

HERMES: A Trajectory DB Engine for Mobility-Centric Applications

Nikos Pelekis (*) is a lecturer at the Department of Statistics and Insurance Science, University of Piraeus. Born in 1975, he received his B.Sc.

degree from the Computer Science Department of the University of Crete (1998). He has subsequently joined the Department of Computation in

the University of Manchester (former UMIST) to pursue his M.Sc. in Information Systems Engineering (1999) and his Ph.D. in Moving Object

Databases (2002). He has been working for almost ten years in the field of data management and mining. He has co-authored more than 40 re-

search papers and book chapters, he is a reviewer in many international journals and conferences. He has been actively involved in more than 10

European and National R&D projects. His research interests include data mining, spatiotemporal databases, management of location-based ser-

vices, machine learning and geographical information systems.

Nikos Pelekis

University of Piraeus

Department of Statistics and Insurance Science

80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece

Tel: +30-2104142449, Fax: +30-2104142264

npelekis@unipi.gr

Elias Frentzos, received his Diploma in Civil Engineering and MSc in Geoinformatics, both from NTUA. He also holds a PhD from the Depart-

ment of Informatics of the University of Piraeus where he is currently a Postdoc researcher, scholar of the Greek State Scholarships Foundation.

He has published more than 20 papers in scientific journals and conferences such as IEEE TKDE, KAIS, Geoinformatica, ACM SIGMOD and

IEEE ICDE. He has participated in several national and European research projects, and also involved in the development of several commercial

GIS-related applications and projects. His research interests include spatial and spatiotemporal databases, location-based services and geographi-

cal information systems.

Elias Frentzos

University of Piraeus

Department of Informatics

80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece

Tel: +30-2104142449

efrentzo@unipi.gr

Nikos Giatrakos is a PhD Candidate at the Department of Informatics, University of Piraeus (Greece), supervised by Assoc. Professor Yannis

Theodoridis. He received his Bachelor of Science degree (2006) in Informatics from the University of Piraeus and his Master of Science degree

(2008) in Information Systems from the Athens University of Economics and Business (Greece). He has coauthored several journal and confe-

rence papers including ACM SIGMOD and IEEE ICDE. His research interests include distributed mining on data streams, mining spatiotemporal

streaming data and trajectory warehousing. Since 2007, he has been involved in various national and European research projects.

Nikos Giatrakos

University of Piraeus

Department of Informatics

80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece

Tel: +30-2104142437

ngiatrak@unipi.gr

Yannis Theodoridis is Associate Professor with the Department of Informatics, University of Piraeus (UniPi), where he currently leads the Infor-

mation Systems Lab (http://infolab.cs.unipi.gr). Born in 1967, he received his Diploma (1990) and Ph.D. (1996) in Electrical and Computer En-

gineering, both from the National Technical University of Athens, Greece. His research interests cover database management, geographical in-

formation management, data mining and knowledge discovery. Apart from several national-level projects, he was scientist in charge and coordi-

nator of two European projects, namely PANDA (FP6/IST, 2001-04) and CODMINE (FP6/IST, 2002-03), on pattern-based management and

privacy-preserving data mining, respectively, also participating in GeoPKDD (FP6/IST, 2005-09), MODAP (FP7/ICT, 2009-12) and MOVE

(COST, 2009-12), on moving objects database management and knowledge discovery. He has or is serving as general co-chair for SSTD'03 and

ECML/PKDD'11, vice PC chair for IEEE ICDM'08, member of the editorial board of the Int'l Journal on Data Warehousing and Mining

(IJDWM), and member of the SSTD endowment. He has co-authored three monographs and over 80 refereed articles in scientific journals and

conferences with more than 600 citations. He is member of ACM and IEEE.

Yannis Theodoridis

University of Piraeus

Department of Informatics

80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece

Tel: +30-2104142449

ytheod@unipi.gr

HERMES: A Trajectory DB Engine for Mobility-Centric Applications

Nikos Pelekis, University of Piraeus, Greece

Elias Frentzos, University of Piraeus, Greece

Nikos Giatrakos, University of Piraeus, Greece

Yannis Theodoridis, University of Piraeus, Greece

ABSTRACT

This paper presents HERMES, a prototype DB engine that defines a powerful query language for trajectory databases,

which enables the support of mobility-centric applications, such as Location-Based Services (LBS). HERMES extends

the data definition and manipulation language of Object-Relational DBMS (ORDBMS) with spatio-temporal

semantics and functionality based on advanced spatio-temporal indexing and query processing techniques. Its

implementation over two ORDBMS and its utilization in various domains proves the expressive power and

applicability of HERMES in different application domains where knowledge regarding mobility data is essential. As a

proof-of-concept, in this paper HERMES is applied to a case study related with vehicle traffic analysis, demonstrating

its flexibility and usefulness for delivering custom-defined LBS.

Keywords: HERMES, Trajectories, Mobility, Molile Data Management, Location-Based Services.

INTRODUCTION

Moving Object Databases (MOD) (Güting et al., 2000)
and more specifically Trajectory Databases (TD) be-

ing at the core of spatio-temporal database research,

have emerged due to the explosion of mobile devices

and positioning technologies. A MOD is the basic

component of any mobility-centric application (Kar-

gin, Basoglu, & Daim, 2009). However, although such

LBS applications are already in the air for some

years, the services currently provided are rather

naive, not exploiting the current software capabilities

and the recent advances in MOD research field. We

argue that one of the reasons for this is due to the

common practice in existing approaches, which pro-

vides services to mobile users by just taking into ac-

count the current location-time and velocity informa-

tion, arriving at the MOD server as a sequence of

updates. Given this model and the fact that LBS ap-

plications need to handle huge volumes of data, it

rationally arises that performance is a significant

problem; therefore, efficient query processing and

indexing techniques should be applied. Moreover,

this model has limited applicability in real-world

applications, since safe estimations about future posi-

tions should involve past positions as well.

The key observation that motivates HERMES is that

the more the knowledge in hand about the trajectory

of a mobile user, the better the exploitation of the

advances in spatio-temporal query processing for

providing intelligent LBS. Based on this motivation,

the aim of this paper is to describe a robust frame-

work capable of aiding either an analyst working

with mobility data, or more technically, a developer

who models, queries a TD and builds a mobility-

centric application on top of the TD.

Moreover, given the ubiquitousness of location-

aware devices, databases handling moving objects

will, sooner or later, face enormous volumes of data.

It consequently arises that performance in the pres-

ence of vast data sizes, is a significant problem for

moving object databases and the only way to deal

with such enormous sizes is the exploitation of spe-

cialized access methods used for spatio-temporal

indexing purposes. The domain of spatio-temporal

indexing, as well as other related domains, such as

multimedia (Chatterjee, & Chen, 2010) and spatial in-

dexing, is dominated by the presence of the R-tree,

along with its variations and extensions. Among oth-

ers, 3D R-trees (Theodoridis, Vazirgiannis, & Sellis,

1996), TB-trees and STR-trees (Pfoser, Jensen, & Theo-

doridis 2000), and PA-trees (Ni, & Ravishankar, 2007)
are considered as extensions of the R-tree in the spa-

tio-temporal domain. As in the case of appropriate

moving object data types and methods for extending

the type system of ORDBMS, except the well-known

R-trees, which are suitable only for static spatial data,

none of the above proposals have been incorporated

into existing ORDBMS. Among them, the Trajectory

Bundle tree (TB-tree) (Pfoser et al., 2000), is adopted

in this work and appropriately designed and imple-

mented inside HERMES taking advantage of the index-

ing extensibility interface of ORDBMS. Being a

member of the R-tree family, TB-tree is able to sup-

port traditional queries such as range and distance-

based queries. At the same time, it supports objects

moving on the unconstrained space, and is the only

one that fulfills the need for trajectory preservation so

as to efficiently support trajectory-based operations.

Furthermore, apart from simple query operators

(e.g. range queries) natively supported by R-trees,

there is a variety of spatio-temporal operators which

require more sophisticated query processing tech-

niques in order to be efficiently processed. Among

them, an important class of queries is the so-called k

nearest neighbor (k-NN) search, where one is inter-

ested in finding the k closest trajectories to a prede-

fined query object Q (stationary or moving). Thus,

one of the challenges being present in the domain of

trajectory databases is to develop mechanisms to per-

form k-NN search on MODs exploiting spatio-

temporal indexes storing historical information.

Among the solutions proposed in the literature we

adopt the one proposed by (Frentzos, Gratsias, Pelekis,

& Theodoridis 2007) which efficiently supports Near-

est Neighbor (NN) queries over historical trajectory

data.

Finally, as we aim at providing a powerful toolkit

for analysts, HERMES provides qualitatively different

techniques for trajectory similarity search, which is

exploited to support trajectory clustering and classifi-

cation mining tasks that imply a way to quantify the

distance between two trajectories. More specifically,

we adopt a novel set of trajectory distance functions

(Pelekis, Kopanakis, Ntoutsi, Marketos, Andrienko &

Theodoridis, 2007; Pelekis, Andrienko, Andrienko, Kopa-

nakis, Marketos, & Theodoridis, 2010) based on primi-

tive (space and time) as well as derived parameters of

moving objects (speed, acceleration, and direction),

which are also capable to support sub-trajectory simi-

larity matching. The overall framework advances the

contribution of our approach by two inter-related

facts: firstly, the combination of the similarity opera-

tors in the extended with MOD semantics SQL-like

query language (using AND/OR clauses) provides

analysis functionality unmatched so far (e.g. “find

objects that moved closely in space but with very

dissimilar speed patterns”); secondly, the output of

each of the supported operators defines similarity

patterns that can be utilized to reveal local similarity

features (e.g. “find the most similar portions between

two, in general, dissimilar trajectories”).

Summarizing the previous discussion, the contri-

butions of the paper are the following:

• We present a datatype-oriented model and a

SQL-like query language for supporting TD on

top of OGC-compliant ORDBMS, while we de-

scribe the architecture of our server-side TD en-

gine and the interface for building advanced mo-

bility-centric applications.

• We demonstrate how novel, appropriate access

methods and advanced, non-trivial query opera-

tors are embedded inside extensible ORDBMS

providing efficiency and higher level analysis

functionality.

• We investigate the expressive power and flexibil-

ity of the produced query language via a real-

world application scenario.

• As a proof of concept, we have implemented the

proposed framework on top of a commercial

ORDBMS, namely Oracle, while our design has

also been successfully applied and repeated in

the open-source PostgreSQL with the PostGIS

spatial extension (Boulahya, 2009).
To the best of our knowledge, HERMES is the first

work that presents a complete set of state-of-the-art

query processing algorithms for TD, which has been

incorporated into state-of-the-art OGC-compliant

ORDBMS.

The outline of the paper is as follows: we first

present the data type system for TD introduced in

HERMES and then, we discuss implementation as-

pects. A representative set of methods that extend the

query language of an ORDBMS with spatio-temporal

semantics is then discussed. Subsequently, the archi-

tecture for implementing HERMES in a state-of-the-art

ORDBMS is presented, while a proof-of-concept

case study related with vehicle traffic analysis fol-

lows. We assess the applicability of the proposed

system in building other systems via presenting four

tools and corresponding application domains that

utilize HERMES as the platform for managing and

analyzing their movement related data. Finally, we

conclude the paper, also pointing out some interesting

future research directions.

A DATA TYPE MODEL FOR TRAJECTORY

DATABASES

Preliminaries of Trajectory Data Types

In order to define a data type model for TD, we

need to base on standard database types built into any

DBMS, as well as temporal and spatial types.

Temporal types are introduced by TAU Temporal

Literal Library (TAU-TLL) in (Pelekis, 2002), which

is the component of HERMES system responsible for

providing pure temporal object-relational functionali-

ty. TAU-TLL implements the Time Model, adopted by

the TAU Temporal Object Model, and augments the

four temporal literal data types found in ODMG ob-

ject model (namely, Date, Time, Timestamp and In-

terval) with three new temporal object data types

(namely, Timepoint, Period and Temporal Element).

TAU-TLL provides clear semantics about the time

boundaries, time order, time reference, temporal gra-

nularities, and the supported calendar.

On the other hand, spatial types (point, line seg-

ment, rectangle, etc.) are supported by an OGC Geo-

metry (i.e. a spatial type that conforms to the specifi-

cations of the Open Geospatial Consortium). Such a

spatial extension is found in several state-of-the-art

ORDBMS (e.g. DB2 spatial extender, MySQL spatial

extension, Oracle, Postgis, SQL Server) and provides an

integrated set of functions and procedures that enable

spatial data following the OGC standard to be effi-

ciently stored in a spatial database, accessed and

futher processed. Of course, the geometric operations

forming the behavior of spatial types supported by

these extensions, handle queries statically, meaning

that there exists no notion of time associated to the

spatial objects. This is exactly the target addressed in

the type system for trajectories that we propose in the

sequel.

In (Güting et al., 2000; Forlizzi, Güting, Nardelli, &

Schneider, 2000; Lema, Forlizzi, Güting, Nardelli, &

Schneider, 2003) the authors introduce the concept of

sliced representation, the basic idea of which is to

decompose the temporal development of a moving

value into fragments called “slices” such that within

the slice this development can be described by some

kind of “simple” function. This is illustrated in Fig-

ure 1 for a time-varying point (moving point).

yy'

xx'

tt'

t1 t4t3t2

t ε [t1, t2) -> Linear movement

t ε [t2, t3) -> Arc movement

t5

t ε [t3, t4) -> Const movement

t ε [t4, t5) -> Linear movement

Figure 1 Moving Point with var-

ious types of movement

In this work, we adopt and extend the sliced repre-

sentation concept and utilize it in the implementation

of the proposed type system. In order to use the sliced

representation to define a moving point (i.e. trajecto-

ry), one has to decompose the definition of a moving

point into several definitions, one for each of the slic-

es that corresponds to a simple function, and then

compose these sub-definitions as a collection to de-

fine the moving point. Each one of the sub-

definitions corresponds to a so-called unit moving

point.

In order to define a unit moving point, we need to

associate a period of time with the description of a

simple function that models the behavior of the mov-

ing point in that specific time period. Based on this

approach, two real world notions are directly mapped

to our model as object types, namely time period and

simple function. The first concept has been already

introduced as one of the temporal literal types in TLT

(closed-open period). The second concept is an object

type, named Unit_Function, defined as a triplet of (x,

y) coordinates together with some additional motion

parameters. The first two coordinates represent the

initial (xi, yi) and ending (xe, ye) coordinates of the

sub-motion defined, while the third coordinate (xc, yc)

corresponds to the centre of a circle upon which the

object is moving. Whether we have constant, linear or

arc motion between (xi, yi) and (xe, ye) is implied by a

flag indicating the type of the simple function. Since

we require that HERMES manages not only historical

data, but also online and dynamic applications, we

further let a Unit_Function to model the case where a

user currently (i.e., at an initial timepoint) is located

at (xi, yi) and moves with initial velocity v and accele-

ration a on a linear or circular arc route.

In the case of arc motions, following the categori-

zation of realistic arc motions initially discussed in

(Zhang, 2003), we classify them according to the qua-

drant the motion takes place and motion heading

(clockwise or counterclockwise). Figure 2 illustrates

one of the possible eight cases (e.g. quadrant I -

clockwise direction).

φ

Figure 2 Motion on a circular arc

For constant and linear motions, the interpolation

of a moving point’s location in an intermediate time-

point t is straightforward. For arc motions, there is

need of some trigonometric calculations. For the case

of Figure 2 the necessary operations are illustrated in

Eq. 1. Following a similar process, we develop all

kinds of arc functions in each quadrant and direction.

[) ()+∞∞−∈∈≥

×
−

−
+=

××+×=

×
××=

×+×+=⇒

−

,,,,0

2
)(

2

2

1

)
2

(2

),(),()(1_

1

2

φ

π
φ

φφ ιι

ei

tic

t

t

t

tttt

tttv

R

S

R

yy
Sin

tatvS

R

S
SinRL

SinLyCosLxyxtARC

(1)

Consequently, in the general case the

Unit_Function is defined as follows:

Unit_Function = d xi:double, yi:double,
xe:double, ye:double, xc:double, yc:double,

v:double, a:double, flag:TypeOfFunction

(2)

where ΠTypeOfFunctionΤ={PLNML_1, ARC_

1 2

3
4

<1..8>, CONST }, meaning 1
st
 order polynomial, one

of the eight possible circular arcs, and constant func-

tion, respectively.

Combining time period and unit function together,

the primitive Unit_Moving_Point is defined. This is a

fundamental type since it represents the smallest gra-

nule of movement of a trajectory. Formally:

Unit_Moving_Point =d p: period〈 SECOND〉,

m: Unit_Function

(3)

We now introduce the moving point type that

plays the dominant role in our spatio-temporal data

type system. The process that we followed to define

the moving point is to introduce it as a collection of

the corresponding unit moving point, which means,

in terms of object orientation, that there exists a com-

position relationship between the unit moving point

and the moving point. As such, the Moving_Point

object type is introduced as a collection of

Unit_Moving_Point object types. Formally:

Moving_Point =d { p:

set〈Unit_Moving_Point〉 | ∀ i, j ∈

ulong, 1≤ i, j≤

|set〈Unit_Moving_Point〉|: j= i+1 ⇒

pi.p < pj.p ∧ ¬overlaps(pi.p, pj.p) ∧ ∀ t ∈

double: inside(t, pi.p) ⇒ at_instant(p, t) ∈
OGC-GEOMETRYGTYPE=point }

(4)

In the following two sections we describe the in-

dexing capabilities of HERMES on the above defined

moving point data type, while we introduce the cor-

responding prerequisite data types.

Spatiotemporal Indexing in HERMES

In this section we briefly introduce the basic no-

tions of spatio-temporal indexing and present the TB-

tree which is adopted in this work and implemented

in HERMES. Similar to the original R-tree, the TB-tree

is a height-balanced tree with the index records in its

leaf nodes; leaf nodes contain entries of the same

trajectories, and are of the form S = 〈MBB, Orienta-

tion〉, where MBB is the 3D bounding box of the 3D

line segment belonging to an object’s trajectory (han-

dling time as the third dimension) and Orientation is

a flag used to reconstruct the actual 3D line segment

inside the MBB among four different alternatives that

exist (see Figure 4). Moreover, contrary to the well-

known B-tree, and similarly to the original R-tree,

internal and leaf node MBBs belonging to the same

tree level are allowed to overlap. Each internal or leaf

node in the tree corresponds to a physical disk page

(or disk block, which is the fundamental element on

which the actual disk storage is organized) and con-

tains between m and M entries (M is the node capaci-

ty and m in the case of TB-tree is set to 1).

Since each leaf node contains entries of the same

trajectory, the object id can be stored once in the leaf

node header. Therefore, TB-tree leaf nodes are of the

form 〈header, {Si}〉, where each Si = 〈MBBi Orienta-

tioni〉 and header = 〈id, #entries, ptrCur, ptrParent,

ptrNext, ptrPrevious〉 (in other words, the object iden-

tifier, the number of node entries and four pointers, to

the current, the parent, and the next and previous

nodes of the same trajectory). On the other hand,

non-leaf nodes are of the form 〈header, {Ei}〉, where

each Ei = 〈MBBi, ptri〉 with MBBi be the enclosing 3D

box of the child node pointed by ptri (a pointer to it),

and header = 〈#entries, ptrCur, ptrParent〉 simply

stores the number of node entries and a pointer to

itself and to its parent node. Furthermore, similar to

SETI (Chakka, Everspaugh, & Patel., 2003) and in order

to support high insertion rates, our TB-tree imple-

mentation uses an in-memory hashed front-line struc-

ture, which maintains tuples of the form 〈id, Pcurr,

Ncurr〉 with the object identifier id, its latest position

Pcurr = 〈tcurr, xcurr, ycurr〉 and a pointer Ncurr to the leaf

node containing Pcurr.

t3

t1

t7

t11

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Figure 3 The TB-tree structure

Figure 4 Alternative ways that a 3D line segment can

be contained inside a MBB

Given the size of a disk block, which is predeter-

mined by the operation system, the number of ele-

ments contained in a leaf of internal node in the tree

is resticted by it. Specifically, given that each Si is

contained in 25 bytes (4 bytes for each one of the 6

double precission numbers needed to describe the

MBB and 1 byte for the orientation flag) and the

header of each leaf node has the size of 16 bytes (4

Figure 5 TB-tree data types

bytes for each one of the object identifier, the

number of entries, and the four pointers), the total

leaf capacity in terms of trajectory segments is given

by Int(([page size]-16)/25); this number for a typical

page size of 4096 bytes results in 163 trajectory seg-

ments inside each leaf node. Following the same rea-

soning each internal tree node has a capacity of 170

entries, resulting in 170 child nodes.

The difference of the TB-tree with the majority of

the R-tree variations relies on the way the index is

built. Specifically, its insertion algorithm is not based

upon the spatial and temporal relations of moving

objects (or moving object segments) but it relies only

on the moving object identifier (id). When new line

segments are inserted, the algorithm searches for the

leaf node containing the last entry of the same trajec-

tory, and simply inserts the new entry in it, thus form-

ing leaf nodes that contain line segments from a sin-

gle trajectory. Furthermore, its split strategy is very

simple: when a leaf node is full, a new one is created

and is inserted at the right-end of the tree; due to the

monotonicity of time, this strategy ensures that tra-

jectories are organized monotonically inside the tree

structure, e.g., trajectory segments are organized by

time. For each trajectory, a double linked list con-

nects the leaf nodes that contain its portions together

(Figure 3), resulting in a structure that can efficiently

answer trajectory-based queries.

The TB-tree Data Types

In this section we introduce the data types required

for embedding the TB-tree in an ORDBMS that sup-

ports moving objects. We should note that these data

types are transparent to the user of HERMES and their

usage is just for the internal construction of the tree.

The implementation of a tree-based index under the

object-relational model follows a number of well-

known rules and techniques, such as implementing

different object classes for each one of the basic tree

elements, namely, tree nodes (root, internal nodes,

leafs) and node elements.

 Figure 5 provides an abstract, though insightful,

view of the index organization, along with the con-

nection with the rest of the HERMES data types in the

form of a UML class diagram describing the struc-

ture’s primitives. The left part of the diagram depicts

the objects participating in the index formation. Fol-

lowing a top-down description, the tbTreeIdx class is

used mainly for completeness as an abstraction of the

corresponding part of the model and it refers to the

definition of TB-tree index on the table where the

actual trajectory data are stored. Since the main tra-

jectory table may initially be empty, the correspond-

ing aggregation with the lower-level tbTreeElement

class possesses a cardinality of «0..*».

Descending the diagram, we observe that the

whole arrangement is separated in two kinds of TB-

tree Node types. Namely, the tbTreeNode Class re-

garding the internal nodes of the tree structure and

the tbTreeLeaf class used to represent the leaf nodes

of the index where trajectory segments are stored.

Given that the size of each leaf node is predetermined

and equivalent to the chosen disc block size, its ca-

pacity in terms of trajectory line segments is also

predefined (following the previous discussion, a page

size of 4096 bytes results in leaf nodes fitting no

more than 163 segments). As a consequence, exceed-

ing the aforementioned size, in terms of leaf node

entries, causes segments of the same trajectory to be

stored in different leaf nodes which remain connected

by means of a double linked list. This is denoted us-

ing an association termed as “linked”. Note that the

head leaf of the list might be connected to at most 1

(or 0 when the trajectory fits in a block) other leaves

and the same holds for the tail of the arrangement.

Each intermediate node is essentially linked to two

other peers. This explains the cardinality of the re-

spective association.

A tbTreeLeaf includes a number of leaf entries

(tbTreeLeafEntry in Figure 5), each consisting of the

MBB (tbMBB in the figure) that surrounds the trajec-

tory segment kept in the leaf entry, along with an

integer number 1-4 denoting its orientation; tbMBBs

is composed by a MinPoint and a MaxPoint of

tbPoint type which are the lower left and upper right

of the box, respectively in the spatio-temporal space,

while tbpoint has only a property of tbX collection

type, which is an array of size 3 used to hold triplets

(x,y,t) of time-stamped positions forming the entire

object’s trajectory. More spectifically, the attributes

of tbTreeLeaf are:

• MoID of integer type which is the global tra-

jectory identifier,

• ptrCurrentNode of integer type, being the

current node’s identifier encapsulated in the

object to facilitate implementation issues,

• ptrParentNode of integer type, representing

a pointer to the parent of the current node

used to ascend the tree when necessary,

• ptrPreviousNode of type integer, which is a

pointer to the node containing the previous

fragment of the same trajectory,

• ptrNextNode of type integer, which is a

pointer to the node containing the next

fragment of the same trajectory,

• LeafEntries, a collection of tbTreeLeafEntry

type with fixed capacity, which involves the

current leaf entries as previously described,

and,

• count of integer type that holds the cardi-

nality of LeafEntries.

Formaly, given the leaf capacity LeafCapacity,

i.e., the maximum number of leaf entries that may be

contained in a leaf node, we define the following

types:

tbPoint=d{tbX:set〈double〉| |tbX|=3} (5)

tbMBB=d{〈MinPoint:tbPoint,

MaxPoint:tbPoint〉| ∀ 0≤i≤2,
MinPoint.x(i)<=MaxPoint.x(i)}

(6)

tbTreeLeafEntry=d{〈MBB:tbMBB,

Orientation: short〉 | Orientation<4}
(7)

tbTreeLeaf=d{〈MovingObjectId:long,

ptrCurrentNode:long,

ptrParentNode:long, ptrNextNode:long,

ptrPreviousNode:long, LeafEntries:

set〈tbTreeLeafEntry〉, count:long |

|LeafEntries|≤ LeafCapacity,

count=|LeafEntries|〉 }

(8)

Similarly, a tbTreeNode contains a set of tbTreeNo-

deEntry objects; each tbTreeNodeEntry encloses all

the leaf or node entries contained in the sub-tree start-

ing with this node as root. More spectifically, its

attributes involve:

• ptrCurrentNode of integer type, which is the

current node’s identifier encapsulated in the

object to facilitate implementation issues,

• ptrParentNode of integer type, which is a

pointer to the parent of the current node used

to ascend the tree when necessary,

• NodeEnties, a collection of tbTreeNodeEntry

type with fixed capacity, which involves the

current node entries as previously described,

and,

• count of integer type to hold the cardinality

of NodeEntries.

Formally, given the node capacity NodeCapacity we

define:

tbTreeNodeEntry=d{〈MBB:tbMBB, ptr: long〉 } (9)

tbTreeNode=d{〈ptrParentNode:long,

ptrCurrentNode:long, NodeEntries:

set〈tbTreeNodeEntry〉, count:long |

|NodeEntries|≤ NodeCapacity,

count=|NodeEntries|〉 }

(10)

Eventually, the two interfaces of Figure 5

to_tbTreeLeafEntry, to_Unit_Moving_Point provide

essential mechanisms for object transformation from

one type to the other.

The following sections describe the design deci-

sions and the implementation details for mapping the

TD type system into extensible ORDBMS, as well as

essential functionality for extending SQL-like query

languages with TD querying constructs.

ON THE PHYSICAL IMPLEMENTATION OF THE

HERMES TD TYPE SYSTEM

The physical representation of the data types reflects

the structures that are necessary in order to capture

the semantics and implement the methods of these

data types. In this section, we discuss how the types

abstractly described in the previous section are

mapped to physical structures for storing them into

an ORDBMS with an OGC-compliant spatial exten-

sion.

Implementation of the Primitive Data Types

The primitive data types of HERMES are the

Unit_Function, the Unit_Moving_Point and the Mov-

ing_Point. Unit_Function is constructed as an octave

of real numbers and a flag indicating the type of the

simple function. In the current version, three types of

functions are supported, namely polynomial of first

degree, circular arc and the constant function. The

modeling of Unit_Function is extensible; for exam-

ple, if one wishes to add interpolations with spline or

polynomials with degree higher than one, then what

is only needed to be done is the addition (if neces-

sary) of the appropriate variables as attributes of the

object and the implementation of such a function.

We should note that we model a moving point that

changes discretely for a period of time by setting all

Unit_Function objects of the corresponding unit

moving point to be constant functions. Due to the fact

that the coordinates represented by these

Unit_Function objects do not change for this period

of time, it is equivalent to taking a snapshot of the

moving point, which is valid for the entire period. If

at least one of these unit functions is not constant

then the moving point is continuous for this period of

time.

Finally, we construct a Moving_Point object type

as a collection of Unit_Moving_Point objects (i.e.

pointer to a nested table or a varying length array (i.e.

varray), depending on the underlying ORDBMS, of

Unit_Moving_Point objects), which in turn are de-

fined as objects consisting of two attributes. The first

attribute is the time period during which the other

attribute is defined. The time period is expressed as

an open-closed Period object, while the other

attribute is of Unit_Function object type, whose do-

main of definition is the set of real numbers inside

the open interval [t1, t2), where t1 is the starting point

of the period and t2 is the ending point of the period.

Implementation of the TB-tree Data Types

Regarding the data types required for the TB-tree

index, they are mainly implemented as objects with

simple attributes and arrays of attributes. Specifical-

ly:

• tbPoint is constructed as a standard array of

real values with its cardinality set to 3 (x, y

and t)

• tbMBB is constructed by two attributes of

type tbPoint

• LeafEntry is constructed by an attribute of

tbMBB type and another one of integer type

taking values from 1 to 4, representing one

among the four possible orientations that a

line segment may have inside its MBB.

• tbTreeLeaf is constructed by the integer val-

ue of MovingObjectId, and a set of pointers

(integer values), i.e., ptrCurrentNode,

ptrParentNode, ptrPreviousNode and ptr

NextNode. It also contains a standard array

of tbTreeLeafEntries with predetermined

size LeafCapacity, and an integer value con-

taining the number of occupied entries in-

side the array.

• Similarly, a tbTreeNode is constructed by the

two pointers (integer values), ptrCurrent-

Node and ptrParentNode, and a standard ar-

ray of tbTreeNodeEntries with predeter-

mined size NodeCapacity. Finally, an integ-

er value containing the number of occupied

entries inside the aforementioned array is

employed inside the tbTreeNode structure.

Regarding the implementation of the TB-tree in

the HERMES a number of tables constituting the pri-

mary storage elements of index data are employed.

Specifically, following the UML of Figure 5, the ba-

sic data types are stored in the following tables which

are automatically created/dropped upon the respec-

tive index creation/drop:

• movingobjects: The movingobjects is an aux-

iliary table used to store a pointer to the index

leaf where the last part of a trajectory is stored

(Frentzos, 2008). As such, it contains only 2

columns for the trajectory id, and for the

pointer integer values.

• tbTtreeidx_non_leaf: This is the table storing

the internal tree nodes. It actually contains

tuples of the form (NodeId, tbTreeNode),

where NodeId=tbTreeNode.ptrCurrentNode.

• tbTreeidx_leaf: This is the table storing the

tree leaf nodes; it also contains tuples of the

form (LeafId, tbTreeLeaf) where LeafId =

tbTreeLeaf.ptrCurrentNode.

EXTENDING HERMES WITH OBJECT METHODS AND

OPERATORS

In this section, we present the operations of the mov-

ing types introduced by HERMES classified into ap-

propriate categories that enable us to describe and

analyze the new query capabilities. The identifiable

classes of operations that HERMES supports are:

i) Predicates and projection operations: operations

that return boolean values concerning topological

and other relationships (e.g. intersection, within

distance, etc.), operations that restrict and project

moving types to temporal (e.g. at_instant,

at_period) and spatial domain (e.g. trajectory).

ii) Numeric operations: functions that compute a

numeric value (e.g. speed).

iii) Distance functions: a set of trajectory distance

functions based on primitive (space and time) as

well as derived parameters of trajectories (speed,

acceleration, and direction).
iv) Index maintenance: necessary operations for

creating, dropping and updating the TB-tree in-

dex.

v) Index operators: several advanced algorithms for

efficient query processing of movement data.

The following sections describe the functionality

of selected operations, representative of each class.

The interested reader may find more operations in

(Pelekis, & Theodoridis, 2010).

Predicates and projection operations

HERMES provides a rich palette of object methods of

special interest to describe relationships between

moving types that have been proposed in the litera-

ture. Subsequently, we present the operations and the

semantics behind these methods. Most of these op-

erations come with two different overloaded signa-

tures, modeling different semantics: the first signa-

ture is time-dependent, meaning that the outcome of

the operation is related to a user-defined time point,

while the second is time-independent. For simplicity

herein we present only one of the two, i.e. the most

interesting. Also, many HERMES object methods ac-

cept a tolerance parameter which is usually a reflec-

tion of how accurate or precise users perceive their

spatio-temporal data to be.

Op1. boolean f_within_distance (distance, Mov-

ing_Point, tolerance, Timepoint): This predicate de-

termines whether two moving points are within some

specified Euclidean distance from each other at a

user-defined time point. After mapping the moving

points to spatial points at the given instant, the func-

tion returns TRUE for object pairs that are within the

specified distance; returns FALSE otherwise.

Op2. Unit_Moving_Point unit_type (Timepoint):

This operation identifies (and returns) the unit-

moving point whose attribute time period (Period

object) “contains” the user-defined time point (Time-

point object). In other words, it returns that unit-

moving point where the time instant represented by

the argument Timepoint object is “inside” the time

period that characterizes the unit-moving point.

Op3. Geometry at_instant (Timepoint): The

at_instant operation maps the mathematical descrip-

tion of a unit function object (see formulas 1) to a

spatial point object, where the moving point resists at

the given timepoint.

Op4. Moving_Point at_period (Period): The

at_period object method is an operation that restricts

the moving point to the temporal domain. In other

words, by using this function the user can delimit the

time period that is meaningful to ask the projection of

the moving object to the spatial domain.

There are more operations for performing similar

type of projections, like the at_point and

at_linestring methods that either restricts a moving

point to a static point or linestring geometry, respec-

tively, or return the temporal point or period that the

restriction is valid.

Op5. Geometry f_trajectory (): This function si-

mulates the route traversed by a Moving_Point. More

specifically, this projection of the movement of a

Moving_Point to the Cartesian plane is done by map-

ping the time-dependent coordinates of the object at

the sampled time instants of the Unit_Moving_Point

objects that compose the Moving_Point. Figure 6

illustrates this operation.

 x

Moving_Point

Trajectory

y

t

Figure 6 The trajectory of a Moving_Point

Op6. Moving_Point f_intersection (Geometry, to-

lerance): The f_intersection object method returns

takes as a parameter a polygon geometry and returns

the portion of the moving point inside the given re-

gion.

Numeric operations

HERMES supports a special class of object methods

that compute either a numeric value or quantify a

property related with the rate of change of a trajecto-

ry, as moving points are time-dependent objects.

More specifically, we provide the subsequent opera-

tions:

Op7. number f_length (tolerance, Timepoint): The

f_length object method computes the length of the

route of a Moving_Point when projected at the Carte-

sian plane at a user-defined time point.

Op8. number f_speed (Timepoint): The speed op-

eration returns a number representing the speed of a

moving point at a specific timepoint. The algorithm

that implements the speed method is based on the

time derivative of the distance function as described

by Formula 1. This function is extracted from the

Unit_Function object of the corresponding

Unit_Moving_Point.

Op9. number f_direction (Moving_Point, Time-

point): The f_direction function returns the angle of

the line from the first to the second moving point

(measured in degrees, 3600 <≤ angle), after these

have been projected to the Cartesian plane at a specif-

ic time point. The computed angle is the one formed

by the conceptual line segment that joins the two

points and the xx’ axis.

Based on the above method HERMES supports two

sets of operations that provide predicate functionality

on directional relationships between moving objects.

The first set consists of four operations (namely,

f_west, f_east, f_north, and f_south) each of which

returns a Boolean value depending on whether the

moving object is e.g. west from the a given moving

or static point parameter, as well as a range of angles

that puts some constraints in the directional relation-

ship. Similarly, the second set consists of four opera-

tions (namely, f_left, f_right, f_above, and f_behind)

that represent implicit directional relationships w.r.t.

the motion of the query object.

Distance functions

HERMES supports a set of query operators for similar-

ity search between moving points as these have been

introduced in (Pelekis et al., 2007). Two main types

of similarities are defined, namely, spatiotemporal

and (temporally-relaxed) spatial similarity, followed

by three variations, namely speed-pattern based, ac-

celeration-pattern based, and directional similarity.

More specifically:

Op10. number GenLIP(Moving_Point): The Gen-

eralized Locality Inbetween Polylines (GenLIP) dis-

tance between two moving points, returns an intuitive

value that implies the area (see the shaded area in

Figure 7) between the spatial projections of the two

trajectories.

Y

X

Area1

Areai

S

Q

S

Figure 7: Locality In-between 2D Polylines

Op11. number GenSTLIP(Moving_Point): The

Generalized SpatioTemporal LIP (GenSTLIP) func-

tion takes into account time, it operates on the origi-

nal 3D representation of moving points and as such

eliminates the time-relaxation of the GenLIP method

by requiring co-location and co-existence during the

lifetime of the moving points.

Op12. number GenSPSTLIP(Moving_Point):

Op13. number GenACSTLIP(Moving_Point): The

Generalized Speed-Pattern and Acceleration-Pattern

STLIP functions take also into account whether the

two involved moving points move with similar speed

(GenSPSTLIP) or acceleration (GenACSTLIP) pat-

terns.

Op14. number DDIST(Moving_Point):

Op15. number TDDIST(Moving_Point): The Di-

rectional Distance (DDIST) and Temporal DDIST

(TDDIST) are two other variations that quantify the

similarity of two moving objects according to their

heading pattern. The first variation operates on the

spatial projection of the objects, while the second

checks whether the change in the heading happens in

a synchronized way.

4.4 Index maintenance

Based on the extensible indexing capabilities pro-

vided by an ORDBMS each TB-tree owns the follow-

ing functions:

Op16. IndexCreate: creates the index tables (i.e

tbtreeidx_leaf, tbtreeidx_non_leaf) and populates the

data already inserted in the table on which the index

is created.

Op17. IndexInsert: performs insertions in the tree,

triggered by the insertion of a new trajectory on the

indexed table.

Op18. IndexUpdate: updates the tree every time a

new trajectory segment (i.e Unit_Moving_Point) is

inserted.

Op19. IndexDrop: drops the tables that store the

index data. This method is called when a DROP IN-

DEX statement is issued.

Functions IndexInsert and IndexUpdate call func-

tion TBINSERT which implements the TB-tree’s in-

sertion algorihm as described in (Pfoser et al., 2000).

Index operators

Range/timeslice queries, of the form “find all objects

located within a given area during a certain time

interval or time instance”, (Q2/Q1 in Figure 8), is a

straightforward extension of the respective 2D R-tree

algorithm, in the 3D space formed by the two spatial

and the one temporal dimension. This algorithm re-

cursively visits tree nodes, rejecting node MBBs that

does not overlap the query window, while following

the pointers from overlapping MBBs to their respec-

tive child nodes until all candidate leaf nodes have

been found. The algorithm starts by visiting the tree

root, checking whether the MBBs of the root entries

overlap the spatio-temporal query window Q. If a

node entry overlaps Q, the algorithm follows the

pointer to the corresponding child node, where it re-

peats recursively the same task. If the algorithm

reaches a leaf node, leaf entries are examined against

Q and if their MBB overlap, the algorithm reports

their ids.

t y

Q1

Q2

x

T1
T2

Q3

 T3

T4
Q4

t1

t2

t3

t4

Figure 8 Querying trajectory databases

Regarding the k nearest neighbor (k-NN) search,

(Frentzos et al., 2007) proposed a variety of solutions

for answering such queries. More specifically, given

as an example the trajectory database of Figure 8,
given a stationary (or moving) query point Q3 (Q4)

and a temporal query window [t1, t2] ([t3, t4]), (Frent-

zos et al., 2007) proposed several algorithms for find-

ing the moving object trajectory T3 (T4) that is closer

to the query object. Among them, the incremental

varations of the algorithms proposed in (Frentzos et

al., 2007) (IncPointNNSearch and IncTrajectoryNN-

Search) are shown to be more scalable, thus, being

good solutions to be implemented in the HERMES.

Here, we have also to point that the aforementioned

algorithms are capable to answer k-NN versions of

the respective queries as well.

More specifically, the algorithms proposed in

(Frentzos et al., 2007) traverse the tree structure in a

best-first way. The proposed algorithms use a priority

queue, in which the (node or leaf) entries of the tree

nodes are stored in increasing order of their distance

from the query object. At each tree node the algo-

rithm iterates through its entries checking whether the

lifetime of an entry overlaps the time period of the

query, calculating at the same time its distance from

the query object, which is used to store them in the

priority queue. At each algorithm’s iteration the first

entry is requested from the queue, until a leaf entry is

found, which is then reported as the query result. The

algorithms proposed in (Frentzos et al., 2007) are

incremental in the sense that the k-th NN can be ob-

tained with very little additional work once the (k-1)-

th NN has been found; therefore, are easily genera-

lized to the case where are the k>1 nearest neighbors

of a query object (stationary of moving point) are

requested. Given the above discussion, HERMES sup-

ports the following set of operators, namely, range
(Pfoser et al., 2000), Point and Trajectory Nearest

Neighbor (Frentzos et al., 2007) and spatio-temporal

topological (Pfoser et al., 2000) queries.

Op20.Multi_Moving_Point tb_mp_in_spatio tem-

poral_window(Geometry, Period): This function ex-

ecutes a range query against a table storing indexed

trajectories. It takes as arguments a standard spatial

window; therefore, geometry is restricted to rectangle

schemes, as well as a temporal period, and returns

trajectory a Multi_Moving_Point consisting of all

trajectory fractions fully contained inside the given

spatio-temporal window.

Op21. set〈integer, Unit_Moving_Point〉 In-

cPointNNSearch (Geometry, Period, k): This func-

tion executes a Point Nearest Neighbor query against

a table storing indexed trajectories. It takes as argu-

ments a query point, a temporal period, and the num-

ber of k closest nearest neighbors to be returned. It

returns trajectory ids, as well as the respective

Unit_Moving_Point that is closest to the query point

at the given time period.

Op22. set〈integer, Unit_Moving_Point〉
ΙncΤrajectoryΝΝsearch (identifier, k): executes a

trajectory Nearest Neighbor query against a table

storing indexed trajectories. It takes as arguments the

identifier of the trajectory to be used as query, and the

number of k closest nearest neighbors to be returned.

It returns trajectory ids, as well as the respective

Unit_Moving_Point that is closest to the query trajec-

tory during its life time.

Op23. set〈integer〉 TopologicalQuery(Geometry,

Period, mask): This function is used to retrieve the

trajectories that enter and/or leave a spatio-temporal

query window. The query parameters involve the

geometry of a (rectangle) area, a time period and a

MASK that declares the type of topological query.

Possible MASK (string) values can be ‘ENTER’,

‘LEAVE’, ‘ENTER_LEAVE’ depending on whether

the users are interested in trajectories that enter/leave

or enter&leave the area within the given time period.

HERMES ARCHITECTURE

HERMES can be utilized in a real world scenario to

assist a database developer in modeling, querying and

analyzing moving object databases. A straightforward

utilization scenario is to design and construct a spa-

tio-temporal object-relational database schema using

HERMES and build an application by transacting with

this database. Figure 9 illustrates such a scenario on

top of Oracle ORDBMS. In this case and in order to

specify the database schema, the database designer

writes scripts in the syntax of the Data Definition

Language (DDL), which in this case is the PL/SQL,

extended with the spatio-temporal operations pre-

viously introduced.

Figure 9 The architecture of the HERMES

To build an application on top of such a database

for creating objects, querying data and manipulating

information, the application developer writes a source

program (for instance) in Java (or JSP in case of

web-based applications) wherein he/she can embed

PL/SQL scripts that invoke object constructors and

methods from HERMES. The JDBC pre-processor

integrates the power of the programming language

with the database functionality offered by the ex-

tended PL/SQL and together with the ORDBMS Run-

time Library generate the application’s executable.

By writing independent stored procedures that take

advantage of HERMES functionality and by compiling

them with the PL/SQL Compiler, is another way to

build a spatio-temporal application. Figure 10 depicts

such an application which also acts as a web-based

visual query builder for HERMES.

Figure 10 A visual query builder for HERMES

AN APPLICATION OF HERMES TO VEHICLE TRAFFIC

ANALYSIS

To demonstrate the functionality of HERMES, in the

following paragraphs we present an application ex-

ample related to vehicle traffic analysis. The motiva-

tion is that a courier company, whose vehicles are

equipped with GPS devices transmiting their space-

time location to a central MOD, needs a flexible way

to manage and analyse the motion of the vehicles.

One can enumerate a series of benefits to be gained

from a possible optimization of the movements of the

couriers, such as, personnel’s control, better and fast-

er customer services, minimization of operational

costs, enhanced decision making. By utilizing this

application example, the expressive power and the

applicability of HERMES in such a commercial do-

main are demonstrated. We note that the subsequent

discussion and terminology follows the syntax of

HERMES as implemented in Oracle ORDBMS. We

have already mentioned that the core of HERMES has

also been implemented in (Boulahya., 2009) inside

another ORDBMS, namely the PostGIS. This actual-

ly proves the correctness of the design of HERMES on

top of extensible ORDBMS that have OGC-

compliant spatial extensions. The differences in the

syntax between the two implementations are minor

(mainly due to the syntax differences of the two static

spatial extensions) (Zimányi, 2010), while we are in

the process of testing the compatibility between the

results of the operations. In order to present the capa-

bilities of HERMES, we build the following database:

Highways (name: Varchar2, line:

 SDO_GEOMETRY)

Landmarks (name: Varchar2, kind: Varchar2,

 location: SDO_GEOMETRY)

Vehicles (id: Varchar2, type: Varchar2, route:

 Moving_Point)

Highways relation is a set of linestring geome-

tries along which the vehicles are supposed to be

moving. Landmarks relation contains locations of

certain landmarks, such as petrol stations, etc. Ve-
hicles relation identify the route of a lorry that is

modeled as a moving point, while type attribute

stamps each vehicle with a characteristic description

of each kind (e.g. truck, motorbike, etc.). Further-

more, field route of relation Vehicles is indexed by

a TB-tree.

In the following paragraphs, we illustrate a com-

posite spatio-temporal scenario (in the form of a se-

ries of queries) in the domain of the application ex-

ample. The linguistic description of each query is

followed by the implementation of the query in the

form of a PL/SQL block, as well as by an abstract

presentation of the way that such a query is resolved.

This scenario illustrates the expressive power and the

spatio-temporal query capabilities added to PL/SQL

by HERMES.

 (Q1) Find all vehicles moving inside a given

region and time period?

PL/SQL block for Q1:
DECLARE

region SDO_GEOMETRY :=
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(489048,4203749,

90032,4205990));
BEGIN

SELECT
TB_MP_IN_SPATIOTEMPORAL_WINDOW(
region, tau_tll.d_period_sec(
 tau_tll.D_Timepoint_Sec(2010,7,9,10,35,0),
 tau_tll.D_Timepoint_Sec(2010,7,9,10,55,0))
)
FROM Vehicles;

END;

The query Q1 is the classic spatio-temporal range

query that is answered with the employment of the

TB-tree operators, by simply invoking function

tb_mp_in_spatiotemporal_window. Actually, this is

the query depicted in the query builder in Figure 10.

(Q2) If vehicle ‘X’ is in the result set of Q1, when

and where did it enter the region?

PL/SQL block for Q2:
DECLARE

truckX Moving_Point;
truckX_IN_region Moving_Point;
temp_projection

TAU_TLL.TEMP_ELEMENT_SEC;
when TAU_TLL.TIMEPOINT_SEC;
where SDO_GEOMETRY;

BEGIN
SELECT route INTO truckX FROM Vehicles
WHERE id=’X’;
truckX_IN_region:=

truckX.f_intersection(region);
temp_projection:=

truckX_IN_region.f_temp_element();
when :=

temp_projection.te(
temp_projection.te.FIRST).b;

where := truckX_IN_region.f_initial();
END;

To address Q2, we demonstrate how we can re-

strict a moving point inside a static spatial region and

how to temporally and spatially project this restricted

moving point in its initial position. The result of such

an operation (f_intersection) is another

Moving_Point. By temporally projecting it

(f_temp_element) on the continuous time line and

finding the temporal element that consists of the time

periods for which are defined the unit moving objects

of the moving courier, we can estimate the timepoint

when initially entered the given region. In addition,

by applying the f_initial method, we can locate the

point that this happened.

(Q3) A variant of Q3 would be to find all

trajectories entering a given spatio-temporal range.

PL/SQL block for Q3:
SELECT * FROM TABLE(
 TB_TOPOLOGICAL_QUERY(
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(489048,4203

 749, 90032,4205990)),
 tau_tll.d_period_sec(
 tau_tll.D_Timepoint_Sec(2010,7,9,10,35,0),
 tau_tll.D_Timepoint_Sec(2010,7,9,10,55,0)),

 'ENTER'))

(Q4) What distance has vehicle ‘X’ travelled

inside the region?

PL/SQL block for Q4:
DECLARE

distance double;
BEGIN

distance:= LENGTH (
INTERSECTION (region,

truckX.f_trajectory()));
END;

This query is resolved by finding the intersection

of the region with the trajectory followed by the

courier (f_trajectory operation). This intersection is a

LineString geometry that restricts the route of the

courier inside the region and by applying the

LENGTH spatial operator upon the resulted Line-

String we compute the required distance.

(Q5) Give a list of options to the driver of vehicle

‘X’ to refuel the vehicle within the next 2km

PL/SQL block for Q5:
BEGIN

SELECT name, location FROM Landmarks
WHERE kind = ‘petrol station’ AND
truckX.f_within_distance(2000,location, 0.005,
TAU_TLL.now()) = ‘TRUE’;

END;

In order to provide the list of petrol stations (Q5),

we select landmarks that are petrol stations and the

courier is within the specified distance (f_within_
distance) from them at the time the query is invoked.

Based on related research work (Pelekis, Theodouli-

dis, Kopanakis, & Theodoridis, 2004) queries like the

above constitute a minimum functionality a MOD

system should provide. Furthermore, the usefulness

and applicability of the server-side extensions pro-

vided by HERMES have been proved in (Pelekis,

Theodoridis, Vaosinakis, & Panayiotopoulos, 2006)

and (Pelekis, Frentzos, Giatrakos, & Theodoridis,

2008) by developing benchmark queries proposed in

(Theodoridis, 2003) for the evaluation of systems

supporing Location-Based Services.

 BUILDING REAL MOBILITY-CENTRIC

APPLICATIONS ON TOP OF HERMES

The best way to evaluate HERMES is to assess the

realization of its initial goal, which is to provide a

complete framework for developing MOD-related

applications. In the previous section we provided a

sketch for building a specific application related to

vehicle traffic analysis, while in this section we dem-

onstrate this by briefly presenting successfull applica-

tions of HERMES in four different domains, namely in

trajectory data warehouses (i.e. TDW (Marketos et al.,

2008)), in moving object data mining query languag-

es (i.e. DAEDALUS tool (Ortale et al., 2008), in se-

mantic enrichment of movement patterns (i.e.

ATHENA tool (Baglioni, Macedo, Renso, Trasarti, &

Wachowicz, 2009)), and in privacy-aware trajectory

tracking query engines (i.e. HERMES++ tool (Gkoula-

las-Divanis, & Verykios, 2008)). We would like to note

that the above works are a subset of tools and me-

thods developed as a result of a European-wide re-

search project called GeoPKDD – (Geographic Pri-

vacy-Aware Knowledge Discovery and Delivery).

HERMES is also a prototype outcome of GeoPKDD

designed to be the MOD management infrastructure

of such tools. Of course, in order to support such di-

verse applications domains we have designed and

incorporated into HERMES several specialized opera-

tions (e.g. a trajectory anonymizer operator for

(Gkoulalas-Divanis, & Verykios, 2008)).

Trajectory data warehouses – Data Warehouses

have shown their importance in real-world applica-

tions (Rifaie, Kianmehr, Alhajj, & Ridley, 2009). TDW

aim at developing a multi-dimensional model suitable

for online analytical processing (OLAP) of trajectory

data, such as drill-down and roll-up operations. In

order to design a trajectory warehouse architecture,

one should first identify the differences from conven-

tional warehouse approaches and then to devise ap-

propriate extensions. There are three steps so as to

realize the development of a TDW. At the first step

the design of a MOD and of a multidimensional data

model (i.e. trajectory data cube) takes place. At the

second step, preprocessing (i.e. cleaning, consistency

checking) and loading of raw movement data into the

MOD occurs, while once trajectories have been

stored in the MOD, the Extract-Transform-Load

(ETL) phase is executed in order to feed the TDW

and the measures of the data cube are calculated. In

(Marketos et al., 2008; Leonardi et al., 2010; Raffaeta

et al. 2011) HERMES has been employed as the infra-

structure to develop the above described process in a

huge, real trajectory dataset, where due to the size of

the dataset, the existence of efficient, scalable query-

ing processing operators to support ETL was a key

requirement.

Moving object data mining query languages (MO-

DMQL) – In (Ortale et al., 2008) the authors pro-

posed DAEDALUS, a formal framework and system,

that defines knowledge discovery processes as a pro-

gressive combination of mining and querying opera-

tors. The heart of DAEDALUS is the MO-DMQL

query language that extends SQL in two aspects,

namely a pattern definition operator and functionality

to uniformly manipulate both raw trajectory data and

unveiled movement patterns. DAEDALUS system

has been implemented as a query execution layer on

top of the HERMES. More specifically, the role of

HERMES in DAEDALUS is two-fold; to act as a repo-

sitory for movement data and secondly to give the

basic building block that allows defining models’

representation and storage.

Semantic enrichment of movement patterns – Hav-

ing as aim to provide a model for the conceptual re-

presentation and deductive reasoning of trajectory

patterns obtained from mining raw trajectories, the

authors in (Baglioni et al., 2009) have developed

ATHENA tool, which employs ontologies for the

semantic enrichment of trajectories. This is achieved

by means of a semantic enrichment process, where

raw trajectories are enhanced with semantic informa-

tion and integrated with geographical knowledge

encoded in an ontology. To highlight this process

imagine that a user poses a query using the ontology

concepts where trajectories/patterns are classified by

a reasoner. The ontology is populated by instances

coming from a MOD storing semantic trajectories,

patterns and auxiliary geographical features. Again,

HERMES supports all the spatio-temporal data man-

agement requirements raised by ATHENA. The over-

all undertaking was evaluated in a real-world case

study posing as analysis objective the understanding

of tourist movements in Milan’s metropolitan area.

Privacy-aware trajectory tracking query engines –

Due to the very nature of movement data, lately a

new line of research has emerged that investigates

safeguards to enforce so as to ensure the privacy of

the individuals, whose movement is recorded.

HERMES++ (Gkoulalas-Divanis, & Verykios, 2008)

which has been designed on top of HERMES describes

such a privacy aware trajectory tracking query en-

gine, where subscribed users can gain restricted

access to an in-house trajectory data warehouse, to

perform certain analysis tasks. In addition to regular

queries involving non-spatial non-temporal attributes,

the engine supports a variety of spatiotemporal que-

ries, including range queries, nearest neighbor que-

ries and queries for aggregate statistics. The query

results are augmented with fake trajectory data

(dummies) to fulfill the requirements of K-

anonymity.

CONCLUSIONS AND OUTLOOK

In this paper, a data management framework for

TD, called HERMES, was introduced. This framework

is a system extension that provides spatio-temporal

functionality to OGC-compatible ORDBMS and sup-

ports mobility-centric applications. Future work in-

cludes inclusion of query optimization strategies us-

ing the extensibility interfaces of current ORDBMS

in order to enhance the performance of HERMES. Fur-

thermore, we plan to extend HERMES with data min-

ing query operators aiming at transforming the for-

mulated language to a data mining query language

for TD.

ACKNOWLEDGMENT

Research partially supported by the FP7 ICT/FET

Project MODAP (Mobility, Data Mining, and Priva-

cy) funded by the European Union (URL:

www.modap.org). Elias Frentzos is supported by the

Greek State Scholarships Foundation.

REFERENCES

Baglioni, M., Macedo, J.A.F., Renso, C., Trasarti, R., &

Wachowicz, M. (2009). Towards semantic interpretation of

movement behavior, In Proceedings of the 12
th
 AGILE

International Conference on Geographic Information

Science.

Boulahya., S. (2009). Représentation et interrogation de

données spatio-temporelles: Cas d’étude sur post-

gresql/postgis. Masters' Thesis, Department of Computer

and Decision Engineering, Université Libre de Bruxelles,

Brussels, Belgium, (in French).

Chakka, V.P., Everspaugh, A., & Patel., J. (2003). Indexing

large trajectory data sets with SETI. In Proceedings of

CIDR.

Chatterjee, K., & Chen, S.C. (2010). HAH-tree: towards a

multidimensional index structure supporting different video

modeling approaches in a video database management

system. International Journal of Information and Decision

Sciences (IJIDS), 2(2), 188-207.

Forlizzi, L., Güting, R. H., Nardelli, E., & Schneider, M.

(2000). A data model and data structures for moving ob-

jects databases. In Proceedings of the ACM SIGMOD Int’l

Conf. on Management of Data.

Frentzos, E. (2008). Trajectory data management. PhD

Thesis, Department of Informatics, University of Piraeus.

Frentzos, E., Gratsias, K., Pelekis, N., & Theodoridis Y.

(2007). Algorithms for nearest neighbor search on moving

object trajectories. Geoinformatica, 11(2), 159-193.

GeoPKDD (Geographic Privacy-aware Knowledge Dis-

covery and Delivery) FP6-14915 IST/FET Project, funded

by the European Commission. URL: www.geopkdd.eu.

Gkoulalas-Divanis, A., & Verykios, V. S. (2008, 07). A

privacy aware trajectory tracking query engine. ACM

SIGKDD Explorations, 10(1), 40-49.

Güting, R.H., Bohlen, M.H., Erwig, M., Jensen, C.S., Lo-

rentzos, N.A., Schneider, M., & Vazirgiannis, M. (2000). A

foundation for representing and querying moving objects.

ACM Transactions on Database Systems, 25(1), 1-42.

Kargin, B., Basoglu, N., & Daim, T. (2009). Adoption fac-

tors of mobile services. International Journal of Informa-

tion Systems in the Service Sector (IJISSS), 1 (1): 15-34.

Lema, J.A.C., Forlizzi, L., Güting, R.H., Nardelli, E., &

Schneider, M. (2003). Algorithms for moving objects data-

bases. The Computer Journal 46(6), 680-712.

Leonardi, L. Marketos, G., Frentzos, E., Giatrakos, N., Or-

lando, S., Pelekis, N., Raffaetà, A., Roncato, A., Silvestri,

C., & Theodoridis, Y. (2010). T-warehouse: visual olap

analysis on trajectory data. In Proceedings of the 26
th
 IEEE

International Conference on Data Engineering.

Marketos, G., Frentzos, E., Ntoutsi, I., Pelekis, N., Raffaeta,

A., & Theodoridis, Y. (2008). Building real-world trajecto-

ry warehouses”. In Proceedings of the 7
th
 International

ACM SIGMOD Workshop on Data Engineering for Wire-

less and Mobile Access.

Ni, Y., & Ravishankar, C. (2007). Indexing spatio-temporal

trajectories with efficient polynomial approximations,

IEEE Transactions on Knowledge Discovery, 19(5), 663-

678.

Ortale, R., Ritacco, E., Pelekis, N., Trasarti, R., Costa, G.,

Giannotti, F., Manco, G., Renso, C., & Theodoridis, Y.

(2008). The Daedalus framework: progressive querying

and mining of movement data. In Proceedings of the 16
th

ACM SIGSPATIAL International Conference on Advances

in Geographic Information Systems.

Pelekis, N. (2002). STAU: A spatio-temporal extension to

oracle dbms. PhD Thesis, UMIST, Department of Compu-

tation.

Pelekis, N., Frentzos, E., Giatrakos, N., & Theodoridis, Y.

(2008). Hermes: Aggregative lbs via a trajectory db engine.

In Proceedings of the ACM SIGMOD Conference.

Pelekis, N. Kopanakis, I., Ntoutsi, I., Marketos, G., An-

drienko, G., & Theodoridis, Y. (2007). Similarity search in

trajectory databases. In Proceedings of the 14
th
 IEEE Inter-

national Symposium on Temporal Representation and Rea-

soning (TIME 2007).

Pelekis, N., & Theodoridis, Y. (2010, 07). An oracle data

cartridge for moving objects. Information Systems Labora-

tory, Department of Informatics, University of Piraeus,

UNIPI-ISL-TR-2010-01.

http://isl.cs.unipi.gr/publications.html.

Pelekis, N., Theodoulidis, B., Kopanakis, I., & Theodoridis,

Y. (2004,06). Literature review of spatio-temporal database

models. Knowledge Engineering Review, 19(3), 235-274.

Pelekis, N., Theodoridis, Y., Vosinakis, S., &

Panayiotopoulos, T. (2006). Hermes – A framework for

location-based data management. In Proceedings of the

10th Int’l Conference on Extending Database Technology.

Pfoser, D., Jensen, C.S., & Theodoridis Y. (2000). Novel

approaches to the indexing of moving object trajectories. In

Proceedings of the International Conference on Very Large

Databases.

Raffaetà, A., Leonardi, L., Marketos, G., Andrieko, G.,

Andrienko, N., Frentzos, E., Giatrakos, N., Orlando, S.,

Pelekis, N., Roncato, A., & Silvestri C. (2011). Visual mo-

bility analysis using T-warehouse. International Journal of

Data Warehousing & Mining, to appear.

Rifaie, M., Kianmehr, K. , Alhajj, R. , & Ridley M. J.

(2009). Data modelling for effective data warehouse archi-

tecture and design. International Journal of Information

and Decision Sciences (IJIDS), 1(3), 282-300.

Theodoridis, Y. (2003). Ten benchmark database queries

for location-based services, The Computer Journal, 46(6),

713-725.

Theodoridis, Y., Vazirgiannis, M., & Sellis, T. (1996). Spa-

tio-temporal indexing for large multimedia applications. In

Proceedings of ICMCS.

Zhang, P. (2003). The spatial movement extensions of stau.

MPhil Thesis, UMIST, Department of Computation.

Zimányi, E. (2010). personal communication

