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ABSTRACT 

This paper presents HERMES, a prototype DB engine that defines a powerful query language for trajectory databases, 

which enables the support of mobility-centric applications, such as Location-Based Services (LBS). HERMES extends 

the data definition and manipulation language of Object-Relational DBMS (ORDBMS) with spatio-temporal 

semantics and functionality based on advanced spatio-temporal indexing and query processing techniques. Its 

implementation over two ORDBMS and its utilization in various domains proves the expressive power and 

applicability of HERMES in different application domains where knowledge regarding mobility data is essential. As a 

proof-of-concept, in this paper HERMES is applied to a case study related with vehicle traffic analysis, demonstrating 

its flexibility and usefulness for delivering custom-defined LBS. 

Keywords: HERMES, Trajectories, Mobility, Molile Data Management, Location-Based Services.
 

INTRODUCTION 

Moving Object Databases (MOD) (Güting et al., 2000) 
and more specifically Trajectory Databases (TD) be-

ing at the core of spatio-temporal database research, 

have emerged due to the explosion of mobile devices 

and positioning technologies. A MOD is the basic 

component of any mobility-centric application (Kar-

gin, Basoglu, & Daim, 2009). However, although such 

LBS applications are already in the air for some 

years, the services currently provided are rather 

naive, not exploiting the current software capabilities 

and the recent advances in MOD research field. We 

argue that one of the reasons for this is due to the 

common practice in existing approaches, which pro-

vides services to mobile users by just taking into ac-

count the current location-time and velocity informa-

tion, arriving at the MOD server as a sequence of 

updates. Given this model and the fact that LBS ap-

plications need to handle huge volumes of data, it 

rationally arises that performance is a significant 

problem; therefore, efficient query processing and 

indexing techniques should be applied. Moreover, 

this model has limited applicability in real-world 

applications, since safe estimations about future posi-

tions should involve past positions as well. 

The key observation that motivates HERMES is that 

the more the knowledge in hand about the trajectory 

of a mobile user, the better the exploitation of the 

advances in spatio-temporal query processing for 

providing intelligent LBS. Based on this motivation, 

the aim of this paper is to describe a robust frame-

work capable of aiding either an analyst working 

with mobility data, or more technically, a developer 

who models, queries a TD and builds a mobility-

centric application on top of the TD. 

 

 

Moreover, given the ubiquitousness of location-

aware devices, databases handling moving objects 

will, sooner or later, face enormous volumes of data. 

It consequently arises that performance in the pres-

ence of vast data sizes, is a significant problem for 

moving object databases and the only way to deal 

with such enormous sizes is the exploitation of spe-

cialized access methods used for spatio-temporal 

indexing purposes. The domain of spatio-temporal 

indexing, as well as other related domains, such as 

multimedia (Chatterjee, & Chen, 2010) and spatial in-

dexing, is dominated by the presence of the R-tree, 

along with its variations and extensions. Among oth-

ers, 3D R-trees (Theodoridis, Vazirgiannis, & Sellis, 

1996), TB-trees and STR-trees (Pfoser, Jensen, & Theo-

doridis 2000), and PA-trees (Ni, & Ravishankar, 2007) 
are considered as extensions of the R-tree in the spa-

tio-temporal domain. As in the case of appropriate 

moving object data types and methods for extending 

the type system of ORDBMS, except the well-known 

R-trees, which are suitable only for static spatial data, 

none of the above proposals have been incorporated 

into existing ORDBMS. Among them, the Trajectory 

Bundle tree (TB-tree) (Pfoser et al., 2000), is adopted 

in this work and appropriately designed and imple-

mented inside HERMES taking advantage of the index-

ing extensibility interface of ORDBMS. Being a 

member of the R-tree family, TB-tree is able to sup-

port traditional queries such as range and distance-

based queries. At the same time, it supports objects 

moving on the unconstrained space, and is the only 

one that fulfills the need for trajectory preservation so 

as to efficiently support trajectory-based operations. 



 

Furthermore, apart from simple query operators 

(e.g. range queries) natively supported by R-trees, 

there is a variety of spatio-temporal operators which 

require more sophisticated query processing tech-

niques in order to be efficiently processed. Among 

them, an important class of queries is the so-called k 

nearest neighbor (k-NN) search, where one is inter-

ested in finding the k closest trajectories to a prede-

fined query object Q (stationary or moving). Thus, 

one of the challenges being present in the domain of 

trajectory databases is to develop mechanisms to per-

form k-NN search on MODs exploiting spatio-

temporal indexes storing historical information. 

Among the solutions proposed in the literature we 

adopt the one proposed by (Frentzos, Gratsias, Pelekis, 

& Theodoridis 2007) which efficiently supports Near-

est Neighbor (NN) queries over historical trajectory 

data. 

Finally, as we aim at providing a powerful toolkit 

for analysts, HERMES provides qualitatively different 

techniques for trajectory similarity search, which is 

exploited to support trajectory clustering and classifi-

cation mining tasks that imply a way to quantify the 

distance between two trajectories. More specifically, 

we adopt a novel set of trajectory distance functions 

(Pelekis, Kopanakis, Ntoutsi, Marketos, Andrienko & 

Theodoridis, 2007; Pelekis, Andrienko, Andrienko, Kopa-

nakis, Marketos, & Theodoridis, 2010) based on primi-

tive (space and time) as well as derived parameters of 

moving objects (speed, acceleration, and direction), 

which are also capable to support sub-trajectory simi-

larity matching. The overall framework advances the 

contribution of our approach by two inter-related 

facts: firstly, the combination of the similarity opera-

tors in the extended with MOD semantics SQL-like 

query language (using AND/OR clauses) provides 

analysis functionality unmatched so far (e.g. “find 

objects that moved closely in space but with very 

dissimilar speed patterns”); secondly, the output of 

each of the supported operators defines similarity 

patterns that can be utilized to reveal local similarity 

features (e.g. “find the most similar portions between 

two, in general, dissimilar trajectories”). 

Summarizing the previous discussion, the contri-

butions of the paper are the following: 

• We present a datatype-oriented model and a 

SQL-like query language for supporting TD on 

top of OGC-compliant ORDBMS, while we de-

scribe the architecture of our server-side TD en-

gine and the interface for building advanced mo-

bility-centric applications. 

• We demonstrate how novel, appropriate access 

methods and advanced, non-trivial query opera-

tors are embedded inside extensible ORDBMS 

providing efficiency and higher level analysis 

functionality. 

• We investigate the expressive power and flexibil-

ity of the produced query language via a real-

world application scenario. 

• As a proof of concept, we have implemented the 

proposed framework on top of a commercial 

ORDBMS, namely Oracle, while our design has 

also been successfully applied and repeated in 

the open-source PostgreSQL with the PostGIS 

spatial extension (Boulahya, 2009). 
To the best of our knowledge, HERMES is the first 

work that presents a complete set of state-of-the-art 

query processing algorithms for TD, which has been 

incorporated into state-of-the-art OGC-compliant 

ORDBMS. 

The outline of the paper is as follows: we first 

present the data type system for TD introduced in 

HERMES and then, we discuss implementation as-

pects. A representative set of methods that extend the 

query language of an ORDBMS with spatio-temporal 

semantics is then discussed. Subsequently, the archi-

tecture for implementing HERMES in a state-of-the-art 

ORDBMS is presented, while a proof-of-concept 

case study related with vehicle traffic analysis fol-

lows. We assess the applicability of the proposed 

system in building other systems via presenting four 

tools and corresponding application domains that 

utilize HERMES as the platform for managing and 

analyzing their movement related data. Finally, we 

conclude the paper, also pointing out some interesting 

future research directions. 

A DATA TYPE MODEL FOR TRAJECTORY 

DATABASES 

Preliminaries of Trajectory Data Types 

In order to define a data type model for TD, we 

need to base on standard database types built into any 

DBMS, as well as temporal and spatial types. 

Temporal types are introduced by TAU Temporal 

Literal Library (TAU-TLL) in (Pelekis, 2002), which 

is the component of HERMES system responsible for 

providing pure temporal object-relational functionali-

ty. TAU-TLL implements the Time Model, adopted by 

the TAU Temporal Object Model, and augments the 

four temporal literal data types found in ODMG ob-

ject model (namely, Date, Time, Timestamp and In-

terval) with three new temporal object data types 

(namely, Timepoint, Period and Temporal Element). 

TAU-TLL provides clear semantics about the time 

boundaries, time order, time reference, temporal gra-

nularities, and the supported calendar. 

On the other hand, spatial types (point, line seg-

ment, rectangle, etc.) are supported by an OGC Geo-

metry (i.e. a spatial type that conforms to the specifi-

cations of the Open Geospatial Consortium). Such a 

spatial extension is found in several state-of-the-art 



 

ORDBMS (e.g. DB2 spatial extender, MySQL spatial 

extension, Oracle, Postgis, SQL Server) and provides an 

integrated set of functions and procedures that enable 

spatial data following the OGC standard to be effi-

ciently stored in a spatial database, accessed and 

futher processed. Of course, the geometric operations 

forming the behavior of spatial types supported by 

these extensions, handle queries statically, meaning 

that there exists no notion of time associated to the 

spatial objects. This is exactly the target addressed in 

the type system for trajectories that we propose in the 

sequel. 

In (Güting et al., 2000; Forlizzi, Güting, Nardelli, & 

Schneider, 2000; Lema, Forlizzi, Güting, Nardelli, & 

Schneider, 2003) the authors introduce the concept of 

sliced representation, the basic idea of which is to 

decompose the temporal development of a moving 

value into fragments called “slices” such that within 

the slice this development can be described by some 

kind of “simple” function. This is illustrated in Fig-

ure 1 for a time-varying point (moving point). 
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Figure 1 Moving Point with var-

ious types of movement 

In this work, we adopt and extend the sliced repre-

sentation concept and utilize it in the implementation 

of the proposed type system. In order to use the sliced 

representation to define a moving point (i.e. trajecto-

ry), one has to decompose the definition of a moving 

point into several definitions, one for each of the slic-

es that corresponds to a simple function, and then 

compose these sub-definitions as a collection to de-

fine the moving point. Each one of the sub-

definitions corresponds to a so-called unit moving 

point. 

In order to define a unit moving point, we need to 

associate a period of time with the description of a 

simple function that models the behavior of the mov-

ing point in that specific time period. Based on this 

approach, two real world notions are directly mapped 

to our model as object types, namely time period and 

simple function. The first concept has been already 

introduced as one of the temporal literal types in TLT 

(closed-open period). The second concept is an object 

type, named Unit_Function, defined as a triplet of (x, 

y) coordinates together with some additional motion 

parameters. The first two coordinates represent the 

initial (xi, yi) and ending (xe, ye) coordinates of the 

sub-motion defined, while the third coordinate (xc, yc) 

corresponds to the centre of a circle upon which the 

object is moving. Whether we have constant, linear or 

arc motion between (xi, yi) and (xe, ye) is implied by a 

flag indicating the type of the simple function. Since 

we require that HERMES manages not only historical 

data, but also online and dynamic applications, we 

further let a Unit_Function to model the case where a 

user currently (i.e., at an initial timepoint) is located 

at (xi, yi) and moves with initial velocity v and accele-

ration a on a linear or circular arc route. 

In the case of arc motions, following the categori-

zation of realistic arc motions initially discussed in 

(Zhang, 2003), we classify them according to the qua-

drant the motion takes place and motion heading 

(clockwise or counterclockwise). Figure 2 illustrates 

one of the possible eight cases (e.g. quadrant I - 

clockwise direction). 

φ

 
Figure 2 Motion on a circular arc 

For constant and linear motions, the interpolation 

of a moving point’s location in an intermediate time-

point t is straightforward. For arc motions, there is 

need of some trigonometric calculations. For the case 

of Figure 2 the necessary operations are illustrated in 

Eq. 1. Following a similar process, we develop all 

kinds of arc functions in each quadrant and direction. 
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(1) 

Consequently, in the general case the 

Unit_Function is defined as follows: 

 

Unit_Function = d  xi:double, yi:double, 
xe:double, ye:double, xc:double, yc:double, 

v:double, a:double, flag:TypeOfFunction   

(2) 

 

where ΠTypeOfFunctionΤ={PLNML_1, ARC_ 



 

1 2 

3 
4 

<1..8>, CONST }, meaning 1
st
 order polynomial, one 

of the eight possible circular arcs, and constant func-

tion, respectively. 

Combining time period and unit function together, 

the primitive Unit_Moving_Point is defined. This is a 

fundamental type since it represents the smallest gra-

nule of movement of a trajectory. Formally: 

 

Unit_Moving_Point =d p: period〈 SECOND〉, 

m: Unit_Function  
 

(3) 

We now introduce the moving point type that 

plays the dominant role in our spatio-temporal data 

type system. The process that we followed to define 

the moving point is to introduce it as a collection of 

the corresponding unit moving point, which means, 

in terms of object orientation, that there exists a com-

position relationship between the unit moving point 

and the moving point. As such, the Moving_Point 

object type is introduced as a collection of 

Unit_Moving_Point object types. Formally: 

Moving_Point =d { p: 

set〈Unit_Moving_Point〉 | ∀ i, j ∈ 

ulong, 1≤ i, j≤ 

|set〈Unit_Moving_Point〉|: j= i+1 ⇒ 

pi.p < pj.p ∧ ¬overlaps(pi.p, pj.p) ∧ ∀ t ∈ 

double: inside(t, pi.p) ⇒ at_instant(p, t) ∈
OGC-GEOMETRYGTYPE=point } 

(4)

In the following two sections we describe the in-

dexing capabilities of HERMES on the above defined 

moving point data type, while we introduce the cor-

responding prerequisite data types. 

Spatiotemporal Indexing in HERMES 

In this section we briefly introduce the basic no-

tions of spatio-temporal indexing and present the TB-

tree which is adopted in this work and implemented 

in HERMES. Similar to the original R-tree, the TB-tree 

is a height-balanced tree with the index records in its 

leaf nodes; leaf nodes contain entries of the same 

trajectories, and are of the form S = 〈MBB, Orienta-

tion〉, where MBB is the 3D bounding box of the 3D 

line segment belonging to an object’s trajectory (han-

dling time as the third dimension) and Orientation is 

a flag used to reconstruct the actual 3D line segment 

inside the MBB among four different alternatives that 

exist (see Figure 4). Moreover, contrary to the well-

known B-tree, and similarly to the original R-tree, 

internal and leaf node MBBs belonging to the same 

tree level are allowed to overlap. Each internal or leaf 

node in the tree corresponds to a physical disk page 

(or disk block, which is the fundamental element on 

which the actual disk storage is organized) and con-

tains between m and M entries (M is the node capaci-

ty and m in the case of TB-tree is set to 1).  

Since each leaf node contains entries of the same 

trajectory, the object id can be stored once in the leaf 

node header. Therefore, TB-tree leaf nodes are of the 

form 〈header, {Si}〉, where each Si = 〈MBBi  Orienta-

tioni〉 and header = 〈id, #entries, ptrCur, ptrParent, 

ptrNext, ptrPrevious〉 (in other words, the object iden-

tifier, the number of node entries and four pointers, to 

the current, the parent, and the next and previous 

nodes of the same trajectory). On the other hand, 

non-leaf nodes are of the form 〈header, {Ei}〉, where 

each Ei = 〈MBBi, ptri〉 with MBBi be the enclosing 3D 

box of the child node pointed by ptri (a pointer to it), 

and header = 〈#entries, ptrCur, ptrParent〉 simply 

stores the number of node entries and a pointer to 

itself and to its parent node. Furthermore, similar to 

SETI (Chakka, Everspaugh, & Patel., 2003) and in order 

to support high insertion rates, our TB-tree imple-

mentation uses an in-memory hashed front-line struc-

ture, which maintains tuples of the form 〈id, Pcurr, 

Ncurr〉 with the object identifier id, its latest position 

Pcurr = 〈tcurr, xcurr, ycurr〉  and a pointer Ncurr to the leaf 

node containing Pcurr.  

t3 
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t7 

t11 
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Figure 3 The TB-tree structure 

 

Figure 4 Alternative ways that a 3D line segment can 

be contained inside a MBB 

Given the size of a disk block, which is predeter-

mined by the operation system, the number of ele-

ments contained in a leaf of internal node in the tree 

is resticted by it. Specifically, given that each Si is 

contained in 25 bytes (4 bytes for each one of the 6 

double precission numbers needed to describe the 

MBB and 1 byte for the orientation flag) and the 

header of each leaf node has the size of 16 bytes (4 



 

 

Figure 5 TB-tree data types 

bytes for each one of the object identifier, the 

number of entries, and the four pointers), the total 

leaf capacity in terms of trajectory segments is given 

by Int(([page size]-16)/25); this number for a typical 

page size of 4096 bytes results in 163 trajectory seg-

ments inside each leaf node. Following the same rea-

soning each internal tree node has a capacity of 170 

entries, resulting in 170 child nodes. 

The difference of the TB-tree with the majority of 

the R-tree variations relies on the way the index is 

built. Specifically, its insertion algorithm is not based 

upon the spatial and temporal relations of moving 

objects (or moving object segments) but it relies only 

on the moving object identifier (id). When new line 

segments are inserted, the algorithm searches for the 

leaf node containing the last entry of the same trajec-

tory, and simply inserts the new entry in it, thus form-

ing leaf nodes that contain line segments from a sin-

gle trajectory. Furthermore, its split strategy is very 

simple: when a leaf node is full, a new one is created 

and is inserted at the right-end of the tree; due to the 

monotonicity of time, this strategy ensures that tra-

jectories are organized monotonically inside the tree 

structure, e.g., trajectory segments are organized by 

time. For each trajectory, a double linked list con-

nects the leaf nodes that contain its portions together 

(Figure 3), resulting in a structure that can efficiently 

answer trajectory-based queries.  

The TB-tree Data Types 

In this section we introduce the data types required 

for embedding the TB-tree in an ORDBMS that sup-

ports moving objects. We should note that these data 

types are transparent to the user of HERMES and their 

usage is just for the internal construction of the tree. 

The implementation of a tree-based index under the 

object-relational model follows a number of well-

known rules and techniques, such as implementing 

different object classes for each one of the basic tree 

elements, namely, tree nodes (root, internal nodes, 

leafs) and node elements. 

 Figure 5 provides an abstract, though insightful, 

view of the index organization, along with the con-

nection with the rest of the HERMES data types in the 

form of a UML class diagram describing the struc-

ture’s primitives. The left part of the diagram depicts 

the objects participating in the index formation. Fol-

lowing a top-down description, the tbTreeIdx class is 

used mainly for completeness as an abstraction of the 

corresponding part of the model and it refers to the 

definition of TB-tree index on the table where the 

actual trajectory data are stored. Since the main tra-

jectory table may initially be empty, the correspond-

ing aggregation with the lower-level tbTreeElement 

class possesses a cardinality of «0..*».  

Descending the diagram, we observe that the 



 

whole arrangement is separated in two kinds of TB-

tree Node types. Namely, the tbTreeNode Class re-

garding the internal nodes of the tree structure and 

the tbTreeLeaf class used to represent the leaf nodes 

of the index where trajectory segments are stored. 

Given that the size of each leaf node is predetermined 

and equivalent to the chosen disc block size, its ca-

pacity in terms of trajectory line segments is also 

predefined (following the previous discussion, a page 

size of 4096 bytes results in leaf nodes fitting no 

more than 163 segments). As a consequence, exceed-

ing the aforementioned size, in terms of leaf node 

entries, causes segments of the same trajectory to be 

stored in different leaf nodes which remain connected 

by means of a double linked list. This is denoted us-

ing an association termed as “linked”. Note that the 

head leaf of the list might be connected to at most 1 

(or 0 when the trajectory fits in a block) other leaves 

and the same holds for the tail of the arrangement. 

Each intermediate node is essentially linked to two 

other peers. This explains the cardinality of the re-

spective association.    

A tbTreeLeaf includes a number of leaf entries 

(tbTreeLeafEntry in Figure 5), each consisting of the 

MBB (tbMBB in the figure) that surrounds the trajec-

tory segment kept in the leaf entry, along with an 

integer number 1-4 denoting its orientation; tbMBBs 

is composed by a MinPoint and a MaxPoint of 

tbPoint type which are the lower left and upper right 

of the box, respectively in the spatio-temporal space, 

while tbpoint has only a property of tbX collection 

type, which is an array of size 3 used to hold triplets 

(x,y,t) of time-stamped positions forming the entire 

object’s trajectory. More spectifically, the attributes 

of tbTreeLeaf  are:  

• MoID of integer type which is the global tra-

jectory identifier, 

• ptrCurrentNode of integer type, being the 

current node’s identifier encapsulated in the 

object to facilitate implementation issues,  

• ptrParentNode of integer type, representing 

a pointer to the parent of the current node 

used to ascend the tree when necessary,  

• ptrPreviousNode of type integer, which is a 

pointer to the node containing the previous 

fragment of the same trajectory, 

• ptrNextNode of type integer, which is a 

pointer to the node containing the next 

fragment of the same trajectory,  

• LeafEntries, a collection of tbTreeLeafEntry 

type with fixed capacity, which involves the 

current leaf entries as previously described, 

and, 

• count of integer type that holds the cardi-

nality of LeafEntries. 

Formaly, given the leaf capacity LeafCapacity, 

i.e., the maximum number of leaf entries that may be 

contained in a leaf node, we define the following 

types: 

tbPoint=d{tbX:set〈double〉| |tbX|=3} (5)

tbMBB=d{〈MinPoint:tbPoint, 

MaxPoint:tbPoint〉| ∀ 0≤i≤2,  
MinPoint.x(i)<=MaxPoint.x(i)} 

(6)

tbTreeLeafEntry=d{〈MBB:tbMBB, 

Orientation: short〉 | Orientation<4} 
(7)

tbTreeLeaf=d{〈MovingObjectId:long, 

ptrCurrentNode:long, 

ptrParentNode:long, ptrNextNode:long, 

ptrPreviousNode:long, LeafEntries: 

set〈tbTreeLeafEntry〉, count:long | 

|LeafEntries|≤ LeafCapacity, 

count=|LeafEntries|〉 } 

(8)

Similarly, a tbTreeNode contains a set of tbTreeNo-

deEntry objects; each tbTreeNodeEntry encloses all 

the leaf or node entries contained in the sub-tree start-

ing with this node as root. More spectifically, its 

attributes involve:  

• ptrCurrentNode of integer type, which is the 

current node’s identifier encapsulated in the 

object to facilitate implementation issues,  

• ptrParentNode of integer type, which is a 

pointer to the parent of the current node used 

to ascend the tree when necessary,  

• NodeEnties, a collection of tbTreeNodeEntry 

type with fixed capacity, which involves the 

current node entries as previously described, 

and, 

• count of integer type to hold the cardinality 

of NodeEntries.  

Formally, given the node capacity NodeCapacity we 

define: 

tbTreeNodeEntry=d{〈MBB:tbMBB, ptr: long〉 } (9) 

tbTreeNode=d{〈ptrParentNode:long, 

ptrCurrentNode:long, NodeEntries: 

set〈tbTreeNodeEntry〉, count:long | 

|NodeEntries|≤ NodeCapacity, 

count=|NodeEntries|〉 } 

(10)

Eventually, the two interfaces of Figure 5 

to_tbTreeLeafEntry, to_Unit_Moving_Point provide 

essential mechanisms for object transformation from 

one type to the other. 

The following sections describe the design deci-

sions and the implementation details for mapping the 

TD type system into extensible ORDBMS, as well as 

essential functionality for extending SQL-like query 

languages with TD querying constructs. 



 

ON THE PHYSICAL IMPLEMENTATION OF THE 

HERMES TD TYPE SYSTEM 

The physical representation of the data types reflects 

the structures that are necessary in order to capture 

the semantics and implement the methods of these 

data types. In this section, we discuss how the types 

abstractly described in the previous section are 

mapped to physical structures for storing them into 

an ORDBMS with an OGC-compliant spatial exten-

sion. 

Implementation of the Primitive Data Types 

The primitive data types of HERMES are the 

Unit_Function, the Unit_Moving_Point and the Mov-

ing_Point. Unit_Function is constructed as an octave 

of real numbers and a flag indicating the type of the 

simple function. In the current version, three types of 

functions are supported, namely polynomial of first 

degree, circular arc and the constant function. The 

modeling of Unit_Function is extensible; for exam-

ple, if one wishes to add interpolations with spline or 

polynomials with degree higher than one, then what 

is only needed to be done is the addition (if neces-

sary) of the appropriate variables as attributes of the 

object and the implementation of such a function. 

We should note that we model a moving point that 

changes discretely for a period of time by setting all 

Unit_Function objects of the corresponding unit 

moving point to be constant functions. Due to the fact 

that the coordinates represented by these 

Unit_Function objects do not change for this period 

of time, it is equivalent to taking a snapshot of the 

moving point, which is valid for the entire period. If 

at least one of these unit functions is not constant 

then the moving point is continuous for this period of 

time. 

Finally, we construct a Moving_Point object type 

as a collection of Unit_Moving_Point objects (i.e. 

pointer to a nested table or a varying length array (i.e. 

varray), depending on the underlying ORDBMS, of 

Unit_Moving_Point objects), which in turn are de-

fined as objects consisting of two attributes. The first 

attribute is the time period during which the other 

attribute is defined. The time period is expressed as 

an open-closed Period object, while the other 

attribute is of Unit_Function object type, whose do-

main of definition is the set of real numbers inside 

the open interval [t1, t2), where t1 is the starting point 

of the period and t2 is the ending point of the period. 

Implementation of the TB-tree Data Types 

Regarding the data types required for the TB-tree 

index, they are mainly implemented as objects with 

simple attributes and arrays of attributes.  Specifical-

ly: 

• tbPoint is constructed as a standard array of 

real values with its cardinality set to 3 (x, y 

and t) 

• tbMBB is constructed by two attributes of 

type tbPoint 

• LeafEntry is constructed by an attribute of 

tbMBB type and another one of integer type 

taking values from 1 to 4, representing one 

among the four possible orientations that a 

line segment may have inside its MBB. 

• tbTreeLeaf is constructed by the integer val-

ue of MovingObjectId, and a set of pointers 

(integer values), i.e., ptrCurrentNode, 

ptrParentNode, ptrPreviousNode and ptr 

NextNode. It also contains a standard array 

of tbTreeLeafEntries with predetermined 

size LeafCapacity, and an integer value con-

taining the number of occupied entries in-

side the array. 

• Similarly, a tbTreeNode is constructed by the 

two pointers (integer values), ptrCurrent-

Node and ptrParentNode, and a standard ar-

ray of tbTreeNodeEntries with predeter-

mined size NodeCapacity. Finally, an integ-

er value containing the number of occupied 

entries inside the aforementioned array is 

employed inside the tbTreeNode structure. 

Regarding the implementation of the TB-tree in 

the HERMES a number of tables constituting the pri-

mary storage elements of index data are employed. 

Specifically, following the UML of Figure 5, the ba-

sic data types are stored in the following tables which 

are automatically created/dropped upon the respec-

tive index creation/drop: 

• movingobjects: The movingobjects is an aux-

iliary table used to store a pointer to the index 

leaf where the last part of a trajectory is stored 

(Frentzos, 2008). As such, it contains only 2 

columns for the trajectory id, and for the 

pointer integer values.  

• tbTtreeidx_non_leaf: This is the table storing 

the internal tree nodes. It actually contains 

tuples of the form (NodeId, tbTreeNode), 

where NodeId=tbTreeNode.ptrCurrentNode.  

• tbTreeidx_leaf: This is the table storing the 

tree leaf nodes; it also contains tuples of the 

form (LeafId, tbTreeLeaf) where LeafId = 

tbTreeLeaf.ptrCurrentNode. 

EXTENDING HERMES WITH OBJECT METHODS AND 

OPERATORS 

In this section, we present the operations of the mov-

ing types introduced by HERMES classified into ap-

propriate categories that enable us to describe and 

analyze the new query capabilities. The identifiable 

classes of operations that HERMES supports are: 



 

i) Predicates and projection operations: operations 

that return boolean values concerning topological 

and other relationships (e.g. intersection, within 

distance, etc.), operations that restrict and project 

moving types to temporal (e.g. at_instant, 

at_period) and spatial domain (e.g. trajectory). 

ii) Numeric operations: functions that compute a 

numeric value (e.g. speed). 

iii) Distance functions: a set of trajectory distance 

functions based on primitive (space and time) as 

well as derived parameters of trajectories (speed, 

acceleration, and direction). 
iv) Index maintenance: necessary operations for 

creating, dropping and updating the TB-tree in-

dex. 

v) Index operators: several advanced algorithms for 

efficient query processing of movement data. 

The following sections describe the functionality 

of selected operations, representative of each class. 

The interested reader may find more operations in 

(Pelekis, & Theodoridis, 2010). 

Predicates and projection operations 

HERMES provides a rich palette of object methods of 

special interest to describe relationships between 

moving types that have been proposed in the litera-

ture. Subsequently, we present the operations and the 

semantics behind these methods. Most of these op-

erations come with two different overloaded signa-

tures, modeling different semantics: the first signa-

ture is time-dependent, meaning that the outcome of 

the operation is related to a user-defined time point, 

while the second is time-independent. For simplicity 

herein we present only one of the two, i.e. the most 

interesting. Also, many HERMES object methods ac-

cept a tolerance parameter which is usually a reflec-

tion of how accurate or precise users perceive their 

spatio-temporal data to be. 

Op1. boolean f_within_distance (distance, Mov-

ing_Point, tolerance, Timepoint): This predicate de-

termines whether two moving points are within some 

specified Euclidean distance from each other at a 

user-defined time point. After mapping the moving 

points to spatial points at the given instant, the func-

tion returns TRUE for object pairs that are within the 

specified distance; returns FALSE otherwise. 

Op2. Unit_Moving_Point unit_type (Timepoint): 

This operation identifies (and returns) the unit-

moving point whose attribute time period (Period 

object) “contains” the user-defined time point (Time-

point object). In other words, it returns that unit-

moving point where the time instant represented by 

the argument Timepoint object is “inside” the time 

period that characterizes the unit-moving point. 

Op3. Geometry at_instant (Timepoint): The 

at_instant operation maps the mathematical descrip-

tion of a unit function object (see formulas 1) to a 

spatial point object, where the moving point resists at 

the given timepoint. 

Op4. Moving_Point at_period (Period): The 

at_period object method is an operation that restricts 

the moving point to the temporal domain. In other 

words, by using this function the user can delimit the 

time period that is meaningful to ask the projection of 

the moving object to the spatial domain. 

There are more operations for performing similar 

type of projections, like the at_point and 

at_linestring methods that either restricts a moving 

point to a static point or linestring geometry, respec-

tively, or return the temporal point or period that the 

restriction is valid. 

Op5. Geometry f_trajectory (): This function si-

mulates the route traversed by a Moving_Point. More 

specifically, this projection of the movement of a 

Moving_Point to the Cartesian plane is done by map-

ping the time-dependent coordinates of the object at 

the sampled time instants of the Unit_Moving_Point 

objects that compose the Moving_Point. Figure 6 

illustrates this operation. 
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Figure 6 The trajectory of a Moving_Point 

Op6. Moving_Point f_intersection (Geometry, to-

lerance): The f_intersection object method returns 

takes as a parameter a polygon geometry and returns 

the portion of the moving point inside the given re-

gion. 

Numeric operations 

HERMES supports a special class of object methods 

that compute either a numeric value or quantify a 

property related with the rate of change of a trajecto-

ry, as moving points are time-dependent objects. 

More specifically, we provide the subsequent opera-

tions: 

Op7. number f_length (tolerance, Timepoint): The 

f_length object method computes the length of the 

route of a Moving_Point when projected at the Carte-

sian plane at a user-defined time point.  

Op8. number f_speed (Timepoint): The speed op-

eration returns a number representing the speed of a 

moving point at a specific timepoint. The algorithm 

that implements the speed method is based on the 

time derivative of the distance function as described 

by Formula 1. This function is extracted from the 



 

Unit_Function object of the corresponding 

Unit_Moving_Point. 

Op9. number f_direction (Moving_Point, Time-

point): The f_direction function returns the angle of 

the line from the first to the second moving point 

(measured in degrees, 3600 <≤ angle ), after these 

have been projected to the Cartesian plane at a specif-

ic time point. The computed angle is the one formed 

by the conceptual line segment that joins the two 

points and the xx’ axis. 

Based on the above method HERMES supports two 

sets of operations that provide predicate functionality 

on directional relationships between moving objects. 

The first set consists of four operations (namely, 

f_west, f_east, f_north, and f_south) each of which 

returns a Boolean value depending on whether the 

moving object is e.g. west from the a given moving 

or static point parameter, as well as a range of angles 

that puts some constraints in the directional relation-

ship. Similarly, the second set consists of four opera-

tions (namely, f_left, f_right, f_above, and f_behind) 

that represent implicit directional relationships w.r.t. 

the motion of the query object. 

Distance functions  

HERMES supports a set of query operators for similar-

ity search between moving points as these have been 

introduced in (Pelekis et al., 2007). Two main types 

of similarities are defined, namely, spatiotemporal 

and (temporally-relaxed) spatial similarity, followed 

by three variations, namely speed-pattern based, ac-

celeration-pattern based, and directional similarity. 

More specifically: 

Op10. number GenLIP(Moving_Point): The Gen-

eralized Locality Inbetween Polylines (GenLIP) dis-

tance between two moving points, returns an intuitive 

value that implies the area (see the shaded area in 

Figure 7) between the spatial projections of the two 

trajectories. 
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Figure 7: Locality In-between 2D Polylines 

Op11. number GenSTLIP(Moving_Point): The 

Generalized SpatioTemporal LIP (GenSTLIP) func-

tion takes into account time, it operates on the origi-

nal 3D representation of moving points and as such 

eliminates the time-relaxation of the GenLIP method 

by requiring co-location and co-existence during the 

lifetime of the moving points. 

Op12. number GenSPSTLIP(Moving_Point): 

Op13. number GenACSTLIP(Moving_Point): The 

Generalized Speed-Pattern and Acceleration-Pattern 

STLIP functions take also into account whether the 

two involved moving points move with similar speed 

(GenSPSTLIP) or acceleration (GenACSTLIP) pat-

terns. 

Op14. number DDIST(Moving_Point):  

Op15. number TDDIST(Moving_Point): The Di-

rectional Distance (DDIST) and Temporal DDIST 

(TDDIST) are two other variations that quantify the 

similarity of two moving objects according to their 

heading pattern. The first variation operates on the 

spatial projection of the objects, while the second 

checks whether the change in the heading happens in 

a synchronized way. 

4.4 Index maintenance  

Based on the extensible indexing capabilities pro-

vided by an ORDBMS each TB-tree owns the follow-

ing functions: 

Op16. IndexCreate: creates the index tables (i.e 

tbtreeidx_leaf, tbtreeidx_non_leaf) and populates the 

data already inserted in the table on which the index 

is created. 

Op17. IndexInsert: performs insertions in the tree, 

triggered by the insertion of a new trajectory on the 

indexed table. 

Op18. IndexUpdate: updates the tree every time a 

new trajectory segment (i.e Unit_Moving_Point) is 

inserted. 

Op19. IndexDrop: drops the tables that store the 

index data. This method is called when a DROP IN-

DEX statement is issued. 

Functions IndexInsert and IndexUpdate call func-

tion TBINSERT which implements the TB-tree’s in-

sertion algorihm as described in (Pfoser et al., 2000). 

Index operators 

Range/timeslice queries, of the form “find all objects 

located within a given area during a certain time 

interval or time instance”, (Q2/Q1 in Figure 8), is a 

straightforward extension of the respective 2D R-tree 

algorithm, in the 3D space formed by the two spatial 

and the one temporal dimension. This algorithm re-

cursively visits tree nodes, rejecting node MBBs that 

does not overlap the query window, while following 

the pointers from overlapping MBBs to their respec-

tive child nodes until all candidate leaf nodes have 

been found. The algorithm starts by visiting the tree 

root, checking whether the MBBs of the root entries 

overlap the spatio-temporal query window Q. If a 

node entry overlaps Q, the algorithm follows the 

pointer to the corresponding child node, where it re-



 

peats recursively the same task. If the algorithm 

reaches a leaf node, leaf entries are examined against 

Q and if their MBB overlap, the algorithm reports 

their ids. 
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Figure 8 Querying trajectory databases 

Regarding the k nearest neighbor (k-NN) search, 

(Frentzos et al., 2007) proposed a variety of solutions 

for answering such queries. More specifically, given 

as an example the trajectory database of Figure 8, 
given a stationary (or moving) query point Q3 (Q4) 

and a temporal query window [t1, t2] ([t3, t4]), (Frent-

zos et al., 2007) proposed several algorithms for find-

ing the moving object trajectory T3 (T4) that is closer 

to the query object. Among them, the incremental 

varations of the algorithms proposed in (Frentzos et 

al., 2007) (IncPointNNSearch and IncTrajectoryNN-

Search) are shown to be more scalable, thus, being 

good solutions to be implemented in the HERMES. 

Here, we have also to point that the aforementioned 

algorithms are capable to answer k-NN versions of 

the respective queries as well.  

More specifically, the algorithms proposed in 

(Frentzos et al., 2007) traverse the tree structure in a 

best-first way. The proposed algorithms use a priority 

queue, in which the (node or leaf) entries of the tree 

nodes are stored in increasing order of their distance 

from the query object. At each tree node the algo-

rithm iterates through its entries checking whether the 

lifetime of an entry overlaps the time period of the 

query, calculating at the same time its distance from 

the query object, which is used to store them in the 

priority queue. At each algorithm’s iteration the first 

entry is requested from the queue, until a leaf entry is 

found, which is then reported as the query result. The 

algorithms proposed in (Frentzos et al., 2007) are 

incremental in the sense that the k-th NN can be ob-

tained with very little additional work once the (k-1)-

th NN has been found; therefore, are easily genera-

lized to the case where are the k>1 nearest neighbors 

of a query object (stationary of moving point) are 

requested. Given the above discussion, HERMES sup-

ports the following set of operators, namely, range 
(Pfoser et al., 2000), Point and Trajectory Nearest 

Neighbor (Frentzos et al., 2007) and spatio-temporal 

topological (Pfoser et al., 2000) queries.  

Op20.Multi_Moving_Point tb_mp_in_spatio tem-

poral_window(Geometry, Period): This function ex-

ecutes a range query against a table storing indexed 

trajectories. It takes as arguments a standard spatial 

window; therefore, geometry is restricted to rectangle 

schemes, as well as a temporal period, and returns 

trajectory a Multi_Moving_Point consisting of all 

trajectory fractions fully contained inside the given 

spatio-temporal window.  

Op21. set〈integer, Unit_Moving_Point〉 In-

cPointNNSearch (Geometry, Period, k): This func-

tion executes a Point Nearest Neighbor query against 

a table storing indexed trajectories. It takes as argu-

ments a query point, a temporal period, and the num-

ber of k closest nearest neighbors to be returned. It 

returns trajectory ids, as well as the respective 

Unit_Moving_Point that is closest to the query point 

at the given time period. 

Op22. set〈integer, Unit_Moving_Point〉 
ΙncΤrajectoryΝΝsearch (identifier, k): executes a 

trajectory Nearest Neighbor query against a table 

storing indexed trajectories. It takes as arguments the 

identifier of the trajectory to be used as query, and the 

number of k closest nearest neighbors to be returned. 

It returns trajectory ids, as well as the respective 

Unit_Moving_Point that is closest to the query trajec-

tory during its life time. 

Op23. set〈integer〉 TopologicalQuery(Geometry, 

Period, mask): This function is used to retrieve the 

trajectories that enter and/or leave a spatio-temporal 

query window. The query parameters involve the 

geometry of a (rectangle) area, a time period and a 

MASK that declares the type of topological query. 

Possible MASK (string) values can be ‘ENTER’, 

‘LEAVE’, ‘ENTER_LEAVE’ depending on whether 

the users are interested in trajectories that enter/leave 

or enter&leave the area within the given time period. 

HERMES ARCHITECTURE 

HERMES can be utilized in a real world scenario to 

assist a database developer in modeling, querying and 

analyzing moving object databases. A straightforward 

utilization scenario is to design and construct a spa-

tio-temporal object-relational database schema using 

HERMES and build an application by transacting with 

this database. Figure 9 illustrates such a scenario on 

top of Oracle ORDBMS. In this case and in order to 

specify the database schema, the database designer 

writes scripts in the syntax of the Data Definition 

Language (DDL), which in this case is the PL/SQL, 

extended with the spatio-temporal operations pre-

viously introduced. 



 

 
Figure 9 The architecture of the HERMES 

To build an application on top of such a database 

for creating objects, querying data and manipulating 

information, the application developer writes a source 

program (for instance) in Java (or JSP in case of 

web-based applications) wherein he/she can embed 

PL/SQL scripts that invoke object constructors and 

methods from HERMES. The JDBC pre-processor 

integrates the power of the programming language 

with the database functionality offered by the ex-

tended PL/SQL and together with the ORDBMS Run-

time Library generate the application’s executable. 

By writing independent stored procedures that take 

advantage of HERMES functionality and by compiling 

them with the PL/SQL Compiler, is another way to 

build a spatio-temporal application. Figure 10 depicts 

such an application which also acts as a web-based 

visual query builder for HERMES. 

 

 

Figure 10 A visual query builder for HERMES 

AN APPLICATION OF HERMES TO VEHICLE TRAFFIC 

ANALYSIS 

To demonstrate the functionality of HERMES, in the 

following paragraphs we present an application ex-

ample related to vehicle traffic analysis. The motiva-

tion is that a courier company, whose vehicles are 

equipped with GPS devices transmiting their space-

time location to a central MOD, needs a flexible way 

to manage and analyse the motion of the vehicles. 

One can enumerate a series of benefits to be gained 

from a possible optimization of the movements of the 

couriers, such as, personnel’s control, better and fast-

er customer services, minimization of operational 

costs, enhanced decision making. By utilizing this 

application example, the expressive power and the 

applicability of HERMES in such a commercial do-

main are demonstrated. We note that the subsequent 

discussion and terminology follows the syntax of 

HERMES as implemented in Oracle ORDBMS. We 

have already mentioned that the core of HERMES has 

also been implemented in (Boulahya., 2009) inside 

another ORDBMS, namely the PostGIS. This actual-

ly proves the correctness of the design of HERMES on 

top of extensible ORDBMS that have OGC-

compliant spatial extensions. The differences in the 

syntax between the two implementations are minor 

(mainly due to the syntax differences of the two static 

spatial extensions) (Zimányi, 2010), while we are in 

the process of testing the compatibility between the 

results of the operations. In order to present the capa-

bilities of HERMES, we build the following database: 

 

Highways (name: Varchar2, line:  

       SDO_GEOMETRY) 

Landmarks (name: Varchar2, kind: Varchar2,  

     location: SDO_GEOMETRY) 

Vehicles (id: Varchar2, type: Varchar2, route:  

 Moving_Point)  
 
Highways relation is a set of linestring geome-

tries along which the vehicles are supposed to be 

moving. Landmarks relation contains locations of 

certain landmarks, such as petrol stations, etc. Ve-
hicles relation identify the route of a lorry that is 

modeled as a moving point, while type attribute 

stamps each vehicle with a characteristic description 

of each kind (e.g. truck, motorbike, etc.). Further-

more, field route of relation Vehicles is indexed by 

a TB-tree. 

In the following paragraphs, we illustrate a com-

posite spatio-temporal scenario (in the form of a se-

ries of queries) in the domain of the application ex-

ample. The linguistic description of each query is 

followed by the implementation of the query in the 



 

form of a PL/SQL block, as well as by an abstract 

presentation of the way that such a query is resolved. 

This scenario illustrates the expressive power and the 

spatio-temporal query capabilities added to PL/SQL 

by HERMES. 

 

 (Q1) Find all vehicles moving inside a given 

region and time period? 

PL/SQL block for Q1: 
DECLARE 

region SDO_GEOMETRY := 
 SDO_GEOMETRY(2003, NULL, NULL,  
 SDO_ELEM_INFO_ARRAY(1,1003,3),    
 SDO_ORDINATE_ARRAY(489048,4203749,  

90032,4205990)); 
BEGIN 

SELECT  
TB_MP_IN_SPATIOTEMPORAL_WINDOW( 
region, tau_tll.d_period_sec( 
   tau_tll.D_Timepoint_Sec(2010,7,9,10,35,0),     
   tau_tll.D_Timepoint_Sec(2010,7,9,10,55,0)) 
) 
FROM Vehicles; 

END; 
 

The query Q1 is the classic spatio-temporal range 

query that is answered with the employment of the 

TB-tree operators, by simply invoking function 

tb_mp_in_spatiotemporal_window. Actually, this is 

the query depicted in the query builder in Figure 10. 

 

(Q2) If vehicle ‘X’ is in the result set of Q1, when 

and where did it enter the region? 

PL/SQL block for Q2: 
DECLARE 

truckX Moving_Point; 
truckX_IN_region Moving_Point; 
temp_projection 

TAU_TLL.TEMP_ELEMENT_SEC; 
when TAU_TLL.TIMEPOINT_SEC; 
where SDO_GEOMETRY; 

BEGIN 
SELECT route INTO truckX FROM Vehicles 
WHERE id=’X’; 
truckX_IN_region:=  

truckX.f_intersection(region);  
temp_projection:=  

truckX_IN_region.f_temp_element(); 
when :=  

temp_projection.te( 
temp_projection.te.FIRST).b;  

where := truckX_IN_region.f_initial(); 
END; 

 
To address Q2, we demonstrate how we can re-

strict a moving point inside a static spatial region and 

how to temporally and spatially project this restricted 

moving point in its initial position. The result of such 

an operation (f_intersection) is another 

Moving_Point. By temporally projecting it 

(f_temp_element) on the continuous time line and 

finding the temporal element that consists of the time 

periods for which are defined the unit moving objects 

of the moving courier, we can estimate the timepoint 

when initially entered the given region. In addition, 

by applying the f_initial method, we can locate the 

point that this happened. 

 

(Q3) A variant of Q3 would be to find all 

trajectories entering a given spatio-temporal range. 

PL/SQL block for Q3: 
SELECT * FROM TABLE( 
  TB_TOPOLOGICAL_QUERY( 
    SDO_GEOMETRY(2003, NULL, NULL, 
    SDO_ELEM_INFO_ARRAY(1,1003,3),  
    SDO_ORDINATE_ARRAY(489048,4203 

      749, 90032,4205990)), 
  tau_tll.d_period_sec(                                     
    tau_tll.D_Timepoint_Sec(2010,7,9,10,35,0), 
    tau_tll.D_Timepoint_Sec(2010,7,9,10,55,0)), 

     'ENTER')) 

 

(Q4) What distance has vehicle ‘X’ travelled 

inside the region? 

PL/SQL block for Q4: 
DECLARE 

distance double; 
BEGIN 

distance:= LENGTH ( 
INTERSECTION (region,  

truckX.f_trajectory())); 
END; 

 
This query is resolved by finding the intersection 

of the region with the trajectory followed by the 

courier (f_trajectory operation). This intersection is a 

LineString geometry that restricts the route of the 

courier inside the region and by applying the 

LENGTH spatial operator upon the resulted Line-

String we compute the required distance. 

 

(Q5) Give a list of options to the driver of vehicle 

‘X’ to refuel the vehicle within the next 2km 

PL/SQL block for Q5: 
BEGIN 

SELECT name, location FROM Landmarks  
WHERE kind = ‘petrol station’ AND  
truckX.f_within_distance(2000,location, 0.005, 
TAU_TLL.now()) = ‘TRUE’; 

END; 
 



 

In order to provide the list of petrol stations (Q5), 

we select landmarks that are petrol stations and the 

courier is within the specified distance (f_within_ 
distance) from them at the time the query is invoked. 

Based on related research work (Pelekis, Theodouli-

dis, Kopanakis, & Theodoridis, 2004) queries like the 

above constitute a minimum functionality a MOD 

system should provide. Furthermore, the usefulness 

and applicability of the server-side extensions pro-

vided by HERMES have been proved in (Pelekis, 

Theodoridis, Vaosinakis, & Panayiotopoulos, 2006) 

and (Pelekis, Frentzos, Giatrakos, & Theodoridis, 

2008) by developing benchmark queries proposed in 

(Theodoridis, 2003) for the evaluation of systems 

supporing Location-Based Services. 

 BUILDING REAL MOBILITY-CENTRIC 

APPLICATIONS ON TOP OF HERMES  

The best way to evaluate HERMES is to assess the 

realization of its initial goal, which is to provide a 

complete framework for developing MOD-related 

applications. In the previous section we provided a 

sketch for building a specific application related to 

vehicle traffic analysis, while in this section we dem-

onstrate this by briefly presenting successfull applica-

tions of HERMES in four different domains, namely in 

trajectory data warehouses (i.e. TDW (Marketos et al., 

2008)), in moving object data mining query languag-

es (i.e. DAEDALUS tool (Ortale et al., 2008), in se-

mantic enrichment of movement patterns (i.e. 

ATHENA tool (Baglioni, Macedo, Renso, Trasarti, & 

Wachowicz, 2009)), and in privacy-aware trajectory 

tracking query engines (i.e. HERMES++ tool (Gkoula-

las-Divanis, & Verykios, 2008)). We would like to note 

that the above works are a subset of tools and me-

thods developed as a result of a European-wide re-

search project called GeoPKDD – (Geographic Pri-

vacy-Aware Knowledge Discovery and Delivery). 

HERMES is also a prototype outcome of GeoPKDD 

designed to be the MOD management infrastructure 

of such tools. Of course, in order to support such di-

verse applications domains we have designed and 

incorporated into HERMES several specialized opera-

tions (e.g. a trajectory anonymizer operator for 

(Gkoulalas-Divanis, & Verykios, 2008)). 

Trajectory data warehouses – Data Warehouses 

have shown their importance in real-world applica-

tions (Rifaie, Kianmehr, Alhajj, & Ridley, 2009). TDW 

aim at developing a multi-dimensional model suitable 

for online analytical processing (OLAP) of trajectory 

data, such as drill-down and roll-up operations. In 

order to design a trajectory warehouse architecture, 

one should first identify the differences from conven-

tional warehouse approaches and then to devise ap-

propriate extensions. There are three steps so as to 

realize the development of a TDW. At the first step 

the design of a MOD and of a multidimensional data 

model (i.e. trajectory data cube) takes place. At the 

second step, preprocessing (i.e. cleaning, consistency 

checking) and loading of raw movement data into the 

MOD occurs, while once trajectories have been 

stored in the MOD, the Extract-Transform-Load 

(ETL) phase is executed in order to feed the TDW 

and the measures of the data cube are calculated. In 

(Marketos et al., 2008; Leonardi et al., 2010; Raffaeta 

et al. 2011) HERMES has been employed as the infra-

structure to develop the above described process in a 

huge, real trajectory dataset, where due to the size of 

the dataset, the existence of efficient, scalable query-

ing processing operators to support ETL was a key 

requirement. 

Moving object data mining query languages (MO-

DMQL) – In (Ortale et al., 2008) the authors pro-

posed DAEDALUS, a formal framework and system, 

that defines knowledge discovery processes as a pro-

gressive combination of mining and querying opera-

tors. The heart of DAEDALUS is the MO-DMQL 

query language that extends SQL in two aspects, 

namely a pattern definition operator and functionality 

to uniformly manipulate both raw trajectory data and 

unveiled movement patterns. DAEDALUS system 

has been implemented as a query execution layer on 

top of the HERMES. More specifically, the role of 

HERMES in DAEDALUS is two-fold; to act as a repo-

sitory for movement data and secondly to give the 

basic building block that allows defining models’ 

representation and storage. 

Semantic enrichment of movement patterns – Hav-

ing as aim to provide a model for the conceptual re-

presentation and deductive reasoning of trajectory 

patterns obtained from mining raw trajectories, the 

authors in (Baglioni et al., 2009) have developed 

ATHENA tool, which employs ontologies for the 

semantic enrichment of trajectories. This is achieved 

by means of a semantic enrichment process, where 

raw trajectories are enhanced with semantic informa-

tion and integrated with geographical knowledge 

encoded in an ontology. To highlight this process 

imagine that a user poses a query using the ontology 

concepts where trajectories/patterns are classified by 

a reasoner. The ontology is populated by instances 

coming from a MOD storing semantic trajectories, 

patterns and auxiliary geographical features. Again, 

HERMES supports all the spatio-temporal data man-

agement requirements raised by ATHENA. The over-

all undertaking was evaluated in a real-world case 

study posing as analysis objective the understanding 

of tourist movements in Milan’s metropolitan area. 

Privacy-aware trajectory tracking query engines – 

Due to the very nature of movement data, lately a 

new line of research has emerged that investigates 



 

safeguards to enforce so as to ensure the privacy of 

the individuals, whose movement is recorded. 

HERMES++ (Gkoulalas-Divanis, & Verykios, 2008) 

which has been designed on top of HERMES describes 

such a privacy aware trajectory tracking query en-

gine, where subscribed users can gain restricted 

access to an in-house trajectory data warehouse, to 

perform certain analysis tasks. In addition to regular 

queries involving non-spatial non-temporal attributes, 

the engine supports a variety of spatiotemporal que-

ries, including range queries, nearest neighbor que-

ries and queries for aggregate statistics. The query 

results are augmented with fake trajectory data 

(dummies) to fulfill the requirements of K-

anonymity. 

CONCLUSIONS AND OUTLOOK 

In this paper, a data management framework for 

TD, called HERMES, was introduced. This framework 

is a system extension that provides spatio-temporal 

functionality to OGC-compatible ORDBMS and sup-

ports mobility-centric applications. Future work in-

cludes inclusion of query optimization strategies us-

ing the extensibility interfaces of current ORDBMS 

in order to enhance the performance of HERMES. Fur-

thermore, we plan to extend HERMES with data min-

ing query operators aiming at transforming the for-

mulated language to a data mining query language 

for TD. 
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