

On the Support of Mobility in ORDBMS

Nikos Pelekis (*) is a lecturer at the Department of Statistics and Insurance Science, University of Piraeus. Born in 1975, he received his B.Sc.

degree from the Computer Science Department of the University of Crete (1998). He has subsequently joined the Department of Computation in

the University of Manchester (former UMIST) to pursue his M.Sc. in Information Systems Engineering (1999) and his Ph.D. in Moving Object

Databases (2002). He has been working for almost ten years in the field of data management and mining. He has co-authored more than 40 re-

search papers and book chapters, he is a reviewer in many international journals and conferences. He has been actively involved in more than 10

European and National R&D projects. His research interests include data mining, spatiotemporal databases, management of location-based ser-

vices, machine learning and geographical information systems.

Nikos Pelekis

University of Piraeus

Department of Statistics and Insurance Science

80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece

Tel: +30-2104142449, Fax: +30-2104142264

npelekis@unipi.gr

Elias Frentzos, received his Diploma in Civil Engineering and MSc in Geoinformatics, both from NTUA. He also holds a PhD from the Depart-

ment of Informatics of the University of Piraeus where he is currently a Postdoc researcher, scholar of the Greek State Scholarships Foundation.

He has published more than 20 papers in scientific journals and conferences such as IEEE TKDE, KAIS, Geoinformatica, ACM SIGMOD and

IEEE ICDE. He has participated in several national and European research projects, and also involved in the development of several commercial

GIS-related applications and projects. His research interests include spatial and spatiotemporal databases, location-based services and geographi-

cal information systems.

Elias Frentzos

University of Piraeus

Department of Informatics

80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece

Tel: +30-2104142449

efrentzo@unipi.gr

Nikos Giatrakos is a PhD Candidate at the Department of Informatics, University of Piraeus (Greece), supervised by Assoc. Professor Yannis

Theodoridis. He received his Bachelor of Science degree (2006) in Informatics from the University of Piraeus and his Master of Science degree

(2008) in Information Systems from the Athens University of Economics and Business (Greece). He has coauthored several journal and confe-

rence papers including ACM SIGMOD and IEEE ICDE. His research interests include distributed mining on data streams, mining spatiotemporal

streaming data and trajectory warehousing. Since 2007, he has been involved in various national and European research projects.

Nikos Giatrakos

University of Piraeus

Department of Informatics

80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece

Tel: +30-2104142437

ngiatrak@unipi.gr

Yannis Theodoridis is Associate Professor with the Department of Informatics, University of Piraeus (UniPi), where he currently leads the Infor-

mation Systems Lab (http://infolab.cs.unipi.gr). Born in 1967, he received his Diploma (1990) and Ph.D. (1996) in Electrical and Computer En-

gineering, both from the National Technical University of Athens, Greece. His research interests cover database management, geographical in-

formation management, data mining and knowledge discovery. Apart from several national-level projects, he was scientist in charge and coordi-

nator of two European projects, namely PANDA (FP6/IST, 2001-04) and CODMINE (FP6/IST, 2002-03), on pattern-based management and

privacy-preserving data mining, respectively, also participating in GeoPKDD (FP6/IST, 2005-09), MODAP (FP7/ICT, 2009-12) and MOVE

(COST, 2009-12), on moving objects database management and knowledge discovery. He has or is serving as general co-chair for SSTD'03 and

ECML/PKDD'11, vice PC chair for IEEE ICDM'08, member of the editorial board of the Int'l Journal on Data Warehousing and Mining

(IJDWM), and member of the SSTD endowment. He has co-authored three monographs and over 80 refereed articles in scientific journals and

conferences with more than 600 citations. He is member of ACM and IEEE.

Yannis Theodoridis

University of Piraeus

Department of Informatics

80 Karaoli-Dimitriou St., GR-18534 Piraeus, Greece

Tel: +30-2104142449

ytheod@unipi.gr

On the Support of Mobility in ORDBMS

Nikos Pelekis, University of Piraeus, Greece

Elias Frentzos, University of Piraeus, Greece

Nikos Giatrakos, University of Piraeus, Greece

Yannis Theodoridis, University of Piraeus, Greece
ABSTRACT

Composition of space and mobility in a unified data framework results into Moving Object Databases (MOD).

MOD management systems support storage and query processing of non-static spatial objects and provide essential

operations for higher level analysis of movement data. The goal of this paper is to present HERMES MOD engine that

supports the aforementioned functionality through appropriate data types and methods in Object-Relational DBMS

(ORDBMS) environments. In particular, HERMES exploits on the extensibility interface of ORDBMS that already

have extensions for static spatial data types and methods that follow the Open Geospatial Consortium (OGC)

standard, and extends the ORDBMS by supporting time-varying geometries that change their position and/or extent

in space and time dimensions, either discretely or continuously. It further extends the data definition and

manipulation language of the ORDBMS with spatio-temporal semantics and functionality.

Keywords: HERMES, Moving Object Databases, Spatio-temporal Data Management, ORDBMS extension, OGC
spatial types.

INTRODUCTION

Due to the explosion of mobile devices, the position-

ing technologies and the low data storage cost, one of

the most important assets of knowledge intensive

organizations working with movement data, traffic

engineering, climatology, social anthropology and

zoology, studying vehicle position data, hurricane

track data, human and animal movement data, respec-

tively etc.) is the data itself. Spatial database research

has focused on supporting the modeling and querying

of geometries associated with objects in a database

(Güting, 1994). Regarding static spatial data, the ma-

jor commercial as well as open source database man-

agement systems (e.g., DB2, MySQL, Oracle, Postgis,

SQL Server) already provide appropriate data man-

agement and querying mechanisms that conform to

Open Geospatial Consortium (OGC) standards (Open

geospatial consortium, 2010). On the other hand, tem-

poral databases have focused on extending the know-

ledge kept in a database about the current state of the

real world to include the past, in the two senses of

“the past of the real world” (valid time) and “the past

states of the database” (transaction time) (Tansel et

al., 1993). About a decade’s effort attempts to achieve

an appropriate kind of interaction between both sub-

areas of database research. Spatio-temporal databases

are the outcome of the aggregation of time and space

into a single framework (Koubarakis, & Sellis, 2003)
with up-to-date reviews of spatio-temporal models

and systems proposed in the literature found in (Pele-

kis, Theodoulidis, Kopanakis, & Theodoridis, 2004) and

(Frentzos, Pelekis, Ntoutsi, & Theodoridis, 2008), respec-

tively. As delineated in these papers, a serious weak-

ness of existing approaches is that each of them deals

with few common characteristics found across a

number of specific applications. Thus the applicabili-

ty of each approach to different cases, fails on spatio-

temporal behaviors not anticipated by the application

used for the initial model development. For the pre-

vious reasons, the field of the MOD has emerged

(Güting, 2000), and has been shown (Pelekis et al.,

2004) that it presents the most desirable properties

among the proposals. However, although a lot of re-

search has been carried out in the field of MOD, the

efforts are independent trying to deal with specific

problems and do not pay attention into embedding

the proposed solutions (i.e. query processing algo-

rithms) on top of existing DBMS where real world

organizations base on. Towards this direction, the

pioneer work of (Güting et al., 2000; Forlizzi, Güting,

Nardelli, & Schneider, 2000; Lema, Forlizzi, Güting, Nar-

delli, & Schneider, 2003) have proposed the SECON-

DO system (Almeida, Güting, & Behr, 2006). However,

SECONDO in contradiction to our approach is a

stand-alone system, built from scratch, its design

does not utilize the provided spatial extensions of

existing ORDBMS, it does not conform to the OGC

standards as it does not follow any predefined data

model (Dieker, & Güting, 2000) and as such it is not

embeddable into the DBMS infrastructure of an or-

ganization, where pure static spatial, as well as other

types of data is stored.

The aim of this paper is to describe a robust

framework capable of aiding either an analyst work-

ing with mobility data, or more technically, a MOD

developer in modeling, constructing and querying a

database with objects that change location, shape and

size, either discretely or continuously in time. Objects

that change location or extent continuously are much

more difficult to accommodate in a database in con-

trast to discretely changing objects. Supporting both

types of spatio-temporal objects (the so-called mov-

ing objects) is exactly the challenge adopted by this

paper. In detail, we present an integrated and com-

prehensive design of moving object data types in the

form of extensible modules that can be embedded in

OGC-compliant Object-Relational Database Man-

agement Systems (ORDBMS) taking advantage of

their extensibility interface. The proposed HERMES

MOD Engine provides the functionality to construct a

set of moving, expanding and/or shrinking geome-

tries, which are just variables of simple continuous

functions that obtain hypostasis when projected to the

spatial domain (i.e. becoming OGC spatial data

types) at a specific instance in time. Each one of

these moving objects is supplied with a set of me-

thods that facilitate the user to query and analyze

spatio-temporal data. Embedding this functionality

offered by HERMES in an ORDBMS data manipula-

tion language, one obtains a flexible, expressive and

easy to use query language for moving objects that

was not available so far in real OGC-compliant

ORDBMS.

The implementation of such a framework is based

on a set of basic types including base data types (i.e.

integer, real, string and boolean, available in all

DBMS), together with spatial data types offered by

spatial extensions of OGC-compliant ORDBMS and

temporal data types introduced in a temporal exten-

sion, called TAU Temporal Literal Library (TAU-

TLL) (Pelekis, 2002). Based on these temporal and

spatial object data types and the ideas behind the ab-

stract data types for moving objects that have been

introduced in (Güting et al., 2000), this paper dis-

cusses the design principles and the implementation

issues concerning HERMES. The values of such mov-

ing types are functions that associate each instant in

time with an OGC spatial type, in contradiction to

(Güting et al., 2000) whose design does not follow the

OGC standards. A rich palette of suitable operations

is defined on these types to support querying and to

make moving object data management easier, more

natural and sensible to users and applications.

Summarizing the previous discussion, the contri-

butions of the paper are the following:

• We present a datatype-oriented model and an

extension of SQL-like query language for sup-

porting the modeling and querying of MOD on

top of OGC-compliant ORDBMS.

• We describe the physical representation design

decisions and the architectural aspects of our

server-side MOD database engine, as well as the

formulated interface (in terms of operators regis-

tered in the ORDBMS) for building advanced

mobility-related applications.

To the best of our knowledge, HERMES is the first

work that provides a complete framework for build-

ing MOD applications, which has been incorporated

into state-of-the-art OGC-compliant ORDBMS.

The outline of the paper is as follows: we first

present the data type system for moving objects in-

troduced in HERMES in an abstract way and then, we

discuss implementation aspects. An appropriate set of

operations that extend the data definition and mani-

pulation language of an ORDBMS with spatio-

temporal semantics is subsequently discussed. An

extensive discussion on the comparison of HERMES

functionality with related work appears follows. Fi-

nally, we conclude the paper, also pointing out some

interesting future research directions.

A DATA TYPE SYSTEM FOR MOVING OBJECTS

The basic modeling primitives of the proposed mov-

ing object data type system are objects and literals.

An object is a computational entity with a unique

object identifier that encapsulates both state and be-

havior. The state of an object is defined by the values

it carries for a set of properties. These properties can

be attributes of the object itself or relationships be-

tween the object and one or more other objects. The

behavior of an object is defined by a set of operations

that can be executed on or by the object. On the other

hand, a literal is a computational entity that has only

state. Let V be a universe of all possible computation-

al entities, containing objects and literals. A type is a

set of elements of V that obey some technical proper-

ties. Each type is associated with a predicate function

defined over the V. A value v∈V satisfies a type iff

the predicate is true for that value. A value that satis-

fies a type is called member of the type. A type system

is a collection of types.

Types in the so-called MOD Type System are di-

vided into Base Types BT, pure Temporal Types TT,

pure OGC-compliant Spatial Types ST and Moving

Types MT, i.e., the proposed MOD Type System is

defined as:

MOD = BT ∪ TT ∪ ST ∪ MT (1)

Figure 1 illustrates, in UML notation, all types in

MOD Type System.

M O D

T y p e S y s t e m

B a s e T y p e s

B T

M o v in g T y p e s

M T

S p a t ia l T y p e s

S T

T e m p o r a l T y p e s

T T

s h o r t

d o u b le

lo n g

e n u m

s tr in g

c h a r

b o o le a n

f lo a t

u n s ig n e d s h o r t

u n s ig n e d lo n g

In te r v a l

T e m p o ra l

E le m e n t

P e r io d

T im e p o in t

T im e s ta m p

T im e

D a te

M o v in g

P o in t

M o v in g

O b je c t

M o v in g

C o lle c t io n

M o v in g

P o ly g o n

M o v in g

C ir c le

M o v in g

L in e S tr in g

M o v in g

R e c ta n g le

G E O M E T R Y

OGC

Geometry

Figure 1 MOD Type System

Base, Temporal and Spatial Types

Base types are the standard database types built into

any DBMS, such as integer and real (float) numbers,

alphanumeric strings and booleans. These types form

a subset of the Atomic Literal Types needed to define

temporal types. The set ALT of Atomic Literal Types

is defined as:

ALT = Π booleanΤ ∪ Π charΤ ∪ Π shortΤ ∪

 Π ushortΤ ∪ Π longΤ ∪ Π ulongΤ ∪

 Π floatΤ ∪ Π doubleΤ ∪ Π octetΤ ∪

 Π stringΤ ∪ Π enumΤ

(2)

where Π *Τ denotes the domain of type *. For exam-

ple, Π booleanΤ = {true, false}, Π charΤ = {x | x∈

ASCII}, and so on.

Moving from base to temporal types, the set TLT

of Temporal Literal Types is defined as (Kakoudakis,

1996; Pelekis, 2002):

TLT = Π dateΤ ∪ Π timeΤ ∪ Π timestampΤ ∪

 Π intervalΤ ∪ Π timepoint〈 g〉 Τ ∪

 Π period〈 g〉 Τ ∪

 Π temporalElement〈 g〉 Τ

(3)

Basically, TLT augments the four temporal literal

data types found in ODMG object model (Cattel, &

Barry, 1997) (namely, Date, Time, Timestamp and In-

terval) with three new temporal object data types

(namely, Timepoint, Period and Temporal Element).

The widely used Gregorian calendar is implemented

and the discrete model of time is adopted, where time

is isomorphic to the integers because of its better re-

presentation and manipulation on databases. Time

axis is partitioned into a finite number of discrete

segments, called granules. The choice of a partition-

ing scheme is termed as granularity. The granularity

of the timestamp that a fact is associated with denotes

the precision to which the timestamp can be

represented. Time order refers to whether the time

axis can be always considered as linear or non-linear.

In the linear model, time advances from past to future

in a totally ordered form. The non-linearity of the

time axis deals with aspects of the time such as peri-

odic time and branching time (Theodoulidis , & Louco-

poulos, 1991). Formally:

date =d year: GrYear, month: GrMonth, day:

GrDay

time =d hour: GrHour, minute: GrMinute,

second: GrSecond

timestamp =d date || time

interval =d day: long, hour: GrHour, minute:
GrMinute, second: GrSecond

timepoint〈 g〉 =d tp〈g〉 ∪ STV

period〈g〉=d{ start:Timepoint〈g〉,
end:Timepoint〈g〉 | start ≤ end}, g ∈
granularity

temporalElement〈 g〉 =d {te: set〈period〈g〉〉|

∀i, j ⋅ i≠j ⇒ tei ∩ tej= ∅}

(4)

where the set granularity that contains elements that

represent time accuracy according to the time divi-

sions in the Gregorian calendar:

Π granularityΤ = {YEAR, MONTH, DAY, HOUR,

MINUTE, SECOND}, tp〈year〉 =d year: GrYear ,
tp〈month〉 =d tp〈year〉 || month: GrMonth , ...,

tp〈second〉 =d tp〈minute〉 || second: GrSecond and

STV =d {beginning, forever, now}.

The four temporal literal data types found in

ODMG object model (Cattel et al., 1997) are aug-

mented with three new temporal object data types

presented below:

• Timepoint: extends the Timestamp data type to

include granularity. The new data type is a sub-

type of the Timestamp data type. It inherits all

the properties and the operations that are defined

for the Timestamp data type. It refines all the op-

erations, which had as argument Timestamp to

Timepoint. Beginning and forever are defined to

be members of timepoint such as ∀ t ∈ time-

point〈 g〉 ⋅ beginning ≤ t ≤ forever.

• Period: is used to represent an anchored duration

of time, that is, duration of time with starting and

ending points. A period has an associated granu-

larity. The period is the composition of two

timepoints with the constraint that the timepoint

that starts the period equals or precedes the time-

point that terminates it. It is assumed that both

timepoints have the same granularity. There are

four categories of periods depending on whether

they include their starting and/or their ending

timepoints or not: [t1, t2] (closed-closed), [t1, t2)

(closed-open), (t 1, t2] (open-closed), and (t1, t2)

(open-open). TAU Model supports only closed-

open periods, with which it is possible to model

any other category. For example, the period [t1,

t2] is equivalent to the period [t1, t2+1 "granule").

The meaning of "1 granule" depends on the gra-

nularity of the period. For instance, if the granu-

larity is day then the period [t1, t2] is equivalent

to the period [t1, t2+1*DAY).

• Temporal Element: is used to represent a finite

union of disjoint periods. Temporal elements are

closed under the set theoretic operations of un-

ion, intersection and complementation.

On the other hand, spatial types (point, line seg-

ment, rectangle, etc.) are supported by another com-

ponent of the MOD type system architecture, called

OGC Geometry. Such a spatial extension is found in

several state-of-the-art ORDBMS and provides an

integrated set of functions and procedures that enable

spatial data following the OGC standard to be effi-

ciently stored in a spatial database, accessed and

futher processed. Of course, the geometric operations

forming the behavior of spatial types supported by

these extensions, handle queries statically, meaning

that there exists no notion of time associated to the

spatial objects. This is exactly the target addressed in

the MOD type system we propose in the sequel.

Abstract Definitions of Moving Object Data Types

In this work, we adopt and extend the sliced repre-

sentation concept (Güting et al., 2000; Forlizzi et al.,

2000; Lema et al., 2003) and utilize it in the implemen-

tation of the MOD type system that results to

HERMES. In order to use the sliced representation to

define a moving type, one has to decompose the defi-

nition of each moving type into several definitions,

one for each of the slices that corresponds to a simple

function (i.e. corresponding to a so-called

Unit_Function type), which is valid for a period of

time, and then compose these sub-definitions as a

collection to define the moving type. Each one of the

sub-definitions corresponds to a so-called unit mov-

ing type.

The Unit_Function object type (Pelekis, & Theodo-

ridis, 2006) is defined as a triplet of (x, y) coordinates

together with some additional motion parameters.

The first two coordinates represent the initial (xi, yi)

and ending (xe, ye) coordinates of the sub-motion de-

fined, while the third coordinate (xc, yc) corresponds

to the centre of a circle upon which the object is mov-

ing. Whether we have constant, linear or arc motion

between (xi, yi) and (xe, ye) is implied by a flag indi-

cating the type of the simple function. Since we re-

quire that HERMES manages not only historical data,

but also online and dynamic applications, we further

let a Unit_Function to model the case where a user

currently (i.e., at an initial timepoint) is located at (xi,

yi) and moves with initial velocity v and acceleration

a on a linear or circular arc route. Consequently, in

the general case the Unit_Function is defined as fol-

lows:

Unit_Function = d xi:double, yi:double,
xe:double, ye:double, xc:double, yc:double,

v:double, a:double, flag:TypeOfFunction

(5)

where ΠTypeOfFunctionΤ={ PLNML_1,

ARC_<1..8>, CONST }, meaning 1
st
 order polynomi-

al, one of the eight possible circular arcs, and con-

stant function, respectively.

Combining time period and simple function to-

gether, the most primitive and simplest unit object

type is defined, namely Unit_Moving_Point. This is a

fundamental type since all the successor unit types

are defined based upon it. Formally:

Unit_Moving_Point =d p: period〈 SECOND〉,
m: Unit_Function

(6)

Following this, we define two unit moving types

directly based on Unit_Moving_Point, namely

Unit_Moving_Circle and Unit_Moving_Rectangle.

As it is easily inferred, these two object types model

circle and rectangle geometry constructs that change

their position and/or extent over time. Formally:

Unit_Moving_Rectangle=d{ ll:Unit_Moving

_Point,ur: Unit_Moving_Point | equal
(ll.p, ur.p) }

(7)

Unit_Moving_Circle=d{

 f:Unit_Moving_Point,
 s: Unit_Moving_Point,

 t: Unit_Moving_Point | equal (f.p, s.p,
t.p) }

(8)

For modeling the subsequent object types

(Unit_Moving_Polygon, Unit_Moving_LineString) an

intermediate object type that represents the simplest

built-in constituent of these types is needed. This

requirement is met by the Unit_Moving_Segment

object, which models a simple line or arc segment

that changes its shape and size according to its start-

ing and ending unit moving points. This is clarified in

Figure 2 where a moving segment is mapped to a line

segment at two different time instants t1 and t2. Dur-

ing the time period between t1 and t2, the starting

moving point mp1 follows a simple linear trajectory,

while the ending moving point mp2 follows an arc

trajectory.

yy'

xx'

t1 t2

mp1

mp1

mp2
mp2

 Figure 2 Linear Unit_Moving_Segment with its first

Unit_Moving_Point mp1 moving linearly and the

second mp2 moving on a circular arc

Formally:

Unit_Moving_Segment=

d{ b:Unit_Moving_Point,
 e: Unit_Moving_Point,
 m: Unit_Moving_Point,

kind:TypeOfSegment | (kind=SEG ⇒

equal (b.p, e.p)) ∧ (kind =ARC ⇒ equal
(b.p, e.p, m.p)) }

(9)

Unit_Moving_Linestring=

d{l:set〈Unit_Moving_Segment〉 | ∀ i, j
∈ ulong: i≠ j ⇒ equal (li.b.p, lj.e.p) }

(10)

Unit_Moving_Polygon =d {

 l: set〈Unit_Moving_Segment〉,
hole:boolean | ∀ i, j ∈ ulong: i≠ j ⇒
equal (li.b.p, lj.e.p) }

(11)

where Π TypeOfSegment Τ = {SEG, ARC} and SEG,

ARC denote the two alternative modes of interpola-

tion in between two end points (line segment vs. arc,

respectively).

Having defined the fundamental unit moving

types, we now introduce the moving types that play

the dominant role in our spatio-temporal data type

system. The process that we followed to define the

moving types is to introduce a moving type as a col-

lection of the corresponding unit moving type, which

means, in terms of object orientation, that there exists

a composition relationship between the unit moving

type and the moving type. As such, the Mov-

ing_Point, Moving_Circle, Moving_Rectangle, Mov-

ing_LineString and Moving_Polygon object types are

introduced as a collection of Unit_Moving_Point,

Unit_Moving_Circle, Unit_Moving_Rectangle,

Unit_Moving_LineString, Unit_Moving_Polygon

object types, respectively. Formally:

Moving_Point =d {

 p: set〈Unit_Moving_Point〉 | ∀ i, j ∈
ulong, 1≤ i, j≤ |

 set〈Unit_Moving_Point〉|: j= i+1 ⇒ pi.p

< pj.p ∧ ¬overlaps(pi.p, pj.p) ∧ ∀ t ∈

double: inside(t, pi.p) ⇒ at_instant(p, t) ∈
OGC-GEOMETRYGTYPE=point }

(12)

Moving_Rectangle =d { r:

set〈Unit_Moving_Rectangle〉 | ∀ i, j ∈

ulong, 1≤ i, j≤ |

 set〈Unit_Moving_Rectangle〉|: j= i+1 ⇒

ri.ll.p < rj.ur.p ∧ ¬overlaps(ri.ll.p, rj.ur.p)

∧ ∀ t ∈ double: inside(t, ri.ll.p) ⇒
at_instant(r, t) ∈ OGC-
GEOMETRYGTYPE=rectangle }

(13)

Moving_Circle =d { c:

set〈Unit_Moving_Circle〉 | ∀ i, j ∈

ulong, 1≤ i, j≤ |

 set〈Unit_Moving_Circle〉|: j= i+1 ⇒

ci.f.p < cj.s.p ∧ ¬overlaps(ci.f.p, cj.s.p) ∧ ∀

t ∈ double: inside(t, ci.f.p) ⇒
 at_instant(c, t) ∈ OGC-

GEOMETRYGTYPE=circle }

(14)

Moving_LineString =d { line:

set〈Unit_Moving_LineString〉 | ∀ i, j ∈
ulong, 1≤ i, j≤ |

 set〈Unit_Moving_LineString〉|: j= i+1

⇒ linei.l1.b.p < linej.l1.e.p ∧

¬overlaps(linei.l1.b.p, linej.l1.e.p) ∧ ∀ t ∈
double: inside(t, linei.l1.b.p) ⇒

at_instant(line, t) ∈ OGC-
GEOMETRYGTYPE=linestring }

(15)

Moving_Polygon =d { pol:

set〈Unit_Moving_Polygon〉 | ∀ i, j ∈
ulong, 1≤ i, j≤ |

 set〈Unit_Moving_Polygon〉|: j= i+1 ⇒

poli.l1.b.p < polj.l1.e.p ∧

¬overlaps(poli.l1.b.p, polj.l1.e.p) ∧ ∀ t ∈
double: inside(t, poli.l1.b.p) ⇒

at_instant(pol, t) ∈ OGC-
GEOMETRYGTYPE=polygon }

(16)

Similarly, in order to model homogeneous collec-

tions of moving types, multi-moving types are de-

fined as collections of the corresponding moving

types. Consequently, the proposed spatio-temporal

model is augmented by the following object types:

Multi_Moving_Point, Multi_Moving_Circle, Mul-

ti_Moving_Rectangle, Multi_Moving_LineString and

Multi_Moving_Polygon. Formally (and assuming that

the spatial extension of the underlying ORDBMS

supports multi-spatial types):

Multi_Moving_Point =d { multi_mpoint: set〈
Moving_Point〉 | ∀ i, j ∈ ulong ∧ ∀ t ∈
double: inside(t, multi_mpointi.pj.p) ⇒

 ∪i (at_instant(multi_mpointi, t)) ∈ OGC-
GEOMETRYGTYPE=multi-point }

(17)

Multi_Moving_LineString =d { multi_mline:

set〈 Moving_LineString〉 |∀ i, j ∈ ulong
∧ ∀ t ∈ double: inside(t,

multi_mlinei.linej.l1.b.p) ⇒

 ∪i (at_instant(multi_mlinei, t)) ∈ OGC-
GEOMETRYGTYPE=multi-linestring }

(18)

Multi_Moving_Circle =d { multi_mcircle: set〈
Moving_Circle〉 |∀ i, j ∈ ulong ∧ ∀ t ∈
double: inside(t, multi_mcirclei.cj.f.p) ⇒

∪i (at_instant(multi_mcirclei, t)) ∈ OGC-
GEOMETRYGTYPE=multi-polygon }

(19)

Multi_Moving_Rectangle =d {
multi_mrectangle:

 set〈 Moving_Rectangle〉 |∀ i, j ∈ ulong ∧

∀ t ∈ double: inside(t,

multi_mrectanglei.rj.ll.p) ⇒ ∪i
(at_instant(multi_mrectanglei, t)) ∈
OGC-GEOMETRYGTYPE=

 multi-polygon }

(20)

Multi_Moving_Polygon =d {

multi_mpolygon: set〈 Moving_Polygon〉
|∀ i, j ∈ ulong ∧ ∀ t ∈ double: inside(t,

multi_mpolygoni.polj.l1.b.p) ⇒

 ∪i (at_instant(multi_mpolygoni, t)) ∈
OGC-GEOMETRYGTYPE=

 multi-polygon }

(21)

An interesting issue here is that the previously men-

tioned multi-moving types do not carry their own

methods interface. All the functionality for these

types can be invoked by the methods of another ob-

ject type, called Moving_Collection, standing as the

supertype and aggregating the interfaces, the object

methods and the spatio-temporal semantics of all the

multi moving types. Furthermore, the moving-

collection type is able to represent heterogeneous

collections of moving types, i.e., collections of dif-

ferent time-varying spatial geometries. Formally:

Moving_Collection =d { multi_mpoint:
Multi_Moving_Point, multi_mline:
Multi_Moving_LineString,
multi_mcircle: Multi_Moving_Circle,
multi_mrectangle:
Multi_Moving_Rectangle,
multi_mpolygon:

Multi_Moving_Polygon |

∀ i, j ∈ ulong ∧ ∀ t ∈ double:

 inside(t, multi_mpointi.pj.p) ∧

 inside(t, multi_mlinei.linej.l1.b.p) ∧
inside(t, multi_mcirclei.cj.f.p) ∧

 inside(t, multi_mrectanglei.rj.ll.p) ∧

inside(t, multi_mpolygoni.polj.l1.b.p) ⇒

 [(∪i (at_instant(multi_mpointi, t))) ∪

(∪i (at_instant(multi_mlinei, t))) ∪

 (∪i (at_instant(multi_mcirclei, t))) ∪

 (∪i (at_instant(multi_mrectanglei, t)))

 ∪ (∪i (at_instant(multi_mpolygoni, t)))]

∈ OGC-GEOMETRYGTYPE=collection }

(22)

Furthermore, the Moving_Object models any moving

type that can be the result of an operation between

moving objects. For example, the intersection of a

Moving_Point with a (static) polygon geometry is

obviously another Moving_Point that is the restric-

tion of the first Moving_Point inside the polygon.

This result can be modeled as a Moving_Object. If

the result of an operation is not a moving geometry

then Moving_Object plays the role of a degenerated

moving type. In other words, if there is an operation

that requests the perimeter of Moving_Polygon, then

obviously the result of this method is a time-varying

real number (Moving_Real). Such collapsed moving

types like Moving_Real, Moving_String, and Mov-

ing_Boolean do not formally exist in our type system

but are modeled using the Moving_Object type.

M o v in g _ O b je c t

M o v in g

R e c ta n g le

M o v in g

P o ly g o n

M o v in g

C o lle c t io n

M o v in g

C irc le

M o v in g

L in e S t r in g

M o v in g

P o in t

M u lt i

M o v in g

P o in t

M u lt i

M o v in g

P o ly g o n

M u lt i

M o v in g

R e c ta n g le

M u lt i

M o v in g

C ir c le

M u lt i

M o v in g

L in e S t r in g

U n it

M o v in g

P o in t

U n it

M o v in g

P o ly g o n

U n it

M o v in g

R e c ta n g le

U n it

M o v in g

C irc le

U n it

M o v in g

L in e S t r in g

U n it

F u n c t io n

U n it

M o v in g

S e g m e n t

U n io n

O u tp u t

U n io n

In p u t

1 . .*

1 . .2 1 . .*

1 . .1

1 . .1

1 . .*

1 . .1

1 . .*

1 . .1

1 . .*

1 . .1

1 . .*

1 . .1

1 . .1

1 . .*

1 . .11 . .1

1 . .1

1 ..*

1 . .1

1 . .*

1 . .1

1 . .*

1 . .1

1 . .*

1 . .1

1 . .*

Figure 3 The moving types of MOD type system

Formally:

Moving_Object =d { mobject:
Moving_Object, mpoint: Moving_Point,
mline: Moving_LineString, mcircle:
Moving_Circle, mrectangle:
Moving_Rectangle, mpolygon:
Moving_Polygon, mcolection:
Moving_Collection, geometry:
GEOMETRY, gtype: GeometryType,
optype: string, arg1: ushort, arg2: ushort,

input: Union_Input }

(23)

where gtype is a flag that makes Moving_Object be-

have as if it were a simple moving type, Π Geome-

tryType Τ = { MOBJECT, MPOINT, MLINE,
MCIRCLE, MRECTANGLE, MPOLYGON,

MCOLLECTION } and Union_Input =d mask:

string, tolerance: double, distance: double .
Summarizing,

Figure 3 illustrates a UML class diagram for the

moving types supported in the proposed MOD type

system. The following sections describe the design

decisions and the implementation details for mapping

the MOD type system into extensible ORDBMS, as

well as essential functionality for extending SQL-like

query languages with MOD querying constructs.

PHYSICAL MAPPING OF THE HERMES MOD TYPE

SYSTEM

The physical representation of the data types reflects

the structures that are necessary in order to capture

the semantics and implement the methods of these

data types. In this section, we discuss how MOD

types (abstractly described in the previous Section)

are mapped to physical structures for storing conti-

nuously and discretely time-evolving geometric data

into an ORDBMS with OGC-compliant spatial ex-

tension. The following subsections propose low-level

constructs for the implementation of such objects and

illustrate the design decisions and implementation

issues considered during development.

Unit Function

Unit_Function is constructed as an octave of real

numbers and a flag indicating the type of the simple

function. In the current version, three types of func-

tions are supported, namely polynomial of first de-

gree, circular arc and the constant function.

The modeling of Unit_Function is extensible; for

example, if one wishes to add interpolations with

spline or polynomials with degree higher than one,

then what is only needed is the addition (if necessary)

of the appropriate variables as attributes of the object

and the implementation of such a function.

We should note that we model a moving type that

changes discretely for a period of time by setting all

Unit_Function objects of the corresponding unit-

moving type to be constant functions. Due to the fact

that the coordinates represented by these

Unit_Function objects do not change for this period

of time, it is equivalent to taking a snapshot of the

moving geometry, which is valid for the entire period.

If at least one of these unit functions is not constant

then the moving type change is continuous for this

period of time. In case of a Moving_LineString and in

order to model a discrete change for a period, the

above assignment should take place for each

Unit_Moving_Point that composes the corresponding

Unit_Moving_LineString. If this process were contin-

ued to all unit-moving types the result would be a

completely discretely changing moving geometry.

yy'

xx'

t1 t2

mp1

mp1

mp2mp2

t3

mp1 mp2

mp5

mp4

mp3
mp3

mp4

mp5
mp4

mp5

mp3

mp1

mp2

mp3

mp4

mp5

t4

Figure 4 Instances of Moving_Circle and Mov-

ing_Rectangle type objects (and degenerated cases)

Moving_Point, Moving_Circle and

Moving_Rectangle

We construct Moving_Point object type as a collec-

tion of Unit_Moving_Point objects (i.e. pointer to a

nested table or a varying length array (i.e. varray),

depending on the underlying ORDBMS, of

Unit_Moving_Point objects), which in turn are de-

fined as objects consisting of two attributes. The first

attribute is the time period during which the other

attribute is defined. The time period is expressed as

an open-closed Period object, while the other

attribute is of Unit_Function object type, whose do-

main of definition is the set of real numbers inside

the open interval [t1, t2), where t1 is the starting point

of the period and t2 is the ending point of the period.

Similarly to the Moving_Point object, Mov-

ing_Circle and Moving_Rectangle object types are

constructed as pointers to collections of

Unit_Moving_Circle and Unit_Moving_Rectangle,

respectively.

Let us now examine the structure of

Unit_Moving_Circle and Unit_Moving_Rectangle

objects. Unit_Moving_Circle consists of three

Unit_Moving_Point objects, representing the three

points needed to define a valid circle. In the same

way, Unit_Moving_Rectangle is composed of two

Unit_Moving_Point objects, modeling the lower-left

and upper-right point needed to define a valid rectan-

gle. Figure 4 illustrates a moving circle and a moving

rectangle instantiated at four different time points t1,

t2, t3, and t4, respectively. At time point t2, it is clear to

see the effect of the different interpolation functions

and how they affect the position and extent of the

mapped geometries, in contrast to time point t1. At

time point t3, a degenerated moving circle and a de-

generated moving rectangle are presented, meaning

that the three unit moving points that compose the

moving circle become co-linear and the two unit

moving points that compose the moving rectangle

form a line segment that is parallel to either xx’ or yy’

axis. At timepoint t4, another collapsed state is de-

picted, where all unit-moving points become equal.

HERMES implementation is responsible to deal with

such degeneracies as will be discussed shortly.

Moving_LineString and Moving_Polygon

Moving_LineString is a moving type that is also con-

structed as a pointer to a nested table consisting of

Unit_Moving_LineString objects. The difference be-

tween this moving type and the previously defined is

that the Unit_Moving_LineString is also defined as a

pointer to another nested table comprising of

Unit_Moving_Segment objects. Unit_Moving_Seg-

ment in its turn is formed by three Unit_Moving_

Point objects and a flag indicating the kind of inter-

polation between the starting and the ending point of

the LineString geometry. The simplest part of a Line-

String geometry can be either a linear or an arc seg-

ment. In other words, this flag exemplifies the usage

of the other attributes of the Unit_Moving_Segment

object. Figure 5 illustrates the structure of the Mov-

ing_LineString object.

The Moving_Polygon definition is very close to that

of Moving_LineString. The main difference in the

two definitions is on the construction of the corres-

ponding unit moving type. More specifically, apart

from a pointer to a collection of Unit_Moving_ Seg-

ment objects, the Unit_Moving_Polygon object has

an additional attribute, a flag that indicates if this set

of moving segments forms the exterior ring of a po-

lygon or is an interior (hole) ring. In other words, this

extra attribute adds the logic that disjoint moving

holes may exist inside a moving polygon, with boun-

daries not crossing or touching the exterior boundary.

Considering the rest aspects of the definition of

Unit_Moving_Polygon, there is no difference be-

tween the two object types.

Moving_Collection and Moving_Object

Moving_Collection is the object type that models
both homogeneous and heterogeneous collections
of moving types. This is accomplished by defining
it as a set of five pointers to each of the following

types: Multi_Moving_Point, Mul-

ti_Moving_LineString, Multi_Moving_Circle, Mul-

ti_Moving_Rectangle and Multi_Moving_Polygon.
Each of these moving types represents a homoge-
neous collection of moving points, linestrings, cir-
cles, rectangles and polygons,

. . .
N e s te d ta b le o f U n it M o v in g

L in e S t r in g o b je c ts

s ta r t in g U n it M o v in g
P o in t

e n d in g U n it M o v in g P o in t
m id d le U n it M o v in g P o in t

t y p e o f m o v in g s e g m e n t

U n it M o v in g

S e g m e n t

...

...

o
b

je
c
t-

re
la

ti
o
n

a
l

ta
b

le

O b je c t

ID

M o v in g

L in e S t r in g

. . .
N e s te d ta b le o f U n it M o v in g

S e g m e n t o b je c ts

Figure 5 Structure of the Moving_LineString Object

...
N ested tab le o f U nit M oving

P olgon objects

startin g U n it M oving Po in t

en din g U n it M ov in g P oint

m id d le U n it M oving P oin t

typ e of m ovin g segm ent

U nit M oving

Segm ent

...

...

o
b
je

ct
-r

e
la

ti
o
n
al

ta
b
le

O b ject

ID

M oving

P olygon

...

N
ested

 tab
les o

f U
n
it M

o
v
in

g

S
eg

m
en

t o
b
jects...

...

xx '

yy'

E xterior boundary

2nd hole

1st hole

2nd

hole
1st

hole

E x terio r

boundary

Projection o f the m oving polygon

in the spatial dom ain at a

user-defined tim e po int

E x terio r U n it

M oving Po lygon

H ole U nit

M oving Po lygon

Figure 6 Structure of the Moving_Polygon Object

constructed as a pointer to a nested table of Mov-

ing_Point, Moving_LineString, Moving_Circle,

Moving_Rectangle and Moving_Polygon object

types, respectively. On the other hand, Mov-

ing_Object is the outcome of the conjunction of all

the previous presented objects, and can be consid-

ered as the supertype of these types. Practically

speaking, it is not intended to be directly used or

constructed by the end-user. On the contrary, it is

intended to be the result type of operations of the

other moving types (i.e., system generated). As in-

ferred from the structure of Moving_Object (cf. for-

mula (23)), the pointers to the moving types pre-

sented in the preceding sections model the subtypes

of the current type simulating inheritance.

OPERATIONS ON MOVING OBJECT DATA TYPES

Following, we classify the operations of the moving

types introduced by HERMES into appropriate catego-

ries that enable us to describe and analyze the new

query capabilities. The initial set of operations is the

union of the methods supported by the simple mov-

ing types (namely, Moving_Point, Mov-

ing_LineString, Moving_Circle, Moving_Rectangle,

Moving_Polygon and Moving_Collection). This set of

operations is equivalent to the methods provided by

the generic Moving_Object type as it models all the

previous. The identifiable classes of operations that

HERMES supports are:

i) Consistency operations: operations responsible

for keeping the database in a consistent state

(checking ordering and consecutiveness of pe-

riods of unit moving types, realizing degenerated

cases, etc.).

ii) Predicates: operations that return boolean values

concerning topological and other relationships

between moving types (within distance, meet,

overlap, etc.).

Table 1: Taxonomy of operations w.r.t. HERMES data types

Taxonomy of

operations

 Data types

Operations

M
o
v
in

g
_

o
b
je

c
t

M
o
v
in

g
_

P
o
in

t

M
o
v
in

g
_

L
in

e
S

tr
in

g

M
o
v
in

g
_

C
ir

c
le

M
o
v
in

g
_

R
e
c
ta

n
g
le

M
o
v
in

g
_

P
o
ly

g
o
n

M
o
v
in

g
_

C
o
ll

e
c
ti

o
n

check_ordering √ √ √ √ √ √ √

check_meet √ √ √ √ √ √ √
Database

Consistency
check_degeneracies √ √ √ √ √ √ √

f_within_distance √ √ √ √ √ √ √ Topological

Relationships f_relate √ √ √ √ √ √ √

unit_type √ √ √ √ √ √ √

at_instant √ √ √ √ √ √ √

at_period √ √ √ √ √ √ √

f_buffer √ √ √ √ √ √ √

f_centroid √ √ √ √

f_convexhull √ √ √ √ √ √ √

f_traversed √ √ √ √ √ √

Projection and

Interaction to the

Temporal and

Spatial Domain

f_trajectory √ √

Set Relationships f_intersection √ √ √ √ √ √

f_area √ √ √ √

f_length √ √ √ √ √ √

f_speed √ √

f_velocity √ √

Numeric

operations

f_direction √ √

iii) Projection operations: operations that restrict

and project moving types to temporal (e.g.

at_instant, at_period) and spatial domain (e.g.

trajectory, buffer).

iv) Set operations: basic set relationship operations

(union, intersection, set difference).

v) Numeric operations: functions that compute a

numeric value (e.g., the perimeter or the area of a

moving polygon, the speed of a moving point).

The following sections describe the functionality

of selected operations, representative of each class.

The interested reader may find signatures and more

algorithms in (Pelekis, & Theodoridis, 2010). A sum-

mary of the applicability of the proposed operators

over the HERMES data types can be found in Table 1.

Note that the last two classes of operators are defined

only for Moving_Point, thus are omitted.

Maintaining Database Consistency

HERMES provides a set of object methods that en-

able the user to check the construction data of mov-

ing objects and maintain the database in a consistent

state. These operations impose some integrity con-

straints that need to be followed for time-varying

spatial data and, as such, protect the user from errors

that have to do with the complex internal structure of

the moving types. Below, three methods of this classs

are discussed:

Op1. boolean check_ordering (): there should be

an ascending ordering of the periods between the unit

moving types, each one represented by such a period.

This mandatory constraint is required to model the

evolution of the moving types in the timeline. The

evolution of an object is represented by its consecu-

tive unit moving types and the corresponding time

periods should follow the same development.

Op2. boolean check_meet (): checks if a period is

consequent to the next period in the unit-type-order.

The meaning of this operation is to assure that there

is a smooth transformation of the time-changing

geometries between sequential unit moving types and

there are not temporal gaps between them.

Op3. boolean check_degeneracies (Timepoint): it

is a method that checks if the geometry associated

with a moving type at a specific time point is a non-

degenerated geometry. Depending on the type,

check_degeneracies imposes different restrictions on

the development of these moving objects at user-

defined time points. For Moving_Point there is not

such an operation as there is no combination of

mapped coordinates that could form an invalid geo-

metry. For the rest of the simple moving types, the

reader can find below some characteristic constraints

enforced by HERMES:

Moving_LineString: (a) Checks if the Unit_ Mov-

ing_Point objects (two for line segments; three for

arc segments) that define the Unit_Moving_Segment

objects become equal at a specific time point, thus

degenerating a segment to a point; (b) Checks for

overlapping between consequent Unit_Moving

_Segment objects, meaning that the two time-varying

coordinates of a Unit_Moving_Point “fall” upon the

segment that is defined by the two previous

Unit_Moving_Point objects; (c) Checks the coordi-

nates of the starting Unit_Moving_Point of the first

Unit_Moving_ Segment not to be equal at an instant,

with the coordinates of the ending

Unit_Moving_Point of the last Unit_Moving_ Seg-

ment. In such a situation, the potential LineString is

degenerated to a Polygon geometry, regardless the

fact that this polygon may have other anomalies (e.g.

self-intersected segments that are acceptable in a Li-

neString geometry); (d) in case of arc, it checks for

co-linearity at a specific time point between the three

Unit_Moving_Point objects that form the arc seg-

ment. In this case, the arc segment becomes a dege-

nerated linear segment.

Moving_Circle: (a) Checks if the three

Unit_Moving_Point objects that define a

Unit_Moving_Circle object become equal at a specif-

ic time point, thus degenerating a circle to a point; (b)

Assures that the three Unit_Moving_Point objects do

not become co-linear.

Moving_Rectangle: (a) Checks if the lower left

and upper right Unit_Moving_Point objects that de-

fine a Unit_Moving_Rectangle object become equal

at a specific time point, thus degenerating a rectangle

to a point; (b) Checks if x or y ordinates of the pro-

jected lower left and upper right Unit_Moving_Point

objects become equal, meaning that the produced

rectangle is collapsed to a linear segment parallel to

xx’ or yy’ axis, respectively.

Moving_Polygon: (a) Checks for the same rules

and constraints as in the case of Moving_Linestring,

with the difference that, instead of inequality, it im-

poses equality between the starting and ending

Unit_Moving_Point; (b) Checks if the

Unit_Moving_Polygon objects that represent holes of

a Moving_Polygon are always “disjoint” and “in-

side” the exterior boundary.

 Figure 7 illustrates four degenerated cases for a

Moving_LineString (that also stand for a Mov-

ing_Polygon, except case c), while those for a Mov-

ing_Circle and a Moving_Rectangle are illustrated in

Figure 4. A complete description of all the degene-

rated cases as well as some interesting allowable cas-

es is presented (Pelekis et al., 2010).
In the previous paragraphs, we described the oper-

ations concerning the constraints that should hold in a

database of simple moving objects. The correspond-

ing methods of a homogeneous or heterogeneous

collection of such moving types, represented by the

Moving_Collection object, follow a different strategy.

In other words, these operations traverse one by one

all the component objects of the multi- moving types

that compose a Moving_Collection object, and apply

the previous discussed operations to them. The first

moving type that causes an error or is detected to be

invalid or degenerated stops this process and informs

the user with an appropriate message.

1

6

5

4

3

2

1

1098765432 131211

8

7

(0, 0) X axis

Y axis

Line segment

Motion arrow New position

Initial position

1__ pmu

7__ pmu

6
__ pmu

5__ pmu
4__ pmu

3__ pmu
2__ pmu

6M

4M

2M

1M3M

5M

 Figure 7 Four degenerated cases for a Mov-

ing_LineString: a) when u_m_p6 and u_m_p7 follow

motions M1 and M2, respectively, b) when u_m_p6

follows motion M3, c) when u_m_p1 and u_m_p7 fol-

low motions M4 and M5 respectively, d) when u_m_p2

follows motion M6.

Predicates Modeling Topological and Distance

Relationships

HERMES provides object methods in the form of pre-

dicates to describe relationships between moving

types. There are two sets of predicates supported by

HERMES, namely within_distance and relate. Each set

of predicates consists of eight operations, each of

which models the relationship of the current moving

type with a Moving_Point, Moving_LineString, Mov-

ing_Circle, Moving_Rectangle, Moving_Polygon,

Moving_Collection, Moving_Object or Geometry

object. Each operation comes with two different over-

loaded signatures, modeling different semantics: the

first signature is time-dependent, meaning that the

outcome of the operation is related to a user-defined

time point, while the second is time-independent.

Also, many object methods in HERMES accept a to-

lerance parameter; if e.g. the distance between two

points is less than or equal to the tolerance, HERMES

considers the two points to be a single point. Thus,

tolerance is usually a reflection of how accurate or

precise users perceive their spatio-temporal data to

be. Below, we indicatively provide signatures of one

out of the eight operations, that for a Mov-

ing_Polygon. The time-dependent signature of the

method is the one without the brackets, while the

time-independent version of the operation can be

obtained by substituting the return type of the opera-

tion with the type in the brackets { } and by removing

the Timepoint argument from the parameter list. This

is a common notation in the remainder of the paper.

Op4. boolean {Moving_Object} f_within_distance

(distance, Moving_Polygon, tolerance, Timepoint):

The time-dependent predicate determines whether

two moving objects are within some specified Eucli-

dean distance from each other at a user-defined time

point. After mapping the moving objects to physical

spatial geometries at the given instant, the function

returns TRUE for object pairs that are within the spe-

cified distance; returns FALSE otherwise. The dis-

tance between two non-point objects (such as lines

and polygons) is defined as the minimum distance

between these two objects. Thus, the distance be-

tween two adjacent polygons is zero. On the other

hand, the time-independent version differs from the

above predicate in that the return value is a Mov-

ing_Object that represents a time-varying boolean

value. This implicitly defined “moving boolean”

object models the sequence of the time intervals dur-

ing which the two related objects are (or are not)

within a specified Euclidean distance.

Op5. Varchar {Moving_Object} f_relate (mask,

Moving_Polygon, tolerance, Timepoint): This generic

predicate examines two moving objects and deter-

mines their topological relationship. As previously, it

appears with two overloaded versions: the first eva-

luates the topological relationship upon a specific

user-defined time point, while the second version

returns a Moving_Object modeling a time-varying

string (“moving string”), which describes the evolu-

tion in the topological relationship between the re-

lated objects. In particular, the f_relate operator im-

plements the 9-intersection model for categorizing

binary topological relations between moving geome-

tries (Egenhofer, & Franzosa, 1991). Users can specify

the kind of relationships that they require to check via

the mask parameter.

Projection and Interaction to Temporal and

Spatial Domain

HERMES provides object methods of special interest

that have been proposed in the literature. Subsequent-

ly, we present the operations as these are defined for

Moving_Object and the semantics behind these me-

thods and we differentiate our presentation in case of

change in the semantics of other moving types.

Op6. Unit_Moving_Point unit_type (Timepoint):

This operation is the single method not defined for a

Moving_Object type. Generally speaking, this opera-

tion is defined only for the simple moving objects

that their construction is closely related with a collec-

tion of unit moving objects. The simple task that this

function performs is that it finds (and returns) the

unit-moving object whose attribute time period (Pe-

riod object) “contains” the user-defined time point

(Timepoint object). In other words, it returns that

unit-moving type where the time instant represented

by the argument Timepoint object is “inside” the time

period that characterizes the unit-moving type. The

unit_type method carries out all the necessary checks

to maintain the database consistent and to ensure the

validity of the moving object.

Op7. Union_Output at_instant (Timepoint): The

at_instant operation is the most important method for

the moving types introduced in HERMES, firstly be-

cause it is the operation that maps the unit function

objects to spatial objects where moving objects reside

at the given timepoint and, secondly, because it is the

base of implementation for many other object me-

thods. As already mentioned, the above signature

concerns the at_instant operation for the Mov-

ing_Object type. The return type (Union_Output) is

an object that represents the union of all the possible

results of the projection of a Moving_Object at a us-

er-defined time point. In other words, if Mov-

ing_Object represents a time-varying geometry then

Union_Output is basically a Geometry object. If Mov-

ing_Object represents a “moving” real or string then

Union_Output is a real number or a character string,

respectively.

Op8. Moving_Object at_period (Period): The

at_period object method is an operation that restricts

the moving object to the temporal domain. In other

words, by using this function the user can delimit the

time period that is meaningful to ask the projection of

the moving object to the spatial domain. More specif-

ically, the time period passed as argument to the me-

thod is compared with all Period objects that charac-

terize the unit moving objects. If the parameter period

does not overlap with the compared period then the

corresponding unit type is omitted. If it overlaps, then

the time period that defines a unit-moving object be-

comes its “intersection” with the given period.

There are more similar operations for performing

other type of projections, like the at_point and

at_linestring methods that either restrict a moving

object to a static point or linestring geometry, respec-

tively, or return the temporal point or period that the

restriction is valid.

Op9. Geometry {Moving_Object} f_buffer (dis-

tance, tolerance, Timepoint): The f_buffer operation

comes with two overloaded versions. The first gene-

rates a buffer polygon around a moving geometry

object at a specific user-defined time point, while the

second returns a Moving_Object modeling a time-

varying polygon, which describes a moving rounded

buffer around a moving geometry. Obviously, this

method is meaningless for a Moving_Object that

represents a time-varying real number or string. The

error handling mechanism of HERMES is responsible

for realizing these situations and acting accordingly

(e.g. by raising an appropriate error message).

 The f_buffer operation for a homogeneous collec-

tion of moving geometries at a specific timepoint

returns a multi-polygon where each polygon

represents the buffer of its corresponding element in

the collection. An interesting case is the buffer of a

heterogeneous collection of moving objects, which is

just one polygon that buffers all the different pro-

jected geometries together. The above-mentioned

issues are visualized in Figure 8, where snapshots of

different moving types and their corresponding buffer

polygons are presented.

1

6

5

4

3

2

1

1098765432 14131211

8

7

(0, 0) X axis

Y axis

Initial geometry Buffer geometry

Moving Point at T Moving Circle at T Moving Rectangle at T

Multi Moving Point at T Heterogeneous Collection at T

Figure 8 Demonstrating f_buffer operation

What is not illustrated in the description of the op-

eration is the specific structure of these buffers for

each corresponding moving type. Starting with the

Moving_Point, someone would expect that the buffer

of this type at a specific instant would be a circle

geometry with radius the user-specified distance of

the buffer. Surprisingly, the geometry returned by

f_buffer operation is a polygon consisting of two arc

segments that circle the point at the specified dis-

tance. The same happens in the case of the Mov-

ing_Circle where the buffer at a specific timepoint is

defined as the buffer of its centre but the distance of

the buffer is the initial user-specified distance plus

the radius of the moving circle at that instant. The

buffer of a Moving_LineString, a Moving_Rectangle

and a Moving_Polygon at a specific timepoint is a

compound polygon whose number of linear segments

is equal to the number of linear segments that exist in

the corresponding projected geometries and whose

number of arc segments is equal to the number of

vertices plus the number of arc segments.

Figure 9 Areas Traversed by Moving Geometries

Op10. Geometry {Moving_Object} f_centroid (to-

lerance, Timepoint): The f_centroid operation returns

the centre of a moving polygon object at user-defined

time points. The centre is also known as the "centre

of gravity". The overloaded f_centroid function

represents a moving point that at any time is the cen-

tre of gravity of the moving polygon object. The me-

thod is meaningful only for moving types that model

single time-varying areas. In the rest cases (collec-

tions of moving geometries), an error message is

raised by the error handling mechanism of HERMES.

Op11. Geometry {Moving_Object} f_convexhull

(tolerance, Timepoint): The f_convexhull method

returns a simple convex polygon that completely en-

closes the moving geometry object at a specific in-

stant of time. The Moving_Object returned by the

second version models a moving polygon that is the

convex hull of a moving object at any time point (in

other words, this is a convenient way to get an ap-

proximation of a complex geometry object).

Op12. Geometry f_traversed (): The geometry re-

turned by this function models all the places that a

moving geometry “traverses” along its motion dur-

ing the periods that characterize the unit moving ob-

jects. Such a geometry object is of polygon type. In

the case of Moving_Point objects, the f_traversed

method is transformed to a special operator

(f_trajectory, to be discussed in the subsequent para-

graph).
Figure 9 illustrates four examples of traversed

areas, one for each of the simple moving types. In the

case of the traversed Moving_LineString, we notice

that the returned geometry is not a single polygon but

a multi polygon due to the fact that the periods of the

unit moving objects that compose the Mov-

ing_LineString do not “meet” each other or the va-

riables that define the unit functions between subse-

quent unit moving objects present a substantial dif-

ference.

Op13. Geometry f_trajectory (): This function is

the f_traversed method for the case of a Mov-

ing_Point object. In other words, this operation simu-

lates the trajectory traversed by a Moving_Point.

More specifically, this projection of the movement of

a Moving_Point to the Cartesian plane is done by

mapping the time-dependent coordinates of the object

at the beginning, ending and a random intermediate

time instant of each one of the periods that identify

the Unit_Moving_Point objects that compose the

Moving_Point. Subsequently, the algorithm examines

whether the intermediate projected coordinates “fall”

upon the line formed by the other two pairs of coor-

dinates. Depending on the result, a linear or arc seg-

ment connecting the beginning and ending projected

coordinates is implied. A process of merging these

segments follows, to form the returned LineString

geometry.

Set Relationships

HERMES provides three object methods for de-

scribing set-relationships between moving types for

intersection, union and set difference, respectively.

Each comes with two overloaded versions, one for

describing a geometry object as the result of applying

the set-relationship at a user-defined time point and

one for describing a moving geometry that is defined

as the set-relationship at all the time periods that this

relationship is meaningful. For example the intersec-

tion of a Moving_Point with a Moving_Polygon re-

sults in a Moving_Object that represents another

moving point, which is the restriction of the initial

Moving_Point inside or on the boundary of the Mov-

ing_Polygon.

Subsequently, we only present the intersection op-

eration between any moving type and a Mov-

ing_Polygon object. Similar definitions exist for the

rest two set relationships (union and set difference)

and for all the other moving types, as well as for the

respective operations describing set-relationships of a

moving type with a pure spatial object.

Op14. Geometry {Moving_Object} f_intersection

(Moving_Polygon, tolerance, Timepoint): The

f_intersection object method returns either a geome-

try object that is the topological intersection (AND

operation) of the two associated moving types pro-

jected at a user-defined time point or a Mov-

ing_Object whose mapping at each instant represents

a geometry that is the outcome of this set operation.

Figure 10 depicts the instantiation of a Mov-

ing_Object modeling the intersection of a Mov-

ing_LineString with a polygon, at three different

timepoints t1, t2, and t3. At timepoint t1 it is obvious

that the result of the operation is a linestring geome-

try. At timepoint t2 this intersection has as result a

multi-linestring geometry due to the development of

Moving_LineString, while at timepoint t3 the resulted

geometry is a heterogeneous collection of lines and

points.

Numeric operations

HERMES supports a special class of object methods

that either compute a numeric value of a moving ob-

ject at a specific timepoint (e.g., the current perimeter

of a moving polygon) or construct a Moving_Object

representing the same time-varying numeric value.

More specifically, we provide the subsequent numer-

ic operations:

Op15. number {Moving_Object} f_area (toler-

ance, Timepoint): The f_area operation is defined for

those moving types that their projection to the Carte-

sian plane depicts a closed region and computes the

area for this region. The second (time-independent)

version of the method returns a Moving_Object

representing the time-varying area of a moving, ex-

tending and/or shrinking region. This function works

with any moving polygon, including polygons with

moving holes.

Op16. number {Moving_Object} f_length (toler-

ance, Timepoint): The f_length object method com-

putes the length of a Moving_LineString object or the

perimeter of a Moving_Circle, Moving_Rectangle or

Moving_Polygon projected at the Cartesian plane at a

user-defined time point. For a Moving_Polygon that

contains one or more holes, this function calculates

the perimeters of the exterior boundary and all holes

at the given time point, and returns the sum of all the

perimeters. The second version of the method returns

a Moving_Object representing the time-varying

length or perimeter of the moving type that invokes

the operation.

Finally, as moving objects are time-dependent ob-

jects it would be useful to support operations that

describe their rate of change. The only type that

clearly qualifies the notion of derivation is the Mov-

ing_Point type. We define two operations called

speed and velocity, respectively.

Op17. number {Moving_Object} f_speed (Time-

point): The speed operation comes in two overloaded

signatures. The time-dependent version returns a

Intersection

time

Polygon boundaries

t1 t3t2

Moving LineString

Figure 10 Demonstrating f_intersection Operation

number representing the speed of a moving point at a

specific timepoint, while the time-independent ver-

sion returns a Moving_Object modeling the time-

varying speed at any time instant. The interested

reader may find more numeric operations (such as

f_velocity, f_direction etc.) in (Pelekis, & Theodoridis,

2010).

RELATED WORK

Several research efforts have tried to model spatio-

temporal databases using the moving object concept.

In (Erwig, Güting, Schneider, & Vazirgiannis, 1999) the

authors propose a new line of research where moving

points and moving regions are viewed as three-

dimensional (2D + time) or higher dimensional enti-

ties whose structure and behavior is captured by

modeling them as abstract data types. Such abstract

data types for moving points and moving regions

have been introduced in (Güting et al., 2000), together

with a set of operations on such entities. The model

presented in (Güting et al., 2000) was the first attempt

to deal with continuous motion while in (Forlizzi et al.,

2000) the definition of the discrete representation of

the above-discussed abstract data types is presented.

The interesting part of the discrete model is how

“moving” types are represented. The authors describe

the sliced representation behind which, the basic idea

is to decompose the temporal development of a value

into fragments called “slices” such that within the

slice this development can be described by some kind

of “simple” function. The next step in this develop-

ment was the study of algorithms for the rather large

set of operations defined in (Güting et al., 2000).

Whereas (Forlizzi et al., 2000) just provides a brief

look into this issue by presenting two example algo-

rithms at the end, in (Lema et al., 2003) the authors

present a comprehensive, systematic study of algo-

rithms for a subset of the operations introduced in

(Güting et al., 2000). Whereas some algorithms are

relatively straightforward and simple, there are still a

considerable number of quite involved ones. In all

cases the authors analyze the complexity of the algo-

rithms. In (Lema et al., 2003) the data structures from

(Forlizzi et al., 2000) are also refined and extended by

auxiliary fields to speed up computations. This paper

also offers a blueprint for implementing such a “mov-

ing objects” extension package for suitable extensible

database architectures. More specifically, the details

and the current status of a prototypical implementa-

tion of the data structures and algorithms described

are presented. The final outcome of this work has

been recently demonstrated in (Almeida et al., 2006).

The prototype is being developed as an algebra mod-

ule for the experimental database system SECONDO

(Dieker et al., 2000).

As an extension to the abstract model in (Güting et

al., 2000), the concept of spatio-temporal predicates

is introduced in (Erwig, Schneider, 2002). The goal is to

investigate temporal changes of topological relation-

ships induced by temporal changes of spatial objects.

Further work on modeling includes (Su, Xu, & Ibarra,

2001) where the authors focus on moving point ob-

jects and the inclusion of concepts of differential

geometry (speed, acceleration) in a calculus based

query language. In (Becker, Blunck, Hinrichs, & Vahr-

enhold., 2004), a non-linear representation for moving

objects is discussed in detail, while in (Vazirgiannis, &

Wolfson, 2001) the authors consider movement in

networks and some evaluation strategies.

Another model using moving objects is proposed

in (Sistla, Wolfson, Chamberlain, & Dao, 1997; Wolfson,

Sistla, Chamberlain, & Yesha, 1999; Wolfson, Xu, Cham-

berlain, & Jiang, 1998). The authors propose the so-

called Moving Objects Spatio-Temporal (MOST)

data model for databases with dynamic attributes, i.e.

attributes that change continuously as a function of

time, without being explicitly updated. This model

enables the DBMS to predict the future location of a

moving object by providing a motion vector, which

consists of its location, speed and direction for a re-

cent period of time. In the model, the answer to a

query depends not only on the database contents, but

also on the time at which the query is entered. As

long as the predicted position based on the motion

vector does not deviate from the actual position more

than some threshold, no update to the database is

necessary. An important issue here is to balance the

cost of updates against the cost of imprecise informa-

tion. The authors also offer a query language (Future

Temporal Logic - FTL) based on temporal logic to

formulate questions about the near future movement.

The approach is restricted to moving points and does

not address more complex time-varying geometries

such as moving regions.

Related work in the field also includes our initial

approach in designing HERMES. More specifically, in

(Pelekis, Theodoridis, Vosinakis, & Panayiotopoulos,

2006) we briefly described the envisioned architecture

of HERMES framework, in (Pelekis et al., 2006) we

presented the primitives of the proposed datatype-

oriented model and provides a preliminary insight on

the supported functionality, while in (Pelekis, Frentzos,

Giatrakos, & Theodoridis, 2008) we demonstrated the

software developed theretofore, focusing in a specific

(i.e. LBS) application domain. The current paper

presents the complete system and describes all the

necessary infrastructure for introducing our datatype

system for moving objects. More specifically, we

describe all the base, temporal and spatial types that

compose the basic constructs for the definition of the

moving objects datatypes, while we discuss in detail

the fundamentals for extending the previous with

moving objects. In addition, all the datatypes, which

are the core of the data type system of HERMES, are

now formally defined and discussed in detail. The

definition of the data type system is followed by a

presentation of the design decisions and techniques

for the physical representation of the proposed ab-

stract data types. We further discuss the principles

adhered by HERMES for designing moving objects

operations and present in detail the full set of me-

thods defined upon the proposed data types. Our de-

sign extends the data definition and manipulation

language of OGC-compliant ORDBMS with spatio-

temporal semantics and functionality. The proposed

operations are accompanied with a discussion regard-

ing their development and fruitful examples and illu-

strations for depicting the supported functionality. We

also include a description of the implementation de-

tails of our system taking advantage of extensibility

interfaces provided by state-of-the-art ORDBMS.

Finally, we provide a qualitative comparison of our

research effort with related work.

In (Güting, Behr, & Xu, 2010) the authors extended

the SECONDO system with algorithms for efficient

k-nearest neighbor search on moving object trajecto-

ries, while in (Güting, Behr, & Xu, 2010) they intro-

duced a benchmark that defines datasets and queries

for experimental evaluations. Another recent ap-

proach is TrajStore (Cudre-Mauroux, Wu, & Madden

2010), which focuses on supporting efficient spatio-

temporal range queries in very large datasets.

In the following paragraphs we briefly present the

differences of HERMES features proposed in this pa-

per with the approach described in (Güting et al.,

2000; Forlizzi et al., 2000) and (Lema et al., 2003),
which is the most related to our work.

HERMES introduces time-varying geometries that

change location or shape in discrete steps and/or con-

tinuously. Our approach for supporting both discrete-

ly and continuously changing spatio-temporal objects

and which is based on the Unit_Function object is

more generic and flexible than the tactic adopted in

(Forlizzi et al., 2000) that asserts the same functionality.

Apart from linear interpolations of spatial and spatio-

temporal (moving) types utilized in (Forlizzi et al.,

2000) and (Lema et al., 2003), HERMES also utilizes

arc interpolations by proposing a categorization ac-

cording to the quadrant the motion takes place and

the motion heading. The user of HERMES is facilitated

with a flexible and extensible interface for additional

types of motion for moving types (e.g. splines, poly-

nomials of degree higher than one etc.), which is pro-

vided via the Unit_Function object type.

In addition to Moving_Point, Moving_LineString,

Moving_Polygon, proposed in (Forlizzi et al., 2000),
the proposed MOD Type System also includes types

like Moving_Circle, Moving_Rectangle, Mov-

ing_Collection and Moving_Object. A rich set of ob-

ject methods is introduced that expresses all the inter-

esting spatio-temporal phenomena and processes.

This set of operations is a superset of the operations

introduced in (Güting et al., 2000). The operation set

commenced in (Güting et al., 2000) at an abstract lev-

el, is reduced in (Forlizzi et al., 2000) where specific

finite representations and data structures are given for

all the types of the abstract model, and is further re-

duced in (Lema et al., 2003) where a subset of the

algorithms are selected to make the implementation

manageable.

Of course, there are more differences between the

two operations sets supplied by (Güting et al., 2000)
and HERMES. For example, all topological operations

introduced in (Güting et al., 2000) are combined in

HERMES under a single operator, which distinguishes

the different topological relationships via a “mask”

parameter. Furthermore, HERMES introduces new

operations describing the buffer, the convex hull, the

centre of gravity and points on the surface of moving

geometries. Additionally, particular attention has

been paid to operations that facilitate the user to

check the construction of moving objects and to keep

such kind of spatio-temporal data in a consistent

state. This leads to effective database maintenance

and reliable error-handling mechanism.

The Moving_Collection object supports not only a

homogeneous collection of moving types but also a

heterogeneous collection of them. In (Güting et al.,

2000), heterogeneous collections are not supported

and a single moving type corresponds to a homoge-

neous Moving_Collection of the proposed MOD Type

System. The Moving_Object can substitute any of the

other moving types, as well as moving geometries

that result as operations on other moving geometries

and moreover, it can model time-varying objects like

the time-changing perimeter of a moving region. In

(Güting et al., 2000) such degenerated moving types

(moving reals, strings and booleans) are constructed

as separate objects, which leads to a proliferation of

object types that mainly are not spatio-temporal,

which makes more difficult and unnatural the utiliza-

tion of such data types by end users.

Generally speaking, the proposed MOD Type Sys-

tem is richer and more flexible than the one presented

in (Güting et al., 2000). For example, it supports mov-

ing linestrings that intersect themselves during their

development, while such a behavior is not allowed in

(Güting et al., 2000) due to the fact that the spatial

model does not accept self-intersecting linestrings.

This is a very simple example of the importance that

HERMES is OGC-compliant.

CONCLUSIONS AND OUTLOOK

In this paper, a formal framework and its imple-

mentation for managing and analyzing moving ob-

jects, called HERMES, was introduced. HERMES is a

system extension that provides spatio-temporal func-

tionality to OGC-compliant ORDBMS and supports

modeling and querying of moving objects changing

location either in discrete steps or continuously. A

collection of data types and their corresponding oper-

ations are defined and implemented. Embedding the

functionality offered by HERMES in ORDBMS data

manipulation language provides a flexible, expressive

and easy to use query language for moving object

databases.

Another contribution of this work is that it pre-

scribes straightforward future research directions.

First of all, due to the fact that our study concerns

only two-dimensional spatial objects as well as the

change and motion of such geometries in the 2D

plane, there is need to investigate the way we could

model surfaces and three-dimensional spatial objects

and the time-changing variants of them. Additionally,

a future direction we are planning to follow is to util-

ize the optimization extensibility interface of existing

ORDBMS in order to enhance the performance of

HERMES. Finally, we will follow and extend the

benchmark introduced in (Düntgen et al., 2009) for a

more extensive comparison of HERMES with the ap-

proach of SECONDO.

ACKNOWLEDGMENT

Research partially supported by the FP7 ICT/FET

Project MODAP (Mobility, Data Mining, and Priva-

cy) funded by the European Union (URL:

www.modap.org). Elias Frentzos is supported by the

Greek State Scholarships Foundation.

REFERENCES

Almeida, V.T., Güting, R.H., & Behr, T. (2006). Querying

moving objects in secondo. In Proceedings of the 7th Inter-

national Conference on Mobile Data Management.

Becker, L., Blunck, H., Hinrichs, K., & Vahrenhold., J.

(2004). A framework for representing moving objects. In

Proceedings of DEXA, (pp. 854-863).

Cattel, R.G.G., & Barry, D.K. (eds.). (1997, 05) The object

database Standard: ODMG 2.0. Morgan Kaufmann Pub-

lishers.

Dieker S., & Güting, R.H. (2000). Plug and play with

query algebras: Secondo. A generic dbms development

environment. In Proceedings of Int’l Symp. on Database

Engineering and Applications (IDEAS), (pp. 380-390).

Düntgen, C., Behr, T., & Güting, R.H. (2009). Berlinmod: a

benchmark for moving object databases. The VLDB Jour-

nal, 18(6), 1335-1368.

Egenhofer, M., & Franzosa, R. (1991). Point-set topologi-

cal spatial relations. International Journal of Geographical

Information Systems, 5(2), 161-174.

Erwig, M., Güting, R.H., Schneider, M., & Vazirgiannis,

M. (1999). Spatio-temporal data types: An approach to

modeling and querying moving objects in databases.

GeoInformatica, 3(3), 265-291.

Erwig, M., & Schneider, M. (2002). Spatio-temporal predi-

cates. IEEE Transactions on Knowledge and Data Engi-

neering, 14(4), 881-901.

Forlizzi, L., Güting, R. H., Nardelli, E., & Schneider, M.

(2000). A data model and data structures for moving ob-

jects databases. In Proceedings of the ACM SIGMOD Int’l

Conf. on Management of Data.

Frentzos, E., Pelekis, N., Ntoutsi, I, & Theodoridis, Y.

(2008). Trajectory database systems, In F. Giannotti and D.

Pedreschi (eds), Mobility, Data Mining and Privacy. Sprin-

ger.

Güting, R.H., Behr, T., & Xu, J. (2010). Efficient k-nearest

neighbor search on moving object trajectories. The VLDB

Journal.

Güting, R.H., Bohlen, M.H., Erwig, M., Jensen, C.S., Lo-

rentzos, N.A., Schneider, M., & Vazirgiannis, M. (2000). A

foundation for representing and querying moving objects.

ACM Transactions on Database Systems, 25(1), 1-42.

Güting, R.H. (1994). An introduction to spatial database

systems. The VLDB Journal, 4, 357-399.

Kakoudakis, I. (1996). The tau temporal object model.

MPhil Thesis, UMIST, Department of Computation.

Koubarakis, M., & Sellis T. et al. (eds.). (2003). Spatio-

temporal databases: The Chorochronos Approach. Sprin-

ger.

Lema, J.A.C., Forlizzi, L., Güting, R.H., Nardelli, E., &

Schneider, M. (2003). Algorithms for moving objects data-

bases. The Computer Journal 46(6), 680-712.

Pelekis, N. (2002). Stau: A spatio-temporal extension to

oracle dbms. PhD Thesis, UMIST, Department of Compu-

tation.

Pelekis, N., Frentzos, E., Giatrakos, N., & Theodoridis, Y.

(2008). Hermes: Aggregative lbs via a trajectory db engine.

In Proceedings of the ACM SIGMOD Conference.

Pelekis, N., & Theodoridis, Y. (2006). Boosting location-

based services with a moving object database engine. In

Proceedings of the 5
th
 Int’l ACM Workshop on Data Engi-

neering for Wireless and Mobile Access.

Pelekis, N., & Theodoridis, Y. (2010, 07). An oracle data

cartridge for moving objects. Information Systems Labora-

tory, Department of Informatics, University of Piraeus,

UNIPI-ISL-TR-2010-01.

http://isl.cs.unipi.gr/publications.html.

Pelekis, N., Theodoulidis, B., Kopanakis, I., & Theodoridis,

Y. (2004,06). Literature review of spatio-temporal database

models. Knowledge Engineering Review, 19(3), 235-274.

Pelekis, N., Theodoridis, Y., Vosinakis, S., &

Panayiotopoulos, T. (2006). Hermes – A framework for

location-based data management. In Proceedings of the

10th Int’l Conference on Extending Database Technology.

Sistla, P., Wolfson, O., Chamberlain, S., & Dao., S. (1997)

Modeling and querying moving objects. In Proceedings of

the 13th Int’l Conf. on Data Engineering.

Su, J., Xu, H., & Ibarra, O. (2001). Moving objects: Logi-

cal relationships and queries. In Proceedings of the 7th Int’l

Symp. on Spatial and Temporal Databases.

Tansel, A.U., Clifford, J., Gadia, S., Jajodia, S., Segev, A.,

& Snodgrass, R. (1993). Temporal databases: Theory, de-

sign and implementation. Benjamin/Cummings Publishing

Company.

Theodoulidis I., & Loucopoulos, P. (1991). The time di-

mension in conceptual modeling. Information Systems,

16(3), 273-300.

Vazirgiannis M., & Wolfson, O. (2001). A spatiotemporal

model and language for moving objects on road networks.

In Proceedings of the7th Int’l Symp. on Spatial and Tem-

poral Databases.

Wiederhold, G., Jajodia, S., & Litwin, W. (1991, 05). Deal-

ing with granularity of time in temporal databases. In Pro-

ceedings of the 3rd Nordic Conf. on Advanced Information

Systems Engineering.

Wolfson, O., Sistla, A. P., Chamberlain, S., & Yesha Y.

(1999). Updating and querying databases that track mobile

units. Distributed and Parallel Databases, 7 (3), 257-387.

Wolfson, O., Xu, B., Chamberlain, S., & Jiang, L. (1998).

Moving objects databases: Issues and solutions. In Pro-

ceedings of the 10th Int’l Conf. on Scientific and Statistical

Database Management.

