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ABSTRACT 
A smart city is a concept that integrates multiple Information and Communication Technology 
(ICT) solutions to efficiently manage city’s assets. City’s assets include, but are not limited to, 
transportation systems, waste management, water management, safety systems, local 
departments’ information systems and other community services. In addition, the concept of 
the smart city is to make traditional networks and services more efficient with the use of 
technologies, including Internet of Things (IoT) and Big Data, to improve the quality of people’s 
life and to boost the operation of city’s businesses. Moreover, a smart city is an inherently 
distributed setting composed of a number of sites. Sites may range from conventional or 
modern data gathering devices, such as sensors, RFIDs, smartphones, and so on, which collect 
streams of relevant data, to intermediate routers that convey these data to local departments’ 
systems and finally to city authorities’ data centers. Valuable information hidden in the 
streaming data gathered by the distributed setting should be provided in real-time and in a 
continuous fashion to timely support decision making procedures. However, extracting value, 
in the form of analytics, out of the massive flows of data that stream-in, such a distributed 
setting is an intriguing task.  

This thesis focuses on highlighting the importance of big data analysis in a smart city context 
by reviewing existing technologies that enable city authorities to produce valuable insights 
and facilitate the decision-making process both in the short and in the long run. More 
specifically, we identify the needs of the city’s core systems, to facilitate its operational 
activities and coordinate its services, approaching a smart city as an instrumented city. We 
consider instrumentation as the process in which an interconnected system provides solutions 
and shares data to enable collaboration across entities and domains for the benefit of the 
society and its people, as well. This work analyzes arising issues in three vertical city domains: 
(i) smart transportation, (ii) smart resources and (iii) smart environment and outlines potential 
benefits associated with IoT-powered cities that handle large amounts of data. In this 
direction, we incorporate all the above in a fully-fledged architectural design proposal tailored 
for smart cities. After a thorough study on existing big data technologies, we provide indicative 
solutions using big data platforms addressing specific technical requirements and review 
existing algorithms that can be implemented with such platforms.  

As an in-depth investigation, we selected the setup of Heraklion Smart City as a case study to 
exemplify the advantages in terms of business’s logic efficiency using big data technologies 
along with the aforementioned solutions methodology and proposed architecture. In this 
context, we present the processing pipeline of big data on various Heraklion city’s core 
systems including parking, water and air quality monitoring, reporting future benefits for the 
stakeholders.  
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1 Introduction 

1 INTRODUCTION  

1.1 The rising need of smart cities 

During the past decades, the planet has witnessed rapid urbanization and overpopulation 
growth with the world’s population reaching 7.7 billion in mid-2019. According to [180], the 
global population is expected to reach 8.5 billion in 2030, 9.7 billion in 2050 and 10.9 billion 
in 2100, while by 2050 the population that lives in urban areas will be increased reaching 70% 
of the total population globally [155].  

Urbanization is considered as one of the main driving forces for the change of ecosystem 
services, including water and energy consumption, that lead directly to climate change. The 
World Health Organization (WHO) [178] reports that rapid, unplanned and unsustainable 
patterns of urban development are making developing cities focal points for many emerging 
environment and health hazards. As urban populations grow, the quality of global ecosystems 
and the urban environment will play an increasingly important role in public health with 
respect to issues ranging from waste disposal to provision of safe water and sanitation. 

Cities, despite their population size, need to become more resource efficient and technology 
driven in order to mitigate their impact and exploit innovative solutions towards enhancing 
urban sustainability throughout the world. According to [99], a sustainable city is based on the 
following four main aspects:  

● Economic: The ability to generate income and employment for the livelihood of the 
inhabitants. 

● Social: The ability to ensure well-being (safety, health, education, etc.) of the citizens can 
be equally delivered despite differences in class, race or gender. 

● Environmental: The ability to protect future quality and reproducibility of natural 
resources. 

● Governance: The ability to maintain social conditions of stability, democracy, public 
participation in online city services, and justice. 

1.2 IoT-based smart cities 

According to [31], sustainable cities lack of innovative solutions based on Internet of Things 
(IoT) applications in several urban domains where such solutions can have a substantial 
contribution to the goals of environmentally sustainable development. In this context, smart 
cities come to focus on searching greener and more energy efficient urban dynamics by 
integrating Information and Communication Technologies (ICTs). Smart cities were firstly 
introduced as a concept in scientific publications in 1992 and emerged as a fast-growing topic 
of scientific enquiry [124]. Since then, many different perceptions of smart cities prevail with 
a divergence and lack of cohesion. However, smart cities appear to be the hottest emerging 
research and business topic of the 21st century [38]. 

IoT-based cities become instrumented and interconnected in a way to properly confront with 
challenges and threats to their core systems. They deploy a mechanism that assists 
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stakeholders to comprehend existing problems, to extract the necessary knowledge and take 
the appropriate actions.  

One of the leading tech companies, IBM, underlines that cities need to become smarter by 
seizing opportunities through managing the resources efficiently and giving the accurate 
information in order to prevent an unexpected event [3]. It also reports that cities can become 
smarter when using new technologies to transform their core systems and optimize the use 
of limited resources. Pervasive new technologies provide a much greater scope for 
instrumentation, interconnection and intelligence of a city’s core systems. 

One of the core mechanisms of smart cities is a self-monitoring and self-response system, 
enabling them to identify and fix problems promptly, recover rapidly from disasters, gather 
data to make better decisions and deploy resources effectively [125].  

The overall smart cities’ objective is to manage assets and resources efficiently in areas such 
as transportation, health, education, air quality, energy and water services [42]. In that, smart 
cities aim to enhance the quality of life by facilitating everyday activities in order to support 
future generations with respect to economic, social and environmental aspects.  

 
Figure 1: The core domains in a smart city framework (Source: Deloitte insights [52]) 

ICTs are key drivers of smart city initiatives [96] and enhance the management and functioning 
of a city since they offer a number of potential opportunities [133]. Towards that direction, 
national governments and local authorities strongly support technological growth by 
integrating ICT solutions to municipality and city landscapes, thus absorbing the concept of a 
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smart city [44]. It is worth pointing out that little effort has been made globally towards facing 
environmental aspects with the assistance of advanced technological solutions [32, 95, 109]. 

1.3 Big Data in smart city’s ICT network 

Since digitization has become an integral part of everyday life and many cities have already 
adapted technologies in order to meet the aforementioned needs, data collection has resulted 
in the accumulation of huge amounts of data that can be used in various beneficial application 
domains. Data is being generated from multiple sources, such as sensor and smart devices, 
cameras, smart phones, social media, commercial transactions, advertising application and so 
on. All this is made possible due to the continuous and rapid diffusion of electronic devices 
capable of retrieving and transmitting data, which have supported the growth of the Internet 
of Things (IoT) [124, 173]. Smart cities’ IoT-like infrastructure allows data to be collected: (a) 
in huge volumes, (b) in the form of continuous, volatile, high speed data streams and (c) in 
both structured and unstructured format in multiple modalities (video, image, GPS, time 
series). Data is so complex that it is difficult to ingest, store, manage and process using 
traditional database and software tools [112]. Gartner, a leading research and advisory 
company in Information Technology, summarizes big data as high volume, high velocity 
and/or high variety information assets that demand cost-effective, innovative forms of 
information processing that enable enhanced insight, decision-making, and process 
automation [68]. 

Adapting an ICT network in a smart city setup implies the use of different computing 
technologies depending on the requirements and the demand on different sectors. New 
technological advances allow wireless communications offering great standardization of low-
power communication protocols, which make it possible to obtain sensor data almost 
everywhere and at any time. A smart city network comprises a number of technological 
components, including the physical sensor infrastructure, the network infrastructure, an IoT 
middleware for digesting heterogeneous data streaming in from the network, data processing 
and analytics platforms and visualization tools illustrating the outcomes extracted from 
analytics procedures [103]. 

Although there are many different domains where big data find application in, this thesis 
focuses on their impact in smart cities towards a sustainable economic growth and an 
enhanced life quality.  
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1.4 Contribution 

Smart cities constitute the cornerstone towards creating sustainable urban dynamics to 
mitigate excessive resource consumption for the benefit of the environment and human well-
being. This thesis focuses on highlighting the importance of big data analysis in a smart city 
context by reviewing existing technologies that enable city authorities to produce valuable 
insights and facilitate the decision-making process both in the short and in the long run.  

Towards that direction, this work:  

(i) emphasizes on specific smart city focus areas (i.e., transportation, resource and 
environmental management) presenting the benefits of the provision of ICTs,  

(ii) presents usual problems related to the aforementioned focus areas, 
(iii) reviews existing technological solutions with a reference to existing sensing 

technologies,  
(iv) analyzes and translates usual problems into business objectives and key 

performance indicators, 
(v) underlines the technological challenges of utilizing large amounts of data and 

interprets them in technical requirements, 
(vi) provides an in-depth analysis of existing technologies for big data processing, 
(vii) incorporates the technical requirements into a full-fledged architecture of a smart 

city in refer to existing technologies for big data analysis and 
(viii) summarizes algorithmic suites that can be implemented with the suggested 

technologies for big data analysis. 
(ix) The aforementioned are pursued through a real smart city scenario of Heraklion city, 

according to which we design big data processing pipelines for a number of core 
services such as parking, water and air quality monitoring, reporting future benefits 
for the stakeholders.  

1.5 Thesis outline 

In Chapter 2, we present the ICT network of a distributed setting with a reference to different 
sensing technologies that are commonly used in various smart environments. 

In Chapter 3, we introduce the aspects of the main smart city domains on which we are going 
to focus (i.e., transportation, resources and environmental aspects) and identify potential 
issues and difficulties towards realizing the concept of a sustainable city infrastructure. In 
addition, we report indicative examples of existing technologies adopted by smart cities 
setups based on the literature underlining the physical structure of the ICT network with a 
reference to existing sensing technologies. 

In Chapter 4, we analyze and translate the reported issues into business objectives and key 
performance indicators that need to be served by big data analytics tasks. 

Chapter 5 introduces the business logic scenarios for big data processing pipelines by 
presenting indicative configuration examples in terms of data recording and reporting 
intervals followed by the data flow, application logic and the mechanism that will 
communicate the data to the stakeholders. Moreover, this chapter underlines the 
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technological challenges of utilizing large amounts of data and translate them into specific 
technical requirements. 

In Chapter 6, we incorporate all the above in a full-fledged architectural design proposal 
tailored for smart cities and analyze indicative solutions on big data platforms according to 
the specific requirements. 

Chapter 7 reviews existing algorithms and algorithmic suites that are generic enough to 
accommodate broad categories of analytics tasks useful within a smart city context. Through 
this chapter, we provide specific algorithmic solutions that can be implemented within the 
aforementioned big data platforms in various parts of the proposed architecture. 

Finally, Chapter 8 focuses on exemplifying the presented methodology, architecture and 
algorithmic apparatus with a real case study, the Heraklion Smart City, by elaborating 
indicative big data pipelines of big data platforms and reporting future benefits.  
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2 A SMART CITY’S ICT NETWORK 
The evolutionary ICT landscape that is progressively embedded in everyday life environments 
encompasses large amount of smart computing technologies. Harrison et al. [90] refers to 
smart computing as the integrated hardware, software and network technologies that provide 
Information Technology systems with real-time information and advanced analytics aiming to 
assist humanity to make more efficient and intelligent decisions in a proactive fashion.   

ICTs are able to record and process raw data, extracted among the various city services (e.g., 
transportation, health, education, police, water, etc.), and eventually transmit them via 
wireless or wired network infrastructure to city authorities’ data centers, public or hybrid 
clouds. There, powerful computing resources or High Performance Computing (HPC) 
infrastructures are able to handle such large amounts of information. The main challenge is 
to ensure that big smart city data processing will be horizontally (i.e., adding more nodes to a 
system) and vertically (i.e., adding more resources to a single node) scalable. This should be 
achieved with respect to both the accumulated data volumes and the number of employed 
devices collecting relevant streams of data, resilient to changes. Data processing should not 
only serve city authorities’ mission but also remain open for third party innovation in the city, 
by offering functionality and open data middleware technologies (i.e., Application 
Programming Interfaces) [24, 103]. 

The analysis in the following chapter is based on the architectural approach adopted by the 
authors of [103]:  

(a) The physical sensor infrastructure, 
(b) The network infrastructure for communicating and fusing sensor data, 
(c) An IoT middleware for digesting potentially heterogeneous information streaming in 

from the network, 
(d) Data processing and analytics platforms within data centers and clouds, and  
(e) Visualization tools that present the outcomes of analytics tasks so that the value 

extracted out of the analytics procedures is presented in a comprehensive fashion.  

2.1 Main sources of data generation in a Smart City Infrastructure 

A smart city infrastructure generates an enormous amount of data that need to be handled, 
stored and made available. The main sources of data generation are smart devices, web 
services and sensing devices.  

2.1.1 Smart Devices  

Smart mobile devices (smartphones, tablets) constitute nowadays, a very common source of 
data gathering anywhere and anytime at a very low cost. Smartphones are used for many 
purposes to cover different needs. Modern smartphones are equipped with sensing 
technologies, such as image sensors, sound and touch sensors, accelerometers, GPS, 
gyroscopes and magnetometers. They are able to generate various information regarding an 
individual’s location, orientation, health, daily movement, etc. Over 5 billion people around 
the world use smartphones every day to make calls, communicate through social media and 
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search for information, while it is estimated that the accumulated digital world of data will 
increase from 33 zettabytes in 2018 to around 175 zettabytes by 2025 [160]. 

2.1.2 Web Services  

Web services, such as social media, generate huge amounts of data that may be of interest in 
a smart city environment. However, the data veracity and quality should be carefully taken 
into account before being used. Web services generate unstructured data, which contain a 
significant amount of uncertain and imprecise data. Techniques such as semantic web and 
linked data [57] have been exploited in order a smart city’s stakeholders to be able to obtain 
information from websites, as well [150]. 

2.1.3 Sensor devices  

Nowadays, sensors of any size together with actuators and microelectronic processors are 
installed to everyday objects towards adapting ICTs in smart environments. In general, smart 
sensor devices or sensor nodes are capable of measuring data input from the physical 
environment and intercommunicate through wireless connection with each other comprising 
a Wireless Sensor Network (WSN) infrastructure [30]. Sensing devices generate data either 
through periodic observations or through event-based observations. IoT devices programmed 
with the former contain information on a configurable frequency basis, whereas event-based 
observations [71, 62] are reported only upon the detection of a change in the parameter they 
measure [115]. 

The main components of a sensor node are (i) sensory devices, (ii) processors, (iii) 
transceivers, and (iv) the energy source. Sensor nodes can serve as the sources of smart city 
data per se, or as relay nodes forwarding required information to intermediate backbone 
routers. Deploying low-cost sensors and various types of smart objects to collect data from 
public infrastructure, allows smart cities to increase operational efficiency by obtaining a 
picture of the actual physical realm in a timely fashion. 

In Table 1, we present different types of sensing devices that can be used in various application 
areas in a city in refer to the type of energy they detect as signals [32]. Additionally, each 
sensor type is classified to one or more smart city focus areas that are going to be explicitly 
discussed in the following chapter.  

  



 

 
 

8 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus 

February 24, 2020 

Table 1: Different sensing technologies  
Sensor types Examples Application areas 

Location sensors GPS, active badges Road traffic monitoring, 
Waste management 

Optical/vision sensors Photo-diode, color sensor, IR and 
UV sensor 

Road traffic monitoring, 
Air pollution intensity 

Image sensor Stereo-type camera, infrared Road traffic monitoring, Parking 
management 

Sound sensors Microphones/ultrasonic sensors Road traffic monitoring, 
Parking management, 
Water management, 
Waste management 

Temperature sensors Thermometers Weather management 
Humidity sensors Electrolyte sensor, polymer-based 

sensors, hygrometers 
Weather management 

Chemical sensors Gas sensors, dissolved oxygen (DO) 
sensor,  conductivity sensor, 
turbidity sensor and pH/ oxidation 
reduction potential (ORP) sensor 

Waste management, 
Air pollution intensity,  
Water monitoring 

Meteorological sensors  Barometer, pressure gauges Weather monitoring 
Motion sensors Speedometer, mercury switches, 

tachometer 
Road traffic monitoring 
 

Physical movement 
sensors 

Accelerometers Road traffic monitoring 
 

Identification and 
traceability sensors 

RFID, NFC Road traffic monitoring 
Waste management 

Magnetic field sensors Magnetic sensor Road traffic monitoring 
Parking management 

The selection of the appropriate sensors in a given context conceals important challenges that 
need to be taken into account including, but not limited to, the accuracy, environmental 
conditions, range, calibration, resolution, cost, robustness and repeatability. 
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3 Smart City Focus Areas 
In this chapter, we introduce three distinct areas of a smart city, related to transportation, 
resources and environmental aspects, subdivided into six vertical sectors, referred to as sub-
dimensions in Table 2. Specifically, we underline the importance of the deployment of ICTs in 
terms of the environmental impact and human well-being, while we project potential benefits 
towards a more efficient resource management. The presented focus areas will constitute the 
focal point of this work in terms of leveraging big data with an emphasis on extracting 
knowledge that may prove valuable to governments and city authorities.  

Table 2: Sub-dimensions of KPIs 

Dimension label Dimension Sub-dimension label Sub-dimension 
D1 Smart 

Transportation 
D1.1 Road traffic monitoring 
D1.2 Parking management 

D2 Smart 
Resources 

D2.1 Water management 
D2.2 Waste management 

D3 Smart 
Environment 

D3.1 Air pollution  
D3.2 Weather monitoring 

3.1.1 Smart Transportation Management 
Mobility is one of the most important facilities to support the functioning of any urban area 
[154]. However, it is a fact that transport produces negative impacts affecting the life quality 
in cities, causing air pollution, street congestion, time and fuel consumption, while it entails 
high transfer costs. In this context, smart mobility is considered an important aspect to focus 
on enabling city authorities to locate traffic bottlenecks, through efficient road traffic 
monitoring and parking management, and adapt proactive measures for congestion 
mitigation.  

The key stakeholders regarding the initiatives of smart mobility can be classified into public 
transport authorities, private companies, citizens, environmental agencies, as well as public 
bodies and local governments. 

3.1.1.1 Road traffic monitoring 

Traffic congestion can be caused by physical bottlenecks, traffic incidents, work zones, traffic 
control devices, special events or weather conditions. Congestion has a negative impact on 
both the economy and the environment. Therefore, municipalities tend to adapt ICTs to 
monitor and mitigate congestion. Smart technological infrastructures provide necessary and 
real-time information that upon being analyzed can decrease the exposure of vehicles to 
highly congested areas and recommend efficient driving patterns.  

In order to achieve the above, wireless network sensors distributed along a city center are 
considered an effective solution for large areas coverage in comparison to wired sensors 
networks that require high deployment and maintenance costs [149]. A wireless sensor 
network allows multiple sensory devices to be networked together and share geographically 
distributed information through wireless communication protocols and are able to detect the 
presence, speed, density and occupancy ratios of vehicles. Moreover, fetching GPS data from 
drivers’ smart devices or even historical data, smart solutions for traffic management can 
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predict through machine learning techniques, which areas are more prone to traffic 
congestion and thus take measures to prevent it. 

 

Figure 2: A smart on-road traffic management infrastructure (Source: ScienceSoft [145]) 

Roads equipped with tags and sensors forward important information to traffic control sites 
and transportation vehicles to better route the traffic and provide citizens and authorities with 
real-time transportation information [24]. Magnetic sensors are the most widely used sensors 
in the transportation field especially in cases of moving vehicles detection. They are 
considered sensitive, robust on demanding weather conditions (e.g., fog, rainfall, snow, 
storm, etc.) and easy to maintain [184, 43, 129]. These sensors are able to detect magnetic 
anomalies in Earth’s magnetic field originating from the presence of cars and are based on 
magnetoresistors, which can obtain information such as the number of vehicles and speed 
statistics [103, 149]. Alternative sensors for vehicle detection are optical sensors [105], RFID 
and NFC [24], acoustic sensors and video cameras, although they have been proven less 
accurate and robust than magnetic sensors [184].  

The authors of [43] present the physical architecture of a prototype wireless sensor network 
in a traffic surveillance system consisted of a number of sensor nodes and a single access 
point. The latter has superior computation resources, enhanced radio communication and 
unlimited power supply.  A processor processes the raw data in the sensor node to extract 
useful information. In the specific setup, the output of the sensor node is transmitted to the 
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access point through either a direct communication or a multi-hop communication across 
other sensor nodes. Eventually, the access point processes the data collected from all the 
nodes in the network to extract more information and visualize them into a meaningful format 
in order this information to be shared to the stakeholders (i.e., end-users, GPS transceivers, 
radiophones, authorities, etc.).  

In addition, smart cities are able to confront high volumes of traffic congestions through 
interconnected smart traffic lights consisted of sensors able to collect information about 
traffic flow patterns, such as vehicle speed, traffic density, waiting time at the lights and traffic 
jams [6]. For instance, whenever a traffic management platform receives a congestion alert 
from the sensor nodes, it sends a command to the traffic lights’ actuators to alter the signals 
and re-route part of the traffic. 

Dublin city, in terms of the initiative Smart Dublin [152], has embedded in the city’s traffic 
lights a system that dynamically responds to congestion using sensors at traffic intersections 
to detect the number of vehicles in each lane and the number of pedestrians waiting at the 
signals. Additionally, Los Angeles, as being one of the most traffic-affected cities in the world, 
is deploying a network of smart controllers to make automatic traffic lights adjustments, 
reacting to changing traffic conditions in real time. The system uses magnetic sensors in the 
road to measure the flow of traffic, cameras and a centralized computer system that makes 
constant adjustments to keep cars moving as smoothly as possible [145, 163]. 

Moreover, a number of sensors allocated in the city center of Santander and embedded under 
the asphalt, collect data on rainfall and road traffic, which is sent to a control center to help 
the city provide services more efficiently [161]. Specifically, in the SmartSantander testbed 
[42] a sensor node wakes up within predefined time intervals, takes readings from the sensors, 
transmits the data, and returns to sleep mode in order to save more power. Every minute, 
traffic intensity information is provided with the node ID and its localization (latitude and 
longitude), while the current occupancy and the number of vehicles on the lane are recorded 
[170]. 

In such cases, big data analytics are essential in order to build an intelligent decision system 
installed in a data center. They process the extracted values in order to make decisions and 
send the appropriate instructions to the lights and signals. Additional smart traffic light 
systems, adapting different smart city technologies (e.g. magnetic sensors, car’s on-board 
software and GPS, cameras, etc.), have already been tested and installed in Pittsburgh, USA 
with over 20% of reduced emissions due to reduced traffic jams and waiting times [6], in 
Santander, Spain [42], in Oulu, Finland [108] and so on. 

3.1.1.2 Parking management 

Finding a parking place given the rapidly increasing number of vehicles in large urban centers 
makes smart parking systems an inevitable need towards reducing the traffic congestion, time 
and fuel consumption. This raises also serious problems of pollution and noise that need to 
be mitigated. According to the survey of [116], smart parking systems include parking 
availability monitoring, parking reservations and dynamic pricing schemes to benefit the 
drivers, the parking operators and the municipal police. Moreover, the authors of [85] present 
parking predictive models including a comparison of static and dynamic models that were 



 

 
 

12 Big Data Analytics for Smarter Cities: Method – Architecture – Algorithmic Apparatus 

February 24, 2020 

used to address parking lot management providing decision support to drivers that need to 
reach their destination in the shortest time possible. An indicative pilot IoT-based setup 
introduced by Deutsche Telekom is illustrated in Figure 3 [58]. 

 
Figure 3: Smart city pilot project for parking optimization 

According to the setup in Figure 3, the following main components are considered necessary 
in order to collect and process data in an integrated parking management infrastructure: 

 Parking Sensor Nodes: Indicative types of sensors proposed in the past for parking 
monitoring include infrared sensors, ultrasonic sensors and image sensors [184, 107, 
40], however, each one of them introduces restrictions that can lead to erroneous 
judgments.  On the other hand, magnetic sensors have been used and installed in situ 
in cities such as Heraklion [103] and Barcelona [26] and have been reported as more 
precise and robust for the collection of parking availability information [149, 138]. 
Magnetic sensors are installed along the public roads (on-street parking) and in 
designated parking areas, while they provide information in predefined intervals 
regarding the occupation status of the specific parking spots.  

 Processing Unit: It comprises a processor (e.g. Raspberry pi, Orange pi, Arduino, etc.) 
that collects the data extracted from the nodes, processes and transmits the 
information to the data servers. 

 Cloud platform: A central data center based on cloud computing platforms that allow 
online storage of all the records related to parking areas. 

 Mobile application: A mobile application with an embedded navigation system can 
be proven a cost and time saver for drivers that need to find a parking place with the 
least effort.  All the necessary information can be visualized in an intuitive way for 
the end-users, illustrating the parking spots that are occupied or available on a real-
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time parking map. The information provided can be personalized according to the 
audience that is addressed (e.g. authorities, citizens, municipal police, etc.). 
Moreover, a dedicated web application deployed by the authors of [103] aims to 
facilitate the municipal police to track cars that park in prohibited areas, such as 
parking lots for individuals with disabilities, pedestrian crossings and other.  

 
Figure 4: A smart parking infrastructure using magnetic sensors (source: Libelium) 

3.1.2 Smart Resource Management 

Pervasive sensing technologies enable techniques to optimize resource allocation in a city 
context through data that provide necessary information to predict and avoid disastrous 
events (e.g. floods, water contamination, etc.) or even confront with every day challenges 
including waste collection and irrigation.  

3.1.2.1 Water management 

The issues arising regarding water management are twofold. Τhe integration of technologies, 
such as smart pipes and sensor networks, smart metering and Global Positioning System (GPS) 
coordinates, are essential for smart cities in order to be able to mitigate: (a) problems in the 
urban water sector and prevent water contamination and (b) excessive water consumption 
and water loss from leaks. Daily, monthly and yearly reports are necessary to draw important 
conclusions towards that direction.  

Since water covers a 71% of the Earth’s surface, it is a vital resource for the humanity and the 
environment itself. However, climate change along with rapid urbanization and inappropriate 
urban planning have led to water-related issues that call for immediate action adopting 
strategies for a smart water resource management. Such issues may include flooding 
disasters, water pollution and water shortages [130]. Cutting-edge ICTs are able to monitor 
water in polluted and contaminated areas (i.e., the quality and quantity of water in rivers and 
lakes), caused by agricultural fertilizers, industrial wastes, etc., in order important decisions 
to be made promptly to protect citizens from consuming contaminated drinking water in a 
timely manner [127, 41]. 
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Specifically, studies suggest that approximately 783 million people lack access to clean water, 
2,5 billion lack access to adequate sanitation, and 6 to 8 million are dying per year due to 
water-related diseases and disasters [98]. More specific, smart water management systems 
aim to provide access to safe water, to manage demand and supply, and to develop a pricing 
mechanism.  

Moreover, in case limited quantities in water reservoirs are foreseen, municipalities could 
monitor relentless consumption, while at the same time the quality of drinking water needs 
to be continuously controlled to protect people from contamination. To tackle these issues, 
governments and municipalities have activated water management systems that aim at 
planning, developing, distributing and managing the optimum use of water resources [144]. 
Yet nowadays, many cities lack of water ICT standards in a way that water consumption, 
distribution, system identification and equipment maintenance cannot be properly monitored 
and controlled. However, the provision of IoT technologies in water management can lead to 
energy costs reduce and minimization of human intervention. With the use of sensors (e.g. 
water leak sensors) and actuators, real-time data can be monitored and proactive 
improvements can take place in water management infrastructures. An indicative example of 
a smart water infrastructure, introduced by [158], is presented in Figure 5. 

 
Figure 5: An example of Smart Water Network infrastructure 

The report of [148] has presented an IoT-based solution comprising three main components 
that are considered necessary to collect and process data in a typical water management 
infrastructure: 

i. Sensors: Installations of specialized sensors across the water grid accompanied with 
microcontrollers (e.g., Arduino, Raspberry Pi) that are able to collect information (i.e., 
water level, water temperature, conductivity, etc.) and through a communication 
device to forward it to a central server.  
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ii. Centralized server: The sensors transmit data to a local server and a central server 
fetches processes and extracts useful information. Data are then translated into 
measurable results through data analytics platforms. For instance, if a leakage occurs 
and the chemical composition of water changes, the cloud platform triggers an output 
defined by the users. 

iii. Data visualization tools: With the use of a cloud platform, the extracted results can 
be easily illustrated in a comprehensive way, through a web interface, allowing 
authorities to manage the water supply infrastructure more efficiently and solve 
upcoming issues proactively. 

Dedicated sensors installed in water reservoirs can be used to record the quality and quantity 
of water (i.e., water level, water temperature, conductivity, PH and ions {NH4+, NO3−, Cl−, 
and Ca2+}), thus providing meaningful results to stakeholders, such as municipal authorities 
and citizens [103]. For instance, a number of sensors deployed at different levels (e.g. 20%, 
40%, 60% and 80%) in water tanks can provide through a communication protocol the 
appropriate information to data servers, through which notifications will be sent to 
stakeholders whenever the water level goes below the threshold.   

An indicative example introduced by [41], is a water monitoring system installed in Bristol city 
that controls the water quality. The system comprises a multi-sensor (i.e., a dissolved oxygen 
(DO) sensor, a conductivity sensor, a turbidity sensor and a pH/ oxidation reduction potential 
(ORP) sensor) and a camera based on a wireless sensor network solution.  

Another example is deployed by SmartSantander [172]. Through its smart water initiative the 
city mitigates water consumption costs by empowering residents to manage their water use 
through a smartphone app. They have access to real-time data on water quality and 
consumption, track trends over time, and receive service alerts. 

Moreover, smart water meters installed in buildings’ water supply infrastructure could 
indicate excessive consumption, leakage identification and so on. Addressing this issue, 
actuators are able to monitor the water consumption per household and control the water 
flow in cases of excessive usage during periods that the water reserves of the city are below 
limits [148]. 

3.1.2.2 Waste management 

Nowadays, waste collection is an arising matter that needs to be triggered in respect to 
dynamic route optimization for routes followed by waste collecting trucks, cost efficiency and 
environmental pollution. Oftentimes, waste containers are emptied from cleaners at certain 
intervals, according to their daily routines regardless whether they are filled up or semi-empty 
(Figure 6) [65]. This is not a very efficient approach since it leads to the unproductive use of 
waste containers and unnecessary fuel consumption by waste collecting trucks. This aspect, 
might also affect the urban living having both an environmental and a socioeconomic impact.  
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Figure 6: Common situation of garbage cans' filling status in todays' cities 

Advanced technologies enable municipalities to use intelligent ways focusing on managing the 
waste cost efficiently, being more environmentally responsible, including waste recycling and 
re-use processing, and thus improve the human well-being [7]. Sensoneo, an enterprise 
specialized in smart waste management solutions [146] underlines that this can be achieved 
through embedded monitoring systems providing cities and businesses with data-driven 
decision-making, and optimization of waste collection schedules and routes, frequencies, 
vehicle load and trash container load. Pick-up services depending on real-time requirements 
could optimize the routing operations of the cleaning service. IoT components incorporated 
into trucks with surveillance systems that monitor the recycled waste and into waste 
containers to gather data about the level of the waste, can offer a more efficient process of 
waste collectors. Such components include, but are not limited to, RFIDs, sensors, cameras, 
and actuators [120].  

According to [7], a waste management network may consist of:  

(a) the physical infrastructure that involves among others the waste bins, waste location, 
the fleet of trucks, recycling and processing of recyclable waste, 

(b) the IoT infrastructure that includes technologies such as RFID tags, Near Field 
Communications (NFC), sensors (e.g. capacity, weight, temperature, humidity and 
chemical sensors), Wireless Sensor Networking (WSN) for broader communication, 
actuators, cameras, GPS and a cloud server able to collect the data and communicate 
them to end-users, and  

(c) software analytics, which involve: (i) dynamic scheduling and routing processing, (ii) GPS 
coordinates that focus on the processing of spatiotemporal information and (iii) decision 
support systems.  

Smart waste monitoring systems presented by [64, 119], integrate sensor nodes in every trash 
container in order to measure the fullness and capacity of each bin. The sensors report the 
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collected data to a central gateway node installed in every sensor cluster, which forwards the 
information to a back-end server through wireless internet connection. Sensor clusters are 
consisted of sensor nodes installed in a specific range and density within predefined 
geographic areas. The data collected and stored to data centers can be analyzed and visualized 
with the assistance of an analytics module and afterwards can be send through a web platform 
or a mobile application to the city’s cleaning service.  

 

Figure 7: Scenario for municipal waste management proposed by [65] 

A real use case adopted by Dublin Smart City [152] concerns smart bins that are able to provide 
real time information to the waste division collectors and send e-mails whenever the waste 
reaches 85% capacity. A smart compaction module, installed in each bin, accumulates the 
trash towards improving the efficiency of the public waste collection service.  

In addition, Nordsens solution [131] deploys the appropriate infrastructure to city’s waste 
containers aiming to minimize collection costs and manage the collection time. More specific, 
it monitors the fill levels of waste containers, equipped with optical sensors able to generate 
3D depth maps of a bin’s content. The extracted data are gathered and analyzed in an effort 
to optimize routing and navigation for collections, while it predicts waste generation patterns.  

Moreover, the city of Stockholm [156] has installed more than 150 smart bins based on solar-
powered software, mobile devices and sensors that report in real time when they are about 
to become full and need to be emptied. These leads to more efficient waste collection services 
with fewer garbage collection runs, lower costs and reduced emissions. 

3.1.3 Smart Environmental Management 

In this section, we refer to specific environmental sustainability issues that arise due to various 
human factors. Such issues can be proactively forecasted through proper observations of 
weather and air quality data in order to prevent health or environmental problems from 
expanding. 
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3.1.3.1 Air Quality Monitoring  

Air pollution is being a major environmental challenge that causes many hazardous effects on 
both humans and the environment. Health issues as well as global warming effects increase 
due to the intensive air pollution stemming mostly from transportation, road traffic, home 
heating and industrial emissions in urban centers. The World Health Organization reports that 
ambient air pollution accounts for million deaths per year due to stroke, heart disease, lung 
cancer and chronic respiratory diseases [179]. 

ICTs have been adapted in order to monitor, forecast and report the status of ambient air 
pollution in smart cities using cutting-edge technologies able to measure a large amount of 
data and extract valuable results. The aim is to provide real-time air quality information to 
inform people and guide their daily decision-making. Such data should be accessible to 
stakeholders, including vulnerable groups of people (e.g. elderly, individuals with chronic 
diseases, genetic susceptible, etc.), environmental scientists, prefectural civil protection 
agencies and policy makers, while advanced warnings of potential health-damaging events in 
the form of national air quality indices could be also made available [106, 136]. An example of 
real-time mobile applications, is presented in Figure 8 [117]. Real-time information can help 
advice the public to take proper actions according to their individual health needs and also 
raise public awareness adapting more environment-friendly solutions (e.g. using vehicles with 
less CO2 emissions, home heating, etc.) [183]. Based on low-cost and accurate sensors, smart 
cities are able to deploy a ubiquitous monitoring system using WSN nodes distributed at large 
geographic areas. This system could constitute an informative tool for the public able to notify 
stakeholders, through proactive alert services, forecasting and warnings, aiming to protect 
especially people of high risk.  

 
Figure 8: Mobile application examples illustrating air pollution values and protection recommendations 
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In the past, various sensing technologies have been proposed aiming to monitor air pollutants, 
such as gases (e.g. SO2, NO, NO2, CO2, O3), smoke concentration, and dust particles 
accumulated in urban centers. MESSAGE project [122] was deployed to monitor air pollutants 
in the city of Cambridge using a combination of dedicated sensors attached on street- and 
traffic lights. Additionally, OPENSENSE [134] has developed a network of fixed and mobile 
sensors mounted on trams and public buses in Zurich and Lausanne by using, among others, 
electrochemical gas sensors (NO2, CO, SO2, H2S) and optical particulate matter detectors. In 
this context, data can be aggregated through monitoring stations that cover different regions 
and indirect data sources, such as historical time-series data, social network tweets, real-time 
traffic data, and city layout [8]. 

The IoT infrastructure for air quality monitoring deployed by [103] comprises an integrated 
sensor node network (including the appropriate sensors, microcontrollers and transceivers), 
a data center (could be cloud-based) that stores and processes the extracted data and an API 
for mobile and web interfaces that illustrates the results. An alerting and prediction system is 
hosted in the main server to process streaming data from the database and provide timely 
notifications based on machine learning libraries.  

In addition, , air quality sensors were installed near schools, in urban centers, near major 
roads, on public lighting infrastructure and so on, enabling authorities to monitor the 
generated data and apply measures to reduce industrial pollution, as well as vehicle and 
commercial building carbon emissions. In this context, cities could emphasize on expanding 
public transport, imposing restricted car access in city centers, forcing stricter vehicle emission 
standards, promoting renewable energy resources, etc. 

3.1.3.2 Weather Monitoring 

Weather monitoring and forecasting also plays an important role on the everyday life due to 
its numerous applications in agriculture, farming, fishery, shipping, military operations, etc. 
[54]. The integration of ICTs in weather monitoring systems, able to process both real-time 
and historic data, can lead meteorologists to important conclusions regarding environmental 
threats that may affect the planet in the long run. At the same time, giving access to 
information such as ambient temperature, ambient humidity, atmospheric pressure, wind 
speed, wind direction and luminosity, smart cities may protect, among others, susceptible 
groups of people to expose themselves to extreme weather conditions. An indicative example 
of an application developed by [123] that aims to inform citizens about the weather status is 
illustrated in Figure 9. In addition, through temperature and humidity observations a city, 
applying the appropriate technological mechanisms, is able to predict the energy load from 
its own buildings, inform and encourage citizens to use renewable energy sources [151]. 
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Figure 9: Indicative application example for sun protection 

The report of [147] presents a Sensor Node consisted of (i) meteorological sensors 
(temperature, humidity, wind speed and direction, rain, and atmospheric pressure sensors), 
(ii) a low power microcontroller that processes the sensor readings and (iii) a wireless 
transceiver that transmits the data to a database. An additional API platform allows the data 
to be transferred from the database to a web interface or a mobile application. In that way, 
stakeholders, including farmers, gardeners, meteorologists and people suffering from health 
diseases, could be properly informed about extreme weather conditions and potential 
disastrous events (e.g. floods, storms, etc.).  
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4 BUSINESS OBJECTIVES AND KEY PERFORMANCE INDICATORS  

In the previous chapter, we introduced the focus areas that we are going to exploit in this 
work presenting the benefits of the provision of ICTs.  As a next step, we need to analyze and 
translate usual problems related to the aforementioned domains into concrete objectives. 

Specifically, this chapter aims at presenting the business logic that will facilitate IoT-based 
cities to mitigate resource consumption by setting specific goals. To that end, we define the 
appropriate business objectives together with a set of Key Performance Indicators (KPIs) that 
will enable stakeholders to assess how the use of ICTs has an impact on the environmental 
sustainability of smart cities focusing on (a) Smart Transportation Management, (b) Smart 
Resources Management and (c) Smart Environmental Management. 

Identifying Key Performance Indicators (KPIs) of technologies established in smart city 
infrastructures aims at making cities smarter and more sustainable, while they provide cities 
all the means for self-assessment. The KPIs presented in this chapter enable stakeholders 
develop strategies and understand the progress related to the use of ICTs in smart sustainable 
cities, while managing the city assets efficiently. As [99] indicates, the selection of KPIs for ICTs 
in smart cities is based on the following principles.  

➢ Comprehensiveness: The set of indicators should cover all the aspects of smart 
sustainable cities. The indicators for evaluation should be aligned to the measured 
subject, i.e., the impact of technologies on the sustainability of cities.  

➢ Comparability: The KPIs should be defined in a way that the data can be compared 
scientifically between different cities according to different phases of urban 
development. It should also be possible to extend and amend the set of KPIs according 
to the actual stage of development. 

➢ Availability: The KPIs should be quantitative, while historic and current data should 
be either available or easy to collect. 

➢ Independency: The KPIs in the same dimension should be independent or almost 
orthogonal in order overlaps of KPIs to be avoided. 

➢ Simplicity: The indicators should be clearly formulated and easy to understand. The 
calculation of the associated data should be intuitive and simple. 

➢ Timeliness: is the ability to produce KPIs with respect to emerging issues in smart 
cities. 

According to [99], Key Performance Indicators can be utilized by: 

o Cities and municipal administrations, including policy-making organizations, and 
government sectors, enabling them to develop strategies and understand the 
progress related to the use of ICTs.  

o City inhabitants and non-profit organizations, enabling them to understand the 
development and progress of smart cities with respect to the impact of ICT. 

o Development and operation organizations of smart cities, including planning unit and 
service providers, operation and maintenance organizations, helping them fulfill the 
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tasks of sharing information related to the use of ICT and its impact on the 
sustainability of cities. 

o Evaluation agencies and academia, supporting them in selection of relevant KPIs for 
assessing the contribution from ICT in the development of smart cities. 

 

In an effort to identify the KPIs of technologies established in the presented focus areas in an 
IoT-based city infrastructure, Table 3 summarizes some indicative examples of hypothetical 
current and target performance that the provision of ICT technologies and the utilization of 
big data processing platforms aim to accomplish. A further analysis of the objectives in Table 
3 will follow in the next chapter. 

Table 3: Measurable Objectives – Key Performance Indicators (KPIs) 

Objective 
Current 
Performance 

Target 
Performance 

Influence on Business KPIs 

Reduced on-road 
congestion (as less 
as possible) 

minutes seconds 

- Reduced number of vehicles on 
the road  

- Reduced waiting time at traffic 
lights 

- Minimize time intervals while 
searching for parking 

Parking monitoring 
(as precise as 
possible) 

thousands of 
illegal parking per 
year  

tens of illegal 
parking per 
year 

- Reduced illegal parking 

Water monitoring 
(as precise as 
possible) 

tens of tons per 
year 

tons per year 
- Reduced water leakage 
- Water supply network monitoring 

millions of 
infections per year 

hundreds of 
infections per 
year 

- Reduced disease transmissions 
through water contamination 

Reduced 
environmental 
pollution (as less as 
possible) 

Manual monitoring 
Automated 
monitoring 

- Efficient waste collection services 
- Automated monitoring system for 

recycling items 
- Decreased exposure of vulnerable 

groups to air pollution 

Weather forecasts 
(as precise as 
possible) 

Automated 
monitoring 

Automated 
monitoring 

- Reduced disasters caused by 
extreme weather conditions 

- Reduced health incidents due to 
high temperature and humidity 
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4.1 Business Objectives for Smart Transportation 

After a thorough literature review presented in Chapter 3 and taking into consideration the 
serious problems arising from overpopulated cities, the authors underline the most significant 
business objectives aiming to mitigate excessive resource consumption and create more 
sustainable urban dynamics with the provision of ICTs.  

BO1. Reduced congestion rates through early warnings 

Road surveillance cameras, personal mobile devices and integrated on-road sensor 
technologies allow authorities to monitor the driving behavior and suggest efficient driving 
patterns. In particular, drivers can avoid intense congestion through message signs, real-time 
notices through the media (e.g., radio) or updated suggestions for alternative routes provided 
through Global Positioning Systems (GPS) embedded in vehicles and mobile devices. The road 
status can be provided by road surveillance cameras, intelligent traffic lights, personal mobile 
devices and integrated on-road sensor technologies able to monitor the driving behavior. 

BO2. Reduced waiting time at traffic lights 

Smart traffic lights established in large urban centers conquer environmental pollution 
stemming from traffic congestion due to increased redundant waiting times [66]. Parameters 
such as the vehicle speed, traffic density and waiting time, can be monitored and processed 
in order dynamic commands to be transmitted to traffic lights and operate more efficiently 
and effectively. At the same time, dynamic response to congestion can be provided to drivers 
through early notifications while alternative routes can be suggested according to vehicles’ 
geospatial position.  

BO3. Minimized time intervals while searching for parking 

Vehicles need long time intervals to spot a parking space. An automatic notification system 
for the nearest available parking lots to their final destination, including people with special 
needs, could allow drivers to minimize not only these time intervals but also fuel consumption. 
The geographic location of sensor nodes installed in different spots could extract the 
appropriate data to inform drivers where free parking lots can be found. Presenting all the 
available parking lots of an area facilitates both drivers and parking companies.  

BO4. Reduced illegal parking 

Illegal parking is a common habit and can lead to reduced traffic speeds, congestion and 
accidents especially in large cities. Smart monitoring systems, able to control the status of 
prohibited parking (on-road) spots, automatically notify the municipal police to take 
immediate actions and thus enforce citizens’ compliance with parking regulations. Parking 
regulation enforcement raises the conscience of citizens towards respecting road regulations 
and in that way, it facilitates street management and eliminates traffic congestion and road 
accidents.  
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4.2 Business Objectives for Smart Resources 

BO5. Reduced water leakage 

Reduced water leakage can be achieved through monitoring the water supply network in 
order to act immediately when a breakdown in the network appears or to take proactive 
actions beforehand. An automated monitoring system triggers an alert notification (e-mail, 
SMS) whenever the water level goes below a predefined threshold or in case it has uncommon 
behavior.  

BO6. Water level monitoring 

Monitoring of the water level of seas, rivers and lakes during the rainy seasons can mitigate 
potential inconvenience, such as floods or drought. In case of water scarcity during the dry 
seasons, citizens could be informed to consume less amounts of water. Additionally, smart 
water supply networks can be automatically adjusted in a way to supply limited quantity of 
water in buildings whenever needed. 

 

BO7. Water quality monitoring 

The continuous measurement of the water resources’ (i.e., rivers, lakes, etc.) quality will 
prevent citizens from hazardous water usage. In case of uncommon indications, the 
government or municipalities can get properly informed to take protective measures and 
prevent citizens from consuming contaminated drinking water thus avoiding disease 
transmissions. 

BO8. Efficient waste collection services  

Optimizing the waste collection routes can facilitate the cleaning service insuring cost 
efficiency. Waste collection services can be notified in real-time with push notifications based 
on GPS coordinates of the mobile devices of truck drivers, whenever bins are overflowed with 
trash and need immediate intervention.  

Furthermore, a dedicated mobile application will enable citizens to share the status of waste 
containers, in case they are full and require immediate actions, along with the geographic 
position of the specific item. Both a web-based platform monitored by stakeholders and a 
mobile application used by the cleaning service could be automatically updated.  

BO9. Automated monitoring system for recycling items 

Frequently, people accidentally or not knowing put non-recyclables in recycling bins, which 
unfortunately breaks down the recycling process. Sensors integrated in the trucks could scan 
the recycling trash and identify the existence of organic elements. In case non-recyclable items 
are identified, an automated monitoring system can inform the waste collectors to return the 
trash back to the household. 
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4.3 Business Objectives for Smart Environment 

BO10. Protect vulnerable groups from exposure to high concentrations of air pollutants 

High accumulations of particles and toxic substances (e.g., carbon release steaming from 
increased use of fireplaces, industrial emissions, etc.) on air worsen the health condition of 
people with respiratory and allergic diseases. People with respiratory and allergic diseases, 
including asthma, bronchitis and pneumonia, are prone to high concentrations of air 
pollutants both in developed and less-developed cities. A dedicated alerting system based on 
geospatial-referenced data could proactively inform susceptible end-users to avoid exposure 
to areas with intense pollutant concentration. Push notifications can be send whenever the 
values exceed a predefined threshold, providing: (a) the status of air quality, (b) the level of 
hazardous substances (e.g. CO2) in the atmosphere, (c) suggestions for alternative routes to 
be followed and (d) forecasts emphasizing on extreme pollution events.  

BO11. Reduced disasters caused by extreme weather conditions  

Monitoring and forecasting weather conditions can be proven very valuable for smart cities 
through automated alerts addressed to stakeholders, including citizens, farmers, 
municipalities and meteorologists. Rain and wind forecasts allow citizens to avoid accidents 
and protect their property (houses, farming, etc.) from extreme weather events such as 
floods, storms, hurricanes and drought. 

BO12. Reduce health incidents due to high temperature and humidity 

High levels of temperature and humidity may have a negative impact to people with health 
issues, particularly to those afflicted with cardiovascular diseases, senior citizens and people 
with disabilities. For that reason, forecasts of these parameters (e.g. excessive humidity, very 
high/low temperatures, etc.) could be forwarded to the vulnerable with the appropriate 
warnings about upcoming extreme weather conditions in order to act proactively.  
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5 TOWARDS ACHIEVING THE BUSINESS OBJECTIVES 

5.1 Big data processing pipeline 

A big data processing pipeline typically consists of four distinct phases, not necessarily 
sequential: (a) data generation, (b) data acquisition, (c) data storage and (d) data analysis [97, 
60]. Each of these phases encapsulate challenges, which if not efficiently surmounted, big data 
will not be easily explored in order to deliver valuable results and facilitate the decision-
making process. More specifically: 

1. Data generation refers to the way data is generated from various data sources 
including sensor networks. Nowadays, most of the data used to understand cities 
originate from digital sensors and are available in various forms, with temporal tags 
as well as geotags in many instances. 

2. Data acquisition: One challenge that arises during the acquisition of data is to define 
the filters that should be deployed in order valuable data to be further processed and 
less important data to be discarded. In this phase, the appropriate metadata that will 
describe the form of the data recorded and the way they are recorded and measured 
will be automatically generated [113]. 

3. Data storage concerns persistently storing and managing large-scale datasets. Cloud 
Computing offers many benefits in terms of data storage, although it entails many 
challenges. Transferring data to the cloud can be proven a slow and unreliable process 
when using traditional transfer software technologies. An exemplary cloud computing 
architecture is illustrated in Figure 10, inspired by IBM.  

4. Data analysis. There is a general challenge that arises in the foreground regarding 
leveraging big data gathered through ICT in smart cities. Cities have ended up with a 
vast amount of data and yet without any capability to use these data and without 
being able to extract information towards taking better decisions for the public good. 
To interpret such data, data-mining techniques together with visualization tools needs 
to be exploited and extended through which the visualization of correlations and 
patterns will be essential. Big data visualization brings opportunities of presenting 
data in a meaningful and intuitive way. 
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Figure 10: A cloud-computing infrastructure based on IBM Aspera software [126] 

In an effort to enrich the aforementioned architecture, the authors of [28] have introduced 
an abstract data analytic pipeline, depicted in Figure 11. However, according to [142] a typical 
big data pipeline often consists of many separate solutions that cover one or more steps of 
the pipeline. 

 
Figure 11: Data analytic pipeline  
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5.2 Business logic scenarios for big data processing pipelines  

In this chapter, we outline indicative business logic scenarios for big data processing pipelines 
in order to materialize the aforementioned business objectives. More specifically, for each 
focus area, we underline an indicative configuration example of the available sensors in terms 
of data recording and reporting intervals followed by the data flow, application logic and the 
mechanism that will communicate the data to the stakeholders. 

Road traffic monitoring: 

 Record and count the number of vehicles passing certain points   Every 1 min 
(through on-road sensor installations) 

 Record the number of vehicles waiting in front of traffic lights                Every 1 min 
 Transmit the number of vehicles passing a certain point     Every 3 min 
 Transmit the number of vehicles standing in front of traffic lights         Every 2 min 
 If sensors return value equal to zero, then they send a notification to the server. That 

constitutes an indication that either cars do not change position due to traffic or no 
cars pass from the specific point at all. This information in correlation with other 
measurements of parameters such as CO2 emissions can lead to more precise results. 

 If the congestion takes place near to an intersection, the nearest traffic lights will be 
appropriately adjusted to mitigate traffic congestion. 

 The server will calculate and estimate alternative and shorter routes for the drivers to 
follow. This information can be (a) presented through variable-message signs (VMS) 
on the road, (b) broadcasted through radio frequencies (TA) or (c) delivered to in-car 
navigation systems. 

 The server will provide a dedicated API making traffic information open to the public.  

Parking monitoring: 

 Record sensor status (available or occupied) and type of parking place  
(PWD - people with disabilities or PWND - people with no disabilities) Every 1 min 
(through sensors embedded in the asphalt in parking lots positions) 

 Record start_time and end_time when sensor’s status becomes occupied 
 Transmit the current sensor status and type of parking place to the server Every 5 min 
 Check if a sensor status remains occupied for longer than the permitted time range 

and maximum stay  
 Every time sensor’ status changes, the corresponding signal will be send to the server  
 Every time the sensor status remains occupied longer than the time range and the 

maximum stay and the sensor status is occupied, a warning will be sent to the server 
 Whenever the sensor type is PWD and the parking place is available this information 

will be forwarded to the server 
 The server will provide a dedicated API so as end-users to be informed through a 

mobile application  
 Every time a sensor installed in prohibited parking spaces is occupied, an emergency 

notification will be forwarded to the server  
 The server will propagate the event to the municipal police through available 

communication channels (Rest API) 
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Water leakage detection: 

 Record the water flow and pressure       Every 5 sec 
(through sensors installed in a city’s water supply network) 

 Transmit the mean average of the aggregated data to the server           Every 5 min 
 If the water pressure in certain spots of the pipeline network deviates from the normal 

values, then an alert will be sent to the municipal water authority 

Water level monitoring in water tanks: 

 Record the water quantity consumed per household                Every 30 min 
(through sensors installed in the pipes of the water supply network of each building) 

 Record the water level of the city’s water tanks                Every 10 min 
 Transmit the mean average of the aggregated data to the server               Every 30 min 
 If water level in water tanks is below threshold, then sensors will send data to the 

server 
 If the water quantity consumed per household exceeds normal values, then sensors 

will send data to the server 
 The server will send a signal and activate valve actuators, embedded in the pipes in 

different city territories, to control the water flow  
 The server will propagate the event to municipal water authorities through available 

communication channels (Rest API) 

Water quality monitoring in water tanks: 

 Record the water quality parameters in water tanks                Every 10 min 
(through sensors installed in water tanks of a city and in households) 

 Transmit the data to the server            Once a day 
 In case the values of specific measurements (i.e. temperature, conductivity, pH, water 

height, or chloride, ammonium, nitrate and calcium ions, etc.) exceed for instance two 
or three standard deviations (95% - 99.7%) from the mean of the total number of 
values, that indicates that there are non-normally distributed variables. Therefore, an 
emergency notice will be forwarded to municipal authorities through a dedicated 
mobile/web application. 

Waste management: 

 Record the status of trash cans and waste containers    Every 5 min 
(through embedded sensors in containers able to track different capacity levels:  
10%, …, 80%, 90%, 100%) 

 Transmit the data to the server                   Every 60 min 
 If the level of the trash exceeds 90% of the bins’ total capacity, then an alert will be 

forwarded to the waste collection service through a dedicated mobile app 
 Citizens will be able to use the mobile app to inform waste collectors regarding 

overloaded trash cans or containers based on GPS coordinates  
 The server will calculate and estimate optimized routes for the city’s cleaning service 

through a web platform or a mobile application based on GPS routing. 
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Air quality monitoring: 

 Record values indicating air quality         Every 5 min 
 Transmit the data to the server                  Every 30 min 
 If sensors detect high levels of air pollutants (e.g. SO2, NO, NO2, CO2, O3, smoke 

concentrations, etc.), then emergency notifications will be transmitted to the server 
 The server will forward the information to a mobile application available for citizens 

with health issues and through a web interface giving access to professionals, e.g. 
environmental scientists, prefectural civil protection agencies, etc. 

Weather monitoring: 

 Record values of weather parameters     Every 1 min 
 Transmit the mean average of the aggregated data to the server  Every 5 min 
 If sensors detect indications of weather conditions that exceed predefined thresholds, 

then notifications will be instantly transmitted to the server  
 The server will forward the information to registered users with health issues through 

a dedicated mobile application and make it available to stakeholders, such as 
meteorologists, farmers, etc.  through a web interface 

5.3 Big Data volume analysis 

The following table comprises an estimation of the data volume generated from a sensor 
network in the aforementioned focus areas. In addition, it presents an estimated range of 
sensors that can be installed in a smart city setup, in accordance with the existing 
infrastructure of the biggest urban centers. More specific, some indicative published records 
include ca. 12.500 intersections with traffic signals in New York City (NYC) [128], 18,6 million 
parking spaces in Los Angeles [121], 17.000 water tanks scattered throughout NYC [2] and 
3.600 installed air quality sensors across Newcastle [5]. As reported by Data-Smart City 
Solutions [51], Environmental Defense Fund (EDF) in collaboration with Google embedded 
thousands of mobile sensors in vehicles and bikes, which collected more than 150 million data 
points over 750 hours of driving. 

Table 4: Data volumes extracted from a smart city IoT infrastructure 

Parameters Number of 
sensors 

Data volume 
(per sensor, 
per day)  

Total data 
volume 
(per day)  

Frequency of 
updating 
data 

Frequency of 
sending data 

Number of vehicles passing 
certain points 

< 10.000 < 11.500 KB < 115 GB Every time a 
vehicle is 
detected  

Every 3 min 

Number of vehicles  
waiting in front of traffic 
lights 

< 12.500 < 19.200 KB < 240 GB Every 1 min Every 2 min 

Parking sensor status: 
available / occupied 

< 18.600.000 < 11.500 KB < 214 ΤB Every 1 min Every 5 min 

Water pressure (Pa) < 15.000 < 11.500 KB < 173 GB Every 1 min Every 5 min 

Water level of seas, rivers 
and lakes (m) 

< 1.000 < 40 KB < 40 MB Every 60 min Once a day 
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Water quantity consumed 
per household (m3) 

< 10.000.000 < 1.920 KB < 19,2 TB Every 30 min Every 30 min 

Water level in water tanks 
(m) 

< 17.000 < 1.920 KB < 33 GB Every 10 min Every 30 min 

Water temperature, 
conductivity, PH and ions 
(i.e., NH4+, NO3−, Cl−, and 
Ca2+) 

< 1.000 < 11.500 KB < 11,5 GB Every 10 min Twice a day 

Waste container status 
(capacity levels: 10%,…, 
80%, 90%, 100%) (cm) 

< 12.000 < 960 KB < 11,5 GB Every 5 min Every 60 min 

Air quality (SO2, NO, NO2, 

CO2, O3) 

< 15.000 < 1.920 KB < 28 GB Every 5 min Every 30 min 

Temperature (oC), humidity 
(g/m3), wind speed (mph) 
and direction, rain (mm), 
and atmospheric pressure 
(atm) 

< 1.000 < 11.500 KB < 11,5 GB Every 1 min Every 5 min 

It should be noticed that the “Frequency of updating information” involves queries sent from 
sensor nodes to report an event in the aforementioned intervals, whereas the “Frequency of 
sending information” refers to the information transmitted from the sensor nodes to the 
server. In any of the above cases, whenever sensors record data that reach or exceed a 
predefined threshold, they transmit the specific event-based observations to the server within 
a recent time window. 

5.4 Technological Challenges  

Below we address the technological challenges and identify the requirements that arise from 
huge data volumes in terms of data storage and data analytics applied in smart cities. 

5.4.1 Challenge 1: Horizontal scalability  

Smart cities need to leverage enormous amounts of data quickly and efficiently (see Table 4). 
Handling sheer data volumes that are constantly increasing at a high pace, requires data 
processing to take place over a clustered computer architecture composed of multiple 
computing machines each equipped with multiple CPUs and CPU cores, which we classify 
under the general term “processing units”. Each such processing unit is supposed to undertake 
a piece of data to process so that various data pieces can be processed in parallel among the 
processing units. For instance, in case analytics need to be extracted out of the generated data 
(e.g. average/min/max number of vehicles during rush hours) part of the processing can be 
assigned to various cluster nodes each with its own CPU cores. Finally, the combined partial 
results can be computed to an overall result. The above refers to horizontal scalability, which 
is the ability of the processing to scale with increasing data volumes that arrive at high speeds. 

Requirement 1a: The processing of data needs to be distributed to different nodes in order 
to deliver useful results to multiple users from different servers. Efficient data processing 
through concurrent processes increases the throughput of the system, which is the number 
of tuples being processed per time unit (i.e., seconds, milliseconds). Parallel processing or 
parallelism allows every single processing unit to process data in parallel. For instance, in both 
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the car parking services and the congestion monitoring services, datasets from various servers 
that are distributed across a city could be processed in parallel to achieve the most efficient 
suggestions for citizens (e.g., closest available parking lots, quickest route, etc.). At the same 
time, high-throughput distributed messaging platforms would prove necessary allowing 
stakeholders to receive prompt alerts. 

Requirement 1b: In a complex environment, such as a smart city, resources should be 
allocated to different processing units in response to changes in workload and resource 
availability. Elastic resource allocation allows new processing units to be progressively 
occupied whenever the data volume and velocity increases and thus complex processing 
needs to be executed. According to [174], cloud elasticity is the ability of the cloud 
infrastructure to rapidly change (expand or shrink) the number of resources allocated to a 
service during runtime. It focuses on meeting the actual varying demands on the service, while 
minimizing the resource provisioning costs. 

Requirement 1c: Smart city infrastructures generate high volumes of data within seconds, 
minutes or even milliseconds, which need of immediate actions. Data can be processed either 
through batch data processing or through stream processing. The former is an efficient way 
of processing large volumes of data over a period at once although it does not provide results 
in real-time. On the other hand, stream processing is considered more appropriate in cases 
where continuous data processing, online data analysis and real-time answers are needed.  

5.4.2 Challenge 2: Vertical scalability  

The demanding technological infrastructure of the use cases presented in this work, i.e. smart 
transportation, smart resource and smart environmental management, involve a complex 
setup consisted of numerous sensors that generate big streaming data that arrive at high 
speeds continuously. For instance, constant reports of average temperature in the 
atmosphere and intensity of air pollutants are streaming operations that involve real-time 
analytics. Taking into consideration the number of sensors utilized in the proposed setup 
along with the number of streams generated by each sensor, the complexity of data streaming 
processing requires efficient ways to be handled. More advanced big data analytics involve 
quantifying pairwise correlations of streams originating from sensors. The computational 
complexity of judging such pairwise correlations is quadratic to the number of input streams, 
thus the targeted smart city use cases may operate over tens of thousands of streams. 
Therefore, vertical scalability, i.e., the ability of the computation to scale with the increasing 
number of incoming streams, is an essential issue that needs to be accounted for to meet the 
set business goals. 

Requirement 2: Instead of naively adding more resources to the cluster to cover the 
potentially quadratic (or higher) complexity of certain analytics tasks, one needs to come up 
with scalable real-time algorithms, focusing on the particular problems. Choosing 
representative sensor streams and relying on stream approximation techniques with 
predefined accuracy guarantees is a standard way to proceed with in order to achieve vertical 
scalability. In other words, an approximation technique may sample only a number of streams 
to analyze [73] or apply some dimensionality-reduction technique [72, 75] to reduce the size 
of the streams and speed up the computation. More specific, state-of-the-art site sampling 
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techniques [73], perform analytics using a sample of sites proportional to √N instead of N, 
where N is the total number of sites in the network. Similarly, dimensionality reduction 
techniques applied for sensor data, pinpoint interesting phenomena such as outliers 
mentioned in [72, 75] to reduce the amount of communicated data and the number of 
pairwise similarity comparisons. These two approaches combined could be considered a 
plausible way to proceed. 

5.4.3 Challenge 3: Federated scalability - Communication reduction 

Communication reduction is of the essence in smart city settings since one of the most basic 
ingredient of their physical architecture setup involves battery-powered sensors and wireless 
or wired network infrastructure. In massively distributed settings, such as the smart city 
scenario discussed in this work, the amount of transmitted messages need to be reduced for 
two reasons. Firstly, data transmission through battery-powered sensors is the main culprit in 
energy drain [76]. If sensor nodes deplete their remaining energy quickly, they will soon die. 
Consequently, when a fraction of nodes in the network dies, the whole network’s graph 
connectivity will be lost. Secondly, when leaving energy consumption issues aside and 
allowing all streams to be pushed towards a corporate data center (cluster) or the cloud, the 
network links transferring these streams will eventually become overloaded. Thus, lags in 
communication will appear and the required needs for online stream analysis and real-time 
delivery of big data analytics to smart city applications will not be satisfied.  

Requirement 3: Besides using stream approximation and summarization techniques as those 
mentioned in Requirement 2, there are a couple of standard tools to employ in our setup in 
order to achieve communication reduction. On the one hand, in-situ processing constructs 
qualifying conditions and places local filters to sensors aiming to minimize communication by 
performing as much of the computation locally at the sensor as possible. While in-situ filters 
may be easy to set for simple analytic tasks, they are much more challenging to adjust for 
generic, non-linear event query operators [74, 71, 62]. On the other hand, in-network 
processing is an additional tool since it pushes the evaluation of analytic operations, defined 
on the union of local data streams from different sensors, to sensors or network elements 
that are near to the relevant sensor sources. In that way, the qualified portion of local data 
streams that passes through in-situ filters is synthesized early, extracting compact aggregate 
information to forward it further in the network. In this context, an optimizer module 
instructing in-situ filter construction and executing in-network processing filters would be 
required [63].  

5.4.4 Challenge 4: Fast setup of new big data processing pipelines  

In rapidly changing environments, like the one we examine in this thesis, new big data 
processing pipelines may need to be defined at any given time according to the needs of new 
analytics tasks that domain experts and data analysts desire to follow. However, data analysts 
and domain experts often do not possess the necessary programming skills to materialize the 
necessary data processing pipeline in a timely fashion. It may take days, weeks or months to 
prepare and correctly execute newly constructed big data processing pipelines for data 
analysts that are not data scientists. 
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Requirement 4: A visual tool for setting up the desired data processing pipelines that would 
automatically translate the setting to optimized code is highly desirable. In contrast to 
mainstream solutions, what is needed here is to design and develop a flexible, pluggable, 
distributed software architecture that will be largely programmable and set up by graphical 
data processing workflows. This will allow experts with no programming skills to take the most 
out of the underlying computational resources, by interactively querying data-at-rest and 
data-at-motion and experimenting with a multitude of otherwise highly-opaque models with 
complex parameter configurations. 

5.4.5 Challenge 5: Cross platform execution of big data analytics tasks  

Nowadays, numerous applications have been developed to cover different needs. These 
produce diverse and large datasets that have to be analyzed and ultimately translated into 
valuable conclusions for the decision-making process. To cover that need big data analytics 
platforms are being continuously evolving in order to allow end-users to have access to a 
range of different analytics tasks. Thus, emerging applications use or exploit the use of a 
diversity of platforms for effective or efficient data processing. However, applications are 
typically tied to one single platform, whereas different data analytical pipelines need to 
intercommunicate with one another through cross-platforms for data processing.  

Requirement 5: Α systematic solution that enables efficient and easy-of-use cross-platform 
optimization for data analytics is required. A dedicated middleware, able to answer queries 
among big data platforms, would prove inevitable in order to allow applications to run over 
one or multiple platforms efficiently.   

5.4.6 Challenge 6: Optimized big data pipelines’ execution over heterogeneous 
clusters or clouds  

There is a recent trend in major cloud providers, such as Amazon AWS [93], to provide High 
Performance Computing (HPC) cloud infrastructure by allowing clients use CPU and GPU 
servers on-demand, optimized for specific applications. Emerging cloud applications (i.e., 
machine learning, artificial intelligence and big data) require high performance computing 
systems able to sustain the exponentially increased amount of data without consuming 
excessive power. In the smart city context, certain authorities may have securely exposed 
their data and big data processing pipelines and in that, they should be able to examine the 
potential of speeding up the execution of their analytics tasks leveraging such infrastructure.  

Requirement 6: To address this challenge, an optimization module at the city authority’s side 
is needed in order to help deciding which parts of the set up big data processing pipelines are 
worthwhile of being executed over GPU accelerators [103]. 
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6 PROPOSED ARCHITECTURAL FRAMEWORK  

This chapter focuses on presenting the architectural framework of a smart city that exploits 
technologies to support the focus areas elaborated in Chapter 3. The proposed framework 
introduces specific technological solutions to address the challenges of Chapter 5.4 and 
ultimately to fulfil the business objectives defined in Chapter 4.  

6.1 A Generic Architectural Framework 

In the following architecture, we present a city governance model that comprises the city main 
authority, referred to as Smart City Governance, and three sub-authorities regarding (i) 
Transportation Management, (ii) Resource Management and (iii) Environmental 
Management.  

 

 

Figure 12: Framework architecture. Addressing the requirements arising from the technological challenges 
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Streaming event data arriving at multiple, potentially geographically dispersed, platforms 
should be efficiently processed in situ and then combined to provide holistic answers to global 
application queries. In our context, Smart City Governance needs to monitor and combine the 
information extracted locally from each sub-authority. To achieve this, Visual Analytics tools, 
enable Smart City Governance to query, visualize, alert on and understand metrics extracted 
locally from each sub-authority. Application queries can be processed through a technological 
component, named Data Workflow Design Facilities, that enables stakeholders to create 
intuitively new data processing pipelines combining different big data platforms, based on 
Requirement 4. Afterwards, specific requirements originating from the main authority are 
forwarded to a Cross Platform Optimization middleware (Requirement 5). The optimizer 
ensures the appropriate management of the queries and determines efficient execution 
mechanisms, combining different applications that run over multiple big data platforms.  

The middleware communicates with the sub-authorities where analytics tasks are deployed 
locally. Each city authority submits queries using different platforms to extract numerical and 
graphical analytics results and forwards them to the Optimizer Component. The optimizer 
module needs to be able to instruct in-situ filter construction and execute in-network 
processing filters based on Requirement 3. The flood of high speed of streaming data 
abstracted from sensor feeds can easily overwhelm the, often, limited CPU memory capacities 
of a stream processor. To overcome this issue, the optimizer component decides which tasks 
need to be performed in one or more Heterogeneous Clusters by distributing them to CPU 
and GPU servers upon demand depending on the required computing performance, based on 
Requirement 6. This can be also achieved through public or hybrid High Performance 
Computing (HPC) clouds.  

Then, the optimizer will instruct Big Data Management Platforms how to parallelize the 
required work and how they need to be handled, including assigning tasks and aggregating 
partial results, based on Requirements 1 and 2. At the same time,  

The following figure (Figure 13) illustrates a more detailed (zoomed-in) view of the “Big Data 
Management Platforms” component. Big data Platforms receive as input the aggregated data 
arriving from WSN nodes, GPS devices and other sources. Since the data comes from various 
sources, it needs to be cleansed and transformed in a comprehensive format in order to be 
further analyzed. In this context, comes data ingestion that is the operation of fetching raw 
data from external sources and converting it into a format suitable for processing. In the 
presented architecture, a “publish and subscribe” messaging system is added before batch 
and speed layer, to provide instant event notifications for the distributed applications. The 
publish/subscribe (pub/sub) model enables event-driven architectures and asynchronous 
parallel processing, while improving performance, reliability and scalability [25]. In a pub/sub 
model, any message published to a topic is immediately received by all the subscribers to the 
topic. In particular, neither senders (“publishers”) nor receivers (“subscribers”) need to be 
aware of who uses and who provides the information of messages. Instead, message brokers 
receive and transmit the data associated with one or more publishers or subscribers and 
ensure that the messages are delivered to the correct subscribers. A number of 
publish/subscribe platforms both for batch and speed layer capable to handle a vast amount 
of streams of records, will be introduced in the following section.  
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Figure 13: Framework architecture. A more focused analysis 

The complexity of a smart city’s infrastructure entails the challenge of effectively analyzing 
the exponentially growing data. For that purpose, advanced statistical analysis is required in 
any smart city setup to extract valuable insights and allow stakeholders to take proactive 
decisions by exploring easily and receiving fast comprehensive answers to their queries. In this 
regard, a Synopses Data Engine (SDE) [166] will answer analytic queries using statistical 
sampling techniques and probabilistic data structures, without processing the entire dataset. 
SDE allows data analysts to run high-speed interactive analytics over billions of records.  

Afterwards, our architecture comprises a combination of both batch (stored data) and stream 
processing (real-time data), known as “Lambda Architecture”. Lambda Architecture is a data-
processing architecture designed to handle massive quantities of data by taking advantage of 
both batch and stream-processing methods with a hybrid approach. The architecture consists 
of three layers: (i) batch, (ii) speed and (iii) serving layer. It aims to serve high throughput and 
satisfy the needs for a fault-tolerant system, able to serve a wide range of workloads and use 
cases, in which low-latency reads and updates are required. Lambda Architecture depends on 
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a data model with an append-only, immutable data source that serves as a system of record 
and it is considered a robust solution that handles a wide array of data processing and 
querying challenges at scale [35]. It attempts to balance the features of batch and real-time 
modes, where real time ingestion means importing the data as it is produced by the source 
and ingesting data in batches means importing discrete chunks of data at regularly scheduled 
intervals. In particular, it comprises the following steps [114]: 

1. All data entering the system is dispatched to both the batch layer and the speed layer 
for processing. 

2. The Batch Layer: (i) manages historical data from the master dataset (an immutable, 
append-only set of raw data), and (ii) makes predictions by pre-computing the 
upcoming batch views based on machine learning models. More specifically, the batch 
layer receives arriving data, combines it with historical data and re-computes results 
by iterating over the entire master data set. It may process incoming data slower than 
the speed layer, it, however, produces most accurate results [182]. 

3. The Speed Layer processes data streams in real time and deals with recent data only, 
while it processes data in a smaller scale. It is responsible for immediate processing of 
incoming data, although it may entail data inaccuracy in comparison to the batch 
layer. 

4. The Serving Layer aggregates and merges results from batch computations and the 
speed layer into a complete answer. Any incoming query can be answered by merging 
results from both batch and real-time views. 

 

Figure 14: Lambda Architecture from a high-level perspective 

Mixed views, of batch and streaming data, may be applied in certain use case scenarios, where 
data need to be stored and processed in batches in the master data set off-line in order to 
extract rules. At the same time, the speed layer forecasts these rules to proactively apply them 
and push notification alerts to the stakeholders.  
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In cases where simple transactions of queries are needed, NoSQL databases can be applied to 
quickly serve operational needs and provide effectively interactive responses on an ad-hoc 
basis without necessarily falling in the stream processing category. 

6.2 Architectural Framework Materialization 

Trying to address the aforementioned requirements implies the adoption of more than a 
single data processing platform depending on the technological infrastructure that each 
authority deploys. In this chapter, we propose specific big data platforms that comply on a 
great extent with the aforementioned requirements based on the previous framework 
architecture, presented in Figure 12, and aligned with the main city components. 
 

  

 

Figure 15: Framework architecture. Big data platforms  
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6.2.1 Platforms for Workflow Design Facilities and Cross Platform Optimization  

Smart cities need to integrate various types of real time data (structured and unstructured) 
selected from different sources. Using more than one data processing platform to perform a 
data analytics task is very common nowadays, thus there is an urgent need for cross-platform 
data processing.  For that purpose, and in order to address the fourth and fifth requirement 
(see Chapter 5.4.4 and 5.4.5), we propose the following solutions: 

 Rheem has been recently introduced by [4] as the first general-purpose cross-
platform system that tackles the challenge of enabling users and applications to run 
data analytic tasks efficiently on more than one data processing platforms. Rheem 
operates as an orchestrator of tasks performed in various platforms and is able to: (a) 
suggest the most suitable platform for a given task, (b) perform inter-platform 
parallelism to prevent slow platforms from dominating execution time and (c) move 
data across platforms while minimizing the costs in both runtime and monetary costs. 
Rheem supports a variety of big data platforms such as Spark, Flink and GraphX, 
however, its support for streaming processing is limited to JavaStreams. 
 

 Apache Beam [176, 169] is an evolution of the Cloud Dataflow [8689] model created 
by Google to process massive amounts of data. It is a unified programming model 
(Software Development Kit - SDK) that defines and executes data processing pipelines 
that implement both batch and streaming data processing jobs (Batch & strEAM) 
running on multiple execution engines. It binds frameworks, such as Hadoop, Spark, 
Flink, JStorm and Google Cloud Dataflow, and data sources while it provides an 
abstraction to the application logic from a big data ecosystem [29]. Although Apache 
Beam does not include an optimizer, it allows users to indicate any of the available 
runners (Apache Spark, Apache Flink, Google Cloud Dataflow, Apache Apex, Apache 
Samza, etc.) in which each query will be executed (Figure 16). Moreover, it allows 
users to write their pipelines in a language more familiar to them and integrated with 
other tooling, while it has experienced significant growth due to its both community 
and feature set. In that context, Apache Beam can be used from a main authority to 
unify different technologies, frameworks, APIs, languages, and software development 
kits that may be used from the sub-authorities to aggregate and analyze data. 

 
Figure 16: The Beam model – Data processing pipelines (Source: Data Science Central [48]) 
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 Rapidminer eliminates the complexity of data distributed analytics solutions (e.g. 

Hadoop) that they usually lack a user interface and require specialized IT and analytics 
skills. It constitutes a data-science software platform that provides an integrated 
environment for data preparation, machine learning, deep learning, text mining, and 
predictive analytics. It supports machine-learning processes such as data preparation, 
visualization, model validation and optimization [94]. An extension for RapidMiner, 
Radoop [139], allows users to, easily, execute in Hadoop in order to apply minimum 
effort without needing to have specialized Hadoop skills. Radoop is a data-mining tool 
that provides easy-to-use operators for running distributed processes on Hadoop. 
Rapidminer is a visual workflow designer suggested to be used for local data analytics 
that will be executed from each city authority separately for batch processing. 

6.2.2 Visualization and Analytics 
Visual analytics tools are necessary to present the extracted results to end-users in an intuitive 
and user-friendly way. Visual analytics solutions tend to solve the scalability and complexity 
of issues that arise from big data applications, including the visualization of streaming and 
historical data. Among a large number of visual analytics platforms that have been developed 
for big data, below are some indicative examples:  

 Kibana [88] is the world’s most popular open source log-analysis platform that provides 
users with a tool for exploring, visualizing, and sharing dynamic dashboards on top of the 
log data stored in Elasticsearch clusters. Kibana’s core feature is data querying and 
analysis, including full-text data queuing. Using various methods, users can search the 
data indexed in Elasticsearch for specific events or strings within their data for root cause 
analysis and diagnostics. Based on these queries, users can use Kibana’s visualization 
features, which allow users to visualize data in a variety of different ways, using charts, 
tables, geographical maps and so on. 

 
Figure 17: Visual analytics tools: an example of Kibana 
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 Grafana [87], is an open source metric analytics & visualization suite. It is most commonly 
used for visualizing time series data for infrastructure and application analytics. It can be 
used on top of a variety of different data stores, but the most commonly used are Graphite, 
Elasticsearch and InfluxDB. It is used in different domains including industrial sensors, 
home automation, weather, and process control.  It applies data from multiple data stores 
in order to assist end-users to comprehend metrics through visualization while it allows 
queries submission and alert notification. Among a large number of data sources, Grafana 
supports Druid, PostgreSQL and JSON. 

 
Figure 18: Visual analytics tools: an example of Grafana 

 Apache Zeppelin [23], a visualization platform that enables data-driven, interactive data 
analytics and collaborative documents with SQL, Scala, R and python. It is integrated with 
distributed, general-purpose data processing systems such as Apache Spark and Apache 
Flink. Apache Zeppelin has an interactive surface that allows users to view instantly the 
results of their analytics providing immediate access to these results [34]. 

 
Figure 19: Visual analytics tools: an example of Apache Zeppelin 
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 Zoomdata [185], an open platform that provides big data visualization and analysis 
solutions. Zoomdata allows users to easily compare real-time streaming data with 
historical trends and makes it possible to merge data on the fly from multiple sources. It 
supports big data sources including Hadoop, Spark and NoSQL, as well as various traditional 
relational databases. 

 
Figure 20: Visual analytics tools: an example of Zoomdata 

 Tableau [157] is a business intelligence end-to-end analytics platform that provides 
powerful analytics for deeper knowledge, able to produce interactive visualizations. 
Tableau can be integrated with a large number of advanced database solutions including 
Hadoop, MySQL, SAP and other.   

 
Figure 21: Visual analytics tools: an example of Tableau [59] 
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 QlikView [141] is an open data analytics platform that supports a complete portfolio of 
solutions providing advanced analytics across the spectrum of Business Intelligence needs. 
It offers the Qlik Analytics Platform (QAP), which is a developer platform for building 
custom analytic applications based on frontend and backend APIs. The main products of 
the company Qlik are the QlikView and QlikSense, where the former is suitable for guided 
analytics and the latter for self-service visualizations. With QlikView users pursue day-to-
day tasks, analyzing data with a slightly configurable dashboard, while QlikSense allows 
associating different data sources and fully configurable visualizations [140]. 

 

Figure 22: Visual analytics tools: an example of Qlik [141] 

6.2.3 Optimizer Components 

The following are considered the most appropriate optimizer tools that combined fulfill the 
technological requirements of our use case scenarios. More specific: 

 Rheem. Additionally to the aforementioned, Rheem includes an optimizer that 
indicates in which big data platform the operators will be more efficiently executed. 
Rheem also provides a visual integrated development environment (IDE), called 
Rheem Studio that provides comprehensive facilities to computer programmers for 
software development. Its Graphical User Interface (GUI) is composed of four parts 
[4]: (i) a panel containing all Rheem operators, (ii) the drawing surface, (iii) a console 
for writing RheemLatin (a data-flow language) queries, and (iv) the output terminal. 
Rheem Studio enables users to compose their data analytic tasks in a drag-and-drop 
fashion and run common data analytic tasks without writing code [118].  

 FERARI is a prototype introduced by [63] that enables real time Complex Event 
Processing (CEP) for large volume event data streams over distributed topologies. It 
aims at processing such event data streams efficiently and immediately recognizing 
interesting situations in real-time. FERARI orchestrates interactions among different 
CEP engines and chooses the best query execution plan with respect to low network 
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latency and reduced communication burden. It addresses the need of in-situ filter 
construction and in-network processing filter execution; however, it does not yet 
support elastic resource allocation.  
FERARI constitutes a complete, multi-cloud based end-to-end CEP solution and its 
architecture comprises four main components.  

a. CE Query Authoring Tool is a user-friendly, web-based query-authoring tool, 
which facilitates and speeds up the query formulation in order to underlie 
multi-cloud setup.  

b. FERARI Query Optimizer & Inter-cloud CEP is responsible for synthesizing 
event information from different sites in the same subset. 

c. FERARI Intra-cloud CEP allows different degrees of parallelization in different 
modules. It chooses the best query execution plan with respect to low latency 
and/or reduced inter-cloud communication burden.  

d. FERARI Dashboard is a query analytics dashboard encompassing graph and 
map visualization tools to provide a holistic view with respect to the detected 
complex events to final stakeholders.  

 Apache MESOS is a top-level open-source project able to manage computer clusters 
focusing on improved resource utilization by dynamically sharing resources among 
multiple frameworks. MESOS shares the available capacity of every connected 
computer in the cluster, among jobs of different natures, providing a unified view of 
resources on all computers. It supports resource allocation among heterogeneous 
clusters with different processing units, i.e., CPU and GPUs cores [19]. It supports a 
variety of workloads, ranging from batch processing (Hadoop), interactive analysis 
(Spark), real-time processing (Storm, Flink), data storage (HDFS, Cassandra), graph 
processing (Hama) and others. 
The main components of MESOS are:  

a. The slaves, which manage resources on individual nodes and are configured 
with a resource policy to reflect the business priorities 

b. A master, responsible for mediating the slave resources and frameworks i.e., 
who gets what resources 

c. The framework schedulers are application that run on MESOS and solve a 
specific use case, defining how to use the resources (task scheduling) 

More precisely, the MESOS master gets information on the available resources from 
the MESOS slaves, and based on resource policies, the master offers these resources 
to different frameworks. Different frameworks can choose to accept or reject the 
offer. If the framework accepts a resource offer, the framework allocates the 
corresponding resources to the framework, and then it is free to use them to launch 
tasks. The following figure illustrates the high-level flow of MESOS resource allocation, 
according to [102]. 
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Figure 23: High-level flow of MESOS resource allocation 

The main advantage of MESOS is the consolidation of various frameworks on a 
common infrastructure saving infrastructure costs and providing operational benefits. 
Last but not least, Apache MESOS provides applications with APIs for resource 
management and scheduling across entire datacenter and cloud environments. 

6.2.4 Big Data Management Platforms 

Among a very large amount of existing big data platforms, the following are recommended 
for realizing the requirements emerging from the potential challenges of horizontal and 
vertical scalability.  

6.2.4.1 Data Ingestion Layer 

The Data Ingestion Layer (Figure 24) comprises the following frameworks that are considered 
the most suitable for the proposed setup [159]. 

 Apache Kafka [17] is a distributed streaming platform that can be used to build real-
time data pipelines and streaming applications and to vertical scale through Kafka 
brokers [164]. It is able to: (a) publish and subscribe to streams of records, (b) store 
partitions of records by replicating them across a number of servers in a fault-tolerant 
durable way and (c) process streams of records as they occur. More specific: 

o As a Messaging System, Kafka has two models: (i) queuing and (ii) publish-
subscribe. In the former, producers send messages into the queue, where 
each message record is read by only one consumer, although multiple 
consumers can read different messages from the publish-subscribe model, 
the publisher sends messages into one or more topics and subscribers are 
able to consume all the messages of one or more topics [45].  

o Kafka runs as a cluster on one or more servers that can span multiple 
datacenters, which stores streams of records in categories called “topics”. A 
topic is a category or feed name to which records are published. Topics in 
Kafka can have many consumers (applications) that subscribe to the data 
written to it. Each record consists of a key, a value, and a timestamp. Each 
partition has one server, which acts as the "leader" and zero or more servers, 
which act as "followers". The leader handles all read and write requests for 
the partition while the followers passively replicate the leader. If the leader 
fails, one of the followers will automatically become the new leader.  
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o In refer to stream processing, Kafka takes continual streams of data from 
input topics, performs some processing on this input, and produces continual 
streams of data to output topics. 

 Redis [143] is a key value data store that is extremely fast because the entire dataset 
is stored in the memory [100]. It is used as a database, cache and message broker. 
The publish/subscribe feature of Redis implements the messaging system where the 
senders (publishers) send the messages while the receivers (subscribers) receive 
them, through the channel [171]. It is one of the fastest NoSQL databases trading 
durability over speed. Redis can be considered more as a toolkit of useful data 
structure algorithms than as an ordinary member of a database group, because it 
contains a list of processes and functionalities like a blocking queue or stack, a 
publisher-subscriber system and a list of configurable features as expiry policies, 
durability levels and replication options [137, 27]. Redis supports two dimensions for 
vertical scaling [46]; if the Redis database is not in Cache mode the auto-scaling 
system will increase the available memory when under memory pressure. When in 
Cache mode, the auto-scaling will not operate and the administrators must select the 
amount of memory they need for the Redis database. 
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Figure 24: Framework architecture. A more focused analysis based on specific tools 

 Apache Flume [14] is a distributed, reliable, and available service for collecting, 
aggregating, and moving large amounts of log data. Flume can be used to transport 
event data including but not limited to network traffic data, data generated by social 
media websites and email messages. It has a simple and flexible architecture based 
on streaming data flows and it is fault tolerant with tunable reliability mechanisms 
and many failover and recovery mechanisms. Apache Flume uses a simple extensible 
data model that allows for online analytic application.  

6.2.4.2 Batch Layer 

Regarding the Batch Layer, we propose the following framework solutions as the most 
appropriate. 

 Apache Spark is a unified analytics cluster-computing framework that supports 
modules for batch and streaming processing, SQL, machine learning and graph 
computation processing [50]. Spark uses a specialized fundamental data structure, 
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the Resilient Distributed Datasets (RDDs), which is a collection of elements, 
partitioned across the nodes of the cluster and can automatically recover from node 
failures, as there is no single node having all the data. RDDs support two types of 
operations: (i) transformations that are performed on an RDD and creating a new 
dataset and (ii) actions, which return a value after running a computation in the 
dataset (Figure 25).  

 

Figure 25: An RDD distributed across the worker nodes (Source: DevOps [55]) 

Apache Spark SQL was developed to confront with the limitations of MapReduce 
processing framework of Hadoop. Spark SQL is a module for structured data 
processing that allows developers to run SQL queries  over imported data and existing 
RDDs [50]. It maintains MapReduce’s linear scalability and fault tolerance and 
supports in-memory analytics, iterative algorithms and interactive queries. [153] 
Spark SQL provides a DataFrame API that can perform relational operations on both 
external data sources and Spark’s built-in distributed collections at scale.  

 Hadoop [15] is a popular open-source big data framework that allows distributed 
processing of large data sets across clusters of computers and it is designed to scale 
up from single servers to thousands of machines. It can be used for visualization 
processes and is composed of several components, such as MapReduce (parallel 
processing), YARN (job scheduling) and HDFS (distributed file system) that work 
together to process batch data.  

o MapReduce is a programming model that enables massive scalability across 
hundreds or thousands of servers in a Hadoop cluster. It refers to two distinct 
tasks that Hadoop programs perform: (a) the map job, which filters and sorts 
data, where individual elements of data sets are being broken down into 
tuples (i.e. key/value pairs) and (b) the reduce job that uses the output of the 
mapping process and combines the data tuples into smaller set of tuples. [18] 

o HDFS (Hadoop Distributed File System) is the primary data storage system 
used by Hadoop applications. It provides high-performance access to data 
across highly scalable Hadoop clusters and it enables efficient parallel 
processing since it breaks information into separate blocks and distributes 
them to different nodes in a cluster. [89] The HDFS is considered highly fault-
tolerant since blocks of data are being replicated or copied and then 
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distributed to different nodes. Thus, in case one node crashes the replicas of 
data can be found to other nodes.  

6.2.4.3 Speed Layer 

The Speed Layer comprises the following frameworks: 

 Apache Spark Streaming enables powerful interactive and analytical applications 
across both streaming and historical data. Spark Streaming is able to process 100,000-
500,000 records/node/sec [135] and has some unique benefits over other traditional 
streaming systems, such as [49]: (a) fast recovery from failures, (b) better load 
balancing and resource usage, (c) combination of streaming data with static datasets 
and interactive queries and (d) native integration with advanced processing libraries 
(i.e., SQL, machine learning, graph processing). It integrates with a wide variety of 
popular data sources, including HDFS, Flume, Kafka, and Twitter. Moreover, Spark 
Streaming is able to seamlessly integrate with any other Spark components, such as 
Sparks SQL and MLlib. The concepts and use cases of Apache Spark Streaming looks 
similar to Apache Flink, however there are differences in the implementation. Spark 
Streaming is designed to deal with mini batches, which can deliver near real-time 
capabilities. Apache Flink delivers real-time processing due to its event level 
processing architecture [162].   

 Apache Storm is a distributed real-time computation framework that processes fast 
large streams of data based on master-slave architecture [159]. As reported in [168], 
a Storm topology is directed graph of spouts and bolts. Spouts are sources of input 
data and bolts are an abstraction to represent computation on the stream. The spouts 
are the main entry point of data into the topology and connect to a source of data, 
such as Kafka [110], and emit the tuples as a stream. Whereas, bolts are considered 
as the operators of arbitrary computations, such as filtering and joining. They receive 
as input any number of streams, they process the data and they optionally emit 
streams to one or more bolts. Bolts are also able to read from or write data directly 
to a data store. These components are represented by vertices in the topology graph, 
where direct edges indicate how the streams are routed. Grouping in Storm can be 
done with the following five ways, which define how to send tuples between tasks 
[181].  

o Shuffle: Tuples are randomly distributed across receiving bolt’s tasks and 
each task is guaranteed to receive an equal number of tuples.  

o Fields grouping: A field of a tuple is used as the key to partition the stream. 
Tuples with the same key will be mapped to the same task.  

o All grouping: Each tuple is broadcasted to all tasks of the corresponding bolt. 
o Global grouping: The entire stream is routed to one of the bolt’s tasks, usually 

the task with the lowest ID. 
o Direct grouping: The producer of the stream decides which task of the 

consuming bolt will receive each tuple 
o Partial Key grouping: it works similarly to the fields grouping it however 

adapts the “power of two choices” technique of load balancing. Here, tuples 
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are load balanced between two downstream bolts, which provides better 
utilization of resources when the incoming data is skewed. 

 Apache Flink is a very popular open-source stream processing framework with 
powerful stream and batch processing capabilities. Flink is suitable for running 
interactive, graph processing and machine learning applications for real time 
predictions [77], while it is able to process a large amount of data streams from 
different IoT devices at a scale of millions of events per second. It typically consists of 
streams and transformations and provides real-time data processing pipelines in a 
high-performance and fault-tolerant way. The central part of its fault tolerance 
mechanism is drawing consistent snapshots of the distributed data stream and 
operator state. These snapshots act as consistent checkpoints to which the system 
can fall back in case of a failure. The core element in Flink’s distributed snapshotting 
are the stream barriers that separate the records in data streams into a set of records 
that goes into the current snapshot and the records that go into the next snapshot 
[13].  

 

Figure 26: Data stream in Apache Flink (task manager) 

Apache Flink also uses time windows to understand how the data streams flows and 
consequently which events are preceded by which. Moreover, it provides the Flink 
CEP (Complex Event Processing) library that allows programmers to define the pattern 
that will trigger an appropriate action (e.g. alert) whenever it is detected. CEP matches 
continuously incoming events against a specific pattern and discards the irrelevant for 
the query data at runtime, while it offers real time analytics capabilities [13]. 

 

Figure 27: Core components of the Flink CEP library [53] 
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Flink supports connectivity with various data resources such as Apache Cassandra, 
Elasticsearch, Kafka, RabbitMQ and Hive [175].   

 Heron is a real-time, distributed, fault-tolerant stream processing engine of Twitter, 
developed to overcome the limitations of Storm, such as scalability, debug-ability, 
manageability, and efficient sharing of cluster resources with other data services. 
[111] It runs topologies, i.e., directed acyclic graphs of spouts and bolts, where the 
programmer specifies the number of tasks for each spout and each bolt (i.e. the 
degree of parallelism), as well as how the data is partitioned as it moves across the 
spout and the bolt tasks (grouping). 

6.2.4.4 Serving Layer 

The Serving Layer is consisted of the following databases: 

 Apache HBase [16] is an open-source, distributed, scalable, NoSQL big data store built 
to run on top of the Hadoop Distributed File System (HDFS). A column-oriented 
key/value data store that can host large tables – with billions of rows and millions of 
columns – and can provide real-time, random read/write access to Hadoop data. As 
opposed to other NoSQL databases, like Cassandra, HBase is architected to have 
strongly consistent reads and writes. Once a write has been performed, all read 
requests for that data return the same value. It is failure tolerant since it supports 
replicating data across different datacenters.  

 Apache Cassandra [9] is an open-source, distributed, wide column store, NoSQL 
database management system that provides high availability and low latency. It has 
been proven fault-tolerant on commodity hardware or cloud infrastructure, due to 
the automatic replication of data to multiple nodes. Cassandra supports replication 
across multiple datacenters, while failed nodes can be replaced with no downtime.  

 Apache Druid [56] is a column-oriented, open-source, distributed database and 
provides fast analytical queries, at high concurrency, on event-driven data. Druid is 
designed to quickly ingest massive quantities of event data, and provide low-latency 
queries on top of the data [91]. Druid can instantaneously ingest streaming data and 
provide sub-second queries to power interactive User Interfaces (UI). It is commonly 
used in business intelligence applications to analyze high volumes of real-time and 
historical data.   
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7 ALGORITHMIC APPARATUS & IMPLEMENTATIONS 

In the previous chapter, we presented a generic architectural framework capable of serving a 
smart city’s needs both within various vertical city sectors (transportation, resource and 
environmental management) and across such sectors for global smart city governance 
purposes. We also detailed a materialized view of the proposed architecture elaborating on 
technologies and platforms suitable for satisfying Requirements 1 to 6 as described upon 
referring to the technological challenges of a smart city environment in Chapter 5.4. 

In this chapter, we briefly describe and provide references to algorithms and algorithmic suites 
that are generic enough to accommodate broad categories of analytics tasks useful within a 
smart city context. In other words, the basic concept is that having presented a generic 
architectural framework for big smart city data analysis and its materialization by state-of-the-
art technological platforms, this section points to useful, commonly used algorithms that can 
be implemented within such platforms, in various parts of the proposed architecture, so that 
they can be utilized while performing analytics tasks. Although throughout our previous 
discussion we referred to some of such algorithms, this section provides a concise summary 
of relevant works.  

In this point, it should be clarified that our goal is not to provide an exhaustive description of 
the respective algorithms, but instead to tip on the basic rationale behind their functionality 
and point potential adopters of the proposed architecture to respective algorithmic suite 
implementations.  

7.1  In-situ Processing Algorithms & Implementations 

The idea of in-situ processing is to install local filters at the various sites (i.e., sensors, smart 
devices or vertical smart city sectors’ clusters upon performing global analytics) so that data 
communication is avoided unless it is absolutely necessary. We consider for instance, a water 
management scenario and assume we want to monitor the variance among the water levels 
in various neighboring water tanks and respective interconnecting pipes. The global task we 
may want to accomplish involves whether a variance function defined on the union of streams 
gathered by relevant sensors exceeds a threshold, i.e., Var(∪ 𝑆𝑒𝑛𝑠𝑜𝑟𝑆𝑡𝑟𝑒𝑎𝑚𝑠)>T. The 
usefulness of such a monitoring task is to detect anomalies in the water flow and pinpoint 
potential points of leak. A key technique for monitoring such generic, complex, non-linear 
functions is the geometric monitoring method [74]. The key idea behind the geometric 
monitoring technique is that instead of monitoring the function value itself, the monitoring 
protocol tracks the potential position of the function input vector (formed by ∪SensorStreams 
in the example) in the input domain of the function (variance in the above example). Every 
site in the network accumulates local streams forming a local vector of observations. Then 
each site uses the aforementioned vector as a diameter around which a multi-dimensional 
sphere is drawn. If any site in the network finds its local sphere entering the area of the input 
domain of the function where the function crosses the threshold, all sites are notified to 
communicate their data. Otherwise, no communication is necessary. The whole rationale is 
depicted in Figure 28, where the gray shaded area depicts the area of the input domain where 
the function crosses the threshold. The individual vectors e+Dvi depict local stream evolution 
in each site (5 sites exist in this example), while the 3-d balls involve the corresponding spheres 
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that are inscribed using e+Dvi in each diameter. The yellow colored area of the input domain 
is the convex hull induced by the corresponding e+Dvi vectors. Since in this particular example 
no multidimensional sphere crosses the threshold, no communication is necessary. 

 
Figure 28: Geometric Monitoring method rationale introduced by [73] 

Moreover, the technique of [73] combines in-situ processing with data summarization by 
executing the aforementioned geometric monitoring scheme only to a carefully-crafted 
sample of sites in the network. The latter simultaneously addresses vertical and federated 
scalability challenges as outlined in Chapter 5.4.  

A second generic algorithm for in-situ processing especially in event-based analytic tasks 
regards the push-pull rationale [61]. To elaborate this technique, we consider the air quality 
monitoring scenario, in which we monitor the concentration of gases, such as SO2, NO, NO2, 
CO2, O3. In this context, we assume there is an analytics task, which says “trigger an alert when 
E1: the CO2 concentration exceeds a given threshold, this event is followed by (SEQUENCE) 
E2: O3 exceeds a different threshold AND E3: SO2, NO2 concentrations follow similar trends, 
within a predefined time window W”. Such a query can be expressed using logical operators 
and monitored functions as follows: AND (E3, SEQUENCE(E1,E2)). However, the query will 
never return TRUE, thus no alert will be provided unless all three events occur simultaneously 
within the window W. In order to reduce communication in such a case, where query 
operators (such as AND, SEQUENCE) require all of their inputs to output something, we can 
use the push-pull rationale. According to the push-pull mechanism, the transmission of 
frequent events is rendered conditional upon the occurrence of rare ones. So for instance, if 
E1 is a frequent event, but E2 and E3 are not, E1 will not be transmitted until E2 and E3 occur. 
In other words, E1 will be set in pull mode and it will be cached at the sensors, where it is 
detected, until a request for transmitting such an event to the respective sensors-sites is 
received. At the same time, E2 and E3 will be set in push mode, meaning that they will be 
transmitted immediately towards the query source as soon as they occur. The work of [61] 
provides a description of the push-pull mechanism and comments on implementation aspects 
over big data platforms (see Figure 29), while the geometric method and the push-pull 
rationale is implemented in the FERARI project [37]. 



 

  Eirini Kontaki 
 

55 Algorithmic Apparatus & Implementations 

 

     

 
Figure 29: Example of different push-pull application for an AND operator receiving 3 events (e1, e2, e3) at input 

[61] 

7.2 In-network Processing Algorithms & Implementations 

A recent survey of in-network processing algorithms included in [61, 70] explains the idea 
behind all these algorithms, which is to map a query graph expressing the workflow of 
analytics tasks that need to be carried out to the physical network of sites (i.e., sensors, 
clusters, smart devices). Eventually, the execution of each operator will be assigned to a site 
that is near to the data sources. In that, data is aggregated early during the execution of parts 
of the analytics procedures and the total amount of communicated data is reduced because 
only compact, aggregated pictures of the data are further communicated in the network, 
towards the query source. The work of [61] proposes respective algorithms that aim at 
reducing the communication cost in the network, while they harness network latency. To 
accomplish the task of the aforementioned work, which essentially describes the algorithms 
employed in the FERARI optimizer discussed in the previous chapter, it proposes exhaustive, 
dynamic programming, greedy and heuristic algorithms for assigning operator execution to 
sites. These algorithms differ in their computational complexity as well as on their ability to 
come up with appropriate operator to site mappings in case of strict network latency 
constraints. Moreover, the implementation of the respective optimizer [37] couples in-situ 
with in-network processing. Although the optimization techniques are tailored for event 
processing applications, in principle, the proposed techniques can accommodate any analytics 
operator upon being stripped of from the push-pull, in-situ processing rationale.  

7.3  Data Summarization Techniques & Implementations 

Data synopsis techniques can be useful in the Smart City context especially for efficiently 
dealing with Requirements 1 to 3 described in Chapter 5.4. Below we outline existing 
implementations of data summarization algorithms and underline their utility in the scenarios 
presented in previous chapters. The literature regarding data summarization techniques is 
abundant. Therefore, instead of citing each related work separately, we refer to the works of 
[23, 67], which provide concise and comparative views of relevant algorithms. 

Stream-lib [83] is a Java-based data synopses library. It includes algorithms for various useful 
analytics operations such as cardinality; set membership; top-k elements and frequency 
estimation, along with references to respective research works. Stream-lib supports stream 
processing in an online fashion, however, the provided implementation does not address 
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horizontal scalability since it does not include provisions for parallel maintenance of single 
synopses or maintenance of multiple synopses.   

Yahoo DataSketch [11] is another data summarization library, which includes 
implementations of sampling, count, frequency, cardinality and quantile estimation 
algorithms [10]. The provided implementations include Hive and Pig, but as is the case with 
Stream-lib, DataSketch is detached from parallelization aspects. 

Proteus-backend [81] is a backend module that implements incremental version (~O(1) 
computational cost using approximations) of most common analytics operations. This module 
is implemented on Apache Flink and is perhaps the only one that combines the potential of 
data summarization with parallel processing over big data platforms. 

SnappyData [167] is a high performance in-memory data platform for mixed workload 
applications, built on Apache Spark Streaming. The latter means that it employs the concept 
of micro-batches instead of being a purely streaming synopses data engine. SnappyData 
provides a unified programming model for streaming, transactions, machine learning and SQL 
Analytics in a single cluster. SnappyData’s Synopses Data Engine offers a novel and scalable 
system able to analyze large data sets. It relies on two methods for approximations: (a) 
stratified sampling and (b) sketching. The former allows users to specify the common 
dimensions used for querying and ensures that each dimension or stratum with low 
representation will be captured in the sampled data set. The latter is used to capture data 
frequencies in a stream, i.e., how often an element is seen in a stream.  

Individual repositories with a reach set of data stream summarization techniques, but 
deprived from parallelization aspects, are also provided open source [84, 78]. 

The following Table 5 lists some popular data summarization techniques implemented in the 
above referenced libraries along with their utility for Smart City sectors. 

Table 5: Exemplary Data Summarization Techniques and their Utility in the Smart City Context 

Synopsis Estimates Useful for Smart City Sector 

Count-Min Sketch Count, Frequency Smart Transportation 
HyperLogLog Sketch Distinct Count Smart Transportation 

LSH Similarity Environmental Monitoring, 
Resource Management 

Reservoir Sampling Cardinality All 

Bloom Filter Set Membership Smart Transportation 

Qdigest Approximate quantiles Environmental Monitoring, 
Resource Management 

Sampling algorithms such as Reservoir sampling cited in Table 5 are useful across all smart 
city sectors examined in this thesis. The idea of maintaining a fair sample of measured 
quantities in traffic monitoring, water flow or environmental sensing scenarios is to reduce 
the amount of data that will be processed by the rest of the components of the proposed 
architecture. At the same time, it will be assured that the constructed samples preserve 
important statistical properties of the summarized data such as specific moments and 
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cumulants. Cumulants refer to as a set of quantities that provide an alternative to the 
moments of the distribution [177]. 

The Count-Min sketch summary is designed so that it provides approximate count, frequency 
estimations over voluminous streaming data, with reduced memory requirements. In the 
traffic monitoring scenario, this summary can be used in order to maintain approximate 
counts of the number of vehicles that passed through each edge of the underlying road 
network. Road networks of large city centers consist of thousands or millions of edges (road 
segments) and thus, maintaining the exact counts per edge in memory as time passes may be 
quite a burden. Online and continuous queries over such streams require real-time answers, 
storing these data in HDFS or other permanent storage means. Counting the number of 
vehicles that pass through a road segment is quite useful for achieving the relevant business 
objectives mentioned in Chapter 4. For instance, such counts and their evolution over time 
can be used initially by data mining algorithms to cluster similar road edges together in order 
to detect afterwards relations among them and observe how the traffic flows. 

Additionally, Bloom filters may also be of the essence for the smart traffic monitoring 
scenario. Bloom filters are a compact data summary capable of providing approximate 
answers with respect to intersections and union of sets. We consider that apart from the 
number of vehicles that pass through a road segment, information regarding vehicle IDs, such 
as the license plate, is also available. Thus, for each edge of the network we can maintain a 
set of vehicle IDs that used the respective edge while commuting. In order to monitor how 
the traffic flows among road edges similarity measures, such as the Jaccard Similarity of pairs 
of edges can be used. This technique provides the ratio of cardinality of the intersection over 
the cardinality of the union of vehicle id sets maintained per edge. Computing the size of the 
intersection of vehicle sets in edges is as simple as performing a logical conjunction (AND 
operation) among the respective Bloom filters maintained per edge. However, a logical 
disjunction (OR operation) is used for the cardinality of union of such sets.  

The HyperLogLog sketch is a structure capable of providing approximate query answers 
regarding distinct count queries with reduced memory consumption. The idea of using such a 
structure in traffic monitoring scenarios is to extract information regarding the number of 
distinct vehicles that move in the city road network or parts of it. Such a piece of information 
can be useful for various reasons. For instance, similarly to the aforementioned examples, 
judging the similarity among the traffic of road segments according to Sorensen-Dice similarity 
index requires computing the intersection of the corresponding sets of vehicle IDs (e.g. using 
a Bloom filter) over the cardinalities of sets of (distinct) vehicles passing by each edge (one 
HyperLogLog sketch per road segment). 

Taking into consideration the number of sensors utilized in resource management and 
environmental monitoring scenarios along with the number of streams generated by each 
sensor, executing analytics tasks such as anomaly or outlier detection becomes a challenge. 

Recent techniques for judging outliers [72, 76, 75] have pointed out the importance of judging 
outliers in such networks based on the similarity of the values produced by each sensor 
compared to other sensors. In other words, to extract outliers in sensor network settings over 
environmental or resource related data often regards quantifying pairwise correlations of 
streams originating from different sensors. The computational complexity of computing such 
pairwise correlations is quadratic to the number of input streams, thus the targeted smart city 
use cases may operate over tens of thousands of streams. The usefulness of Locality Sensitive 
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Hashing (LSH) techniques in these scenarios is two-fold. First, they compress sensor 
measurements so that communication towards the query source is reduced. Second, the 
Hamming weight (number of set bits) in the resulted LSH bitmaps can be used as a hash key 
based on which the processing of entire series of sensor readings are distributed among 
different machines within a cluster, simultaneously pruning the number of performed 
pairwise comparisons by hashing highly dissimilar bitmaps to different machines [76]. 

Finally, Qdigest is a data summarization technique that can provide approximate answers to 
quantile queries. The use of quantiles/percentiles is useful in both environmental monitoring 
and resource management scenarios. Indicatively, England has water quality consent limits 
that are based on the 90th and 95th percentiles of monitoring data not exceeding specified 
levels. The U.S. EPA has specifications for air quality monitoring that are, in effect, percentile 
limitations. These may, for example, specify that the ambient concentration of a compound 
cannot exceed a predefined percentile during the day. The U.S. EPA has provided guidance for 
setting aquatic standards on toxic chemicals that require estimating 99th percentiles and using 
this statistic to make important decisions about monitoring and compliance. They have also 
used the 99th percentile to establish maximum daily limits for industrial effluents [39].  

7.4 Machine Learning and Data Mining Algorithms and Libraries 

FlinkML [12] is a set of scalable ML algorithms and API adopted by Flink distributed 
framework. It contains algorithms for: 

 supervised (SVM CoCoA, Multiple Linear Regression, Batch Gradient Descent) and 
unsupervised (k-Nearest Neighbors) learning, 

 data pre-processing (Polynomial Features, Standard Scaler, MinMax Scaler), 
recommendation (Alternative Least Squares, Stochastic Outlier Selection) and  

 other ML utilities involving (a) the computation of distance metrics such as Euclidean, 
squared Euclidean, Chebyshev, Cosine Similarity, Manhattan and Minkowsky distance 
as well as Tanimoto coefficient calculation, (b) cross validation methods such as Train-
Test-(Holdout) splits, K-Fold splits, Multi-random Splits etc.  

Most of the incorporated algorithms are destined for batch processing purposes and as such, 
they constitute offline algorithms built on top of the batch API of Flink. For the orchestration 
of machine learning tasks that run over distributed, parallel architectures ensuring horizontal 
scalability via parallel and elastic processing, an implementation of the parameter server 
paradigm [1] is also available [80]. Finally, FlinkML includes a connector to the SAMOA library 
discussed below.  

Apache SAMOA [20] is a distributed streaming ML framework built for Apache Storm, Flink 
and Samza [21]. SAMOA supports Prequential Evaluation Task (which is an online ML model 
evaluation pipeline), Vertical Hoeffding Tree Classifiers, Adaptive Model Rules Regressors, 
Bagging and Boosting, Distributed Stream Clustering and Distributed Frequent Itemset Mining 
analytics. 

Proteus-SOLMA [82] is a scalable set of online machine learning algorithms including 
classification, clustering, regression, ensemble, graph oriented, linear algebra operations, 
anomaly and novelty detection algorithms. It is implemented on top of Apache Flink using the 
batch and stream processing capabilities. SOLMA supports the computation of online 
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moments and it, also includes a number of summarization techniques involving online 
sampling and incremental Principal Component Analysis (PCA), among others. Regarding 
classification algorithms, it includes Online Support Vector Machines (OSVM) for batch 
learning (Pegasos, Norma algorithms), Online bi-level stochastic gradient for SVMs  
(OBSG-SVM) and Online Passive Aggressive Classifier (PA). With respect to regression 
methods, it mainly incorporates Online Ridge Regression with L2 regularization (ORR), Online 
shrinkage via limit of Gibbs sampling with L1 regularization (SLOG), Aggregated Algorithm for 
Regression (ARR), Competitive Online Iterated Ridge Regression (COIRR). 

Spark’s MLlib [22] is perhaps the richest ML API implementation over a popular big data 
platform. It is mainly destined to support batch processing, included only limited support for 
online ML tasks. More precisely, MLlib supports the computation of basic statistics and 
measures such as pairwise correlations via Pearson’s and Spearman’s correlation coefficients, 
hypothesis testing via Pearson’s Chi-Squared test. It further provides numerous extracting, 
transforming and selecting features and ML tuning facilities such as hyperparameter tuning, 
cross-validation and train-validation split. Indicatively incorporate algorithms include: 

 Classification algorithms 
 Logistic Regression 
 Decision Trees and Random Forest 
 Gradient-boosted tree 
 Multilayer Perceptron 
 Linear SVM 
 One-vs-Rest 
 Naive Bayes 

 Regression algorithms 
 Linear regression 
 Generalized Linear Regression 
 Decision Tree and Random Forest regression 
 Gradient-boosted tree regression 
 Survival regression 
 Isotonic regression 

 Clustering algorithms 
 K-means 
 Latent Dirichlet Allocation (LDA) 
 Bisecting Mixture Model (BMM) 
 Gaussian Mixture Model (GMM) 

Clustering techniques can be proven useful across various smart city vertical sectors. At this 
point, we exploit smart traffic monitoring scenarios since they constitute an interesting 
example for utilizing clustering techniques. As already discussed in Chapter 7.3, in order to 
observe how the traffic flows among road segments, we may employ information regarding 
the counts of vehicles per road segment as well as its evolution over time. According to the 
literature [132], hierarchical clustering on road network edges is performed using different 
similarity measures in order to detect traffic flow relationships, including traffic propagation 
(Figure 30), traffic split (Figure 31) and traffic merge (Figure 32). More precisely, the notion of 
distance between two road segments (edges) is defined (a) based on the corresponding traffic 
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series count values, (b) based on the corresponding traffic series “shape” (normalized count 
vectors) and (c) according to the network graph topology. Then, a clustering method is 
employed that utilizes the different distance types to first cluster together edges of similar 
time series shape, then these clusters are further split based on the similarity of time series 
count values and finally based on their spatial proximity. The result of the clustering can be 
visualized, i.e., the technique leaves to the human operator the task of detecting traffic 
propagations, splits or merges, to illustrate the extracted, undergoing traffic flow as shown in 
Figure 30, Figure 31 and Figure 32. 

 

Figure 30: Clustering output depicting traffic propagation relationship [132] 
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Figure 31: Clustering output depicting traffic split relationship [132] 

 

 
Figure 32: Clustering output depicting traffic merge relationship [132] 

Classification techniques such as Random Forests can be used for air quality prediction 
purposes. Relevant data analysis may include air monitoring station data, meteorology data 
or even road traffic information. All these data are fetched at certain intervals (see Table 4). 
The city can be divided into a grid and each grid cell is regarded as one region. Those grid cells 
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with air quality monitoring stations generate the data used for training a learning model (a 
number of decision trees in the case of random forests). Predictions should be made on the 
streaming data for characterizing the level of hazard as regards the concentration of certain 
pollutants in the near future. The Random Forest is a general term for methods using decision 
tree-type classifiers [69]. It uses recursive partitioning to generate many trees and then 
aggregates the results (Figure 33) [165]. Each tree is independently constructed using a 
bootstrap sample of the training data, which subdivides the parameter set first into several 
parts depending on one of the parameters, and subsequently repeats the process for each 
part. After all the trees are constructed, the streaming data are input into all decision trees. 
For each tree, a probability is estimated for the label (e.g. hazardous, non-hazardous, likely 
hazardous, etc.) of the predicted air quality. The final probability of each label (class) is 
computed by combining e.g., the majority voting among the highest probability labels across 
the trees of the forest.  

 
Figure 33: Random Forest Algorithm graph 

SVM (Support Vector Machine) algorithms aim at separating data points in multidimensional 
spaces, so that they are as far apart as possible. These algorithms find a hyperplane (acting as 
a so-called soft margin) by selecting the most appropriate points in a training subset (the 
supporting vectors), that split data into categories (see Figure 34 [101]). When a new data 
point, e.g. readings from air quality monitoring stations, streams into the architecture, it is 
assigned to a category that gives the corresponding label to it. 
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Figure 34: Support Vector Machine Algorithm 

As a forecasting method, k-Nearest Neighbor (kNN) algorithm is a supervised machine 
learning technique that seeks to identify the past sequence, in time series, that is most similar 
to the one to be forecasted. It can be used to make the waste collection process more efficient 
by monitoring the occupancy level of garbage bins and calculating the travel distance in order 
to clear all the filled bins from trash. The sensor in each bin measures the level of garbage, 
while GPS data stemming from a track mark its current position. The idea is to instruct, in 
advance, a proper route for a track based on the current and expected garbage levels of bins. 
The kNN algorithm measures the distance between a query point (current status/capacity of 
a bin) and a set of scenarios in past data (see for example Figure 35 [79]). A case is classified 
by a majority vote of its neighbors, with the case being assigned to the class most common 
amongst its k nearest neighbors measured by a distance function.  Therefore, one can predict 
the bins that will be filled in the near future and proactively instruct the proper trajectories 
for garbage collecting trucks, in real-time as they commute. 

 
Figure 35: k-Nearest Neighbors (kNN) Algorithm  
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8 CASE STUDY: HERAKLION SMART CITY  

In the previous chapters, we presented a holistic view of leveraging big data in smart cities 
setups. Starting initially from identifying the needs of divergent city authorities, translating 
these to business objectives and key performance indicators and realizing them to distinct 
requirements, we finally elaborated prevalent big data platforms to address these 
requirements. This chapter aims to exemplify the aforementioned analysis into a real smart 
city context and deploy big data platform topologies in an effort to facilitate the stakeholders 
to materialize more easily big data analysis in every day setups for different interdisciplinary 
scenarios.  

To that end, we exploit the business logic of Heraklion Smart City as an indicative example to 
leverage generated big data aiming to extract valuable information. In the following analysis 
we introduce the needs of Heraklion city and we translate these needs into specific 
requirements using big data analytics tools in order to alleviate existing knowledge to a more 
powerful decision making process. 

8.1 Identifying the needs of Heraklion city 

Heraklion has embedded Information and Communication Technologies in many different 
infrastructures aiming to enhance the quality life of citizens and facilitate already existing 
services towards solving administrative issues. Moreover, the city focuses on ensuring a 
networked society that enjoys the benefits of intelligent management of city issues. Heraklion 
Smart City approaches, among others, the following domains: (a) environmental and weather 
monitoring, (b) air quality monitoring, (c) water quality and management monitoring, and (d) 
smart parking.  

As stated in [92], the Municipality of Heraklion envisions a smart city able to address the 
following requirements:  

A. Environmental and weather monitoring 
 Optimization of the cooling, heating and lighting systems of buildings to achieve 

energy savings rates. 
 Decrease of carbon dioxide emissions by actuating citizens to integrate cycling 

and walking in their everyday transportation within the city  
 Integration of a dynamic system that records the variations of quantitative and 

qualitative waste production.  
 Enhancement of the waste collection services through proper control and 

management of waste levels in smart bins. 
 Social protection notifications regarding earthquakes, fires, extreme weather 

conditions and other. Towards that direction, social media can be also proven a 
useful communication tool to inform citizens in time about upcoming threatening 
events. 

 
B. Air quality monitoring 

Crete is heavily affected by air pollution due to high urbanization rates, seasonal 
tourism and excessive use of fireplaces in combination with high. Moreover, the dust 
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transport from the deserts of North Africa and the Middle East, urban and industrial 
pollutants in Europe and Turkey and forest fires deteriorate air quality and affect the 
health of the public. In that context, the Municipality aims to: 
 Control the greenhouse gas emissions and estimation of the carbon footprint in 

order to identify the areas that need of special attention and require proper 
interventions. 

 Improve the microclimate of the densely built up city and reduce the energy 
consumption of the buildings through bioclimatic repairs of settlements and 
open spaces increasing green areas. 
 

C. Water management 
The region of Crete suffers often from lack of enough water resources due to the dry 
climate and towards utilizing the available resources efficiently aims at:  
 Reducing water consumption of both citizens and businesses through 

appropriate actions and initiatives for the rational management of the existing 
water resources  

 
D. Smart mobility and smart parking 

Heraklion is a city that suffers from the outnumbered vehicles that search for a 
parking place, especially in the city center. It has been noticed that early in the 
mornings, public-parking garages and terrains have reached their parking occupancy. 
At the same time, searching for a parking space often provokes bottlenecks in the 
narrow streets of Heraklion, while traveling around the city. Due to the limited 
number of public garages, car drivers most often use on-road parking lots, taking the 
risk of occupying non-parking zones, as well. The latter constitutes the reason of the 
increased number of tickets issued from the municipal police for illegal parking the 
past years. Thus, the Municipality envisions to approach the following: 
 Real-time traffic management improvements for intra-community and inter-

municipal transportation with the assistance of modern intelligent technologies 
(web and mobile applications, etc.) 

 Combining ICTs to monitor environmental and traffic issues 
o Pilot scheme of installing urban ICT equipment (signs, benches, lighting, 

shelters, bus stops, information and/or selling kiosks, environmental 
objects) while integrating monitoring systems (e.g. atmospheric quality, 
light pollution, noise, traffic, Wi-Fi, etc.) 

o Traffic monitoring on streets through sensor installations on the city 
buses 

o Traffic monitoring system using various sensors or through citizens’ 
mobile phones 

 Deploying cooperative transport systems on freight services.  
 Development of an intelligent parking system providing real-time information for 

pricing and parking availability. 
 Integrating smart parking monitoring system, informing authorities whenever a 

prohibited area is occupied by a vehicle. 
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8.2 The IoT infrastructure 

The ecosystem adapted by Heraklion Smart city is based on three main components (Figure 
36 ): (a) the IoT Devices, (b) the Open Data Middleware Layer and (c) the Visualization Layer 
[103].  

 
Figure 36: The Heraklion Smart City ecosystem [103] 

8.3 The WSN architecture 

The aim of the Heraklion Smart City initiative is to confirm whether an IoT infrastructure could 
be proven valuable to citizens and city authorities. A pilot Wireless Sensor Network has been 
deployed to aggregate specific information covering the previously presented requirements. 
According to [103], the necessary sensing infrastructure has been installed in dispersed spots 
around the city, including:  

i. Water quality sensors installed in the city’s water reservoirs. 
ii. Parking sensors installed on the road surface. They provide at a programmable 

interval, a status for the occupation of the parking space, based on the field strength 
compared to a predefined threshold based on the measurement of the magnetic field 
strength in three orthogonal axes.  

Table 6: Measured parameters per area of interest 

Area of interest Parameters 

Environmental and weather 
monitoring 

Ambient temperature, ambient humidity, atmospheric pressure, 
wind (speed and direction), dust, VOC (volatile organic 
compounds), noise level, luminosity 

Air quality monitoring Gases concentrations (SO2, NO, NO2, CO2, O3) 

Water quality Water quality and quantity (water level, water temperature, 
conductivity, PH and ions {NH4+, NO3−, Cl− and Ca2+}) 

Smart parking Number of occupied illegal parking spots 
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Figure 37: Pilot sensor infrastructure in Heraklion city (Source: www.smartcity.heraklion.gr) [103] 

 

Figure 38: A database schema approach  
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8.4 Data processing pipelines for Heraklion Smart City 

As illustrated in Figure 37, an indicative number of sensors have been integrated in Heraklion 
city’s infrastructure. A fully integrated IoT-based network comprising thousands of sensors 
coupled with the escalation in big data acquisition would require additional means of data 
processing and analysis. To that end, this chapter aims to propose an architecture based on 
the big data technologies presented in Chapter 6, regarding the application scenario of 
Heraklion Smart City for batch and stream processing. The following analysis is based on the 
database schema illustrated in Figure 38 presented by [103]. 

8.4.1 Parking management using Apache Storm  
A number of parking sensors dispersed in Heraklion city transmit real time data. Sensors are 
installed in the asphalt in zones where the parking is prohibited (e.g. crosswalk, pedestrian 
streets, spots where people with disabilities are able to pass through, etc.). Every time the 
sensors’ status is occupied, the appropriate notification is forwarded to the Municipal Police. 
Data about parking behavior need to be processed at runtime in order to inform stakeholders 
with the current on-road status. Based on the architecture we presented in Chapter 6.2, we 
use Apache Storm, a stream processing engine.  

In Figure 39, the presented Apache Storm topology constitutes the structure of a distributed 
computation regarding the parking-monitoring infrastructure of Heraklion Smart City. The 
presented graph comprises a spout (stream producer) and various bolts (operations) that 
receive and emit an unbounded sequence of tuples, namely streams. Streams of tuples flow 
from spouts to bolts through various stream groupings that determine how the tuples are 
routed in the topology (defined in Chapter 6.2.4.3). Spouts and bolts are connected with edges 
that indicate which streams are processed by which bolts. 

 
Figure 39: An Apache Storm topology for parking monitoring (logical view) 
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Figure 40: Tuples emitted throughout the Apache Storm topology 

More specific, the parking sensors installed in Heraklion’s Smart City infrastructure send data 
to the “Parking Sensors Spout” every 1 minute (see Chapter 5.2). The spout wraps streaming 
data and emits tuples of key-value pairs in the form of  

{id, ‘status’, ‘type’, lon, lat, ‘timestamp’} 

, where id is the key and status, type, lon (longitude), lat (latitude) and timestamp are 
considered as the value. The status parameter can take a value of either ‘available’ or 
‘occupied’ and the type parameter can take ‘PWD’ or ‘PWND’ values, defining whether a 
parking zone is for People with Disabilities (PWD). The “Parking Sensors Spout” replicates the 
stream of tuples to two different bolts; the first is called “Parking Restriction Bolt” and the 
second “Geographical Segmentation Bolt” by applying shuffle grouping. In that way, tuples 
are randomly distributed across both bolts’ tasks and each task is guaranteed to receive an 
equal number of tuples. Both bolts enable the parallelization process for the aggregations of 
data, allowing multiple workers to process data in parallel. 

The “Parking Restriction Bolt” reads data from Kafka, regarding the parking zones where 
parking is allowed for predefined time frames. The tuples have the form of 

{id, ‘time_descr’, ‘start_time’, ‘end_time’, ‘days_of_week’} 

, where the ‘time_descr’ parameter takes ‘timerange’ or ‘max_stay’ values. The former refers 
to the zones where parking is allowed within a specified time range. For instance, there are 
parking lots in the city center defined as prohibited during shops’ opening hours (e.g. 9:00-
15:00 and 17:00-21:00 for Tuesdays, Thursdays and Fridays, etc.). The latter refers to the 
parking zones where vehicles are allowed to stop only for a short period of time (e.g. for 15 
minutes). “Parking Restriction Bolt” applies a join operation where the tuples with the same 
‘id’ are paired together (e.g. {2, ‘occupied’, ‘PWD’, 10.3582, 9.1215 16:35:02, ‘timerange’, 
‘9:00’, ‘16:00’, ‘M-Tu-W-Th-F’}, {3, ‘occupied’, ‘PWND’, 6.8432, 10.4312, 16:40:42, ‘max_stay’, 
‘15’}, etc.).  
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These tuples are randomly distributed across the “Dispatcher” bolt’s tasks and each task is 
guaranteed to receive an equal number of tuples. The “Dispatcher” filters the tuples and 
forwards the ones that apply the following condition to the “Time Range Controller” bolt 

if {time_descr = ‘timerange’} 

, whereas it forwards the tuples that satisfy the condition below to the “Maximum Stay 
Controller” bolt. 

if {time_descr = ‘max_stay’} 

The “Time Range Controller” is responsible to apply a user-defined function in order to 
monitor if an occupied parking lot applies the specific time range, defined through a Kafka 
topic. It then transmits tuples to the “Time Range Illegal Parking Bolt” through shuffle 
grouping in order to filter and forward only the tuples that satisfy the following condition to 
the “Aggregator” bolt: 

 if {restr_status = ‘out_of_range’} 

Similarly, the “Maximum Stay Controller” is responsible to apply a user-defined function in 
order to monitor if a parking lot that is occupied applies the maximum permitted stay limit, as 
defined through a Kafka topic. Namely, if the status of the sensor is ‘occupied’ a time window 
monitors whether it remains occupied, for the past X consequent minutes. In case the status 
changes to ‘available’ then the ‘restr_status’ returns the value ‘valid’. However, if it remains 
occupied longer than X minutes the ‘restr_status’ parameter returns ‘out_of_range’.  
Afterwards, the bolt transmits tuples to the “Maximum Stay Violation Bolt” through shuffle 
grouping in order to filter and forward only the tuples that satisfy the following condition to 
the “Aggregator” bolt:  

 if {restr_status = ‘out_of_range’} 

Eventually, the “Aggregator” bolt receives inputs from both the “Time Range Illegal Parking 
Bolt” and the “Maximum Stay Permission Anomaly Bolt” through a union operation. The 
“Aggregator” emits tuples in the following form and writes them to a NoSQL or HDFS 
database.  

{4, ‘available’, ‘PWND’, 7.4834, 10.5254, 15:01:00, ‘out_of_range’, ‘time_range_violation’} 

At the same time, a replicate of the input data is transmitted from the “Parking Sensors Spout” 
to the “Geographical Segmentation Bolt” that reads from Kafka a grid of defined geographic 
areas that encompass a number of dispersed sensors around Heraklion city. The 
“Geographical Segmentation Bolt” is responsible to apply a user-defined function that 
correlates which sensors belong to which geographic areas, according to their longitude and 
latitude values. It maps tuples with the same key, namely the area, through fields grouping  
to the same task and transmits them to the “Parking Status Bolt” that counts the total number 
of available and occupied sensors (e.g. {count, ‘status’}). Then, it groups all the streams 
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together with a global grouping and writes them to a NoSQL or HDFS database. In that way, 
stakeholders will be able to retrieve information about the total number of available and 
occupied parking places through the appropriate visualization tool or mobile application. 

Finally, a second stream of data through fields grouping maps the tuples with the same 
geographic area across “PWD Parking Bolt” ‘s tasks, which filters the tuples according to the 
condition below and groups them together. 

if {type = ‘PWD’} 

Finally, it transmits data to the “PWD Available Parking Bolt”, which provides information 
about the available parking places for people with disabilities. More specifically, the bolt filters 
the tuples that apply the following condition and groups them together. 

if {type = ‘PWD’ AND status = ‘available’} 

Afterwards, the bolt performs a global grouping to group all streams together and write them 
to a database for future analysis.  

The aforementioned mechanism will allow monitoring the parking behavior of drivers in order 
to improve traffic efficiency and reduce the time spend in vehicles for searching a parking 
spot. This will have significant financial effects for Heraklion city in general, making it 
interesting to all the stakeholders, from citizens to municipal police. More specific, monitoring 
the traffic behavior will provide authorities with insights regarding rush hours in time windows 
of any day in a week; parking  data  in  every  single  hour  of  a  selected  day;  or  average  
daily,  weekly  or  monthly  parking  occupancy.  Additionally, through data analysis, the city 
authority will be able to observe patterns and thus predict the parking demand and traffic 
situation. In this context, traffic can be proactively and more efficiently managed aiming to 
reduce or even avoid traffic congestion (e.g. during Christmas holidays public shuttles can be 
activated to load transport the public from the outskirts to the city center). 
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8.4.2 Water management using Apache Spark 

8.4.2.1 Water level and water quality monitoring in city’s water reservoirs 

In an effort to protect citizens from water contamination, the municipal authority of Heraklion 
records the water quality of city’s reservoirs to ensure that it complies with the quality 
standards for drinking water. In addition, data regarding the water level of city’s reservoirs 
are collected in order to extract useful information about the water consumption aiming to 
prevent unfortunate events of water shortages. 

Considering a complex IoT infrastructure for water status monitoring, Heraklion city could 
benefit from using Apache Spark to activate a smart monitoring system, including warnings 
and alerts about real time events, while utilizing historic data to generate general knowledge. 
Apache Spark is a distributed processing environment able to process reliably large volumes 
of data using distributed clusters for both batch and stream processing. To this end, sensor 
installations in the city’s main water tanks emit data every 10 minutes and generate raw data 
that can be further exploited by authorities not only to stay informed about their current 
status, but also to calculate deviations of normal values based on previous data. Sensors 
record data regarding water temperature, conductivity, pH, water level, chloride, ammonium, 
nitrate, calcium ions, etc. 

In Figure 41, we present a data pipeline aiming to monitor water quantity and quality in 
Heraklion water tanks with Apache Spark. Data are structured in Resilient Distributed Datasets 
(RDD), while each dataset in RDD is divided into logical partitions, which may be computed on 
different nodes of the cluster. Employed sensors emit data in the following form: 

{id, ‘measurement’, value, ‘timestamp’} 

, where id refers to the identifier of the sensor followed by the measurement type, the current 
value and the timestamp of sampling.  

In the presented graph streaming data generated by sensors are collected to extract 
knowledge and provide stakeholders with an overview about the aforementioned parameters 
(e.g. status) including non-normal behaviors regarding the average values of different 
parameters, as further explained below.  

According to Figure 41, data is processed through a Window (P1) function that keeps data 
frames generated in specific time windows (e.g. the past 10 minutes). Afterwards, a Map (P2) 
operation transforms raw data to key-value pairs consisted solely of the id and the 
measurement value of a sensor, minimizing that way the distributed data footprint. A 
ReduceByKey (P3) operation calculates the sum of all the values generated from the same 
sensor, it counts how many entries are recorded within the specified window (represented as 
n in equation (2)), it returns the last entry as the current value and it calculates the following 
equation (1). The processed data have the form of (id, (sum, count, numerator, cur_value)). 

y = Σ(xi −  𝑎𝑣𝑔)^2                     (1) 

To calculate the average value of the entries, the RDD partition sums up the value of each 
entry and divides the total number by the count of the entries (n), according to 
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avg = 𝑥 = 
௦௨(௫)


           (2) 

, where 𝑥 is the average value (mean) of all the entries of the same measurement and 𝑥 is the 
sum of the total values. Average values of water level entries are calculated in an effort to 
avoid false positives, including the cases where the amount of water does not reach the full 
capacity of water tanks, especially in areas where minimum water consumption occurs due to 
a limited number of households connected to a specific water supply network. It, then, 
computes the standard deviation (s) according to the following equation (3).  

s =ට
𝛴(x𝑖− 𝑎𝑣𝑔)^2


    (3) 

With a Map (P4) operation, the tuples are transformed to key-value pairs including the sensor 
id, the average values of each sensor, the standard deviation from the mean and the value of 
the tuple that was transmitted last. Eventually, a Filter (P5) operation is applied to filter and 
forward only the data partitions that satisfy the following condition to a data store for further 
exploitation 

if {(current_value – avg) / 2s > 1} 

, where current_value is the current value and avg is the average value, which is equal to the 
mean of a specific variable. If the condition returns TRUE, then a warning will be forwarded to 
city authorities. To broaden the previous condition, if the following returns TRUE indicates 
that a major issue is detected in the water supply infrastructure converging to potential water 
contamination.  

if {(current_value – avg) / 3s > 1} 

In that case, a notification system is automatically triggered to inform stakeholders. 

8.4.2.2 Water leakage detection 

In addition to the aforementioned, we implement a simplistic scenario of water leakage 
detection in the water pumps of Heraklion city, despite the fact that there is no such an 
infrastructure available yet. However, it is very important for cities to be able to monitor 
potential water loss, not only for the leaks that are visible as they rise to the surface but also 
for those that are invisible and run directly to the ground. These can result a considerable 
volume of water loss that is often observed retrospectively. Leaks may occur due to the age 
of the network, freezing pipes during winter, traffic, excavations or even excessive water 
pressure. 

In this context, we consider the water supply network of Heraklion city divided into zones and 
subdivided to district areas with a number of water flow and pressure sensors being installed 
in different distances. To simplify our approach, we consider that pipelines have no branches, 
which would mean that the water flow at the end of each branch should be added and 
compared to the water flow at the starting point of the pipe, namely the sensors that are 
located near the water tank. To check if there is leak, i.e., divergence of water flow in the 
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network, we need to compare the water flow values at the starting point of a pipeline with 
the values at its end. Moreover, to estimate the approximate location of the malfunction in 
the network, we need to extract the water flow values from different distances in the pipe 
and check whether they differentiate with each other. 

More specific, for every main pipeline that distributes water around the city we extract an id 
and an average value of the flow along the pipe (e.g. {id, total_avg}). Each sensor installed 
within a pipe emits tuples of key-value pairs in the form of  

{id, value, ‘timestamp’} 

As illustrated in Figure 41, data is processed through a Window (P6) function that keeps data 
frames generated during the last 5 seconds. Afterwards, through a ReduceByKey (P7) 
operation we calculate the total average number from the values extracted from all the 
sensors placed in a specific pipeline within the aforementioned time frame.  

 

Figure 41:  A data pipeline for water monitoring in Heraklion city 
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Figure 42: Tuples emitted throughout the Spark topology 

A user-defined function applied in a Filter (P8) operator checks if there is any water loss 
detected through the specific network, by computing if the following condition returns TRUE 

if {abs(si – total_avg)} > threshold 

si is the value of the water flow (liters per meter - lpm) recorded from the sensor i and si – 
total_avg calculates if each sensor’s value deviates from the total average value of the 
pipeline, taking into consideration that normally, if no anomaly occurs in the network, all 
sensors should return the same value. According to this condition, we check if the absolute 
value of the abstraction is greater than a threshold (e.g. 2 lpm assuming that sensors have ±1 
lpm level of accuracy). If the condition returns TRUE it indicates that water loss has been 
detected in the network. 

To estimate the location of the damage we use a second Filter (P8) operator to check whether 
the condition below is applied. 

if {(abs(si – si+1) > threshold) AND (abs(si – si+2) > threshold)} 

That means that if the absolute difference of the value that a sensor (si) transmits is greater 
than a threshold for the next two sensors (si+1, si+2) then it will be concluded that the leakage 
takes place between sensors si and si+1. If this condition is TRUE then the operator transmits 
tuples consisted of the id and the value of the first sensor after the leakage point. 

In that context, further investment in the IoT infrastructure of a water supply network of 
Heraklion city will allow a more efficient monitoring mechanism regarding the quality of water 
transferred through the water pipelines to households and the prevention of water loss due 
to malfunctions in the network, as well. The latter can be monitored through actuators 
installed near the water flow and pressure sensors. Thus, whenever a leakage event occurs, 
actuators can be automatically activated to stop the water flow to the point that the 
malfunction is spotted, until the technicians repair the damage.  
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8.4.3 Environmental monitoring using Apache Flink 
Heraklion Smart City’s infrastructure monitors environmental parameters such as 
temperature, humidity, wind and air pollutants, including gases (e.g. SO2, NO, NO2, CO2, O3), 
smoke concentration and dust particles in order to protect the public from areas condensed 
with air pollutants and extreme weather events. Such an infrastructure requires a big data 
platform able to handle a very large amount of data streams and able to process historic data 
with the aim of predicting upcoming non-normal events through event pattern recognition 
mechanisms. In this context, we use Apache Flink to process and analyze streaming data as 
well as to inform stakeholders (including susceptible groups of people) about threatening 
weather conditions and areas with hazardous air pollutant accumulation.  

A high-level view of the computational logic of Apache Flink is introduced in Figure 43 
represented as directed graph. According to the specific data flow program, data is received 
from a data source (i.e., sensors), applying a set of transformations (e.g. map, filter, window 
operations, etc.) and writes the results to data stores, such as NoSQL, HDFS, sinks, etc. In the 
presented diagram, the operators (nodes) represent computations, while edges represent 
data dependencies. Specifically, operators consume data from inputs, perform a computation 
and produce data to outputs for further processing. 

A number of sensors emit weather data every 1 minute and air pollution data every 5 minutes 
(see Chapter 5.2). Stream data collected by sensors constitute a set of key-value pairs in the 
form of {name1: value1, name2: value2,… namen: valuen}. For each set of key value pairs, the 
key refers to the identifier of the sensor and the value refers to (i) a measurement, (ii), the 
value of the parameter measured, (iii) the sensor’s location, and (iv) the time of an event. 
More specific, data streams have the following form: 

{id: 1, measurement: CO2, value: 420, coordinates: 10.1224, 23.1681, timestamp: 10:45:00} 

According to Figure 43, a time Window (F1) operator is used to collect events that occurred 
during the last 10 minutes so that the volume of data is decreased to a finite data set. Then, a 
KeyBy (F2) operator partitions the sensor readings with the same key (i.e., measurement) 
randomly to be processed across the tasks of the subsequent operator (e.g. {id: 1, 
measurement: CO2, value: 420, coordinates: 10.1224, 23.1681, timestamp: 10:45:00}, {id: 1, 
measurement: CO2, value: 424, coordinates: 10.1224, 23.1681, timestamp: 10:50:00}, etc.). 
Afterwards, stream data is joined (F3) together according to the sensors’ location in 
correlation to existing geographic areas retrieved from a Kafka topic. 

As illustrated in Figure 43, tuples of data is transmitted from the join operation through 
custom partitioning for three distinct computations: min (F4), max (F5) and average (F6). 
Custom partitioning indicates that tuples, which belong to the same geographic area, are 
mapped to the same task for processing. For each incoming event, the operators update the 
corresponding aggregate value and emit a new event with the updated value at runtime. As a 
next step, we calculate the average value of the total events for each sensor, in order to check 
whenever they exceed the given thresholds, as a way to avoid false positives. The tuples of 
data emitted from the average operator have the form {‘measurement’, avg_value} and are 
stored to a NoSQL or HDFS database. 
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According to Heraklion Smart City, any combination of the patterns regarding concentrations 
of the following parameters could be considered as an “air pollution” event when occurring 
for a period longer than 30 minutes.  

Particulate matter: PM10 > 50 mg/m3 

Carbon dioxide: CO2 > 380 ppm 

Nitrogen dioxide: NO2 > 19.7 ppb 

Sulphur dioxide: SO2 > 7.09 ppb 

Ozone: O3 > 47.3 ppb 

Nitrogen oxide: NO > 25000 ppb 

Volatile Organic Compound: VOC > 600 ppb 

 

 
Figure 43: A physical dataflow plan for air quality monitoring 
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Figure 44: Tuples emitted throughout the Apache Flink topology 
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Moreover, as depicted in Figure 43, a filter (F7) operator is responsible to receive tuples from 
the average operator and group together the data streams that satisfy the following condition. 

If { PM10 > 50 OR CO2 > 430 OR  NO2 > 19.7  OR SO2 > 7.09 OR O3 > 47.3 OR NO > 25000 OR 
VOC > 600} 

Similar to the previous logic, the thresholds for weather conditions applied in Heraklion Smart 
City are the following. 

Temperature: < -10 oC OR > 50 oC   

Rainfall > 8 mm 

Wind speed > 50 km/h 

Atmospheric pressure: < 750 hPa OR > 1050 hPa 

The according filter operator groups together the data streams in refer to weather parameters 
that satisfy the condition below. 

If { (temp < -10 OR temp > 50) OR rnfl > 8 OR  wind_spd > 50  OR (atm_prs < 750 OR atm_prs 
> 1050)} 

If the computed averages exceed the aforementioned thresholds, the corresponding alerting 
system referring to the specific area will be activated. 

Finally, the tuples transmitted from the min, max and filter operators will be written to a 
NoSQL database (e.g. MongoDB, CouchDB, Apache HBase, Apache Cassandra, etc.). Data 
streams can be produced into message queues to make the events available to subsequent 
streaming applications, written to file systems / data stores for making the data available for 
further analysis. The stored data can be eventually visualized through analytics tools, allowing 
stakeholders to access the generated information in a user-friendly way. 

Exiting the presented Flink topology, data records can be further used for building a machine-
learning model aiming to predict intense concentrations of air pollutants in specific territories, 
such as schools, traffic lights and so on. Based on observed patterns a notification system can 
be triggered whenever outliers of the parameters measured are detected. For instance, an 
event-driven application can trigger actions such as sending an alert or an email or write 
events to an outgoing event stream to be consumed by another event-driven application. This 
information could be proven valuable to people with health issues or susceptible groups (e.g. 
children, pregnant women, etc.) that need to know in which territories intense gas 
accumulation is observed. 
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8.5 Using Apache Beam for cross platform data processing 

In the previous chapters, we elaborated data processing pipelines in three distinct scenarios 
(i.e., transportation, water and environment) based on Heraklion’s Smart City infrastructure. 
As a next step, we need to establish a global mechanism for data processing across different 
platforms able to interconnect all these scenarios in order to allow global queries and 
exploitation of the generated data to draw useful conclusions. To accomplish that, we apply 
Apache Beam, a cross-platform processing tool that runs on a number of runtimes (e.g., 
Apache Flink, Apache Spark) and simplifies the mechanics of large-scale batch and streaming 
data processing. 

To that end, we examine how finding a parking place may affect carbon dioxide (CO2) 
concentrations in the atmosphere. In general, Heraklion city suffers from excessive traffic in 
certain points and especially in the city center where the combination of commuters’ traffic 
and shopping hours result in street congestion. That often hinders the smooth car flow on the 
streets. At the same time, having in mind that vehicles emit CO2 gases we need to check 
whether potential correlation between the parking behavior and CO2 accumulations in the air 
is observed. More specific, we assume that thousands of sensors are installed on every 
existing parking place, both on-road and in parking areas of Heraklion city. For the purposes 
of our scenario, we receive every 10 minutes (a) the parking status, namely the percentage of 
parking lots that are occupied, and (b) the CO2 levels per area. If the available parking capacity 
in the city center reaches more than 60%, we hypothesize that this might be an indication that 
a considerable number of vehicles leaves the area. Such a mass behavior could imply that 
traffic congestion is expected to occur with high concentrations of carbon dioxide in the 
atmosphere.  

More specific, the following Beam pipeline comprises Parallel Collections (PCollections), 
Aggregation Transforms and Transformations. PCollections represent distributed data sets 
that are both bounded, meaning they come from a fixed data source, like a file, and 
unbounded, meaning they come from continuously updated data sources. Aggregation 
Transforms, such as GrouByKey and Combine, work on a per-window basis, as the data set is 
generated, and they process each PCollection as a succession of these finite windows. 
Transforms represent a data processing operation in the pipeline. Every Transform takes one 
or more PCollections as input, it performs a processing function and it then produces zero or 
more output PCollection objects. 

As illustrated in Figure 45, the Beam pipeline receives input data from both parking sensors 
and air quality sensors measuring CO2 concentrations in the air. The tuples of data arriving 
from parking sensors are key-value pairs in the form of  

{id, ‘status’, ‘type’, lon, lat, timestamp} 

, with the key being the id of the sensor and the rest parameters being the value. The status 
parameter takes values of ‘occupied’ or ‘available’ and the type ‘PWD’ or ‘PWND’ (see Chapter 
8.4.1). Since parking data are unbounded data sets, we apply a non-global Window operation 
to group generated data to batches every 10 minutes (e.g. 10:30-10:40), according to the 
timestamp of each record. Through a Kafka topic, we extract information regarding the 
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geographic areas, in which Heraklion city is bisected, and with a ParDo we correlate the 
records according to their coordinates and group together the ones within the same area. 
However, each sensor records data every 1 minute (see Chapter 5.2) that means hundreds of 
tuples are collected in batches grouped together every 10 minutes. To that end, a Filter 
transformation keeps only the last record for each sensor id and filters out the rest. 
Afterwards, we Count the total number of available and occupied parking sensors per area so 
that the emitted data of P5 have the form of  

{count, ‘status’, ‘geo_area’} 

Then, a ParDo calculates the percentage value of occupied and available parking spots per 
area (e.g. {‘60%’, ‘occupied’, ‘Eleftheria Square’}, {‘52%’, ‘available’, ‘Port’}). 

 

Figure 45: A Data processing pipeline with the Beam model 
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Figure 46: PCollections emitted through the Beam pipeline 



 

  Eirini Kontaki 
 

83 Case study: Heraklion Smart City 

At the same time, air quality sensors emit data measuring CO2, NO2, SO2, O3, etc. in key-value 
pairs (P7) in the form of  

{id, ‘measurement’, value, ‘coordinates’, timestamp} 

Then, a Filter transformation keeps only the records related to CO2 emissions and discards the 
rest. Through a non-global Window we group finite sets of data in 10-minute batches and 
similarly to the parking sensors, a ParDo transform groups data to distinct areas in reference 
to a Kafka topic. Then, we calculate the average values of CO2 per area in order to avoid false 
positive indications and we transform the tuples (P10) in the form of {avg, ‘geo_area’}. 

Furthermore, a GoupByKey aggregating transform acts as a reduction operation that collects 
and groups together the parking and CO2 records that belong to the same geographic area and 
emits the following form of tuples (P11) 

{avg, ‘avail_pntg’, ‘geo_area’} 

, where avail_pntg the percentage of the available parking lots. 

Finally, a ParDo transformation filters the data set by checking whether the elements of the 
previous PCollection satisfy the following condition and groups them together.  

If {avail_pntg ≥ 0.6 * total_park AND CO2 ≥ 400} 

The total_park parameter represents the total number of parking lots. It should be clarified 
that the threshold regarding the amount of available parking lots is an indicative example and 
it could be specified through a number of observations. 

Moreover, a notification mechanism triggered every time high concentration of CO2 in specific 
areas is observed, could inform vulnerable groups of people (e.g., elderly, people with health 
issues, children etc.). In addition, the aforementioned scenario can be further exploited 
combining records of data regarding the air temperature and water quality in seas and rivers 
in order to evaluate how rising CO2 can affect in the long run the climate change and in what 
level it contributes to the ocean acidification. Applying the appropriate mechanisms (i.e., 
machine-learning tools) for pattern recognition based on these data can be proven very useful 
in order to predict extreme upcoming events. Having all these in mind, the Municipal of 
Heraklion may use these data to extract valuable conclusions based on both real time and 
historic data, which may prove important for decision making in matters related to the wider 
region.  
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9 CONCLUSION AND FUTURE WORK 

This thesis focuses on leveraging the knowledge stemming from a city’s core services by 
utilizing the necessary IoT infrastructure in order to facilitate the decision-making process in 
smart cities’ setups for the benefit of the society and its people, as well. To this end, we 
identify the needs of the city’s core systems to facilitate its operational activities and 
coordinate its services including road traffic, parking, waste, water, air and weather 
monitoring. In this context, we underlined weaknesses and threats, they might entail in refer 
to city sustainability and resources consumption. We analyzed and translated usual problems 
into business objectives and underlined the technological challenges of utilizing large amounts 
of data and interpreted them in technical requirements. We provided an in –depth analysis of 
existing technologies for big data processing and reviewed a number of algorithms and 
algorithmic suites that can be implemented within such platforms. The algorithms presented 
can be deployed in various parts of the proposed architecture, so that they can be utilized 
while performing analytics tasks. Eventually, we incorporated all the above in a full-fledged 
architectural design proposal tailored for smart cities. 

Followed by a comprehensive report about future benefits for the stakeholders, we exemplify 
the potential advantages in terms of business’s logic efficiency of adopting mainstream data 
processing topologies including Apache Storm, Apache Spark and Apache Flink into a real 
smart city setup, namely Heraklion’s Smart City. In this direction, we presented the processing 
pipeline of big data on various Heraklion city’s domains including parking, water and air quality 
monitoring. Eventually, we interconnected two vertical sectors through a cross-platform 
technology, Apache Beam, to indicate data processing across different platforms. 

Two main directions of further work are anticipated in a path towards supporting the 
utilization of big data processing pipelines for the benefit of smart city’s stakeholders. The first 
direction concerns the improvement of the proposed infrastructure by minimizing the 
processing workload of sensor data in the data processing topologies presented, while the 
second concerns the potential benefits for stakeholders arising from big data processing as 
regards further city’s domains such as smart governance, smart grid and smart health. 
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