense Fund (EDF) in collaboration with Google embedded
thousands of mobile sensors in vehicles and bikes, which collected more than 150 million data
points over 750 hours of driving.

Table 4: Data volumes extracted from a smart city IoT infrastructure

Parameters Number of
sensors

Data volume
(per sensor,
per day)

Total data
volume
(per day)

Frequency of
updating
data

Frequency of
sending data

Number of vehicles passing
certain points

< 10.000 < 11.500 KB < 115 GB Every time a
vehicle is
detected

Every 3 min

Number of vehicles
waiting in front of traffic
lights

< 12.500 < 19.200 KB < 240 GB Every 1 min Every 2 min

Parking sensor status:
available / occupied

< 18.600.000 < 11.500 KB < 214 ΤB Every 1 min Every 5 min

Water pressure (Pa) < 15.000 < 11.500 KB < 173 GB Every 1 min Every 5 min

Water level of seas, rivers
and lakes (m)

< 1.000 < 40 KB < 40 MB Every 60 min Once a day

 Eirini Kontaki

31 Towards Achieving the Business Objectives

Water quantity consumed
per household (m3)

< 10.000.000 < 1.920 KB < 19,2 TB Every 30 min Every 30 min

Water level in water tanks
(m)

< 17.000 < 1.920 KB < 33 GB Every 10 min Every 30 min

Water temperature,
conductivity, PH and ions
(i.e., NH4+, NO3−, Cl−, and
Ca2+)

< 1.000 < 11.500 KB < 11,5 GB Every 10 min Twice a day

Waste container status
(capacity levels: 10%,…,
80%, 90%, 100%) (cm)

< 12.000 < 960 KB < 11,5 GB Every 5 min Every 60 min

Air quality (SO2, NO, NO2,

CO2, O3)

< 15.000 < 1.920 KB < 28 GB Every 5 min Every 30 min

Temperature (oC), humidity
(g/m3), wind speed (mph)
and direction, rain (mm),
and atmospheric pressure
(atm)

< 1.000 < 11.500 KB < 11,5 GB Every 1 min Every 5 min

It should be noticed that the “Frequency of updating information” involves queries sent from
sensor nodes to report an event in the aforementioned intervals, whereas the “Frequency of
sending information” refers to the information transmitted from the sensor nodes to the
server. In any of the above cases, whenever sensors record data that reach or exceed a
predefined threshold, they transmit the specific event-based observations to the server within
a recent time window.

5.4 Technological Challenges

Below we address the technological challenges and identify the requirements that arise from
huge data volumes in terms of data storage and data analytics applied in smart cities.

5.4.1 Challenge 1: Horizontal scalability

Smart cities need to leverage enormous amounts of data quickly and efficiently (see Table 4).
Handling sheer data volumes that are constantly increasing at a high pace, requires data
processing to take place over a clustered computer architecture composed of multiple
computing machines each equipped with multiple CPUs and CPU cores, which we classify
under the general term “processing units”. Each such processing unit is supposed to undertake
a piece of data to process so that various data pieces can be processed in parallel among the
processing units. For instance, in case analytics need to be extracted out of the generated data
(e.g. average/min/max number of vehicles during rush hours) part of the processing can be
assigned to various cluster nodes each with its own CPU cores. Finally, the combined partial
results can be computed to an overall result. The above refers to horizontal scalability, which
is the ability of the processing to scale with increasing data volumes that arrive at high speeds.

Requirement 1a: The processing of data needs to be distributed to different nodes in order
to deliver useful results to multiple users from different servers. Efficient data processing
through concurrent processes increases the throughput of the system, which is the number
of tuples being processed per time unit (i.e., seconds, milliseconds). Parallel processing or
parallelism allows every single processing unit to process data in parallel. For instance, in both

32 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

the car parking services and the congestion monitoring services, datasets from various servers
that are distributed across a city could be processed in parallel to achieve the most efficient
suggestions for citizens (e.g., closest available parking lots, quickest route, etc.). At the same
time, high-throughput distributed messaging platforms would prove necessary allowing
stakeholders to receive prompt alerts.

Requirement 1b: In a complex environment, such as a smart city, resources should be
allocated to different processing units in response to changes in workload and resource
availability. Elastic resource allocation allows new processing units to be progressively
occupied whenever the data volume and velocity increases and thus complex processing
needs to be executed. According to [174], cloud elasticity is the ability of the cloud
infrastructure to rapidly change (expand or shrink) the number of resources allocated to a
service during runtime. It focuses on meeting the actual varying demands on the service, while
minimizing the resource provisioning costs.

Requirement 1c: Smart city infrastructures generate high volumes of data within seconds,
minutes or even milliseconds, which need of immediate actions. Data can be processed either
through batch data processing or through stream processing. The former is an efficient way
of processing large volumes of data over a period at once although it does not provide results
in real-time. On the other hand, stream processing is considered more appropriate in cases
where continuous data processing, online data analysis and real-time answers are needed.

5.4.2 Challenge 2: Vertical scalability

The demanding technological infrastructure of the use cases presented in this work, i.e. smart
transportation, smart resource and smart environmental management, involve a complex
setup consisted of numerous sensors that generate big streaming data that arrive at high
speeds continuously. For instance, constant reports of average temperature in the
atmosphere and intensity of air pollutants are streaming operations that involve real-time
analytics. Taking into consideration the number of sensors utilized in the proposed setup
along with the number of streams generated by each sensor, the complexity of data streaming
processing requires efficient ways to be handled. More advanced big data analytics involve
quantifying pairwise correlations of streams originating from sensors. The computational
complexity of judging such pairwise correlations is quadratic to the number of input streams,
thus the targeted smart city use cases may operate over tens of thousands of streams.
Therefore, vertical scalability, i.e., the ability of the computation to scale with the increasing
number of incoming streams, is an essential issue that needs to be accounted for to meet the
set business goals.

Requirement 2: Instead of naively adding more resources to the cluster to cover the
potentially quadratic (or higher) complexity of certain analytics tasks, one needs to come up
with scalable real-time algorithms, focusing on the particular problems. Choosing
representative sensor streams and relying on stream approximation techniques with
predefined accuracy guarantees is a standard way to proceed with in order to achieve vertical
scalability. In other words, an approximation technique may sample only a number of streams
to analyze [73] or apply some dimensionality-reduction technique [72, 75] to reduce the size
of the streams and speed up the computation. More specific, state-of-the-art site sampling

 Eirini Kontaki

33 Towards Achieving the Business Objectives

techniques [73], perform analytics using a sample of sites proportional to √N instead of N,
where N is the total number of sites in the network. Similarly, dimensionality reduction
techniques applied for sensor data, pinpoint interesting phenomena such as outliers
mentioned in [72, 75] to reduce the amount of communicated data and the number of
pairwise similarity comparisons. These two approaches combined could be considered a
plausible way to proceed.

5.4.3 Challenge 3: Federated scalability - Communication reduction

Communication reduction is of the essence in smart city settings since one of the most basic
ingredient of their physical architecture setup involves battery-powered sensors and wireless
or wired network infrastructure. In massively distributed settings, such as the smart city
scenario discussed in this work, the amount of transmitted messages need to be reduced for
two reasons. Firstly, data transmission through battery-powered sensors is the main culprit in
energy drain [76]. If sensor nodes deplete their remaining energy quickly, they will soon die.
Consequently, when a fraction of nodes in the network dies, the whole network’s graph
connectivity will be lost. Secondly, when leaving energy consumption issues aside and
allowing all streams to be pushed towards a corporate data center (cluster) or the cloud, the
network links transferring these streams will eventually become overloaded. Thus, lags in
communication will appear and the required needs for online stream analysis and real-time
delivery of big data analytics to smart city applications will not be satisfied.

Requirement 3: Besides using stream approximation and summarization techniques as those
mentioned in Requirement 2, there are a couple of standard tools to employ in our setup in
order to achieve communication reduction. On the one hand, in-situ processing constructs
qualifying conditions and places local filters to sensors aiming to minimize communication by
performing as much of the computation locally at the sensor as possible. While in-situ filters
may be easy to set for simple analytic tasks, they are much more challenging to adjust for
generic, non-linear event query operators [74, 71, 62]. On the other hand, in-network
processing is an additional tool since it pushes the evaluation of analytic operations, defined
on the union of local data streams from different sensors, to sensors or network elements
that are near to the relevant sensor sources. In that way, the qualified portion of local data
streams that passes through in-situ filters is synthesized early, extracting compact aggregate
information to forward it further in the network. In this context, an optimizer module
instructing in-situ filter construction and executing in-network processing filters would be
required [63].

5.4.4 Challenge 4: Fast setup of new big data processing pipelines

In rapidly changing environments, like the one we examine in this thesis, new big data
processing pipelines may need to be defined at any given time according to the needs of new
analytics tasks that domain experts and data analysts desire to follow. However, data analysts
and domain experts often do not possess the necessary programming skills to materialize the
necessary data processing pipeline in a timely fashion. It may take days, weeks or months to
prepare and correctly execute newly constructed big data processing pipelines for data
analysts that are not data scientists.

34 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Requirement 4: A visual tool for setting up the desired data processing pipelines that would
automatically translate the setting to optimized code is highly desirable. In contrast to
mainstream solutions, what is needed here is to design and develop a flexible, pluggable,
distributed software architecture that will be largely programmable and set up by graphical
data processing workflows. This will allow experts with no programming skills to take the most
out of the underlying computational resources, by interactively querying data-at-rest and
data-at-motion and experimenting with a multitude of otherwise highly-opaque models with
complex parameter configurations.

5.4.5 Challenge 5: Cross platform execution of big data analytics tasks

Nowadays, numerous applications have been developed to cover different needs. These
produce diverse and large datasets that have to be analyzed and ultimately translated into
valuable conclusions for the decision-making process. To cover that need big data analytics
platforms are being continuously evolving in order to allow end-users to have access to a
range of different analytics tasks. Thus, emerging applications use or exploit the use of a
diversity of platforms for effective or efficient data processing. However, applications are
typically tied to one single platform, whereas different data analytical pipelines need to
intercommunicate with one another through cross-platforms for data processing.

Requirement 5: Α systematic solution that enables efficient and easy-of-use cross-platform
optimization for data analytics is required. A dedicated middleware, able to answer queries
among big data platforms, would prove inevitable in order to allow applications to run over
one or multiple platforms efficiently.

5.4.6 Challenge 6: Optimized big data pipelines’ execution over heterogeneous
clusters or clouds

There is a recent trend in major cloud providers, such as Amazon AWS [93], to provide High
Performance Computing (HPC) cloud infrastructure by allowing clients use CPU and GPU
servers on-demand, optimized for specific applications. Emerging cloud applications (i.e.,
machine learning, artificial intelligence and big data) require high performance computing
systems able to sustain the exponentially increased amount of data without consuming
excessive power. In the smart city context, certain authorities may have securely exposed
their data and big data processing pipelines and in that, they should be able to examine the
potential of speeding up the execution of their analytics tasks leveraging such infrastructure.

Requirement 6: To address this challenge, an optimization module at the city authority’s side
is needed in order to help deciding which parts of the set up big data processing pipelines are
worthwhile of being executed over GPU accelerators [103].

 Eirini Kontaki

35 Proposed Architectural Framework

6 PROPOSED ARCHITECTURAL FRAMEWORK

This chapter focuses on presenting the architectural framework of a smart city that exploits
technologies to support the focus areas elaborated in Chapter 3. The proposed framework
introduces specific technological solutions to address the challenges of Chapter 5.4 and
ultimately to fulfil the business objectives defined in Chapter 4.

6.1 A Generic Architectural Framework

In the following architecture, we present a city governance model that comprises the city main
authority, referred to as Smart City Governance, and three sub-authorities regarding (i)
Transportation Management, (ii) Resource Management and (iii) Environmental
Management.

Figure 12: Framework architecture. Addressing the requirements arising from the technological challenges

36 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Streaming event data arriving at multiple, potentially geographically dispersed, platforms
should be efficiently processed in situ and then combined to provide holistic answers to global
application queries. In our context, Smart City Governance needs to monitor and combine the
information extracted locally from each sub-authority. To achieve this, Visual Analytics tools,
enable Smart City Governance to query, visualize, alert on and understand metrics extracted
locally from each sub-authority. Application queries can be processed through a technological
component, named Data Workflow Design Facilities, that enables stakeholders to create
intuitively new data processing pipelines combining different big data platforms, based on
Requirement 4. Afterwards, specific requirements originating from the main authority are
forwarded to a Cross Platform Optimization middleware (Requirement 5). The optimizer
ensures the appropriate management of the queries and determines efficient execution
mechanisms, combining different applications that run over multiple big data platforms.

The middleware communicates with the sub-authorities where analytics tasks are deployed
locally. Each city authority submits queries using different platforms to extract numerical and
graphical analytics results and forwards them to the Optimizer Component. The optimizer
module needs to be able to instruct in-situ filter construction and execute in-network
processing filters based on Requirement 3. The flood of high speed of streaming data
abstracted from sensor feeds can easily overwhelm the, often, limited CPU memory capacities
of a stream processor. To overcome this issue, the optimizer component decides which tasks
need to be performed in one or more Heterogeneous Clusters by distributing them to CPU
and GPU servers upon demand depending on the required computing performance, based on
Requirement 6. This can be also achieved through public or hybrid High Performance
Computing (HPC) clouds.

Then, the optimizer will instruct Big Data Management Platforms how to parallelize the
required work and how they need to be handled, including assigning tasks and aggregating
partial results, based on Requirements 1 and 2. At the same time,

The following figure (Figure 13) illustrates a more detailed (zoomed-in) view of the “Big Data
Management Platforms” component. Big data Platforms receive as input the aggregated data
arriving from WSN nodes, GPS devices and other sources. Since the data comes from various
sources, it needs to be cleansed and transformed in a comprehensive format in order to be
further analyzed. In this context, comes data ingestion that is the operation of fetching raw
data from external sources and converting it into a format suitable for processing. In the
presented architecture, a “publish and subscribe” messaging system is added before batch
and speed layer, to provide instant event notifications for the distributed applications. The
publish/subscribe (pub/sub) model enables event-driven architectures and asynchronous
parallel processing, while improving performance, reliability and scalability [25]. In a pub/sub
model, any message published to a topic is immediately received by all the subscribers to the
topic. In particular, neither senders (“publishers”) nor receivers (“subscribers”) need to be
aware of who uses and who provides the information of messages. Instead, message brokers
receive and transmit the data associated with one or more publishers or subscribers and
ensure that the messages are delivered to the correct subscribers. A number of
publish/subscribe platforms both for batch and speed layer capable to handle a vast amount
of streams of records, will be introduced in the following section.

 Eirini Kontaki

37 Proposed Architectural Framework

Figure 13: Framework architecture. A more focused analysis

The complexity of a smart city’s infrastructure entails the challenge of effectively analyzing
the exponentially growing data. For that purpose, advanced statistical analysis is required in
any smart city setup to extract valuable insights and allow stakeholders to take proactive
decisions by exploring easily and receiving fast comprehensive answers to their queries. In this
regard, a Synopses Data Engine (SDE) [166] will answer analytic queries using statistical
sampling techniques and probabilistic data structures, without processing the entire dataset.
SDE allows data analysts to run high-speed interactive analytics over billions of records.

Afterwards, our architecture comprises a combination of both batch (stored data) and stream
processing (real-time data), known as “Lambda Architecture”. Lambda Architecture is a data-
processing architecture designed to handle massive quantities of data by taking advantage of
both batch and stream-processing methods with a hybrid approach. The architecture consists
of three layers: (i) batch, (ii) speed and (iii) serving layer. It aims to serve high throughput and
satisfy the needs for a fault-tolerant system, able to serve a wide range of workloads and use
cases, in which low-latency reads and updates are required. Lambda Architecture depends on

38 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

a data model with an append-only, immutable data source that serves as a system of record
and it is considered a robust solution that handles a wide array of data processing and
querying challenges at scale [35]. It attempts to balance the features of batch and real-time
modes, where real time ingestion means importing the data as it is produced by the source
and ingesting data in batches means importing discrete chunks of data at regularly scheduled
intervals. In particular, it comprises the following steps [114]:

1. All data entering the system is dispatched to both the batch layer and the speed layer
for processing.

2. The Batch Layer: (i) manages historical data from the master dataset (an immutable,
append-only set of raw data), and (ii) makes predictions by pre-computing the
upcoming batch views based on machine learning models. More specifically, the batch
layer receives arriving data, combines it with historical data and re-computes results
by iterating over the entire master data set. It may process incoming data slower than
the speed layer, it, however, produces most accurate results [182].

3. The Speed Layer processes data streams in real time and deals with recent data only,
while it processes data in a smaller scale. It is responsible for immediate processing of
incoming data, although it may entail data inaccuracy in comparison to the batch
layer.

4. The Serving Layer aggregates and merges results from batch computations and the
speed layer into a complete answer. Any incoming query can be answered by merging
results from both batch and real-time views.

Figure 14: Lambda Architecture from a high-level perspective

Mixed views, of batch and streaming data, may be applied in certain use case scenarios, where
data need to be stored and processed in batches in the master data set off-line in order to
extract rules. At the same time, the speed layer forecasts these rules to proactively apply them
and push notification alerts to the stakeholders.

 Eirini Kontaki

39 Proposed Architectural Framework

In cases where simple transactions of queries are needed, NoSQL databases can be applied to
quickly serve operational needs and provide effectively interactive responses on an ad-hoc
basis without necessarily falling in the stream processing category.

6.2 Architectural Framework Materialization

Trying to address the aforementioned requirements implies the adoption of more than a
single data processing platform depending on the technological infrastructure that each
authority deploys. In this chapter, we propose specific big data platforms that comply on a
great extent with the aforementioned requirements based on the previous framework
architecture, presented in Figure 12, and aligned with the main city components.

Figure 15: Framework architecture. Big data platforms

40 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

6.2.1 Platforms for Workflow Design Facilities and Cross Platform Optimization

Smart cities need to integrate various types of real time data (structured and unstructured)
selected from different sources. Using more than one data processing platform to perform a
data analytics task is very common nowadays, thus there is an urgent need for cross-platform
data processing. For that purpose, and in order to address the fourth and fifth requirement
(see Chapter 5.4.4 and 5.4.5), we propose the following solutions:

 Rheem has been recently introduced by [4] as the first general-purpose cross-
platform system that tackles the challenge of enabling users and applications to run
data analytic tasks efficiently on more than one data processing platforms. Rheem
operates as an orchestrator of tasks performed in various platforms and is able to: (a)
suggest the most suitable platform for a given task, (b) perform inter-platform
parallelism to prevent slow platforms from dominating execution time and (c) move
data across platforms while minimizing the costs in both runtime and monetary costs.
Rheem supports a variety of big data platforms such as Spark, Flink and GraphX,
however, its support for streaming processing is limited to JavaStreams.

 Apache Beam [176, 169] is an evolution of the Cloud Dataflow [8689] model created
by Google to process massive amounts of data. It is a unified programming model
(Software Development Kit - SDK) that defines and executes data processing pipelines
that implement both batch and streaming data processing jobs (Batch & strEAM)
running on multiple execution engines. It binds frameworks, such as Hadoop, Spark,
Flink, JStorm and Google Cloud Dataflow, and data sources while it provides an
abstraction to the application logic from a big data ecosystem [29]. Although Apache
Beam does not include an optimizer, it allows users to indicate any of the available
runners (Apache Spark, Apache Flink, Google Cloud Dataflow, Apache Apex, Apache
Samza, etc.) in which each query will be executed (Figure 16). Moreover, it allows
users to write their pipelines in a language more familiar to them and integrated with
other tooling, while it has experienced significant growth due to its both community
and feature set. In that context, Apache Beam can be used from a main authority to
unify different technologies, frameworks, APIs, languages, and software development
kits that may be used from the sub-authorities to aggregate and analyze data.

Figure 16: The Beam model – Data processing pipelines (Source: Data Science Central [48])

 Eirini Kontaki

41 Proposed Architectural Framework

 Rapidminer eliminates the complexity of data distributed analytics solutions (e.g.

Hadoop) that they usually lack a user interface and require specialized IT and analytics
skills. It constitutes a data-science software platform that provides an integrated
environment for data preparation, machine learning, deep learning, text mining, and
predictive analytics. It supports machine-learning processes such as data preparation,
visualization, model validation and optimization [94]. An extension for RapidMiner,
Radoop [139], allows users to, easily, execute in Hadoop in order to apply minimum
effort without needing to have specialized Hadoop skills. Radoop is a data-mining tool
that provides easy-to-use operators for running distributed processes on Hadoop.
Rapidminer is a visual workflow designer suggested to be used for local data analytics
that will be executed from each city authority separately for batch processing.

6.2.2 Visualization and Analytics
Visual analytics tools are necessary to present the extracted results to end-users in an intuitive
and user-friendly way. Visual analytics solutions tend to solve the scalability and complexity
of issues that arise from big data applications, including the visualization of streaming and
historical data. Among a large number of visual analytics platforms that have been developed
for big data, below are some indicative examples:

 Kibana [88] is the world’s most popular open source log-analysis platform that provides
users with a tool for exploring, visualizing, and sharing dynamic dashboards on top of the
log data stored in Elasticsearch clusters. Kibana’s core feature is data querying and
analysis, including full-text data queuing. Using various methods, users can search the
data indexed in Elasticsearch for specific events or strings within their data for root cause
analysis and diagnostics. Based on these queries, users can use Kibana’s visualization
features, which allow users to visualize data in a variety of different ways, using charts,
tables, geographical maps and so on.

Figure 17: Visual analytics tools: an example of Kibana

42 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

 Grafana [87], is an open source metric analytics & visualization suite. It is most commonly
used for visualizing time series data for infrastructure and application analytics. It can be
used on top of a variety of different data stores, but the most commonly used are Graphite,
Elasticsearch and InfluxDB. It is used in different domains including industrial sensors,
home automation, weather, and process control. It applies data from multiple data stores
in order to assist end-users to comprehend metrics through visualization while it allows
queries submission and alert notification. Among a large number of data sources, Grafana
supports Druid, PostgreSQL and JSON.

Figure 18: Visual analytics tools: an example of Grafana

 Apache Zeppelin [23], a visualization platform that enables data-driven, interactive data
analytics and collaborative documents with SQL, Scala, R and python. It is integrated with
distributed, general-purpose data processing systems such as Apache Spark and Apache
Flink. Apache Zeppelin has an interactive surface that allows users to view instantly the
results of their analytics providing immediate access to these results [34].

Figure 19: Visual analytics tools: an example of Apache Zeppelin

 Eirini Kontaki

43 Proposed Architectural Framework

 Zoomdata [185], an open platform that provides big data visualization and analysis
solutions. Zoomdata allows users to easily compare real-time streaming data with
historical trends and makes it possible to merge data on the fly from multiple sources. It
supports big data sources including Hadoop, Spark and NoSQL, as well as various traditional
relational databases.

Figure 20: Visual analytics tools: an example of Zoomdata

 Tableau [157] is a business intelligence end-to-end analytics platform that provides
powerful analytics for deeper knowledge, able to produce interactive visualizations.
Tableau can be integrated with a large number of advanced database solutions including
Hadoop, MySQL, SAP and other.

Figure 21: Visual analytics tools: an example of Tableau [59]

44 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

 QlikView [141] is an open data analytics platform that supports a complete portfolio of
solutions providing advanced analytics across the spectrum of Business Intelligence needs.
It offers the Qlik Analytics Platform (QAP), which is a developer platform for building
custom analytic applications based on frontend and backend APIs. The main products of
the company Qlik are the QlikView and QlikSense, where the former is suitable for guided
analytics and the latter for self-service visualizations. With QlikView users pursue day-to-
day tasks, analyzing data with a slightly configurable dashboard, while QlikSense allows
associating different data sources and fully configurable visualizations [140].

Figure 22: Visual analytics tools: an example of Qlik [141]

6.2.3 Optimizer Components

The following are considered the most appropriate optimizer tools that combined fulfill the
technological requirements of our use case scenarios. More specific:

 Rheem. Additionally to the aforementioned, Rheem includes an optimizer that
indicates in which big data platform the operators will be more efficiently executed.
Rheem also provides a visual integrated development environment (IDE), called
Rheem Studio that provides comprehensive facilities to computer programmers for
software development. Its Graphical User Interface (GUI) is composed of four parts
[4]: (i) a panel containing all Rheem operators, (ii) the drawing surface, (iii) a console
for writing RheemLatin (a data-flow language) queries, and (iv) the output terminal.
Rheem Studio enables users to compose their data analytic tasks in a drag-and-drop
fashion and run common data analytic tasks without writing code [118].

 FERARI is a prototype introduced by [63] that enables real time Complex Event
Processing (CEP) for large volume event data streams over distributed topologies. It
aims at processing such event data streams efficiently and immediately recognizing
interesting situations in real-time. FERARI orchestrates interactions among different
CEP engines and chooses the best query execution plan with respect to low network

 Eirini Kontaki

45 Proposed Architectural Framework

latency and reduced communication burden. It addresses the need of in-situ filter
construction and in-network processing filter execution; however, it does not yet
support elastic resource allocation.
FERARI constitutes a complete, multi-cloud based end-to-end CEP solution and its
architecture comprises four main components.

a. CE Query Authoring Tool is a user-friendly, web-based query-authoring tool,
which facilitates and speeds up the query formulation in order to underlie
multi-cloud setup.

b. FERARI Query Optimizer & Inter-cloud CEP is responsible for synthesizing
event information from different sites in the same subset.

c. FERARI Intra-cloud CEP allows different degrees of parallelization in different
modules. It chooses the best query execution plan with respect to low latency
and/or reduced inter-cloud communication burden.

d. FERARI Dashboard is a query analytics dashboard encompassing graph and
map visualization tools to provide a holistic view with respect to the detected
complex events to final stakeholders.

 Apache MESOS is a top-level open-source project able to manage computer clusters
focusing on improved resource utilization by dynamically sharing resources among
multiple frameworks. MESOS shares the available capacity of every connected
computer in the cluster, among jobs of different natures, providing a unified view of
resources on all computers. It supports resource allocation among heterogeneous
clusters with different processing units, i.e., CPU and GPUs cores [19]. It supports a
variety of workloads, ranging from batch processing (Hadoop), interactive analysis
(Spark), real-time processing (Storm, Flink), data storage (HDFS, Cassandra), graph
processing (Hama) and others.
The main components of MESOS are:

a. The slaves, which manage resources on individual nodes and are configured
with a resource policy to reflect the business priorities

b. A master, responsible for mediating the slave resources and frameworks i.e.,
who gets what resources

c. The framework schedulers are application that run on MESOS and solve a
specific use case, defining how to use the resources (task scheduling)

More precisely, the MESOS master gets information on the available resources from
the MESOS slaves, and based on resource policies, the master offers these resources
to different frameworks. Different frameworks can choose to accept or reject the
offer. If the framework accepts a resource offer, the framework allocates the
corresponding resources to the framework, and then it is free to use them to launch
tasks. The following figure illustrates the high-level flow of MESOS resource allocation,
according to [102].

46 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Figure 23: High-level flow of MESOS resource allocation

The main advantage of MESOS is the consolidation of various frameworks on a
common infrastructure saving infrastructure costs and providing operational benefits.
Last but not least, Apache MESOS provides applications with APIs for resource
management and scheduling across entire datacenter and cloud environments.

6.2.4 Big Data Management Platforms

Among a very large amount of existing big data platforms, the following are recommended
for realizing the requirements emerging from the potential challenges of horizontal and
vertical scalability.

6.2.4.1 Data Ingestion Layer

The Data Ingestion Layer (Figure 24) comprises the following frameworks that are considered
the most suitable for the proposed setup [159].

 Apache Kafka [17] is a distributed streaming platform that can be used to build real-
time data pipelines and streaming applications and to vertical scale through Kafka
brokers [164]. It is able to: (a) publish and subscribe to streams of records, (b) store
partitions of records by replicating them across a number of servers in a fault-tolerant
durable way and (c) process streams of records as they occur. More specific:

o As a Messaging System, Kafka has two models: (i) queuing and (ii) publish-
subscribe. In the former, producers send messages into the queue, where
each message record is read by only one consumer, although multiple
consumers can read different messages from the publish-subscribe model,
the publisher sends messages into one or more topics and subscribers are
able to consume all the messages of one or more topics [45].

o Kafka runs as a cluster on one or more servers that can span multiple
datacenters, which stores streams of records in categories called “topics”. A
topic is a category or feed name to which records are published. Topics in
Kafka can have many consumers (applications) that subscribe to the data
written to it. Each record consists of a key, a value, and a timestamp. Each
partition has one server, which acts as the "leader" and zero or more servers,
which act as "followers". The leader handles all read and write requests for
the partition while the followers passively replicate the leader. If the leader
fails, one of the followers will automatically become the new leader.

 Eirini Kontaki

47 Proposed Architectural Framework

o In refer to stream processing, Kafka takes continual streams of data from
input topics, performs some processing on this input, and produces continual
streams of data to output topics.

 Redis [143] is a key value data store that is extremely fast because the entire dataset
is stored in the memory [100]. It is used as a database, cache and message broker.
The publish/subscribe feature of Redis implements the messaging system where the
senders (publishers) send the messages while the receivers (subscribers) receive
them, through the channel [171]. It is one of the fastest NoSQL databases trading
durability over speed. Redis can be considered more as a toolkit of useful data
structure algorithms than as an ordinary member of a database group, because it
contains a list of processes and functionalities like a blocking queue or stack, a
publisher-subscriber system and a list of configurable features as expiry policies,
durability levels and replication options [137, 27]. Redis supports two dimensions for
vertical scaling [46]; if the Redis database is not in Cache mode the auto-scaling
system will increase the available memory when under memory pressure. When in
Cache mode, the auto-scaling will not operate and the administrators must select the
amount of memory they need for the Redis database.

48 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Figure 24: Framework architecture. A more focused analysis based on specific tools

 Apache Flume [14] is a distributed, reliable, and available service for collecting,
aggregating, and moving large amounts of log data. Flume can be used to transport
event data including but not limited to network traffic data, data generated by social
media websites and email messages. It has a simple and flexible architecture based
on streaming data flows and it is fault tolerant with tunable reliability mechanisms
and many failover and recovery mechanisms. Apache Flume uses a simple extensible
data model that allows for online analytic application.

6.2.4.2 Batch Layer

Regarding the Batch Layer, we propose the following framework solutions as the most
appropriate.

 Apache Spark is a unified analytics cluster-computing framework that supports
modules for batch and streaming processing, SQL, machine learning and graph
computation processing [50]. Spark uses a specialized fundamental data structure,

 Eirini Kontaki

49 Proposed Architectural Framework

the Resilient Distributed Datasets (RDDs), which is a collection of elements,
partitioned across the nodes of the cluster and can automatically recover from node
failures, as there is no single node having all the data. RDDs support two types of
operations: (i) transformations that are performed on an RDD and creating a new
dataset and (ii) actions, which return a value after running a computation in the
dataset (Figure 25).

Figure 25: An RDD distributed across the worker nodes (Source: DevOps [55])

Apache Spark SQL was developed to confront with the limitations of MapReduce
processing framework of Hadoop. Spark SQL is a module for structured data
processing that allows developers to run SQL queries over imported data and existing
RDDs [50]. It maintains MapReduce’s linear scalability and fault tolerance and
supports in-memory analytics, iterative algorithms and interactive queries. [153]
Spark SQL provides a DataFrame API that can perform relational operations on both
external data sources and Spark’s built-in distributed collections at scale.

 Hadoop [15] is a popular open-source big data framework that allows distributed
processing of large data sets across clusters of computers and it is designed to scale
up from single servers to thousands of machines. It can be used for visualization
processes and is composed of several components, such as MapReduce (parallel
processing), YARN (job scheduling) and HDFS (distributed file system) that work
together to process batch data.

o MapReduce is a programming model that enables massive scalability across
hundreds or thousands of servers in a Hadoop cluster. It refers to two distinct
tasks that Hadoop programs perform: (a) the map job, which filters and sorts
data, where individual elements of data sets are being broken down into
tuples (i.e. key/value pairs) and (b) the reduce job that uses the output of the
mapping process and combines the data tuples into smaller set of tuples. [18]

o HDFS (Hadoop Distributed File System) is the primary data storage system
used by Hadoop applications. It provides high-performance access to data
across highly scalable Hadoop clusters and it enables efficient parallel
processing since it breaks information into separate blocks and distributes
them to different nodes in a cluster. [89] The HDFS is considered highly fault-
tolerant since blocks of data are being replicated or copied and then

50 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

distributed to different nodes. Thus, in case one node crashes the replicas of
data can be found to other nodes.

6.2.4.3 Speed Layer

The Speed Layer comprises the following frameworks:

 Apache Spark Streaming enables powerful interactive and analytical applications
across both streaming and historical data. Spark Streaming is able to process 100,000-
500,000 records/node/sec [135] and has some unique benefits over other traditional
streaming systems, such as [49]: (a) fast recovery from failures, (b) better load
balancing and resource usage, (c) combination of streaming data with static datasets
and interactive queries and (d) native integration with advanced processing libraries
(i.e., SQL, machine learning, graph processing). It integrates with a wide variety of
popular data sources, including HDFS, Flume, Kafka, and Twitter. Moreover, Spark
Streaming is able to seamlessly integrate with any other Spark components, such as
Sparks SQL and MLlib. The concepts and use cases of Apache Spark Streaming looks
similar to Apache Flink, however there are differences in the implementation. Spark
Streaming is designed to deal with mini batches, which can deliver near real-time
capabilities. Apache Flink delivers real-time processing due to its event level
processing architecture [162].

 Apache Storm is a distributed real-time computation framework that processes fast
large streams of data based on master-slave architecture [159]. As reported in [168],
a Storm topology is directed graph of spouts and bolts. Spouts are sources of input
data and bolts are an abstraction to represent computation on the stream. The spouts
are the main entry point of data into the topology and connect to a source of data,
such as Kafka [110], and emit the tuples as a stream. Whereas, bolts are considered
as the operators of arbitrary computations, such as filtering and joining. They receive
as input any number of streams, they process the data and they optionally emit
streams to one or more bolts. Bolts are also able to read from or write data directly
to a data store. These components are represented by vertices in the topology graph,
where direct edges indicate how the streams are routed. Grouping in Storm can be
done with the following five ways, which define how to send tuples between tasks
[181].

o Shuffle: Tuples are randomly distributed across receiving bolt’s tasks and
each task is guaranteed to receive an equal number of tuples.

o Fields grouping: A field of a tuple is used as the key to partition the stream.
Tuples with the same key will be mapped to the same task.

o All grouping: Each tuple is broadcasted to all tasks of the corresponding bolt.
o Global grouping: The entire stream is routed to one of the bolt’s tasks, usually

the task with the lowest ID.
o Direct grouping: The producer of the stream decides which task of the

consuming bolt will receive each tuple
o Partial Key grouping: it works similarly to the fields grouping it however

adapts the “power of two choices” technique of load balancing. Here, tuples

 Eirini Kontaki

51 Proposed Architectural Framework

are load balanced between two downstream bolts, which provides better
utilization of resources when the incoming data is skewed.

 Apache Flink is a very popular open-source stream processing framework with
powerful stream and batch processing capabilities. Flink is suitable for running
interactive, graph processing and machine learning applications for real time
predictions [77], while it is able to process a large amount of data streams from
different IoT devices at a scale of millions of events per second. It typically consists of
streams and transformations and provides real-time data processing pipelines in a
high-performance and fault-tolerant way. The central part of its fault tolerance
mechanism is drawing consistent snapshots of the distributed data stream and
operator state. These snapshots act as consistent checkpoints to which the system
can fall back in case of a failure. The core element in Flink’s distributed snapshotting
are the stream barriers that separate the records in data streams into a set of records
that goes into the current snapshot and the records that go into the next snapshot
[13].

Figure 26: Data stream in Apache Flink (task manager)

Apache Flink also uses time windows to understand how the data streams flows and
consequently which events are preceded by which. Moreover, it provides the Flink
CEP (Complex Event Processing) library that allows programmers to define the pattern
that will trigger an appropriate action (e.g. alert) whenever it is detected. CEP matches
continuously incoming events against a specific pattern and discards the irrelevant for
the query data at runtime, while it offers real time analytics capabilities [13].

Figure 27: Core components of the Flink CEP library [53]

52 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Flink supports connectivity with various data resources such as Apache Cassandra,
Elasticsearch, Kafka, RabbitMQ and Hive [175].

 Heron is a real-time, distributed, fault-tolerant stream processing engine of Twitter,
developed to overcome the limitations of Storm, such as scalability, debug-ability,
manageability, and efficient sharing of cluster resources with other data services.
[111] It runs topologies, i.e., directed acyclic graphs of spouts and bolts, where the
programmer specifies the number of tasks for each spout and each bolt (i.e. the
degree of parallelism), as well as how the data is partitioned as it moves across the
spout and the bolt tasks (grouping).

6.2.4.4 Serving Layer

The Serving Layer is consisted of the following databases:

 Apache HBase [16] is an open-source, distributed, scalable, NoSQL big data store built
to run on top of the Hadoop Distributed File System (HDFS). A column-oriented
key/value data store that can host large tables – with billions of rows and millions of
columns – and can provide real-time, random read/write access to Hadoop data. As
opposed to other NoSQL databases, like Cassandra, HBase is architected to have
strongly consistent reads and writes. Once a write has been performed, all read
requests for that data return the same value. It is failure tolerant since it supports
replicating data across different datacenters.

 Apache Cassandra [9] is an open-source, distributed, wide column store, NoSQL
database management system that provides high availability and low latency. It has
been proven fault-tolerant on commodity hardware or cloud infrastructure, due to
the automatic replication of data to multiple nodes. Cassandra supports replication
across multiple datacenters, while failed nodes can be replaced with no downtime.

 Apache Druid [56] is a column-oriented, open-source, distributed database and
provides fast analytical queries, at high concurrency, on event-driven data. Druid is
designed to quickly ingest massive quantities of event data, and provide low-latency
queries on top of the data [91]. Druid can instantaneously ingest streaming data and
provide sub-second queries to power interactive User Interfaces (UI). It is commonly
used in business intelligence applications to analyze high volumes of real-time and
historical data.

 Eirini Kontaki

53 Algorithmic Apparatus & Implementations

7 ALGORITHMIC APPARATUS & IMPLEMENTATIONS

In the previous chapter, we presented a generic architectural framework capable of serving a
smart city’s needs both within various vertical city sectors (transportation, resource and
environmental management) and across such sectors for global smart city governance
purposes. We also detailed a materialized view of the proposed architecture elaborating on
technologies and platforms suitable for satisfying Requirements 1 to 6 as described upon
referring to the technological challenges of a smart city environment in Chapter 5.4.

In this chapter, we briefly describe and provide references to algorithms and algorithmic suites
that are generic enough to accommodate broad categories of analytics tasks useful within a
smart city context. In other words, the basic concept is that having presented a generic
architectural framework for big smart city data analysis and its materialization by state-of-the-
art technological platforms, this section points to useful, commonly used algorithms that can
be implemented within such platforms, in various parts of the proposed architecture, so that
they can be utilized while performing analytics tasks. Although throughout our previous
discussion we referred to some of such algorithms, this section provides a concise summary
of relevant works.

In this point, it should be clarified that our goal is not to provide an exhaustive description of
the respective algorithms, but instead to tip on the basic rationale behind their functionality
and point potential adopters of the proposed architecture to respective algorithmic suite
implementations.

7.1 In-situ Processing Algorithms & Implementations

The idea of in-situ processing is to install local filters at the various sites (i.e., sensors, smart
devices or vertical smart city sectors’ clusters upon performing global analytics) so that data
communication is avoided unless it is absolutely necessary. We consider for instance, a water
management scenario and assume we want to monitor the variance among the water levels
in various neighboring water tanks and respective interconnecting pipes. The global task we
may want to accomplish involves whether a variance function defined on the union of streams
gathered by relevant sensors exceeds a threshold, i.e., Var(∪ 𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑡𝑟𝑒𝑎𝑚𝑠)>T. The
usefulness of such a monitoring task is to detect anomalies in the water flow and pinpoint
potential points of leak. A key technique for monitoring such generic, complex, non-linear
functions is the geometric monitoring method [74]. The key idea behind the geometric
monitoring technique is that instead of monitoring the function value itself, the monitoring
protocol tracks the potential position of the function input vector (formed by ∪SensorStreams
in the example) in the input domain of the function (variance in the above example). Every
site in the network accumulates local streams forming a local vector of observations. Then
each site uses the aforementioned vector as a diameter around which a multi-dimensional
sphere is drawn. If any site in the network finds its local sphere entering the area of the input
domain of the function where the function crosses the threshold, all sites are notified to
communicate their data. Otherwise, no communication is necessary. The whole rationale is
depicted in Figure 28, where the gray shaded area depicts the area of the input domain where
the function crosses the threshold. The individual vectors e+Dvi depict local stream evolution
in each site (5 sites exist in this example), while the 3-d balls involve the corresponding spheres

54 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

that are inscribed using e+Dvi in each diameter. The yellow colored area of the input domain
is the convex hull induced by the corresponding e+Dvi vectors. Since in this particular example
no multidimensional sphere crosses the threshold, no communication is necessary.

Figure 28: Geometric Monitoring method rationale introduced by [73]

Moreover, the technique of [73] combines in-situ processing with data summarization by
executing the aforementioned geometric monitoring scheme only to a carefully-crafted
sample of sites in the network. The latter simultaneously addresses vertical and federated
scalability challenges as outlined in Chapter 5.4.

A second generic algorithm for in-situ processing especially in event-based analytic tasks
regards the push-pull rationale [61]. To elaborate this technique, we consider the air quality
monitoring scenario, in which we monitor the concentration of gases, such as SO2, NO, NO2,
CO2, O3. In this context, we assume there is an analytics task, which says “trigger an alert when
E1: the CO2 concentration exceeds a given threshold, this event is followed by (SEQUENCE)
E2: O3 exceeds a different threshold AND E3: SO2, NO2 concentrations follow similar trends,
within a predefined time window W”. Such a query can be expressed using logical operators
and monitored functions as follows: AND (E3, SEQUENCE(E1,E2)). However, the query will
never return TRUE, thus no alert will be provided unless all three events occur simultaneously
within the window W. In order to reduce communication in such a case, where query
operators (such as AND, SEQUENCE) require all of their inputs to output something, we can
use the push-pull rationale. According to the push-pull mechanism, the transmission of
frequent events is rendered conditional upon the occurrence of rare ones. So for instance, if
E1 is a frequent event, but E2 and E3 are not, E1 will not be transmitted until E2 and E3 occur.
In other words, E1 will be set in pull mode and it will be cached at the sensors, where it is
detected, until a request for transmitting such an event to the respective sensors-sites is
received. At the same time, E2 and E3 will be set in push mode, meaning that they will be
transmitted immediately towards the query source as soon as they occur. The work of [61]
provides a description of the push-pull mechanism and comments on implementation aspects
over big data platforms (see Figure 29), while the geometric method and the push-pull
rationale is implemented in the FERARI project [37].

 Eirini Kontaki

55 Algorithmic Apparatus & Implementations

Figure 29: Example of different push-pull application for an AND operator receiving 3 events (e1, e2, e3) at input

[61]

7.2 In-network Processing Algorithms & Implementations

A recent survey of in-network processing algorithms included in [61, 70] explains the idea
behind all these algorithms, which is to map a query graph expressing the workflow of
analytics tasks that need to be carried out to the physical network of sites (i.e., sensors,
clusters, smart devices). Eventually, the execution of each operator will be assigned to a site
that is near to the data sources. In that, data is aggregated early during the execution of parts
of the analytics procedures and the total amount of communicated data is reduced because
only compact, aggregated pictures of the data are further communicated in the network,
towards the query source. The work of [61] proposes respective algorithms that aim at
reducing the communication cost in the network, while they harness network latency. To
accomplish the task of the aforementioned work, which essentially describes the algorithms
employed in the FERARI optimizer discussed in the previous chapter, it proposes exhaustive,
dynamic programming, greedy and heuristic algorithms for assigning operator execution to
sites. These algorithms differ in their computational complexity as well as on their ability to
come up with appropriate operator to site mappings in case of strict network latency
constraints. Moreover, the implementation of the respective optimizer [37] couples in-situ
with in-network processing. Although the optimization techniques are tailored for event
processing applications, in principle, the proposed techniques can accommodate any analytics
operator upon being stripped of from the push-pull, in-situ processing rationale.

7.3 Data Summarization Techniques & Implementations

Data synopsis techniques can be useful in the Smart City context especially for efficiently
dealing with Requirements 1 to 3 described in Chapter 5.4. Below we outline existing
implementations of data summarization algorithms and underline their utility in the scenarios
presented in previous chapters. The literature regarding data summarization techniques is
abundant. Therefore, instead of citing each related work separately, we refer to the works of
[23, 67], which provide concise and comparative views of relevant algorithms.

Stream-lib [83] is a Java-based data synopses library. It includes algorithms for various useful
analytics operations such as cardinality; set membership; top-k elements and frequency
estimation, along with references to respective research works. Stream-lib supports stream
processing in an online fashion, however, the provided implementation does not address

56 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

horizontal scalability since it does not include provisions for parallel maintenance of single
synopses or maintenance of multiple synopses.

Yahoo DataSketch [11] is another data summarization library, which includes
implementations of sampling, count, frequency, cardinality and quantile estimation
algorithms [10]. The provided implementations include Hive and Pig, but as is the case with
Stream-lib, DataSketch is detached from parallelization aspects.

Proteus-backend [81] is a backend module that implements incremental version (~O(1)
computational cost using approximations) of most common analytics operations. This module
is implemented on Apache Flink and is perhaps the only one that combines the potential of
data summarization with parallel processing over big data platforms.

SnappyData [167] is a high performance in-memory data platform for mixed workload
applications, built on Apache Spark Streaming. The latter means that it employs the concept
of micro-batches instead of being a purely streaming synopses data engine. SnappyData
provides a unified programming model for streaming, transactions, machine learning and SQL
Analytics in a single cluster. SnappyData’s Synopses Data Engine offers a novel and scalable
system able to analyze large data sets. It relies on two methods for approximations: (a)
stratified sampling and (b) sketching. The former allows users to specify the common
dimensions used for querying and ensures that each dimension or stratum with low
representation will be captured in the sampled data set. The latter is used to capture data
frequencies in a stream, i.e., how often an element is seen in a stream.

Individual repositories with a reach set of data stream summarization techniques, but
deprived from parallelization aspects, are also provided open source [84, 78].

The following Table 5 lists some popular data summarization techniques implemented in the
above referenced libraries along with their utility for Smart City sectors.

Table 5: Exemplary Data Summarization Techniques and their Utility in the Smart City Context

Synopsis Estimates Useful for Smart City Sector

Count-Min Sketch Count, Frequency Smart Transportation
HyperLogLog Sketch Distinct Count Smart Transportation

LSH Similarity Environmental Monitoring,
Resource Management

Reservoir Sampling Cardinality All

Bloom Filter Set Membership Smart Transportation

Qdigest Approximate quantiles Environmental Monitoring,
Resource Management

Sampling algorithms such as Reservoir sampling cited in Table 5 are useful across all smart
city sectors examined in this thesis. The idea of maintaining a fair sample of measured
quantities in traffic monitoring, water flow or environmental sensing scenarios is to reduce
the amount of data that will be processed by the rest of the components of the proposed
architecture. At the same time, it will be assured that the constructed samples preserve
important statistical properties of the summarized data such as specific moments and

 Eirini Kontaki

57 Algorithmic Apparatus & Implementations

cumulants. Cumulants refer to as a set of quantities that provide an alternative to the
moments of the distribution [177].

The Count-Min sketch summary is designed so that it provides approximate count, frequency
estimations over voluminous streaming data, with reduced memory requirements. In the
traffic monitoring scenario, this summary can be used in order to maintain approximate
counts of the number of vehicles that passed through each edge of the underlying road
network. Road networks of large city centers consist of thousands or millions of edges (road
segments) and thus, maintaining the exact counts per edge in memory as time passes may be
quite a burden. Online and continuous queries over such streams require real-time answers,
storing these data in HDFS or other permanent storage means. Counting the number of
vehicles that pass through a road segment is quite useful for achieving the relevant business
objectives mentioned in Chapter 4. For instance, such counts and their evolution over time
can be used initially by data mining algorithms to cluster similar road edges together in order
to detect afterwards relations among them and observe how the traffic flows.

Additionally, Bloom filters may also be of the essence for the smart traffic monitoring
scenario. Bloom filters are a compact data summary capable of providing approximate
answers with respect to intersections and union of sets. We consider that apart from the
number of vehicles that pass through a road segment, information regarding vehicle IDs, such
as the license plate, is also available. Thus, for each edge of the network we can maintain a
set of vehicle IDs that used the respective edge while commuting. In order to monitor how
the traffic flows among road edges similarity measures, such as the Jaccard Similarity of pairs
of edges can be used. This technique provides the ratio of cardinality of the intersection over
the cardinality of the union of vehicle id sets maintained per edge. Computing the size of the
intersection of vehicle sets in edges is as simple as performing a logical conjunction (AND
operation) among the respective Bloom filters maintained per edge. However, a logical
disjunction (OR operation) is used for the cardinality of union of such sets.

The HyperLogLog sketch is a structure capable of providing approximate query answers
regarding distinct count queries with reduced memory consumption. The idea of using such a
structure in traffic monitoring scenarios is to extract information regarding the number of
distinct vehicles that move in the city road network or parts of it. Such a piece of information
can be useful for various reasons. For instance, similarly to the aforementioned examples,
judging the similarity among the traffic of road segments according to Sorensen-Dice similarity
index requires computing the intersection of the corresponding sets of vehicle IDs (e.g. using
a Bloom filter) over the cardinalities of sets of (distinct) vehicles passing by each edge (one
HyperLogLog sketch per road segment).

Taking into consideration the number of sensors utilized in resource management and
environmental monitoring scenarios along with the number of streams generated by each
sensor, executing analytics tasks such as anomaly or outlier detection becomes a challenge.

Recent techniques for judging outliers [72, 76, 75] have pointed out the importance of judging
outliers in such networks based on the similarity of the values produced by each sensor
compared to other sensors. In other words, to extract outliers in sensor network settings over
environmental or resource related data often regards quantifying pairwise correlations of
streams originating from different sensors. The computational complexity of computing such
pairwise correlations is quadratic to the number of input streams, thus the targeted smart city
use cases may operate over tens of thousands of streams. The usefulness of Locality Sensitive

58 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Hashing (LSH) techniques in these scenarios is two-fold. First, they compress sensor
measurements so that communication towards the query source is reduced. Second, the
Hamming weight (number of set bits) in the resulted LSH bitmaps can be used as a hash key
based on which the processing of entire series of sensor readings are distributed among
different machines within a cluster, simultaneously pruning the number of performed
pairwise comparisons by hashing highly dissimilar bitmaps to different machines [76].

Finally, Qdigest is a data summarization technique that can provide approximate answers to
quantile queries. The use of quantiles/percentiles is useful in both environmental monitoring
and resource management scenarios. Indicatively, England has water quality consent limits
that are based on the 90th and 95th percentiles of monitoring data not exceeding specified
levels. The U.S. EPA has specifications for air quality monitoring that are, in effect, percentile
limitations. These may, for example, specify that the ambient concentration of a compound
cannot exceed a predefined percentile during the day. The U.S. EPA has provided guidance for
setting aquatic standards on toxic chemicals that require estimating 99th percentiles and using
this statistic to make important decisions about monitoring and compliance. They have also
used the 99th percentile to establish maximum daily limits for industrial effluents [39].

7.4 Machine Learning and Data Mining Algorithms and Libraries

FlinkML [12] is a set of scalable ML algorithms and API adopted by Flink distributed
framework. It contains algorithms for:

 supervised (SVM CoCoA, Multiple Linear Regression, Batch Gradient Descent) and
unsupervised (k-Nearest Neighbors) learning,

 data pre-processing (Polynomial Features, Standard Scaler, MinMax Scaler),
recommendation (Alternative Least Squares, Stochastic Outlier Selection) and

 other ML utilities involving (a) the computation of distance metrics such as Euclidean,
squared Euclidean, Chebyshev, Cosine Similarity, Manhattan and Minkowsky distance
as well as Tanimoto coefficient calculation, (b) cross validation methods such as Train-
Test-(Holdout) splits, K-Fold splits, Multi-random Splits etc.

Most of the incorporated algorithms are destined for batch processing purposes and as such,
they constitute offline algorithms built on top of the batch API of Flink. For the orchestration
of machine learning tasks that run over distributed, parallel architectures ensuring horizontal
scalability via parallel and elastic processing, an implementation of the parameter server
paradigm [1] is also available [80]. Finally, FlinkML includes a connector to the SAMOA library
discussed below.

Apache SAMOA [20] is a distributed streaming ML framework built for Apache Storm, Flink
and Samza [21]. SAMOA supports Prequential Evaluation Task (which is an online ML model
evaluation pipeline), Vertical Hoeffding Tree Classifiers, Adaptive Model Rules Regressors,
Bagging and Boosting, Distributed Stream Clustering and Distributed Frequent Itemset Mining
analytics.

Proteus-SOLMA [82] is a scalable set of online machine learning algorithms including
classification, clustering, regression, ensemble, graph oriented, linear algebra operations,
anomaly and novelty detection algorithms. It is implemented on top of Apache Flink using the
batch and stream processing capabilities. SOLMA supports the computation of online

 Eirini Kontaki

59 Algorithmic Apparatus & Implementations

moments and it, also includes a number of summarization techniques involving online
sampling and incremental Principal Component Analysis (PCA), among others. Regarding
classification algorithms, it includes Online Support Vector Machines (OSVM) for batch
learning (Pegasos, Norma algorithms), Online bi-level stochastic gradient for SVMs
(OBSG-SVM) and Online Passive Aggressive Classifier (PA). With respect to regression
methods, it mainly incorporates Online Ridge Regression with L2 regularization (ORR), Online
shrinkage via limit of Gibbs sampling with L1 regularization (SLOG), Aggregated Algorithm for
Regression (ARR), Competitive Online Iterated Ridge Regression (COIRR).

Spark’s MLlib [22] is perhaps the richest ML API implementation over a popular big data
platform. It is mainly destined to support batch processing, included only limited support for
online ML tasks. More precisely, MLlib supports the computation of basic statistics and
measures such as pairwise correlations via Pearson’s and Spearman’s correlation coefficients,
hypothesis testing via Pearson’s Chi-Squared test. It further provides numerous extracting,
transforming and selecting features and ML tuning facilities such as hyperparameter tuning,
cross-validation and train-validation split. Indicatively incorporate algorithms include:

 Classification algorithms
 Logistic Regression
 Decision Trees and Random Forest
 Gradient-boosted tree
 Multilayer Perceptron
 Linear SVM
 One-vs-Rest
 Naive Bayes

 Regression algorithms
 Linear regression
 Generalized Linear Regression
 Decision Tree and Random Forest regression
 Gradient-boosted tree regression
 Survival regression
 Isotonic regression

 Clustering algorithms
 K-means
 Latent Dirichlet Allocation (LDA)
 Bisecting Mixture Model (BMM)
 Gaussian Mixture Model (GMM)

Clustering techniques can be proven useful across various smart city vertical sectors. At this
point, we exploit smart traffic monitoring scenarios since they constitute an interesting
example for utilizing clustering techniques. As already discussed in Chapter 7.3, in order to
observe how the traffic flows among road segments, we may employ information regarding
the counts of vehicles per road segment as well as its evolution over time. According to the
literature [132], hierarchical clustering on road network edges is performed using different
similarity measures in order to detect traffic flow relationships, including traffic propagation
(Figure 30), traffic split (Figure 31) and traffic merge (Figure 32). More precisely, the notion of
distance between two road segments (edges) is defined (a) based on the corresponding traffic

60 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

series count values, (b) based on the corresponding traffic series “shape” (normalized count
vectors) and (c) according to the network graph topology. Then, a clustering method is
employed that utilizes the different distance types to first cluster together edges of similar
time series shape, then these clusters are further split based on the similarity of time series
count values and finally based on their spatial proximity. The result of the clustering can be
visualized, i.e., the technique leaves to the human operator the task of detecting traffic
propagations, splits or merges, to illustrate the extracted, undergoing traffic flow as shown in
Figure 30, Figure 31 and Figure 32.

Figure 30: Clustering output depicting traffic propagation relationship [132]

 Eirini Kontaki

61 Algorithmic Apparatus & Implementations

Figure 31: Clustering output depicting traffic split relationship [132]

Figure 32: Clustering output depicting traffic merge relationship [132]

Classification techniques such as Random Forests can be used for air quality prediction
purposes. Relevant data analysis may include air monitoring station data, meteorology data
or even road traffic information. All these data are fetched at certain intervals (see Table 4).
The city can be divided into a grid and each grid cell is regarded as one region. Those grid cells

62 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

with air quality monitoring stations generate the data used for training a learning model (a
number of decision trees in the case of random forests). Predictions should be made on the
streaming data for characterizing the level of hazard as regards the concentration of certain
pollutants in the near future. The Random Forest is a general term for methods using decision
tree-type classifiers [69]. It uses recursive partitioning to generate many trees and then
aggregates the results (Figure 33) [165]. Each tree is independently constructed using a
bootstrap sample of the training data, which subdivides the parameter set first into several
parts depending on one of the parameters, and subsequently repeats the process for each
part. After all the trees are constructed, the streaming data are input into all decision trees.
For each tree, a probability is estimated for the label (e.g. hazardous, non-hazardous, likely
hazardous, etc.) of the predicted air quality. The final probability of each label (class) is
computed by combining e.g., the majority voting among the highest probability labels across
the trees of the forest.

Figure 33: Random Forest Algorithm graph

SVM (Support Vector Machine) algorithms aim at separating data points in multidimensional
spaces, so that they are as far apart as possible. These algorithms find a hyperplane (acting as
a so-called soft margin) by selecting the most appropriate points in a training subset (the
supporting vectors), that split data into categories (see Figure 34 [101]). When a new data
point, e.g. readings from air quality monitoring stations, streams into the architecture, it is
assigned to a category that gives the corresponding label to it.

 Eirini Kontaki

63 Algorithmic Apparatus & Implementations

Figure 34: Support Vector Machine Algorithm

As a forecasting method, k-Nearest Neighbor (kNN) algorithm is a supervised machine
learning technique that seeks to identify the past sequence, in time series, that is most similar
to the one to be forecasted. It can be used to make the waste collection process more efficient
by monitoring the occupancy level of garbage bins and calculating the travel distance in order
to clear all the filled bins from trash. The sensor in each bin measures the level of garbage,
while GPS data stemming from a track mark its current position. The idea is to instruct, in
advance, a proper route for a track based on the current and expected garbage levels of bins.
The kNN algorithm measures the distance between a query point (current status/capacity of
a bin) and a set of scenarios in past data (see for example Figure 35 [79]). A case is classified
by a majority vote of its neighbors, with the case being assigned to the class most common
amongst its k nearest neighbors measured by a distance function. Therefore, one can predict
the bins that will be filled in the near future and proactively instruct the proper trajectories
for garbage collecting trucks, in real-time as they commute.

Figure 35: k-Nearest Neighbors (kNN) Algorithm

64 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

8 CASE STUDY: HERAKLION SMART CITY

In the previous chapters, we presented a holistic view of leveraging big data in smart cities
setups. Starting initially from identifying the needs of divergent city authorities, translating
these to business objectives and key performance indicators and realizing them to distinct
requirements, we finally elaborated prevalent big data platforms to address these
requirements. This chapter aims to exemplify the aforementioned analysis into a real smart
city context and deploy big data platform topologies in an effort to facilitate the stakeholders
to materialize more easily big data analysis in every day setups for different interdisciplinary
scenarios.

To that end, we exploit the business logic of Heraklion Smart City as an indicative example to
leverage generated big data aiming to extract valuable information. In the following analysis
we introduce the needs of Heraklion city and we translate these needs into specific
requirements using big data analytics tools in order to alleviate existing knowledge to a more
powerful decision making process.

8.1 Identifying the needs of Heraklion city

Heraklion has embedded Information and Communication Technologies in many different
infrastructures aiming to enhance the quality life of citizens and facilitate already existing
services towards solving administrative issues. Moreover, the city focuses on ensuring a
networked society that enjoys the benefits of intelligent management of city issues. Heraklion
Smart City approaches, among others, the following domains: (a) environmental and weather
monitoring, (b) air quality monitoring, (c) water quality and management monitoring, and (d)
smart parking.

As stated in [92], the Municipality of Heraklion envisions a smart city able to address the
following requirements:

A. Environmental and weather monitoring
 Optimization of the cooling, heating and lighting systems of buildings to achieve

energy savings rates.
 Decrease of carbon dioxide emissions by actuating citizens to integrate cycling

and walking in their everyday transportation within the city
 Integration of a dynamic system that records the variations of quantitative and

qualitative waste production.
 Enhancement of the waste collection services through proper control and

management of waste levels in smart bins.
 Social protection notifications regarding earthquakes, fires, extreme weather

conditions and other. Towards that direction, social media can be also proven a
useful communication tool to inform citizens in time about upcoming threatening
events.

B. Air quality monitoring

Crete is heavily affected by air pollution due to high urbanization rates, seasonal
tourism and excessive use of fireplaces in combination with high. Moreover, the dust

 Eirini Kontaki

65 Case study: Heraklion Smart City

transport from the deserts of North Africa and the Middle East, urban and industrial
pollutants in Europe and Turkey and forest fires deteriorate air quality and affect the
health of the public. In that context, the Municipality aims to:
 Control the greenhouse gas emissions and estimation of the carbon footprint in

order to identify the areas that need of special attention and require proper
interventions.

 Improve the microclimate of the densely built up city and reduce the energy
consumption of the buildings through bioclimatic repairs of settlements and
open spaces increasing green areas.

C. Water management
The region of Crete suffers often from lack of enough water resources due to the dry
climate and towards utilizing the available resources efficiently aims at:
 Reducing water consumption of both citizens and businesses through

appropriate actions and initiatives for the rational management of the existing
water resources

D. Smart mobility and smart parking

Heraklion is a city that suffers from the outnumbered vehicles that search for a
parking place, especially in the city center. It has been noticed that early in the
mornings, public-parking garages and terrains have reached their parking occupancy.
At the same time, searching for a parking space often provokes bottlenecks in the
narrow streets of Heraklion, while traveling around the city. Due to the limited
number of public garages, car drivers most often use on-road parking lots, taking the
risk of occupying non-parking zones, as well. The latter constitutes the reason of the
increased number of tickets issued from the municipal police for illegal parking the
past years. Thus, the Municipality envisions to approach the following:
 Real-time traffic management improvements for intra-community and inter-

municipal transportation with the assistance of modern intelligent technologies
(web and mobile applications, etc.)

 Combining ICTs to monitor environmental and traffic issues
o Pilot scheme of installing urban ICT equipment (signs, benches, lighting,

shelters, bus stops, information and/or selling kiosks, environmental
objects) while integrating monitoring systems (e.g. atmospheric quality,
light pollution, noise, traffic, Wi-Fi, etc.)

o Traffic monitoring on streets through sensor installations on the city
buses

o Traffic monitoring system using various sensors or through citizens’
mobile phones

 Deploying cooperative transport systems on freight services.
 Development of an intelligent parking system providing real-time information for

pricing and parking availability.
 Integrating smart parking monitoring system, informing authorities whenever a

prohibited area is occupied by a vehicle.

66 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

8.2 The IoT infrastructure

The ecosystem adapted by Heraklion Smart city is based on three main components (Figure
36): (a) the IoT Devices, (b) the Open Data Middleware Layer and (c) the Visualization Layer
[103].

Figure 36: The Heraklion Smart City ecosystem [103]

8.3 The WSN architecture

The aim of the Heraklion Smart City initiative is to confirm whether an IoT infrastructure could
be proven valuable to citizens and city authorities. A pilot Wireless Sensor Network has been
deployed to aggregate specific information covering the previously presented requirements.
According to [103], the necessary sensing infrastructure has been installed in dispersed spots
around the city, including:

i. Water quality sensors installed in the city’s water reservoirs.
ii. Parking sensors installed on the road surface. They provide at a programmable

interval, a status for the occupation of the parking space, based on the field strength
compared to a predefined threshold based on the measurement of the magnetic field
strength in three orthogonal axes.

Table 6: Measured parameters per area of interest

Area of interest Parameters

Environmental and weather
monitoring

Ambient temperature, ambient humidity, atmospheric pressure,
wind (speed and direction), dust, VOC (volatile organic
compounds), noise level, luminosity

Air quality monitoring Gases concentrations (SO2, NO, NO2, CO2, O3)

Water quality Water quality and quantity (water level, water temperature,
conductivity, PH and ions {NH4+, NO3−, Cl− and Ca2+})

Smart parking Number of occupied illegal parking spots

 Eirini Kontaki

67 Case study: Heraklion Smart City

Figure 37: Pilot sensor infrastructure in Heraklion city (Source: www.smartcity.heraklion.gr) [103]

Figure 38: A database schema approach

68 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

8.4 Data processing pipelines for Heraklion Smart City

As illustrated in Figure 37, an indicative number of sensors have been integrated in Heraklion
city’s infrastructure. A fully integrated IoT-based network comprising thousands of sensors
coupled with the escalation in big data acquisition would require additional means of data
processing and analysis. To that end, this chapter aims to propose an architecture based on
the big data technologies presented in Chapter 6, regarding the application scenario of
Heraklion Smart City for batch and stream processing. The following analysis is based on the
database schema illustrated in Figure 38 presented by [103].

8.4.1 Parking management using Apache Storm
A number of parking sensors dispersed in Heraklion city transmit real time data. Sensors are
installed in the asphalt in zones where the parking is prohibited (e.g. crosswalk, pedestrian
streets, spots where people with disabilities are able to pass through, etc.). Every time the
sensors’ status is occupied, the appropriate notification is forwarded to the Municipal Police.
Data about parking behavior need to be processed at runtime in order to inform stakeholders
with the current on-road status. Based on the architecture we presented in Chapter 6.2, we
use Apache Storm, a stream processing engine.

In Figure 39, the presented Apache Storm topology constitutes the structure of a distributed
computation regarding the parking-monitoring infrastructure of Heraklion Smart City. The
presented graph comprises a spout (stream producer) and various bolts (operations) that
receive and emit an unbounded sequence of tuples, namely streams. Streams of tuples flow
from spouts to bolts through various stream groupings that determine how the tuples are
routed in the topology (defined in Chapter 6.2.4.3). Spouts and bolts are connected with edges
that indicate which streams are processed by which bolts.

Figure 39: An Apache Storm topology for parking monitoring (logical view)

 Eirini Kontaki

69 Case study: Heraklion Smart City

Figure 40: Tuples emitted throughout the Apache Storm topology

More specific, the parking sensors installed in Heraklion’s Smart City infrastructure send data
to the “Parking Sensors Spout” every 1 minute (see Chapter 5.2). The spout wraps streaming
data and emits tuples of key-value pairs in the form of

{id, ‘status’, ‘type’, lon, lat, ‘timestamp’}

, where id is the key and status, type, lon (longitude), lat (latitude) and timestamp are
considered as the value. The status parameter can take a value of either ‘available’ or
‘occupied’ and the type parameter can take ‘PWD’ or ‘PWND’ values, defining whether a
parking zone is for People with Disabilities (PWD). The “Parking Sensors Spout” replicates the
stream of tuples to two different bolts; the first is called “Parking Restriction Bolt” and the
second “Geographical Segmentation Bolt” by applying shuffle grouping. In that way, tuples
are randomly distributed across both bolts’ tasks and each task is guaranteed to receive an
equal number of tuples. Both bolts enable the parallelization process for the aggregations of
data, allowing multiple workers to process data in parallel.

The “Parking Restriction Bolt” reads data from Kafka, regarding the parking zones where
parking is allowed for predefined time frames. The tuples have the form of

{id, ‘time_descr’, ‘start_time’, ‘end_time’, ‘days_of_week’}

, where the ‘time_descr’ parameter takes ‘timerange’ or ‘max_stay’ values. The former refers
to the zones where parking is allowed within a specified time range. For instance, there are
parking lots in the city center defined as prohibited during shops’ opening hours (e.g. 9:00-
15:00 and 17:00-21:00 for Tuesdays, Thursdays and Fridays, etc.). The latter refers to the
parking zones where vehicles are allowed to stop only for a short period of time (e.g. for 15
minutes). “Parking Restriction Bolt” applies a join operation where the tuples with the same
‘id’ are paired together (e.g. {2, ‘occupied’, ‘PWD’, 10.3582, 9.1215 16:35:02, ‘timerange’,
‘9:00’, ‘16:00’, ‘M-Tu-W-Th-F’}, {3, ‘occupied’, ‘PWND’, 6.8432, 10.4312, 16:40:42, ‘max_stay’,
‘15’}, etc.).

70 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

These tuples are randomly distributed across the “Dispatcher” bolt’s tasks and each task is
guaranteed to receive an equal number of tuples. The “Dispatcher” filters the tuples and
forwards the ones that apply the following condition to the “Time Range Controller” bolt

if {time_descr = ‘timerange’}

, whereas it forwards the tuples that satisfy the condition below to the “Maximum Stay
Controller” bolt.

if {time_descr = ‘max_stay’}

The “Time Range Controller” is responsible to apply a user-defined function in order to
monitor if an occupied parking lot applies the specific time range, defined through a Kafka
topic. It then transmits tuples to the “Time Range Illegal Parking Bolt” through shuffle
grouping in order to filter and forward only the tuples that satisfy the following condition to
the “Aggregator” bolt:

 if {restr_status = ‘out_of_range’}

Similarly, the “Maximum Stay Controller” is responsible to apply a user-defined function in
order to monitor if a parking lot that is occupied applies the maximum permitted stay limit, as
defined through a Kafka topic. Namely, if the status of the sensor is ‘occupied’ a time window
monitors whether it remains occupied, for the past X consequent minutes. In case the status
changes to ‘available’ then the ‘restr_status’ returns the value ‘valid’. However, if it remains
occupied longer than X minutes the ‘restr_status’ parameter returns ‘out_of_range’.
Afterwards, the bolt transmits tuples to the “Maximum Stay Violation Bolt” through shuffle
grouping in order to filter and forward only the tuples that satisfy the following condition to
the “Aggregator” bolt:

 if {restr_status = ‘out_of_range’}

Eventually, the “Aggregator” bolt receives inputs from both the “Time Range Illegal Parking
Bolt” and the “Maximum Stay Permission Anomaly Bolt” through a union operation. The
“Aggregator” emits tuples in the following form and writes them to a NoSQL or HDFS
database.

{4, ‘available’, ‘PWND’, 7.4834, 10.5254, 15:01:00, ‘out_of_range’, ‘time_range_violation’}

At the same time, a replicate of the input data is transmitted from the “Parking Sensors Spout”
to the “Geographical Segmentation Bolt” that reads from Kafka a grid of defined geographic
areas that encompass a number of dispersed sensors around Heraklion city. The
“Geographical Segmentation Bolt” is responsible to apply a user-defined function that
correlates which sensors belong to which geographic areas, according to their longitude and
latitude values. It maps tuples with the same key, namely the area, through fields grouping
to the same task and transmits them to the “Parking Status Bolt” that counts the total number
of available and occupied sensors (e.g. {count, ‘status’}). Then, it groups all the streams

 Eirini Kontaki

71 Case study: Heraklion Smart City

together with a global grouping and writes them to a NoSQL or HDFS database. In that way,
stakeholders will be able to retrieve information about the total number of available and
occupied parking places through the appropriate visualization tool or mobile application.

Finally, a second stream of data through fields grouping maps the tuples with the same
geographic area across “PWD Parking Bolt” ‘s tasks, which filters the tuples according to the
condition below and groups them together.

if {type = ‘PWD’}

Finally, it transmits data to the “PWD Available Parking Bolt”, which provides information
about the available parking places for people with disabilities. More specifically, the bolt filters
the tuples that apply the following condition and groups them together.

if {type = ‘PWD’ AND status = ‘available’}

Afterwards, the bolt performs a global grouping to group all streams together and write them
to a database for future analysis.

The aforementioned mechanism will allow monitoring the parking behavior of drivers in order
to improve traffic efficiency and reduce the time spend in vehicles for searching a parking
spot. This will have significant financial effects for Heraklion city in general, making it
interesting to all the stakeholders, from citizens to municipal police. More specific, monitoring
the traffic behavior will provide authorities with insights regarding rush hours in time windows
of any day in a week; parking data in every single hour of a selected day; or average
daily, weekly or monthly parking occupancy. Additionally, through data analysis, the city
authority will be able to observe patterns and thus predict the parking demand and traffic
situation. In this context, traffic can be proactively and more efficiently managed aiming to
reduce or even avoid traffic congestion (e.g. during Christmas holidays public shuttles can be
activated to load transport the public from the outskirts to the city center).

72 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

8.4.2 Water management using Apache Spark

8.4.2.1 Water level and water quality monitoring in city’s water reservoirs

In an effort to protect citizens from water contamination, the municipal authority of Heraklion
records the water quality of city’s reservoirs to ensure that it complies with the quality
standards for drinking water. In addition, data regarding the water level of city’s reservoirs
are collected in order to extract useful information about the water consumption aiming to
prevent unfortunate events of water shortages.

Considering a complex IoT infrastructure for water status monitoring, Heraklion city could
benefit from using Apache Spark to activate a smart monitoring system, including warnings
and alerts about real time events, while utilizing historic data to generate general knowledge.
Apache Spark is a distributed processing environment able to process reliably large volumes
of data using distributed clusters for both batch and stream processing. To this end, sensor
installations in the city’s main water tanks emit data every 10 minutes and generate raw data
that can be further exploited by authorities not only to stay informed about their current
status, but also to calculate deviations of normal values based on previous data. Sensors
record data regarding water temperature, conductivity, pH, water level, chloride, ammonium,
nitrate, calcium ions, etc.

In Figure 41, we present a data pipeline aiming to monitor water quantity and quality in
Heraklion water tanks with Apache Spark. Data are structured in Resilient Distributed Datasets
(RDD), while each dataset in RDD is divided into logical partitions, which may be computed on
different nodes of the cluster. Employed sensors emit data in the following form:

{id, ‘measurement’, value, ‘timestamp’}

, where id refers to the identifier of the sensor followed by the measurement type, the current
value and the timestamp of sampling.

In the presented graph streaming data generated by sensors are collected to extract
knowledge and provide stakeholders with an overview about the aforementioned parameters
(e.g. status) including non-normal behaviors regarding the average values of different
parameters, as further explained below.

According to Figure 41, data is processed through a Window (P1) function that keeps data
frames generated in specific time windows (e.g. the past 10 minutes). Afterwards, a Map (P2)
operation transforms raw data to key-value pairs consisted solely of the id and the
measurement value of a sensor, minimizing that way the distributed data footprint. A
ReduceByKey (P3) operation calculates the sum of all the values generated from the same
sensor, it counts how many entries are recorded within the specified window (represented as
n in equation (2)), it returns the last entry as the current value and it calculates the following
equation (1). The processed data have the form of (id, (sum, count, numerator, cur_value)).

y = Σ(xi − 𝑎𝑣𝑔)^2 (1)

To calculate the average value of the entries, the RDD partition sums up the value of each
entry and divides the total number by the count of the entries (n), according to

 Eirini Kontaki

73 Case study: Heraklion Smart City

avg = 𝑥 =
௦௨(௫)

 (2)

, where 𝑥 is the average value (mean) of all the entries of the same measurement and 𝑥 is the
sum of the total values. Average values of water level entries are calculated in an effort to
avoid false positives, including the cases where the amount of water does not reach the full
capacity of water tanks, especially in areas where minimum water consumption occurs due to
a limited number of households connected to a specific water supply network. It, then,
computes the standard deviation (s) according to the following equation (3).

s =ට
𝛴(x𝑖− 𝑎𝑣𝑔)^2

 (3)

With a Map (P4) operation, the tuples are transformed to key-value pairs including the sensor
id, the average values of each sensor, the standard deviation from the mean and the value of
the tuple that was transmitted last. Eventually, a Filter (P5) operation is applied to filter and
forward only the data partitions that satisfy the following condition to a data store for further
exploitation

if {(current_value – avg) / 2s > 1}

, where current_value is the current value and avg is the average value, which is equal to the
mean of a specific variable. If the condition returns TRUE, then a warning will be forwarded to
city authorities. To broaden the previous condition, if the following returns TRUE indicates
that a major issue is detected in the water supply infrastructure converging to potential water
contamination.

if {(current_value – avg) / 3s > 1}

In that case, a notification system is automatically triggered to inform stakeholders.

8.4.2.2 Water leakage detection

In addition to the aforementioned, we implement a simplistic scenario of water leakage
detection in the water pumps of Heraklion city, despite the fact that there is no such an
infrastructure available yet. However, it is very important for cities to be able to monitor
potential water loss, not only for the leaks that are visible as they rise to the surface but also
for those that are invisible and run directly to the ground. These can result a considerable
volume of water loss that is often observed retrospectively. Leaks may occur due to the age
of the network, freezing pipes during winter, traffic, excavations or even excessive water
pressure.

In this context, we consider the water supply network of Heraklion city divided into zones and
subdivided to district areas with a number of water flow and pressure sensors being installed
in different distances. To simplify our approach, we consider that pipelines have no branches,
which would mean that the water flow at the end of each branch should be added and
compared to the water flow at the starting point of the pipe, namely the sensors that are
located near the water tank. To check if there is leak, i.e., divergence of water flow in the

74 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

network, we need to compare the water flow values at the starting point of a pipeline with
the values at its end. Moreover, to estimate the approximate location of the malfunction in
the network, we need to extract the water flow values from different distances in the pipe
and check whether they differentiate with each other.

More specific, for every main pipeline that distributes water around the city we extract an id
and an average value of the flow along the pipe (e.g. {id, total_avg}). Each sensor installed
within a pipe emits tuples of key-value pairs in the form of

{id, value, ‘timestamp’}

As illustrated in Figure 41, data is processed through a Window (P6) function that keeps data
frames generated during the last 5 seconds. Afterwards, through a ReduceByKey (P7)
operation we calculate the total average number from the values extracted from all the
sensors placed in a specific pipeline within the aforementioned time frame.

Figure 41: A data pipeline for water monitoring in Heraklion city

 Eirini Kontaki

75 Case study: Heraklion Smart City

Figure 42: Tuples emitted throughout the Spark topology

A user-defined function applied in a Filter (P8) operator checks if there is any water loss
detected through the specific network, by computing if the following condition returns TRUE

if {abs(si – total_avg)} > threshold

si is the value of the water flow (liters per meter - lpm) recorded from the sensor i and si –
total_avg calculates if each sensor’s value deviates from the total average value of the
pipeline, taking into consideration that normally, if no anomaly occurs in the network, all
sensors should return the same value. According to this condition, we check if the absolute
value of the abstraction is greater than a threshold (e.g. 2 lpm assuming that sensors have ±1
lpm level of accuracy). If the condition returns TRUE it indicates that water loss has been
detected in the network.

To estimate the location of the damage we use a second Filter (P8) operator to check whether
the condition below is applied.

if {(abs(si – si+1) > threshold) AND (abs(si – si+2) > threshold)}

That means that if the absolute difference of the value that a sensor (si) transmits is greater
than a threshold for the next two sensors (si+1, si+2) then it will be concluded that the leakage
takes place between sensors si and si+1. If this condition is TRUE then the operator transmits
tuples consisted of the id and the value of the first sensor after the leakage point.

In that context, further investment in the IoT infrastructure of a water supply network of
Heraklion city will allow a more efficient monitoring mechanism regarding the quality of water
transferred through the water pipelines to households and the prevention of water loss due
to malfunctions in the network, as well. The latter can be monitored through actuators
installed near the water flow and pressure sensors. Thus, whenever a leakage event occurs,
actuators can be automatically activated to stop the water flow to the point that the
malfunction is spotted, until the technicians repair the damage.

76 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

8.4.3 Environmental monitoring using Apache Flink
Heraklion Smart City’s infrastructure monitors environmental parameters such as
temperature, humidity, wind and air pollutants, including gases (e.g. SO2, NO, NO2, CO2, O3),
smoke concentration and dust particles in order to protect the public from areas condensed
with air pollutants and extreme weather events. Such an infrastructure requires a big data
platform able to handle a very large amount of data streams and able to process historic data
with the aim of predicting upcoming non-normal events through event pattern recognition
mechanisms. In this context, we use Apache Flink to process and analyze streaming data as
well as to inform stakeholders (including susceptible groups of people) about threatening
weather conditions and areas with hazardous air pollutant accumulation.

A high-level view of the computational logic of Apache Flink is introduced in Figure 43
represented as directed graph. According to the specific data flow program, data is received
from a data source (i.e., sensors), applying a set of transformations (e.g. map, filter, window
operations, etc.) and writes the results to data stores, such as NoSQL, HDFS, sinks, etc. In the
presented diagram, the operators (nodes) represent computations, while edges represent
data dependencies. Specifically, operators consume data from inputs, perform a computation
and produce data to outputs for further processing.

A number of sensors emit weather data every 1 minute and air pollution data every 5 minutes
(see Chapter 5.2). Stream data collected by sensors constitute a set of key-value pairs in the
form of {name1: value1, name2: value2,… namen: valuen}. For each set of key value pairs, the
key refers to the identifier of the sensor and the value refers to (i) a measurement, (ii), the
value of the parameter measured, (iii) the sensor’s location, and (iv) the time of an event.
More specific, data streams have the following form:

{id: 1, measurement: CO2, value: 420, coordinates: 10.1224, 23.1681, timestamp: 10:45:00}

According to Figure 43, a time Window (F1) operator is used to collect events that occurred
during the last 10 minutes so that the volume of data is decreased to a finite data set. Then, a
KeyBy (F2) operator partitions the sensor readings with the same key (i.e., measurement)
randomly to be processed across the tasks of the subsequent operator (e.g. {id: 1,
measurement: CO2, value: 420, coordinates: 10.1224, 23.1681, timestamp: 10:45:00}, {id: 1,
measurement: CO2, value: 424, coordinates: 10.1224, 23.1681, timestamp: 10:50:00}, etc.).
Afterwards, stream data is joined (F3) together according to the sensors’ location in
correlation to existing geographic areas retrieved from a Kafka topic.

As illustrated in Figure 43, tuples of data is transmitted from the join operation through
custom partitioning for three distinct computations: min (F4), max (F5) and average (F6).
Custom partitioning indicates that tuples, which belong to the same geographic area, are
mapped to the same task for processing. For each incoming event, the operators update the
corresponding aggregate value and emit a new event with the updated value at runtime. As a
next step, we calculate the average value of the total events for each sensor, in order to check
whenever they exceed the given thresholds, as a way to avoid false positives. The tuples of
data emitted from the average operator have the form {‘measurement’, avg_value} and are
stored to a NoSQL or HDFS database.

 Eirini Kontaki

77 Case study: Heraklion Smart City

According to Heraklion Smart City, any combination of the patterns regarding concentrations
of the following parameters could be considered as an “air pollution” event when occurring
for a period longer than 30 minutes.

Particulate matter: PM10 > 50 mg/m3

Carbon dioxide: CO2 > 380 ppm

Nitrogen dioxide: NO2 > 19.7 ppb

Sulphur dioxide: SO2 > 7.09 ppb

Ozone: O3 > 47.3 ppb

Nitrogen oxide: NO > 25000 ppb

Volatile Organic Compound: VOC > 600 ppb

Figure 43: A physical dataflow plan for air quality monitoring

78 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Figure 44: Tuples emitted throughout the Apache Flink topology

 Eirini Kontaki

79 Case study: Heraklion Smart City

Moreover, as depicted in Figure 43, a filter (F7) operator is responsible to receive tuples from
the average operator and group together the data streams that satisfy the following condition.

If { PM10 > 50 OR CO2 > 430 OR NO2 > 19.7 OR SO2 > 7.09 OR O3 > 47.3 OR NO > 25000 OR
VOC > 600}

Similar to the previous logic, the thresholds for weather conditions applied in Heraklion Smart
City are the following.

Temperature: < -10 oC OR > 50 oC

Rainfall > 8 mm

Wind speed > 50 km/h

Atmospheric pressure: < 750 hPa OR > 1050 hPa

The according filter operator groups together the data streams in refer to weather parameters
that satisfy the condition below.

If { (temp < -10 OR temp > 50) OR rnfl > 8 OR wind_spd > 50 OR (atm_prs < 750 OR atm_prs
> 1050)}

If the computed averages exceed the aforementioned thresholds, the corresponding alerting
system referring to the specific area will be activated.

Finally, the tuples transmitted from the min, max and filter operators will be written to a
NoSQL database (e.g. MongoDB, CouchDB, Apache HBase, Apache Cassandra, etc.). Data
streams can be produced into message queues to make the events available to subsequent
streaming applications, written to file systems / data stores for making the data available for
further analysis. The stored data can be eventually visualized through analytics tools, allowing
stakeholders to access the generated information in a user-friendly way.

Exiting the presented Flink topology, data records can be further used for building a machine-
learning model aiming to predict intense concentrations of air pollutants in specific territories,
such as schools, traffic lights and so on. Based on observed patterns a notification system can
be triggered whenever outliers of the parameters measured are detected. For instance, an
event-driven application can trigger actions such as sending an alert or an email or write
events to an outgoing event stream to be consumed by another event-driven application. This
information could be proven valuable to people with health issues or susceptible groups (e.g.
children, pregnant women, etc.) that need to know in which territories intense gas
accumulation is observed.

80 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

8.5 Using Apache Beam for cross platform data processing

In the previous chapters, we elaborated data processing pipelines in three distinct scenarios
(i.e., transportation, water and environment) based on Heraklion’s Smart City infrastructure.
As a next step, we need to establish a global mechanism for data processing across different
platforms able to interconnect all these scenarios in order to allow global queries and
exploitation of the generated data to draw useful conclusions. To accomplish that, we apply
Apache Beam, a cross-platform processing tool that runs on a number of runtimes (e.g.,
Apache Flink, Apache Spark) and simplifies the mechanics of large-scale batch and streaming
data processing.

To that end, we examine how finding a parking place may affect carbon dioxide (CO2)
concentrations in the atmosphere. In general, Heraklion city suffers from excessive traffic in
certain points and especially in the city center where the combination of commuters’ traffic
and shopping hours result in street congestion. That often hinders the smooth car flow on the
streets. At the same time, having in mind that vehicles emit CO2 gases we need to check
whether potential correlation between the parking behavior and CO2 accumulations in the air
is observed. More specific, we assume that thousands of sensors are installed on every
existing parking place, both on-road and in parking areas of Heraklion city. For the purposes
of our scenario, we receive every 10 minutes (a) the parking status, namely the percentage of
parking lots that are occupied, and (b) the CO2 levels per area. If the available parking capacity
in the city center reaches more than 60%, we hypothesize that this might be an indication that
a considerable number of vehicles leaves the area. Such a mass behavior could imply that
traffic congestion is expected to occur with high concentrations of carbon dioxide in the
atmosphere.

More specific, the following Beam pipeline comprises Parallel Collections (PCollections),
Aggregation Transforms and Transformations. PCollections represent distributed data sets
that are both bounded, meaning they come from a fixed data source, like a file, and
unbounded, meaning they come from continuously updated data sources. Aggregation
Transforms, such as GrouByKey and Combine, work on a per-window basis, as the data set is
generated, and they process each PCollection as a succession of these finite windows.
Transforms represent a data processing operation in the pipeline. Every Transform takes one
or more PCollections as input, it performs a processing function and it then produces zero or
more output PCollection objects.

As illustrated in Figure 45, the Beam pipeline receives input data from both parking sensors
and air quality sensors measuring CO2 concentrations in the air. The tuples of data arriving
from parking sensors are key-value pairs in the form of

{id, ‘status’, ‘type’, lon, lat, timestamp}

, with the key being the id of the sensor and the rest parameters being the value. The status
parameter takes values of ‘occupied’ or ‘available’ and the type ‘PWD’ or ‘PWND’ (see Chapter
8.4.1). Since parking data are unbounded data sets, we apply a non-global Window operation
to group generated data to batches every 10 minutes (e.g. 10:30-10:40), according to the
timestamp of each record. Through a Kafka topic, we extract information regarding the

 Eirini Kontaki

81 Case study: Heraklion Smart City

geographic areas, in which Heraklion city is bisected, and with a ParDo we correlate the
records according to their coordinates and group together the ones within the same area.
However, each sensor records data every 1 minute (see Chapter 5.2) that means hundreds of
tuples are collected in batches grouped together every 10 minutes. To that end, a Filter
transformation keeps only the last record for each sensor id and filters out the rest.
Afterwards, we Count the total number of available and occupied parking sensors per area so
that the emitted data of P5 have the form of

{count, ‘status’, ‘geo_area’}

Then, a ParDo calculates the percentage value of occupied and available parking spots per
area (e.g. {‘60%’, ‘occupied’, ‘Eleftheria Square’}, {‘52%’, ‘available’, ‘Port’}).

Figure 45: A Data processing pipeline with the Beam model

82 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

Figure 46: PCollections emitted through the Beam pipeline

 Eirini Kontaki

83 Case study: Heraklion Smart City

At the same time, air quality sensors emit data measuring CO2, NO2, SO2, O3, etc. in key-value
pairs (P7) in the form of

{id, ‘measurement’, value, ‘coordinates’, timestamp}

Then, a Filter transformation keeps only the records related to CO2 emissions and discards the
rest. Through a non-global Window we group finite sets of data in 10-minute batches and
similarly to the parking sensors, a ParDo transform groups data to distinct areas in reference
to a Kafka topic. Then, we calculate the average values of CO2 per area in order to avoid false
positive indications and we transform the tuples (P10) in the form of {avg, ‘geo_area’}.

Furthermore, a GoupByKey aggregating transform acts as a reduction operation that collects
and groups together the parking and CO2 records that belong to the same geographic area and
emits the following form of tuples (P11)

{avg, ‘avail_pntg’, ‘geo_area’}

, where avail_pntg the percentage of the available parking lots.

Finally, a ParDo transformation filters the data set by checking whether the elements of the
previous PCollection satisfy the following condition and groups them together.

If {avail_pntg ≥ 0.6 * total_park AND CO2 ≥ 400}

The total_park parameter represents the total number of parking lots. It should be clarified
that the threshold regarding the amount of available parking lots is an indicative example and
it could be specified through a number of observations.

Moreover, a notification mechanism triggered every time high concentration of CO2 in specific
areas is observed, could inform vulnerable groups of people (e.g., elderly, people with health
issues, children etc.). In addition, the aforementioned scenario can be further exploited
combining records of data regarding the air temperature and water quality in seas and rivers
in order to evaluate how rising CO2 can affect in the long run the climate change and in what
level it contributes to the ocean acidification. Applying the appropriate mechanisms (i.e.,
machine-learning tools) for pattern recognition based on these data can be proven very useful
in order to predict extreme upcoming events. Having all these in mind, the Municipal of
Heraklion may use these data to extract valuable conclusions based on both real time and
historic data, which may prove important for decision making in matters related to the wider
region.

84 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

9 CONCLUSION AND FUTURE WORK

This thesis focuses on leveraging the knowledge stemming from a city’s core services by
utilizing the necessary IoT infrastructure in order to facilitate the decision-making process in
smart cities’ setups for the benefit of the society and its people, as well. To this end, we
identify the needs of the city’s core systems to facilitate its operational activities and
coordinate its services including road traffic, parking, waste, water, air and weather
monitoring. In this context, we underlined weaknesses and threats, they might entail in refer
to city sustainability and resources consumption. We analyzed and translated usual problems
into business objectives and underlined the technological challenges of utilizing large amounts
of data and interpreted them in technical requirements. We provided an in –depth analysis of
existing technologies for big data processing and reviewed a number of algorithms and
algorithmic suites that can be implemented within such platforms. The algorithms presented
can be deployed in various parts of the proposed architecture, so that they can be utilized
while performing analytics tasks. Eventually, we incorporated all the above in a full-fledged
architectural design proposal tailored for smart cities.

Followed by a comprehensive report about future benefits for the stakeholders, we exemplify
the potential advantages in terms of business’s logic efficiency of adopting mainstream data
processing topologies including Apache Storm, Apache Spark and Apache Flink into a real
smart city setup, namely Heraklion’s Smart City. In this direction, we presented the processing
pipeline of big data on various Heraklion city’s domains including parking, water and air quality
monitoring. Eventually, we interconnected two vertical sectors through a cross-platform
technology, Apache Beam, to indicate data processing across different platforms.

Two main directions of further work are anticipated in a path towards supporting the
utilization of big data processing pipelines for the benefit of smart city’s stakeholders. The first
direction concerns the improvement of the proposed infrastructure by minimizing the
processing workload of sensor data in the data processing topologies presented, while the
second concerns the potential benefits for stakeholders arising from big data processing as
regards further city’s domains such as smart governance, smart grid and smart health.

 Eirini Kontaki

85 References

REFERENCES

1. 11th USENIX Symposium on Operating Systems Design and Implementation, Scaling
Distributed Machine Learning with the Parameter Server, October 2014,
https://www.usenix.org/node/186215

2. 6sqft, NYC water towers: History, use, and infrastructure, July 2017,
https://www.6sqft.com/nyc-water-towers-history-use-and-infrastructure/

3. A vision of smarter cities, IBM Global Business Services, IBM Institute for Business
Value (https://www-03.ibm.com/press/attachments/IBV_Smarter_Cities_-_Final.pdf)

4. Agrawal, D., Chawla, S., Contreras-Rojas, B., Elmagarmid, A., Idris, Y., Kaoudi, Z., ... &
Papotti, P. (2018). RHEEM: enabling cross-platform data processing: may the Big Data
be with you!. Proceedings of the VLDB Endowment, 11(11), 1414-1427.

5. Air pollution to be monitored at twenty-two schools across Newcastle. Newcastle
University, 20 Nov 2019
(https://www.ncl.ac.uk/press/articles/latest/2019/11/airpollutionandschools/)

6. Al Nuaimi, E., Al Neyadi, H., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of Big
Data to smart cities. Journal of Internet Services and Applications, 6(1), 25.

7. Anagnostopoulos, T., Zaslavsky, A., Kolomvatsos, K., Medvedev, A., Amirian, P.,
Morley, J., & Hadjieftymiades, S. (2017). Challenges and opportunities of waste
management in IoT-enabled smart cities: a survey. IEEE Transactions on Sustainable
Computing, 2(3), 275-289.

8. Ang, L. M., & Seng, K. P. (2016). Big sensor data applications in urban environments.
Big Data Research, 4, 1-12.

9. Apache Cassandra, http://cassandra.apache.org/
10. Apache Data Sketches, Sketch Capability Matrix,

https://datasketches.apache.org/docs/MajorSketchFamilies.html
11. Apache DataSketches, https://datasketches.github.io/.
12. Apache Flink, FlinkML – Machine Learning for Flink,

https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/libs/ml/#supervised-
learning

13. Apache Flink, https://ci.apache.org/projects/flink/flink-docs-
master/zh/internals/stream_checkpointing.html

14. Apache Flume, http://flume.apache.org/
15. Apache Hadoop, http://hadoop.apache.org/
16. Apache HBase, https://mapr.com/products/apache-hbase/
17. Apache Kafka, A distributed streaming platform, https://kafka.apache.org/intro
18. Apache MapReduce. IBM(https://www.ibm.com/analytics/hadoop/mapreduce)
19. Apache MESOS, Nvidia GPU Support,

http://mesos.apache.org/documentation/latest/gpu-support/
20. Apache SAMOA, Scalable Advanced Massive Online Analysis,

http://samoa.incubator.apache.org/
21. Apache Samza, A distributed stream processing framework,

http://samza.apache.org/
22. Apache Spark MLib, https://spark.apache.org/mllib/
23. Apache Zeppelin, https://zeppelin.apache.org/

86 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

24. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer
networks, 54(15), 2787-2805.

25. AWS Amazon, Benefits of Pub/Sub Messaging, https://aws.amazon.com/pub-sub-
messaging/benefits/

26. Barcelona: smart city revolution in progress. The Spanish metropolis is rethinking the
way it uses the internet of things. Financial Times
(https://www.ft.com/content/6d2fe2a8-722c-11e7-93ff-99f383b09ff9)

27. Baron, C. A. (2016). NoSQL key-value DBs riak and redis. Database Systems Journal, 4,
3-10.

28. Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., & Rabl, T. (2012, August). Setting
the direction for Big Data benchmark standards. In Technology Conference on
Performance Evaluation and Benchmarking (pp. 197-208). Springer, Berlin,
Heidelberg.

29. Beam, Documentation, https://beam.apache.org/documentation/runners/spark/
30. Bibri, S. E. (2015). The Human Face of Ambient Intelligence, cognitive, emotional,

affective, behavioral, and conversational aspects. Atlantis Press, Springer-Verlag,
Berlin, Heidelberg (2015)

31. Bibri, S. E. (2018). The IoT for smart sustainable cities of the future: An analytical
framework for sensor-based Big Data applications for environmental sustainability.
Sustainable Cities and Society, 38, 230-253.

32. Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive
interdisciplinary literature review. Sustainable Cities and Society, 31, 183-212.

33. Bibri, S. E., & Krogstie, J. (2017). The core enabling technologies of big data analytics
and context-aware computing for smart sustainable cities: a review and
synthesis. Journal of Big Data, 4(1), 38.

34. Big Data Zone, Data Visualization Using Apache Zeppelin, October 2017,
https://dzone.com/articles/data-visualization-using-apache-zeppelin

35. Bijnens, Nathan. "A real-time architecture using Hadoop and Storm". 11 December
2013, lambda-architecture.net

36. Biswas, K., & Muthukkumarasamy, V. (2016, December). Securing smart cities using
blockchain technology. In 2016 IEEE 18th international conference on high
performance computing and communications; IEEE 14th international conference on
smart city; IEEE 2nd international conference on data science and systems
(HPCC/SmartCity/DSS) (pp. 1392-1393). IEEE.

37. Bitbucket, FERARI, https://bitbucket.org/sbothe-iais/ferari/src/master/
38. Boulos, M. N. K., & Al-Shorbaji, N. M. (2014). On the Internet of Things, smart cities

and the WHO Healthy Cities.
39. Brown, L. C., & Mac Berthouex, P. (2002). Statistics for environmental engineers. CRC

press.
40. Chen, M., & Chang, T. (2011, June). A parking guidance and information system based

on wireless sensor network. In Information and Automation (ICIA), 2011 IEEE
International Conference on (pp. 601-605). IEEE.

41. Chen, Y., & Han, D. (2018). Water quality monitoring in smart city: A pilot project.
Automation in Construction, 89, 307-316.

 Eirini Kontaki

87 References

42. Cheng, B., Longo, S., Cirillo, F., Bauer, M., & Kovacs, E. (2015, June). Building a Big
Data platform for smart cities: Experience and lessons from santander. In Big Data
(BigData Congress), 2015 IEEE International Congress on (pp. 592-599). IEEE.

43. Cheung, S. Y., & Varaiya, P. P. (2006). Traffic surveillance by wireless sensor networks
(Doctoral dissertation, University of California, Berkeley).

44. Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon, K., ... & Scholl,
H. J. (2012, January). Understanding smart cities: An integrative framework. In System
Science (HICSS), 2012 45th Hawaii International Conference on (pp. 2289-2297). IEEE.

45. Clouder, Kafka in Truckin IoT, https://hortonworks.com/tutorial/kafka-in-trucking-iot-
on-hdf/section/1/

46. Compose, Redis Resource and Scaling, https://help.compose.com/docs/redis-
resources-and-scaling

47. Cormode, G., Garofalakis, M., Haas, P. J., & Jermaine, C. (2011). Synopses for massive
data: Samples, histograms, wavelets, sketches. Foundations and Trends® in
Databases, 4(1–3), 1-294.

48. Data Science Central, Apache Beam – Create Data Processing Pipelines, Michael
Walker, May 2016,
https://www.datasciencecentral.com/profiles/blog/show?id=6448529:BlogPost:4271
57&utm_content=bufferbf154&utm_medium=social&utm_source=linkedin.com&ut
m_campaign=buffer

49. Databricks, Apache Spark, https://databricks.com/glossary/what-is-spark-streaming
50. Databricks, Apache Spark, https://databricks.com/spark/about
51. Data-Smart City Solutions, How Cities Are Using the Internet of Things to Map Air

Quality, April 2017, https://datasmart.ash.harvard.edu/news/article/how-cities-are-
using-the-internet-of-things-to-map-air-quality-1025

52. Deloitte insights, Forces of change: Smart cities, 2018
(https://www2.deloitte.com/insights/us/en/focus/smart-city/overview.html)

53. Deshpande, T. (2017). Learning Apache Flink. Packt Publishing Ltd.
54. Devaraju, J. T., Suhas, K. R., Mohana, H. K., & Patil, V. A. (2015). Wireless portable

microcontroller based weather monitoring station. Measurement, 76, 189-200.
55. Devops, PySpark: Operations Overview, May 2016, http://trimc-

devops.blogspot.com/2016/05/r-eslient-d-istributed-d-ataset-dataset.html
56. Druid, http://druid.io/
57. Emaldi, M., Peña, O., Lázaro, J., & López-de-Ipiña, D. (2015). Linked open data as the

fuel for smarter cities. In Modeling and Processing for Next-Generation Big-Data
Technologies (pp. 443-472). Springer, Cham.

58. Ertico, Pisa and Deutsche Telekom launch 6-month smart city pilot project to
optimize city parking, September 2017, https://erticonetwork.com/pisa-and-
deutsche-telekom-launch-6-month-smart-city-pilot-project-to-optimize-city-parking/

59. Eyecademy, Data Visualisation for IoT: Barcelona’s Smart Bins,
https://www.eyecademy.com/blog/data-visualisation-for-iot/

60. Fisher, D., DeLine, R., Czerwinski, M., & Drucker, S. (2012). Interactions with Big Data
analytics. interactions, 19(3), 50-59.

88 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

61. Flouris, I., Giatrakos, N., Deligiannakis, A., & Garofalakis, M. (2020). Network-wide
complex event processing over geographically distributed data sources. Information
Systems, 88, 101442.

62. Flouris, I., Giatrakos, N., Garofalakis, M., & Deligiannakis, A. (2015, August). Issues in
complex event processing systems. In 2015 IEEE Trustcom/BigDataSE/ISPA (Vol. 2, pp.
241-246). IEEE.

63. Flouris, I., Manikaki, V., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Mock, M., ...
& Krizan, T. (2016, June). Ferari: A prototype for complex event processing over
streaming multi-cloud platforms. In Proceedings of the 2016 International Conference
on Management of Data (pp. 2093-2096). ACM.

64. Folianto, F., Low, Y. S., & Yeow, W. L. (2015, April). Smartbin: Smart waste
management system. In Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2015 IEEE Tenth International Conference on (pp. 1-2). IEEE.

65. Fujdiak, R., Masek, P., Mlynek, P., Misurec, J., & Olshannikova, E. (2016, July). Using
genetic algorithm for advanced municipal waste collection in Smart City. In 2016 10th
International Symposium on Communication Systems, Networks and Digital Signal
Processing (CSNDSP) (pp. 1-6). IEEE.

66. Galán-García, J. L., Aguilera-Venegas, G., & Rodríguez-Cielos, P. (2014). An
accelerated-time simulation for traffic flow in a smart city. Journal of Computational
and Applied Mathematics, 270, 557-563.

67. Garofalakis, M., Gehrke, J., & Rastogi, R. (2016). Data stream management: A brave
new world. In Data Stream Management (pp. 1-9). Springer, Berlin, Heidelberg.

68. Gartner, Information Technology (https://www.gartner.com/en/information-
technology/glossary/big-data)

69. Genuer, R., Poggi, J. M., Tuleau-Malot, C., & Villa-Vialaneix, N. (2017). Random forests
for big data. Big Data Research, 9, 28-46.

70. Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., & Garofalakis, M. (2019).
Complex event recognition in the Big Data era: a survey. The VLDB Journal, 1-40.

71. Giatrakos, N., Artikis, A., Deligiannakis, A., & Garofalakis, M. (2017). Complex event
recognition in the big data era. Proceedings of the VLDB Endowment, 10(12), 1996-
1999.

72. Giatrakos, N., Deligiannakis, A., Garofalakis, M., & Kotidis, Y. (2018). Omnibus outlier
detection in sensor networks using windowed locality sensitive hashing. Future
Generation Computer Systems.

73. Giatrakos, N., Deligiannakis, A., Garofalakis, M., Keren, D., & Samoladas, V. (2018).
Scalable approximate query tracking over highly distributed data streams with
tunable accuracy guarantees. Information Systems, 76, 59-87.

74. Giatrakos, N., Deligiannakis, A., Garofalakis, M., Sharfman, I., & Schuster, A. (2014).
Distributed geometric query monitoring using prediction models. ACM Transactions
on Database Systems (TODS), 39(2), 16.

75. Giatrakos, N., Kotidis, Y., & Deligiannakis, A. (2010, September). PAO: power-efficient
attribution of outliers in wireless sensor networks. In Proceedings of the Seventh
International Workshop on Data Management for Sensor Networks (pp. 33-38).

76. Giatrakos, N., Kotidis, Y., Deligiannakis, A., Vassalos, V., & Theodoridis, Y. (2010,
June). TACO: tunable approximate computation of outliers in wireless sensor

 Eirini Kontaki

89 References

networks. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data (pp. 279-290). ACM.

77. Github, Apache Flink streaming engine, https://github.com/FlinkML/flink-jpmml
78. Github, Datasketch, https://github.com/ekzhu/datasketch
79. Github, GPU based Dynamic k-Nearest Neighbors,

https://github.com/artifabrian/dynamic-knn-gpu
80. Github, Parameter Server implementation in Apache Flink,

https://github.com/FlinkML/flink-parameter-server
81. Github, Proteus incremental analytics, https://github.com/proteus-h2020/proteus-

incremental-analytics
82. Github, Proteus Solma, https://github.com/proteus-h2020/proteus-solma
83. Github, Stream summarizer and cardinality estimator,

https://github.com/addthis/stream-lib
84. Github, Streaminer: a collection of algorithms for mining data streams,

https://github.com/mayconbordin/streaminer
85. Giuffrè, T., Siniscalchi, S. M., & Tesoriere, G. (2012). A novel architecture of parking

management for smart cities. Procedia-Social and Behavioral Sciences, 53, 16-28.
86. Google Cloud, Dataflow, https://cloud.google.com/dataflow/
87. Grafana Labs, https://grafana.com/grafana/
88. Grafana vs. Kibana: The Key Differences to Know, February 2020,

https://logz.io/blog/grafana-vs-kibana/
89. Hadoop Distributed File System (HDFS). TechTarget, Search Data Management

(https://searchdatamanagement.techtarget.com/definition/Hadoop-Distributed-File-
System-HDFS)

90. Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., &
Williams, P. (2010). Foundations for smarter cities. IBM Journal of Research and
Development, 54(4), 1-16.

91. Hemsoth, Nicole. "Druid Summons Strength in Real-Time", Datanami, 08 November
2012

92. Heraklion Smart City, https://smartcity.heraklion.gr/en/our-vision/
93. High Performance Computing (HPC). Amazon. 31 Jan 2019

(https://aws.amazon.com/hpc/)
94. Hofmann, M., & Klinkenberg, R. (Eds.). (2013). RapidMiner: Data mining use cases

and business analytics applications. CRC Press.
95. Höjer, M., & Wangel, J. (2015). Smart sustainable cities: definition and challenges.

In ICT innovations for sustainability (pp. 333-349). Springer, Cham.
96. Hollands, R. G. (2008). Will the real smart city please stand up? Intelligent,

progressive or entrepreneurial. City, 12(3), 303-320.
97. Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems for Big Data

analytics: A technology tutorial. IEEE access, 2, 652-687.
98. ITU-T Focus Group on Smart Sustainable Cities: An Overview of Smart Sustainable

Cities and the Role of Information and Communication Technologies (ICTs)
99. ITU-T Focus Group on Smart Sustainable Cities: Key performance indicators related to

the sustainability impacts of information and communication technology in smart
sustainable cities.

90 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

100. Jain, A. (2017). Mastering apache storm: Real-time big data streaming using kafka,
hbase and redis. Packt Publishing Ltd.

101. Javatpoint, Support Vector Machine Algorithm,
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm

102. Kakadia, D. (2015). Apache Mesos Essentials. Packt Publishing Ltd.
103. K alaitzakis, M., Bouloukakis, M., Charalampidis, P., Dimitrakis, M., Drossis, G.,

Fragkiadakis, A., Fundulaki, I., Karagiannaki, K., Makrogiannakis, A., Margetis, G.,
Panousopoulou, A., Papadakis, S., Papakonstantinou, V., Partarakis, N., Roubakis, S.,
Tragos, E., Ymeralli, E., Tsakalides, P., Plexousakis, D., & Stephanidis, C. (2018).
Building a Smart City Ecosystem for Third Party Innovation in the City of Heraklion. In
A. Stratigea & D. Kavroudakis (Eds.), Mediterranean Cities and Island Communities:
Smart, Sustainable, Inclusive and Resilient (pp. 19-56). Switzerland: Springer
International Publishing AG.

104. Kanellou, E., Chrysos, N., Mavridis, S., Sfakianakis, Y., & Bilas, A. (2018, August). GPU
Provisioning: The 80-20 Rule. In European Conference on Parallel Processing (pp. 352-
364). Springer, Cham.

105. Karim, S., Zhang, Y., Yin, S., & Asif, M. R. (2018, July). An Efficient Region Proposal
Method for Optical Remote Sensing Imagery. In IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium (pp. 2455-2458). IEEE.

106. Kelly, F. J., Fuller, G. W., Walton, H. A., & Fussell, J. C. (2012). Monitoring air pollution:
Use of early warning systems for public health. Respirology, 17(1), 7-19.

107. Khanna, A., & Anand, R. (2016, January). IoT based smart parking system. In Internet
of Things and Applications (IOTA), International Conference on (pp. 266-270). IEEE.

108. Kostakos, V., Ojala, T., & Juntunen, T. (2013). Traffic in the smart city: Exploring the
potential of city-wide sensing to augment a traffic control center. IEEE Internet
Computing, 1.

109. Kramers, A., Höjer, M., Lövehagen, N., & Wangel, J. (2014). Smart sustainable cities–

Exploring ICT solutions for reduced energy use in cities. Environmental modelling &
software, 56, 52-62.

110. Kreps, J., Narkhede, N., & Rao, J. (2011, June). Kafka: A distributed messaging system
for log processing. In Proceedings of the NetDB (pp. 1-7).

111. Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., ... & Taneja, S.
(2015, May). Twitter heron: Stream processing at scale. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data (pp. 239-250). ACM.

112. Kumar, A., & Prakash, A. (2014). The role of Big Data and analytics in smart cities. Int J
Sci Res (IJSR), 6(14), 12-23.

113. Labrinidis, A., & Jagadish, H. V. (2012). Challenges and opportunities with Big Data.
Proceedings of the VLDB Endowment, 5(12), 2032-2033.

114. Lamda Architecture, http://lambda-architecture.net/
115. Lanza, J., Sotres, P., Sánchez, L., Galache, J. A., Santana, J. R., Gutiérrez, V., & Muñoz,

L. (2016). Managing large amounts of data generated by a smart city internet of
things deployment. International Journal on Semantic Web and Information Systems
(IJSWIS), 12(4), 22-42.

116. Lin, T., Rivano, H., & Le Mouël, F. (2017). A survey of smart parking solutions. IEEE
Transactions on Intelligent Transportation Systems, 18(12), 3229-3253.

 Eirini Kontaki

91 References

117. Living Asean, https://livingasean.com/explore/3-apps-check-air-pollution-levels-pm2-
5-pm10/

118. Lucas, J., Idris, Y., Contreras-Rojas, B., Quiane-Ruiz, J. A., & Chawla, S. (2018, April).
RheemStudio: Cross-Platform Data Analytics Made Easy. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE) (pp. 1573-1576). IEEE.

119. Mahajan, K., & Chitode, J. S. (2014). Waste bin monitoring system using integrated
technologies. International Journal of Innovative Research in Science, Engineering
and Technology, 3(7).

120. Medvedev, A., Fedchenkov, P., Zaslavsky, A., Anagnostopoulos, T., & Khoruzhnikov, S.
(2015, August). Waste management as an IoT-enabled service in smart cities. In
Conference on smart spaces (pp. 104-115). Springer, Cham.

121. MentalFloss, How much land in Los Angeles is dedicated to parking spaces?, March
2016, http://mentalfloss.com/article/77143/how-much-land-los-angeles-dedicated-
parking-spaces

122. Mobile Environmental Sensor Systems Across a Grid Environment - the MESSAGE
Project (https://ercim-news.ercim.eu/en68/special/mobile-environmental-sensor-
systems-across-a-grid-environment-the-message-project)

123. Mobilesyrup, UVLens helps protect against the harshness of the sun, August 2017,
https://mobilesyrup.com/2017/08/20/uvlens-app-of-the-week/

124. Mora, L., Bolici, R., & Deakin, M. (2017). The first two decades of smart-city research:
A bibliometric analysis. Journal of Urban Technology, 24(1), 3-27.

125. Nam, T., & Pardo, T. A. (2011, June). Conceptualizing smart city with dimensions of
technology, people, and institutions. In Proceedings of the 12th annual international
digital government research conference: digital government innovation in challenging
times (pp. 282-291).

126. Nature, The big challenges of big data, June 2013,
https://www.nature.com/articles/498255a

127. Nerantzaki, S., Moirogiorgou, K., Efstathiou, D., Giannakis, G., Voutsadaki, S., Zervakis,
M., ... & Nikolaidis, N. P. (2015, April). Development of an Integrated Suspended
Sediment Sampling System-Prototype Results. In EGU General Assembly Conference
Abstracts (Vol. 17).

128. New York City’s agency (DOT). Traffic signals
(https://www1.nyc.gov/html/dot/html/infrastructure/signals.shtml)

129. Ng, E. H., Tan, S. L., & Guzman, J. G. (2009, February). Road traffic monitoring using a
wireless vehicle sensor network. In Intelligent Signal Processing and Communications
Systems, 2008. ISPACS 2008. International Symposium on (pp. 1-4). IEEE.

130. Nguyen, T. T., Ngo, H. H., Guo, W., Wang, X. C., Ren, N., Li, G., ... & Liang, H. (2018).
Implementation of a specific urban water management-Sponge City. Science of the
Total Environment.

131. Nordsense, Smart Containers, https://nordsense.com/overview/
132. Ntoutsi, I., Mitsou, N., & Marketos, G. (2008). Traffic mining in a road-network: How

does the traffic flow?. International Journal of Business Intelligence and Data
Mining, 3(1), 82-98.

92 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

133. Odendaal, N. (2003). Information and communication technology and local
governance: understanding the difference between cities in developed and emerging
economies. Computers, Environment and Urban Systems, 27(6), 585-607.

134. OPENSENSE, Community-based sensing using wireless sensor network technology to
monitor air pollution (https://gitlab.ethz.ch/tec/public/opensense/wikis/home)

135. Opensource, A guide to Apache’s Spark Streaming,
https://opensource.com/business/15/4/guide-to-apache-spark-streaming

136. Penza, M., Suriano, D., Villani, M. G., Spinelle, L., & Gerboles, M. (2014, November).
Towards air quality indices in smart cities by calibrated low-cost sensors applied to
networks. In SENSORS, 2014 IEEE (pp. 2012-2017). IEEE.

137. Perkins, L., Redmond, E., & Wilson, J. (2018). Seven databases in seven weeks: a guide
to modern databases and the NoSQL movement. Pragmatic Bookshelf.

138. Polycarpou, E., Lambrinos, L., & Protopapadakis, E. (2013, June). Smart parking
solutions for urban areas. In 2013 IEEE 14th International Symposium on (pp. 1-6).
IEEE.

139. Prekopcsak, Z., Makrai, G., Henk, T., & Gaspar-Papanek, C. (2011, June). Radoop:
Analyzing big data with rapidminer and hadoop. In Proceedings of the 2nd
RapidMiner community meeting and conference (RCOMM 2011) (pp. 1-12).

140. Prima Consulting UK, Blog – Qlik View vs. Glik Sense,
https://primaconsulting.co.uk/news/2018/3/26/qlikview-vs-qliksense

141. Qlik, Qlik Analytics Platform overview, https://help.qlik.com/en-US/sense-
developer/February2019/Subsystems/Platform/Content/Sense_PlatformOverview/Ar
chitecture/qlik-analytic-platform.htm

142. Rabl, T., & Jacobsen, H. A. (2012). Big Data generation. In Specifying Big Data
Benchmarks (pp. 20-27). Springer, Berlin, Heidelberg.

143. Redis, Introductio to Redis, https://redis.io/topics/introduction
144. Robles, T., Alcarria, R., de Andrés, D. M., Navarro, M., Calero, R., Iglesias, S., & López,

M. (2015). An IoT based reference architecture for smart water management
processes. JoWUA, 6(1), 4-23.

145. Science Soft, IoT for Smart Cities: Use Cases and Implementation Strategies,
https://www.scnsoft.com/blog/iot-for-smart-city-use-cases-approaches-outcomes

146. Sensoneo, Waste Management Solution for City: https://sensoneo.com/smart-waste-
management-for-cities/

147. Shah, J., & Mishra, B. (2016, January). IoT enabled environmental monitoring system
for smart cities. In 2016 International Conference on Internet of Things and
Applications (IOTA) (pp. 383-388). IEEE.

148. Shahanas, K. M., & Sivakumar, P. B. (2016). Framework for a smart water
management system in the context of smart city initiatives in India. Procedia
Computer Science, 92, 142-147.

149. Sifuentes, E., Casas, O., & Pallas-Areny, R. (2011). Wireless magnetic sensor node for
vehicle detection with optical wake-up. IEEE Sensors Journal, 11(8), 1669-1676.

150. Sinaeepourfard, A., Garcia, J., Masip-Bruin, X., Marín-Tordera, E., Cirera, J., Grau, G.,
& Casaus, F. (2016, June). Estimating Smart City sensors data generation. In 2016
Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net) (pp. 1-8). IEEE.

 Eirini Kontaki

93 References

151. Smart cities and the weather. Meeting of the Minds, IBM
(https://meetingoftheminds.org/smart-cities-weather-22100)

152. Smart Dublin, https://data.smartdublin.ie/
153. Spark – A modern data processing framework for cross platform analytics. Deploying

Spark on HPE Elastic Platform for Big Data Analytics. Hewlett Packard Enterprise.
(https://h20195.www2.hpe.com/V2/getpdf.aspx/4AA6-8143ENW.pdf)

154. Staricco, L. (2013). Smart Mobility: opportunità e condizioni. Tema. Journal of Land
Use, Mobility and Environment, 6(3), 342-354.

155. Statista, https://www.statista.com/statistics/270860/urbanization-by-continent/
156. Stockholms stad, How the smart city develops,

https://international.stockholm.se/governance/smart-and-connected-city/how-the-
smart-city-develops/

157. Tableau, https://www.tableau.com/
158. TendersOnTime, Emerald Drinking Water Supply Networks,

https://www.tendersontime.com/blogdetails/emerald-drinking-water-supply-
networks-24272/

159. The Big-Data Ecosystem Table, http://bigdata.andreamostosi.name/
160. The Digitization of the World, From Edge to Core, David Reinsel, John Gantz, John

Rydning, An IDC white paper, Data Age 2025, Nov 2018
(https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-
dataage-whitepaper.pdf)

161. The Local, Spain, Spain's Santander hailed as global pioneering 'smart city',
https://www.thelocal.es/20160409/spains-santander-becomes-global-pioneering-
smart-city

162. The New Stack, All the Apache Streaming Projects: An Exploratory Guide,
https://thenewstack.io/apache-streaming-projects-exploratory-guide/

163. The New York Times, To Fight Gridlock, Los Angeles Synchronizes Every Red Light,
https://www.nytimes.com/2013/04/02/us/to-fight-gridlock-los-angeles-
synchronizes-every-red-light.html

164. Tibco Community, https://community.tibco.com/questions/apache-kafka-messaging-
seems-be-having-interesting-feature

165. Tibco community, Random Forest Template for TIBCO Spotfire,
https://community.tibco.com/wiki/random-forest-template-tibco-spotfirer-wiki-page

166. Tibco ComputeDB, https://tibco-computedb.readthedocs.io/en/docv1.1.0/
167. Tibco, https://www.snappydata.io/product
168. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S., ... &

Bhagat, N. (2014, June). Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data (pp. 147-156). ACM.

169. Towards Data Science, Hands on Apache Beam, building data pipelines in Python,
November 2018, https://towardsdatascience.com/hands-on-apache-beam-building-
data-pipelines-in-python-6548898b66a5

170. Treboux, J., Jara, A. J., Dufour, L., & Genoud, D. (2015, March). A predictive data-
driven model for traffic-jams forecasting in smart santader city-scale testbed. In 2015
IEEE Wireless Communications and Networking Conference Workshops (WCNCW)
(pp. 64-68). IEEE.

94 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus

February 24, 2020

171. Tutorialspoint, Redis – Publish Subscribe,
https://www.tutorialspoint.com/redis/redis_pub_sub.htm

172. Ubidots, 4 Big IoT Wins for Smart City Pioneer, Santander, Spain, April
2017https://ubidots.com/blog/smart-city-pioneer-santander-spain/

173. Uddin, M. F., & Gupta, N. (2014, April). Seven V's of Big Data understanding Big Data
to extract value. In American Society for Engineering Education (ASEE Zone 1), 2014
Zone 1 Conference of the (pp. 1-5). IEEE.

174. Vasudewa, K., & Gupta, P. (2016, February). A survey on elastic resource allocation
algorithm for cloud infrastructure. In 2016 International Conference on Innovation
and Challenges in Cyber Security (ICICCS-INBUSH) (pp. 199-203). IEEE.

175. What makes Apache Flink the best choice for streaming applications, April 2018,
https://hackernoon.com/what-makes-apache-flink-the-best-choice-for-streaming-
applications-fc377858a53

176. Wikipedia, Apache Beam, https://en.wikipedia.org/wiki/Apache_Beam
177. Wikipedia, Cumulant, https://en.wikipedia.org/wiki/Cumulant
178. World Health Organization, Climate change and human health, Urbanization and

health (https://www.who.int/globalchange/ecosystems/urbanization/en/)
179. World Health Organization: Ambient air pollution – a major threat to health and

climate (https://www.who.int/airpollution/ambient/en/)
180. World population prospects 2019, United Nations, Department of Economic and

Social Affairs.
181. Xu, J., Chen, Z., Tang, J., & Su, S. (2014, June). T-storm: Traffic-aware online

scheduling in storm. In 2014 IEEE 34th International Conference on Distributed
Computing Systems (pp. 535-544). IEEE.

182. Yang, F., Merlino, G., Ray, N., Léauté, X., Gupta, H., & Tschetter, E. (2017). The
RADStack: Open source lambda architecture for interactive analytics.

183. Yi, W., Lo, K., Mak, T., Leung, K., Leung, Y., & Meng, M. (2015). A survey of wireless
sensor network based air pollution monitoring systems. Sensors, 15(12), 31392-
31427.

184. Zhang, Q., Wang, G., Gong, K., Li, B., Meng, M. Q. H., & Song, S. (2013, August).
Wireless magnetic sensor node for vehicle detection using finite element simulation.
In Information and Automation (ICIA), 2013 IEEE International Conference on (pp.
248-251). IEEE.

185. Zoomdata, Modern BI and Data Visualization Platform,
https://www.zoomdata.com/product/

