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ABSTRACT 

Composition of space and mobility in a unified data framework results into Moving Object Databases (MOD). 

MOD management systems support storage and query processing of non-static spatial objects and provide essential 

operations for higher level analysis of movement data. The goal of this paper is to present HERMES MOD engine that 

supports the aforementioned functionality through appropriate data types and methods in Object-Relational DBMS 

(ORDBMS) environments. In particular, HERMES exploits on the extensibility interface of ORDBMS that already 

have extensions for static spatial data types and methods that follow the Open Geospatial Consortium (OGC) 

standard, and extends the ORDBMS by supporting time-varying geometries that change their position and/or extent 

in space and time dimensions, either discretely or continuously. It further extends the data definition and 

manipulation language of the ORDBMS with spatio-temporal semantics and functionality. 

Keywords: HERMES, Moving Object Databases, Spatio-temporal Data Management, ORDBMS extension, OGC 
spatial types. 

INTRODUCTION 

Due to the explosion of mobile devices, the position-

ing technologies and the low data storage cost, one of 

the most important assets of knowledge intensive 

organizations working with movement data, traffic 

engineering, climatology, social anthropology and 

zoology, studying vehicle position data, hurricane 

track data, human and animal movement data, respec-

tively etc.) is the data itself. Spatial database research 

has focused on supporting the modeling and querying 

of geometries associated with objects in a database 

(Güting, 1994). Regarding static spatial data, the ma-

jor commercial as well as open source database man-

agement systems (e.g., DB2, MySQL, Oracle, Postgis, 

SQL Server) already provide appropriate data man-

agement and querying mechanisms that conform to 

Open Geospatial Consortium (OGC) standards (Open 

geospatial consortium, 2010). On the other hand, tem-

poral databases have focused on extending the know-

ledge kept in a database about the current state of the 

real world to include the past, in the two senses of 

“the past of the real world” (valid time) and “the past 

states of the database” (transaction time) (Tansel et 

al., 1993). About a decade’s effort attempts to achieve 

an appropriate kind of interaction between both sub-

areas of database research. Spatio-temporal databases 

are the outcome of the aggregation of time and space 

into a single framework (Koubarakis, & Sellis,  2003) 
with up-to-date reviews of spatio-temporal models 

and systems proposed in the literature found in (Pele-

kis, Theodoulidis, Kopanakis, & Theodoridis, 2004) and 

(Frentzos, Pelekis, Ntoutsi, & Theodoridis, 2008), respec-

tively. As delineated in these papers, a serious weak-

ness of existing approaches is that each of them deals 

with few common characteristics found across a 

number of specific applications. Thus the applicabili-

ty of each approach to different cases, fails on spatio-

temporal behaviors not anticipated by the application 

used for the initial model development. For the pre-

vious reasons, the field of the MOD has emerged 

(Güting, 2000), and has been shown (Pelekis et al., 

2004) that it presents the most desirable properties 

among the proposals. However, although a lot of re-

search has been carried out in the field of MOD, the 

efforts are independent trying to deal with specific 

problems and do not pay attention into embedding 

the proposed solutions (i.e. query processing algo-

rithms) on top of existing DBMS where real world 

organizations base on. Towards this direction, the 

pioneer work of (Güting et al., 2000; Forlizzi, Güting, 

Nardelli,  & Schneider, 2000; Lema, Forlizzi, Güting, Nar-

delli, & Schneider, 2003) have proposed the SECON-

DO system (Almeida, Güting, & Behr, 2006). However, 

SECONDO in contradiction to our approach is a 

stand-alone system, built from scratch, its design 

does not utilize the provided spatial extensions of 

existing ORDBMS, it does not conform to the OGC 

standards as it does not follow any predefined data 

model (Dieker, & Güting, 2000) and as such it is not 

embeddable into the DBMS infrastructure of an or-

ganization, where pure static spatial, as well as other 

types of data is stored. 

The aim of this paper is to describe a robust 



 

framework capable of aiding either an analyst work-

ing with mobility data, or more technically, a MOD 

developer in modeling, constructing and querying a 

database with objects that change location, shape and 

size, either discretely or continuously in time. Objects 

that change location or extent continuously are much 

more difficult to accommodate in a database in con-

trast to discretely changing objects. Supporting both 

types of spatio-temporal objects (the so-called mov-

ing objects) is exactly the challenge adopted by this 

paper. In detail, we present an integrated and com-

prehensive design of moving object data types in the 

form of extensible modules that can be embedded in 

OGC-compliant Object-Relational Database Man-

agement Systems (ORDBMS) taking advantage of 

their extensibility interface. The proposed HERMES 

MOD Engine provides the functionality to construct a 

set of moving, expanding and/or shrinking geome-

tries, which are just variables of simple continuous 

functions that obtain hypostasis when projected to the 

spatial domain (i.e. becoming OGC spatial data 

types) at a specific instance in time. Each one of 

these moving objects is supplied with a set of me-

thods that facilitate the user to query and analyze 

spatio-temporal data. Embedding this functionality 

offered by HERMES in an ORDBMS data manipula-

tion language, one obtains a flexible, expressive and 

easy to use query language for moving objects that 

was not available so far in real OGC-compliant 

ORDBMS. 

The implementation of such a framework is based 

on a set of basic types including base data types (i.e. 

integer, real, string and boolean, available in all 

DBMS), together with spatial data types offered by 

spatial extensions of OGC-compliant ORDBMS and 

temporal data types introduced in a temporal exten-

sion, called TAU Temporal Literal Library (TAU-

TLL) (Pelekis, 2002). Based on these temporal and 

spatial object data types and the ideas behind the ab-

stract data types for moving objects that have been 

introduced in (Güting et al., 2000), this paper dis-

cusses the design principles and the implementation 

issues concerning HERMES. The values of such mov-

ing types are functions that associate each instant in 

time with an OGC spatial type, in contradiction to 

(Güting et al., 2000) whose design does not follow the 

OGC standards. A rich palette of suitable operations 

is defined on these types to support querying and to 

make moving object data management easier, more 

natural and sensible to users and applications.  

Summarizing the previous discussion, the contri-

butions of the paper are the following: 

• We present a datatype-oriented model and an 

extension of SQL-like query language for sup-

porting the modeling and querying of MOD on 

top of OGC-compliant ORDBMS. 

• We describe the physical representation design 

decisions and the architectural aspects of our 

server-side MOD database engine, as well as the 

formulated interface (in terms of operators regis-

tered in the ORDBMS) for building advanced 

mobility-related applications. 

To the best of our knowledge, HERMES is the first 

work that provides a complete framework for build-

ing MOD applications, which has been incorporated 

into state-of-the-art OGC-compliant ORDBMS. 

The outline of the paper is as follows: we first 

present the data type system for moving objects in-

troduced in HERMES in an abstract way and then, we 

discuss implementation aspects. An appropriate set of 

operations that extend the data definition and mani-

pulation language of an ORDBMS with spatio-

temporal semantics is subsequently discussed. An 

extensive discussion on the comparison of HERMES 

functionality with related work appears follows. Fi-

nally, we conclude the paper, also pointing out some 

interesting future research directions. 

A DATA TYPE SYSTEM FOR MOVING OBJECTS 

The basic modeling primitives of the proposed mov-

ing object data type system are objects and literals. 

An object is a computational entity with a unique 

object identifier that encapsulates both state and be-

havior. The state of an object is defined by the values 

it carries for a set of properties. These properties can 

be attributes of the object itself or relationships be-

tween the object and one or more other objects. The 

behavior of an object is defined by a set of operations 

that can be executed on or by the object. On the other 

hand, a literal is a computational entity that has only 

state. Let V be a universe of all possible computation-

al entities, containing objects and literals. A type is a 

set of elements of V that obey some technical proper-

ties. Each type is associated with a predicate function 

defined over the V. A value v∈V satisfies a type iff 

the predicate is true for that value. A value that satis-

fies a type is called member of the type. A type system 

is a collection of types. 

Types in the so-called MOD Type System are di-

vided into Base Types BT, pure Temporal Types TT, 

pure OGC-compliant Spatial Types ST and Moving 

Types MT, i.e., the proposed MOD Type System is 

defined as: 

MOD = BT ∪ TT ∪ ST ∪ MT  (1) 

Figure 1 illustrates, in UML notation, all types in 

MOD Type System. 
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Figure 1 MOD Type System 

 

Base, Temporal and Spatial Types 

Base types are the standard database types built into 

any DBMS, such as integer and real (float) numbers, 

alphanumeric strings and booleans. These types form 

a subset of the Atomic Literal Types needed to define 

temporal types. The set ALT of Atomic Literal Types 

is defined as: 

ALT = Π booleanΤ ∪ Π charΤ ∪ Π shortΤ ∪  

 Π ushortΤ ∪ Π longΤ ∪ Π ulongΤ ∪  

 Π floatΤ ∪ Π doubleΤ ∪ Π octetΤ ∪  

 Π stringΤ ∪ Π enumΤ  

(2) 

where Π *Τ denotes the domain of type *. For exam-

ple, Π booleanΤ = {true, false}, Π charΤ = {x | x∈ 

ASCII}, and so on.  

Moving from base to temporal types, the set TLT 

of Temporal Literal Types is defined as (Kakoudakis, 

1996; Pelekis, 2002): 

TLT = Π dateΤ ∪ Π timeΤ ∪ Π timestampΤ ∪ 

  Π intervalΤ ∪ Π timepoint〈 g〉 Τ ∪  

 Π period〈 g〉 Τ ∪  

 Π temporalElement〈 g〉 Τ  

(3) 

Basically, TLT augments the four temporal literal 

data types found in ODMG object model (Cattel, & 

Barry, 1997) (namely, Date, Time, Timestamp and In-

terval) with three new temporal object data types 

(namely, Timepoint, Period and Temporal Element). 

The widely used Gregorian calendar is implemented 

and the discrete model of time is adopted, where time 

is isomorphic to the integers because of its better re-

presentation and manipulation on databases. Time 

axis is partitioned into a finite number of discrete 

segments, called granules. The choice of a partition-

ing scheme is termed as granularity. The granularity 

of the timestamp that a fact is associated with denotes 

the precision to which the timestamp can be 

represented. Time order refers to whether the time 

axis can be always considered as linear or non-linear. 

In the linear model, time advances from past to future 

in a totally ordered form. The non-linearity of the 

time axis deals with aspects of the time such as peri-

odic time and branching time (Theodoulidis , & Louco-

poulos, 1991). Formally: 

date =d year: GrYear, month: GrMonth, day: 

GrDay  

time =d hour: GrHour, minute: GrMinute, 

second: GrSecond  

timestamp =d date || time 

interval =d day: long, hour: GrHour, minute: 
GrMinute, second: GrSecond  

timepoint〈 g〉 =d tp〈g〉 ∪ STV 

period〈g〉=d{ start:Timepoint〈g〉, 
end:Timepoint〈g〉 | start ≤ end}, g ∈ 
granularity 

temporalElement〈 g〉 =d {te: set〈period〈g〉〉| 

∀i, j ⋅ i≠j ⇒ tei ∩ tej= ∅} 
 

(4) 

where the set granularity that contains elements that 

represent time accuracy according to the time divi-

sions in the Gregorian calendar:  



 

Π granularityΤ = {YEAR, MONTH, DAY, HOUR, 

MINUTE, SECOND}, tp〈year〉 =d year: GrYear , 
tp〈month〉 =d tp〈year〉 || month: GrMonth , ..., 

tp〈second〉 =d tp〈minute〉 || second: GrSecond  and

STV =d {beginning, forever, now}. 
 

The four temporal literal data types found in 

ODMG object model (Cattel et al., 1997) are aug-

mented with three new temporal object data types 

presented below: 

• Timepoint: extends the Timestamp data type to 

include granularity. The new data type is a sub-

type of the Timestamp data type. It inherits all 

the properties and the operations that are defined 

for the Timestamp data type. It refines all the op-

erations, which had as argument Timestamp to 

Timepoint. Beginning and forever are defined to 

be members of timepoint such as ∀ t ∈ time-

point〈 g〉 ⋅ beginning ≤ t ≤ forever. 

• Period: is used to represent an anchored duration 

of time, that is, duration of time with starting and 

ending points. A period has an associated granu-

larity. The period is the composition of two 

timepoints with the constraint that the timepoint 

that starts the period equals or precedes the time-

point that terminates it. It is assumed that both 

timepoints have the same granularity. There are 

four categories of periods depending on whether 

they include their starting and/or their ending 

timepoints or not: [t1, t2] (closed-closed), [t1, t2) 

(closed-open), (t 1, t2] (open-closed), and (t1, t2) 

(open-open). TAU Model supports only closed-

open periods, with which it is possible to model 

any other category. For example, the period [t1, 

t2] is equivalent to the period [t1, t2+1 "granule"). 

The meaning of "1 granule" depends on the gra-

nularity of the period. For instance, if the granu-

larity is day then the period [t1, t2] is equivalent 

to the period [t1, t2+1*DAY).  

• Temporal Element: is used to represent a finite 

union of disjoint periods. Temporal elements are 

closed under the set theoretic operations of un-

ion, intersection and complementation. 

On the other hand, spatial types (point, line seg-

ment, rectangle, etc.) are supported by another com-

ponent of the MOD type system architecture, called 

OGC Geometry. Such a spatial extension is found in 

several state-of-the-art ORDBMS and provides an 

integrated set of functions and procedures that enable 

spatial data following the OGC standard to be effi-

ciently stored in a spatial database, accessed and 

futher processed. Of course, the geometric operations 

forming the behavior of spatial types supported by 

these extensions, handle queries statically, meaning 

that there exists no notion of time associated to the 

spatial objects. This is exactly the target addressed in 

the MOD type system we propose in the sequel. 

Abstract Definitions of Moving Object Data Types  

In this work, we adopt and extend the sliced repre-

sentation concept (Güting et al., 2000; Forlizzi et al., 

2000; Lema et al., 2003) and utilize it in the implemen-

tation of the MOD type system that results to 

HERMES. In order to use the sliced representation to 

define a moving type, one has to decompose the defi-

nition of each moving type into several definitions, 

one for each of the slices that corresponds to a simple 

function (i.e. corresponding to a so-called 

Unit_Function type), which is valid for a period of 

time, and then compose these sub-definitions as a 

collection to define the moving type. Each one of the 

sub-definitions corresponds to a so-called unit mov-

ing type.  

The Unit_Function object type (Pelekis, & Theodo-

ridis, 2006) is defined as a triplet of (x, y) coordinates 

together with some additional motion parameters. 

The first two coordinates represent the initial (xi, yi) 

and ending (xe, ye) coordinates of the sub-motion de-

fined, while the third coordinate (xc, yc) corresponds 

to the centre of a circle upon which the object is mov-

ing. Whether we have constant, linear or arc motion 

between (xi, yi) and (xe, ye) is implied by a flag indi-

cating the type of the simple function. Since we re-

quire that HERMES manages not only historical data, 

but also online and dynamic applications, we further 

let a Unit_Function to model the case where a user 

currently (i.e., at an initial timepoint) is located at (xi, 

yi) and moves with initial velocity v and acceleration 

a on a linear or circular arc route. Consequently, in 

the general case the Unit_Function is defined as fol-

lows: 

Unit_Function = d  xi:double, yi:double, 
xe:double, ye:double, xc:double, yc:double, 

v:double, a:double, flag:TypeOfFunction   

(5) 

where ΠTypeOfFunctionΤ={ PLNML_1, 

ARC_<1..8>, CONST }, meaning 1
st
 order polynomi-

al, one of the eight possible circular arcs, and con-

stant function, respectively. 

Combining time period and simple function to-

gether, the most primitive and simplest unit object 

type is defined, namely Unit_Moving_Point. This is a 

fundamental type since all the successor unit types 

are defined based upon it. Formally: 

Unit_Moving_Point =d p: period〈 SECOND〉, 
m: Unit_Function  

 
(6) 

Following this, we define two unit moving types 

directly based on Unit_Moving_Point, namely 

Unit_Moving_Circle and Unit_Moving_Rectangle. 

As it is easily inferred, these two object types model 

circle and rectangle geometry constructs that change 



 

their position and/or extent over time. Formally: 

Unit_Moving_Rectangle=d{ ll:Unit_Moving

_Point,ur: Unit_Moving_Point  | equal 
(ll.p, ur.p) } 

 

(7) 

Unit_Moving_Circle=d{

 f:Unit_Moving_Point,  
 s: Unit_Moving_Point,  

 t: Unit_Moving_Point  | equal (f.p, s.p, 
t.p) } 

 

(8) 

For modeling the subsequent object types 

(Unit_Moving_Polygon, Unit_Moving_LineString) an 

intermediate object type that represents the simplest 

built-in constituent of these types is needed. This 

requirement is met by the Unit_Moving_Segment 

object, which models a simple line or arc segment 

that changes its shape and size according to its start-

ing and ending unit moving points. This is clarified in  

Figure 2 where a moving segment is mapped to a line 

segment at two different time instants t1 and t2. Dur-

ing the time period between t1 and t2, the starting 

moving point mp1 follows a simple linear trajectory, 

while the ending moving point mp2 follows an arc 

trajectory. 

yy'

xx'

t1 t2

mp1

mp1

mp2
mp2

 Figure 2 Linear Unit_Moving_Segment with its first 

Unit_Moving_Point mp1 moving linearly and the 

second mp2 moving on a circular arc 

 

Formally: 

Unit_Moving_Segment= 

d{ b:Unit_Moving_Point,  
 e: Unit_Moving_Point,  
 m: Unit_Moving_Point, 

kind:TypeOfSegment | (kind=SEG ⇒ 

equal (b.p, e.p)) ∧ (kind =ARC ⇒ equal 
(b.p, e.p, m.p)) } 

 

(9) 

Unit_Moving_Linestring= 

d{l:set〈Unit_Moving_Segment〉 | ∀ i, j 
∈ ulong: i≠ j ⇒ equal (li.b.p, lj.e.p) } 

 

(10) 

Unit_Moving_Polygon =d {

  l: set〈Unit_Moving_Segment〉, 
hole:boolean | ∀ i, j ∈ ulong: i≠ j ⇒ 
equal (li.b.p, lj.e.p) } 

 

(11) 

where Π TypeOfSegment Τ = {SEG, ARC} and SEG, 

ARC denote the two alternative modes of interpola-

tion in between two end points (line segment vs. arc, 

respectively). 

Having defined the fundamental unit moving 

types, we now introduce the moving types that play 

the dominant role in our spatio-temporal data type 

system. The process that we followed to define the 

moving types is to introduce a moving type as a col-

lection of the corresponding unit moving type, which 

means, in terms of object orientation, that there exists 

a composition relationship between the unit moving 

type and the moving type. As such, the Mov-

ing_Point, Moving_Circle, Moving_Rectangle, Mov-

ing_LineString and Moving_Polygon object types are 

introduced as a collection of Unit_Moving_Point, 

Unit_Moving_Circle, Unit_Moving_Rectangle, 

Unit_Moving_LineString, Unit_Moving_Polygon 

object types, respectively. Formally: 

Moving_Point =d { 

  p: set〈Unit_Moving_Point〉 | ∀ i, j ∈ 
ulong, 1≤ i, j≤ | 

 set〈Unit_Moving_Point〉|: j= i+1 ⇒ pi.p 

< pj.p ∧ ¬overlaps(pi.p, pj.p) ∧ ∀ t ∈ 

double: inside(t, pi.p) ⇒ at_instant(p, t) ∈
OGC-GEOMETRYGTYPE=point } 

(12)

Moving_Rectangle =d { r: 

set〈Unit_Moving_Rectangle〉 | ∀ i, j ∈ 

ulong, 1≤ i, j≤ | 

 set〈Unit_Moving_Rectangle〉|: j= i+1 ⇒ 

ri.ll.p < rj.ur.p ∧ ¬overlaps(ri.ll.p, rj.ur.p) 

∧ ∀ t ∈ double: inside(t, ri.ll.p) ⇒ 
at_instant(r, t) ∈ OGC-
GEOMETRYGTYPE=rectangle } 

(13)

Moving_Circle =d { c: 

set〈Unit_Moving_Circle〉 | ∀ i, j ∈ 

ulong, 1≤ i, j≤ | 

 set〈Unit_Moving_Circle〉|: j= i+1 ⇒ 

ci.f.p < cj.s.p ∧ ¬overlaps(ci.f.p, cj.s.p) ∧ ∀ 

t ∈ double: inside(t, ci.f.p) ⇒ 
 at_instant(c, t) ∈ OGC-

GEOMETRYGTYPE=circle } 

(14)

Moving_LineString =d { line: 

set〈Unit_Moving_LineString〉 | ∀ i, j ∈ 
ulong, 1≤ i, j≤ | 

 set〈Unit_Moving_LineString〉|: j= i+1 

⇒ linei.l1.b.p < linej.l1.e.p ∧ 

¬overlaps(linei.l1.b.p, linej.l1.e.p) ∧ ∀ t ∈ 
double: inside(t, linei.l1.b.p) ⇒ 

at_instant(line, t) ∈ OGC-
GEOMETRYGTYPE=linestring } 

(15)



 

Moving_Polygon =d { pol: 

set〈Unit_Moving_Polygon〉 | ∀ i, j ∈ 
ulong, 1≤ i, j≤ | 

 set〈Unit_Moving_Polygon〉|: j= i+1 ⇒ 

poli.l1.b.p < polj.l1.e.p ∧ 

¬overlaps(poli.l1.b.p, polj.l1.e.p) ∧ ∀ t ∈ 
double: inside(t, poli.l1.b.p) ⇒ 

at_instant(pol, t) ∈ OGC-
GEOMETRYGTYPE=polygon } 

(16)

Similarly, in order to model homogeneous collec-

tions of moving types, multi-moving types are de-

fined as collections of the corresponding moving 

types. Consequently, the proposed spatio-temporal 

model is augmented by the following object types: 

Multi_Moving_Point, Multi_Moving_Circle, Mul-

ti_Moving_Rectangle, Multi_Moving_LineString and 

Multi_Moving_Polygon. Formally (and assuming that 

the spatial extension of the underlying ORDBMS 

supports multi-spatial types): 

Multi_Moving_Point =d { multi_mpoint: set〈 
Moving_Point〉 | ∀ i, j ∈ ulong ∧ ∀ t ∈ 
double: inside(t, multi_mpointi.pj.p) ⇒  

 ∪i (at_instant(multi_mpointi, t)) ∈ OGC-
GEOMETRYGTYPE=multi-point } 

(17)

Multi_Moving_LineString =d { multi_mline: 

set〈 Moving_LineString〉 |∀ i, j ∈ ulong 
∧ ∀ t ∈ double: inside(t, 

multi_mlinei.linej.l1.b.p) ⇒  

 ∪i (at_instant(multi_mlinei, t)) ∈ OGC-
GEOMETRYGTYPE=multi-linestring } 

(18)

Multi_Moving_Circle =d { multi_mcircle: set〈 
Moving_Circle〉 |∀ i, j ∈ ulong ∧ ∀ t ∈ 
double: inside(t, multi_mcirclei.cj.f.p) ⇒ 

∪i (at_instant(multi_mcirclei, t)) ∈ OGC-
GEOMETRYGTYPE=multi-polygon } 

(19)

Multi_Moving_Rectangle =d { 
multi_mrectangle:  

 set〈 Moving_Rectangle〉 |∀ i, j ∈ ulong ∧ 

∀ t ∈ double: inside(t, 

multi_mrectanglei.rj.ll.p) ⇒ ∪i 
(at_instant(multi_mrectanglei, t)) ∈ 
OGC-GEOMETRYGTYPE=  

 multi-polygon } 

(20)

Multi_Moving_Polygon =d { 

multi_mpolygon: set〈 Moving_Polygon〉 
|∀ i, j ∈ ulong ∧ ∀ t ∈ double: inside(t, 

multi_mpolygoni.polj.l1.b.p) ⇒  

 ∪i (at_instant(multi_mpolygoni, t)) ∈ 
OGC-GEOMETRYGTYPE=  

 multi-polygon } 

(21)

An interesting issue here is that the previously men-

tioned multi-moving types do not carry their own 

methods interface. All the functionality for these 

types can be invoked by the methods of another ob-

ject type, called Moving_Collection, standing as the 

supertype and aggregating the interfaces, the object 

methods and the spatio-temporal semantics of all the 

multi moving types. Furthermore, the moving-

collection type is able to represent heterogeneous 

collections of moving types, i.e., collections of dif-

ferent time-varying spatial geometries. Formally: 

Moving_Collection =d {  multi_mpoint: 
Multi_Moving_Point, multi_mline: 
Multi_Moving_LineString, 
multi_mcircle: Multi_Moving_Circle, 
multi_mrectangle: 
Multi_Moving_Rectangle, 
multi_mpolygon: 

Multi_Moving_Polygon  |  

∀ i, j ∈ ulong ∧ ∀ t ∈ double:  

 inside(t, multi_mpointi.pj.p) ∧  

 inside(t, multi_mlinei.linej.l1.b.p) ∧ 
inside(t, multi_mcirclei.cj.f.p) ∧  

 inside(t, multi_mrectanglei.rj.ll.p) ∧ 

inside(t, multi_mpolygoni.polj.l1.b.p) ⇒  

 [ (∪i (at_instant(multi_mpointi, t))) ∪ 

(∪i (at_instant(multi_mlinei, t))) ∪  

 (∪i (at_instant(multi_mcirclei, t))) ∪  

 (∪i (at_instant(multi_mrectanglei, t)))  

 ∪ (∪i (at_instant(multi_mpolygoni, t))) ] 

∈ OGC-GEOMETRYGTYPE=collection } 
 

(22) 

Furthermore, the Moving_Object models any moving 

type that can be the result of an operation between 

moving objects. For example, the intersection of a 

Moving_Point with a (static) polygon geometry is 

obviously another Moving_Point that is the restric-

tion of the first Moving_Point inside the polygon. 

This result can be modeled as a Moving_Object. If 

the result of an operation is not a moving geometry 

then Moving_Object plays the role of a degenerated 

moving type. In other words, if there is an operation 

that requests the perimeter of Moving_Polygon, then 

obviously the result of this method is a time-varying 

real number (Moving_Real). Such collapsed moving 

types like Moving_Real, Moving_String, and Mov-

ing_Boolean do not formally exist in our type system 

but are modeled using the Moving_Object type. 
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Figure 3 The moving types of MOD type system 

Formally: 

Moving_Object =d {  mobject: 
Moving_Object, mpoint: Moving_Point, 
mline: Moving_LineString, mcircle: 
Moving_Circle, mrectangle: 
Moving_Rectangle, mpolygon: 
Moving_Polygon, mcolection: 
Moving_Collection, geometry: 
GEOMETRY, gtype: GeometryType, 
optype: string, arg1: ushort, arg2: ushort, 

input: Union_Input } 
 

(23)

where gtype is a flag that makes Moving_Object be-

have as if it were a simple moving type, Π Geome-

tryType Τ = { MOBJECT, MPOINT, MLINE, 
MCIRCLE, MRECTANGLE, MPOLYGON, 

MCOLLECTION } and Union_Input =d mask: 

string, tolerance: double, distance: double . 
Summarizing,  

Figure 3 illustrates a UML class diagram for the 

moving types supported in the proposed MOD type 

system. The following sections describe the design 

decisions and the implementation details for mapping 

the MOD type system into extensible ORDBMS, as 

well as essential functionality for extending SQL-like 

query languages with MOD querying constructs. 

PHYSICAL MAPPING OF THE HERMES MOD TYPE 

SYSTEM 

The physical representation of the data types reflects 

the structures that are necessary in order to capture 

the semantics and implement the methods of these 

data types. In this section, we discuss how MOD 

types (abstractly described in the previous Section) 

are mapped to physical structures for storing conti-

nuously and discretely time-evolving geometric data 

into an ORDBMS with OGC-compliant spatial ex-

tension. The following subsections propose low-level 

constructs for the implementation of such objects and 

illustrate the design decisions and implementation 

issues considered during development. 

Unit Function 

Unit_Function is constructed as an octave of real 

numbers and a flag indicating the type of the simple 

function. In the current version, three types of func-

tions are supported, namely polynomial of first de-

gree, circular arc and the constant function. 

The modeling of Unit_Function is extensible; for 

example, if one wishes to add interpolations with 

spline or polynomials with degree higher than one, 

then what is only needed is the addition (if necessary) 

of the appropriate variables as attributes of the object 

and the implementation of such a function. 

We should note that we model a moving type that 

changes discretely for a period of time by setting all 

Unit_Function objects of the corresponding unit-

moving type to be constant functions. Due to the fact 

that the coordinates represented by these 

Unit_Function objects do not change for this period 

of time, it is equivalent to taking a snapshot of the 

moving geometry, which is valid for the entire period. 

If at least one of these unit functions is not constant 



 

then the moving type change is continuous for this 

period of time. In case of a Moving_LineString and in 

order to model a discrete change for a period, the 

above assignment should take place for each 

Unit_Moving_Point that composes the corresponding 

Unit_Moving_LineString. If this process were contin-

ued to all unit-moving types the result would be a 

completely discretely changing moving geometry. 
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Figure 4 Instances of Moving_Circle and Mov-

ing_Rectangle type objects (and degenerated cases) 

Moving_Point, Moving_Circle and 

Moving_Rectangle 

We construct Moving_Point object type as a collec-

tion of Unit_Moving_Point objects (i.e. pointer to a 

nested table or a varying length array (i.e. varray), 

depending on the underlying ORDBMS, of 

Unit_Moving_Point objects), which in turn are de-

fined as objects consisting of two attributes. The first 

attribute is the time period during which the other 

attribute is defined. The time period is expressed as 

an open-closed Period object, while the other 

attribute is of Unit_Function object type, whose do-

main of definition is the set of real numbers inside 

the open interval [t1, t2), where t1 is the starting point 

of the period and t2 is the ending point of the period. 

Similarly to the Moving_Point object, Mov-

ing_Circle and Moving_Rectangle object types are 

constructed as pointers to collections of 

Unit_Moving_Circle and Unit_Moving_Rectangle, 

respectively. 

Let us now examine the structure of 

Unit_Moving_Circle and Unit_Moving_Rectangle 

objects. Unit_Moving_Circle consists of three 

Unit_Moving_Point objects, representing the three 

points needed to define a valid circle. In the same 

way, Unit_Moving_Rectangle is composed of two 

Unit_Moving_Point objects, modeling the lower-left 

and upper-right point needed to define a valid rectan-

gle. Figure 4 illustrates a moving circle and a moving 

rectangle instantiated at four different time points t1, 

t2, t3, and t4, respectively. At time point t2, it is clear to 

see the effect of the different interpolation functions 

and how they affect the position and extent of the 

mapped geometries, in contrast to time point t1. At 

time point t3, a degenerated moving circle and a de-

generated moving rectangle are presented, meaning 

that the three unit moving points that compose the 

moving circle become co-linear and the two unit 

moving points that compose the moving rectangle 

form a line segment that is parallel to either xx’ or yy’ 

axis. At timepoint t4, another collapsed state is de-

picted, where all unit-moving points become equal. 

HERMES implementation is responsible to deal with 

such degeneracies as will be discussed shortly. 

Moving_LineString and Moving_Polygon 

Moving_LineString is a moving type that is also con-

structed as a pointer to a nested table consisting of 

Unit_Moving_LineString objects. The difference be-

tween this moving type and the previously defined is 

that the Unit_Moving_LineString is also defined as a 

pointer to another nested table comprising of 

Unit_Moving_Segment objects. Unit_Moving_Seg-

ment in its turn is formed by three Unit_Moving_ 

Point objects and a flag indicating the kind of inter-

polation between the starting and the ending point of 

the LineString geometry. The simplest part of a Line-

String geometry can be either a linear or an arc seg-

ment. In other words, this flag exemplifies the usage 

of the other attributes of the Unit_Moving_Segment 

object. Figure 5 illustrates the structure of the Mov-

ing_LineString object. 

The Moving_Polygon definition is very close to that 

of Moving_LineString. The main difference in the 

two definitions is on the construction of the corres-

ponding unit moving type. More specifically, apart 

from a pointer to a collection of Unit_Moving_ Seg-

ment objects, the Unit_Moving_Polygon object has 

an additional attribute, a flag that indicates if this set 

of moving segments forms the exterior ring of a po-

lygon or is an interior (hole) ring. In other words, this 

extra attribute adds the logic that disjoint moving 

holes may exist inside a moving polygon, with boun-

daries not crossing or touching the exterior boundary. 

Considering the rest aspects of the definition of 

Unit_Moving_Polygon, there is no difference be-

tween the two object types. 

Moving_Collection and Moving_Object 

Moving_Collection is the object type that models 
both homogeneous and heterogeneous collections 
of moving types. This is accomplished by defining 
it as a set of five pointers to each of the following 

types: Multi_Moving_Point, Mul-

ti_Moving_LineString, Multi_Moving_Circle, Mul-

ti_Moving_Rectangle and Multi_Moving_Polygon. 
Each of these moving types represents a homoge-
neous collection of moving points, linestrings, cir-
cles, rectangles and polygons, 
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Figure 5 Structure of the Moving_LineString Object 
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Figure 6 Structure of the Moving_Polygon Object 

constructed as a pointer to a nested table of Mov-

ing_Point, Moving_LineString, Moving_Circle, 

Moving_Rectangle and Moving_Polygon object 

types, respectively. On the other hand, Mov-

ing_Object is the outcome of the conjunction of all 

the previous presented objects, and can be consid-

ered as the supertype of these types. Practically 

speaking, it is not intended to be directly used or 

constructed by the end-user. On the contrary, it is 

intended to be the result type of operations of the 

other moving types (i.e., system generated). As in-

ferred from the structure of Moving_Object (cf. for-

mula (23)), the pointers to the moving types pre-

sented in the preceding sections model the subtypes 

of the current type simulating inheritance. 

OPERATIONS ON MOVING OBJECT DATA TYPES 

Following, we classify the operations of the moving 

types introduced by HERMES into appropriate catego-

ries that enable us to describe and analyze the new 

query capabilities. The initial set of operations is the 

union of the methods supported by the simple mov-

ing types (namely, Moving_Point, Mov-

ing_LineString, Moving_Circle, Moving_Rectangle, 

Moving_Polygon and Moving_Collection). This set of 

operations is equivalent to the methods provided by 

the generic Moving_Object type as it models all the 

previous. The identifiable classes of operations that 

HERMES supports are: 

i) Consistency operations: operations responsible 

for keeping the database in a consistent state 

(checking ordering and consecutiveness of pe-

riods of unit moving types, realizing degenerated 

cases, etc.). 

ii) Predicates: operations that return boolean values 

concerning topological and other relationships 

between moving types (within distance, meet, 

overlap, etc.). 
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check_ordering √ √ √ √ √ √ √ 

check_meet √ √ √ √ √ √ √ 
Database 

Consistency 
check_degeneracies √ √ √ √ √ √ √ 

f_within_distance √ √ √ √ √ √ √ Topological 

Relationships f_relate √ √ √ √ √ √ √ 

unit_type √ √ √ √ √ √ √ 

at_instant √ √ √ √ √ √ √ 

at_period √ √ √ √ √ √ √ 

f_buffer √ √ √ √ √ √ √ 

f_centroid √   √ √ √  

f_convexhull √ √ √ √ √ √ √ 

f_traversed √ √ √ √ √ √  

Projection and 

Interaction to the 

Temporal and 

Spatial Domain 

f_trajectory √ √      

Set Relationships f_intersection √ √ √ √ √ √  

f_area √   √ √ √  

f_length √ √ √ √ √ √  

f_speed √ √      

f_velocity √ √      

Numeric 

operations 

f_direction √ √      

iii) Projection operations: operations that restrict 

and project moving types to temporal (e.g. 

at_instant, at_period) and spatial domain (e.g. 

trajectory, buffer). 

iv) Set operations: basic set relationship operations 

(union, intersection, set difference).  

v) Numeric operations: functions that compute a 

numeric value (e.g., the perimeter or the area of a 

moving polygon, the speed of a moving point). 

The following sections describe the functionality 

of selected operations, representative of each class. 

The interested reader may find signatures and more 

algorithms in (Pelekis, & Theodoridis, 2010). A sum-

mary of the applicability of the proposed operators 

over the HERMES data types can be found in Table 1. 

Note that the last two classes of operators are defined 

only for Moving_Point, thus are omitted. 

Maintaining Database Consistency 

HERMES provides a set of object methods that en-

able the user to check the construction data of mov-

ing objects and maintain the database in a consistent 

state. These operations impose some integrity con-

straints that need to be followed for time-varying 

spatial data and, as such, protect the user from errors 

that have to do with the complex internal structure of 

the moving types. Below, three methods of this classs 

are discussed: 

Op1. boolean check_ordering (): there should be 

an ascending ordering of the periods between the unit 

moving types, each one represented by such a period. 

This mandatory constraint is required to model the 

evolution of the moving types in the timeline. The 

evolution of an object is represented by its consecu-

tive unit moving types and the corresponding time 

periods should follow the same development. 

Op2. boolean check_meet (): checks if a period is 

consequent to the next period in the unit-type-order. 

The meaning of this operation is to assure that there 

is a smooth transformation of the time-changing 

geometries between sequential unit moving types and 

there are not temporal gaps between them.  

Op3. boolean check_degeneracies (Timepoint): it 

is a method that checks if the geometry associated 

with a moving type at a specific time point is a non-

degenerated geometry. Depending on the type, 

check_degeneracies imposes different restrictions on 

the development of these moving objects at user-

defined time points. For Moving_Point there is not 

such an operation as there is no combination of 

mapped coordinates that could form an invalid geo-

metry. For the rest of the simple moving types, the 

reader can find below some characteristic constraints 

enforced by HERMES: 

Moving_LineString: (a) Checks if the Unit_ Mov-

ing_Point objects (two for line segments; three for 



 

arc segments) that define the Unit_Moving_Segment 

objects become equal at a specific time point, thus 

degenerating a segment to a point; (b) Checks for 

overlapping between consequent Unit_Moving 

_Segment objects, meaning that the two time-varying 

coordinates of a Unit_Moving_Point “fall” upon the 

segment that is defined by the two previous 

Unit_Moving_Point objects; (c) Checks the coordi-

nates of the starting Unit_Moving_Point of the first 

Unit_Moving_ Segment not to be equal at an instant, 

with the coordinates of the ending 

Unit_Moving_Point of the last Unit_Moving_ Seg-

ment. In such a situation, the potential LineString is 

degenerated to a Polygon geometry, regardless the 

fact that this polygon may have other anomalies (e.g. 

self-intersected segments that are acceptable in a Li-

neString geometry); (d) in case of arc, it checks for 

co-linearity at a specific time point between the three 

Unit_Moving_Point objects that form the arc seg-

ment. In this case, the arc segment becomes a dege-

nerated linear segment. 

Moving_Circle: (a) Checks if the three 

Unit_Moving_Point objects that define a 

Unit_Moving_Circle object become equal at a specif-

ic time point, thus degenerating a circle to a point; (b) 

Assures that the three Unit_Moving_Point objects do 

not become co-linear. 

Moving_Rectangle: (a) Checks if the lower left 

and upper right Unit_Moving_Point objects that de-

fine a Unit_Moving_Rectangle object become equal 

at a specific time point, thus degenerating a rectangle 

to a point; (b) Checks if x or y ordinates of the pro-

jected lower left and upper right Unit_Moving_Point 

objects become equal, meaning that the produced 

rectangle is collapsed to a linear segment parallel to 

xx’ or yy’ axis, respectively. 

Moving_Polygon: (a) Checks for the same rules 

and constraints as in the case of Moving_Linestring, 

with the difference that, instead of inequality, it im-

poses equality between the starting and ending 

Unit_Moving_Point; (b) Checks if the 

Unit_Moving_Polygon objects that represent holes of 

a Moving_Polygon are always “disjoint” and “in-

side” the exterior boundary. 

 Figure 7 illustrates four degenerated cases for a 

Moving_LineString (that also stand for a Mov-

ing_Polygon, except case c), while those for a Mov-

ing_Circle and a Moving_Rectangle are illustrated in 

Figure 4. A complete description of all the degene-

rated cases as well as some interesting allowable cas-

es is presented (Pelekis et al., 2010). 
In the previous paragraphs, we described the oper-

ations concerning the constraints that should hold in a 

database of simple moving objects. The correspond-

ing methods of a homogeneous or heterogeneous 

collection of such moving types, represented by the 

Moving_Collection object, follow a different strategy. 

In other words, these operations traverse one by one 

all the component objects of the multi- moving types 

that compose a Moving_Collection object, and apply 

the previous discussed operations to them. The first 

moving type that causes an error or is detected to be 

invalid or degenerated stops this process and informs 

the user with an appropriate message. 
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 Figure 7 Four degenerated cases for a Mov-

ing_LineString: a) when u_m_p6 and u_m_p7 follow 

motions M1 and M2, respectively, b) when u_m_p6 

follows motion M3, c) when u_m_p1 and u_m_p7 fol-

low motions M4 and M5 respectively, d) when u_m_p2 

follows motion M6. 

Predicates Modeling Topological and Distance 

Relationships 

HERMES provides object methods in the form of pre-

dicates to describe relationships between moving 

types. There are two sets of predicates supported by 

HERMES, namely within_distance and relate. Each set 

of predicates consists of eight operations, each of 

which models the relationship of the current moving 

type with a Moving_Point, Moving_LineString, Mov-

ing_Circle, Moving_Rectangle, Moving_Polygon, 

Moving_Collection, Moving_Object or Geometry 

object. Each operation comes with two different over-

loaded signatures, modeling different semantics: the 

first signature is time-dependent, meaning that the 

outcome of the operation is related to a user-defined 

time point, while the second is time-independent. 

Also, many object methods in HERMES accept a to-

lerance parameter; if e.g. the distance between two 

points is less than or equal to the tolerance, HERMES 

considers the two points to be a single point. Thus, 

tolerance is usually a reflection of how accurate or 

precise users perceive their spatio-temporal data to 

be. Below, we indicatively provide signatures of one 



 

out of the eight operations, that for a Mov-

ing_Polygon. The time-dependent signature of the 

method is the one without the brackets, while the 

time-independent version of the operation can be 

obtained by substituting the return type of the opera-

tion with the type in the brackets { } and by removing 

the Timepoint argument from the parameter list. This 

is a common notation in the remainder of the paper. 

Op4. boolean {Moving_Object} f_within_distance 

(distance, Moving_Polygon, tolerance, Timepoint): 

The time-dependent predicate determines whether 

two moving objects are within some specified Eucli-

dean distance from each other at a user-defined time 

point. After mapping the moving objects to physical 

spatial geometries at the given instant, the function 

returns TRUE for object pairs that are within the spe-

cified distance; returns FALSE otherwise. The dis-

tance between two non-point objects (such as lines 

and polygons) is defined as the minimum distance 

between these two objects. Thus, the distance be-

tween two adjacent polygons is zero. On the other 

hand, the time-independent version differs from the 

above predicate in that the return value is a Mov-

ing_Object that represents a time-varying boolean 

value. This implicitly defined “moving boolean” 

object models the sequence of the time intervals dur-

ing which the two related objects are (or are not) 

within a specified Euclidean distance. 

Op5. Varchar {Moving_Object} f_relate (mask, 

Moving_Polygon, tolerance, Timepoint): This generic 

predicate examines two moving objects and deter-

mines their topological relationship. As previously, it 

appears with two overloaded versions: the first eva-

luates the topological relationship upon a specific 

user-defined time point, while the second version 

returns a Moving_Object modeling a time-varying 

string (“moving string”), which describes the evolu-

tion in the topological relationship between the re-

lated objects. In particular, the f_relate operator im-

plements the 9-intersection model for categorizing 

binary topological relations between moving geome-

tries (Egenhofer, & Franzosa, 1991). Users can specify 

the kind of relationships that they require to check via 

the mask parameter.  

Projection and Interaction to Temporal and 

Spatial Domain 

HERMES provides object methods of special interest 

that have been proposed in the literature. Subsequent-

ly, we present the operations as these are defined for 

Moving_Object and the semantics behind these me-

thods and we differentiate our presentation in case of 

change in the semantics of other moving types. 

Op6. Unit_Moving_Point unit_type (Timepoint): 

This operation is the single method not defined for a 

Moving_Object type. Generally speaking, this opera-

tion is defined only for the simple moving objects 

that their construction is closely related with a collec-

tion of unit moving objects. The simple task that this 

function performs is that it finds (and returns) the 

unit-moving object whose attribute time period (Pe-

riod object) “contains” the user-defined time point 

(Timepoint object). In other words, it returns that 

unit-moving type where the time instant represented 

by the argument Timepoint object is “inside” the time 

period that characterizes the unit-moving type. The 

unit_type method carries out all the necessary checks 

to maintain the database consistent and to ensure the 

validity of the moving object. 

Op7. Union_Output at_instant (Timepoint): The 

at_instant operation is the most important method for 

the moving types introduced in HERMES, firstly be-

cause it is the operation that maps the unit function 

objects to spatial objects where moving objects reside 

at the given timepoint and, secondly, because it is the 

base of implementation for many other object me-

thods. As already mentioned, the above signature 

concerns the at_instant operation for the Mov-

ing_Object type. The return type (Union_Output) is 

an object that represents the union of all the possible 

results of the projection of a Moving_Object at a us-

er-defined time point. In other words, if Mov-

ing_Object represents a time-varying geometry then 

Union_Output is basically a Geometry object. If Mov-

ing_Object represents a “moving” real or string then 

Union_Output is a real number or a character string, 

respectively.  

Op8. Moving_Object at_period (Period): The 

at_period object method is an operation that restricts 

the moving object to the temporal domain. In other 

words, by using this function the user can delimit the 

time period that is meaningful to ask the projection of 

the moving object to the spatial domain. More specif-

ically, the time period passed as argument to the me-

thod is compared with all Period objects that charac-

terize the unit moving objects. If the parameter period 

does not overlap with the compared period then the 

corresponding unit type is omitted. If it overlaps, then 

the time period that defines a unit-moving object be-

comes its “intersection” with the given period.  

There are more similar operations for performing 

other type of projections, like the at_point and 

at_linestring methods that either restrict a moving 

object to a static point or linestring geometry, respec-

tively, or return the temporal point or period that the 

restriction is valid. 

Op9. Geometry {Moving_Object} f_buffer (dis-

tance, tolerance, Timepoint): The f_buffer operation 

comes with two overloaded versions. The first gene-

rates a buffer polygon around a moving geometry 

object at a specific user-defined time point, while the 

second returns a Moving_Object modeling a time-



 

varying polygon, which describes a moving rounded 

buffer around a moving geometry. Obviously, this 

method is meaningless for a Moving_Object that 

represents a time-varying real number or string. The 

error handling mechanism of HERMES is responsible 

for realizing these situations and acting accordingly 

(e.g. by raising an appropriate error message). 

 The f_buffer operation for a homogeneous collec-

tion of moving geometries at a specific timepoint 

returns a multi-polygon where each polygon 

represents the buffer of its corresponding element in 

the collection. An interesting case is the buffer of a 

heterogeneous collection of moving objects, which is 

just one polygon that buffers all the different pro-

jected geometries together. The above-mentioned 

issues are visualized in Figure 8, where snapshots of 

different moving types and their corresponding buffer 

polygons are presented. 
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Figure 8 Demonstrating f_buffer operation 

 

What is not illustrated in the description of the op-

eration is the specific structure of these buffers for 

each corresponding moving type. Starting with the 

Moving_Point, someone would expect that the buffer 

of this type at a specific instant would be a circle 

geometry with radius the user-specified distance of 

the buffer. Surprisingly, the geometry returned by 

f_buffer operation is a polygon consisting of two arc 

segments that circle the point at the specified dis-

tance. The same happens in the case of the Mov-

ing_Circle where the buffer at a specific timepoint is 

defined as the buffer of its centre but the distance of 

the buffer is the initial user-specified distance plus 

the radius of the moving circle at that instant. The 

buffer of a Moving_LineString, a Moving_Rectangle 

and a Moving_Polygon at a specific timepoint is a 

compound polygon whose number of linear segments 

is equal to the number of linear segments that exist in 

the corresponding projected geometries and whose 

number of arc segments is equal to the number of 

vertices plus the number of arc segments. 

 
Figure 9 Areas Traversed by Moving Geometries 

 
Op10. Geometry {Moving_Object} f_centroid (to-

lerance, Timepoint): The f_centroid operation returns 

the centre of a moving polygon object at user-defined 

time points. The centre is also known as the "centre 

of gravity". The overloaded f_centroid function 

represents a moving point that at any time is the cen-

tre of gravity of the moving polygon object. The me-

thod is meaningful only for moving types that model 

single time-varying areas. In the rest cases (collec-

tions of moving geometries), an error message is 

raised by the error handling mechanism of HERMES. 

Op11. Geometry {Moving_Object} f_convexhull 

(tolerance, Timepoint): The f_convexhull method 

returns a simple convex polygon that completely en-

closes the moving geometry object at a specific in-

stant of time. The Moving_Object returned by the 

second version models a moving polygon that is the 

convex hull of a moving object at any time point (in 

other words, this is a convenient way to get an ap-

proximation of a complex geometry object).  

Op12. Geometry f_traversed (): The geometry re-

turned by this function models all the places that a 

moving geometry “traverses” along its motion dur-

ing the periods that characterize the unit moving ob-

jects. Such a geometry object is of polygon type. In 

the case of Moving_Point objects, the f_traversed 

method is transformed to a special operator 

(f_trajectory, to be discussed in the subsequent para-

graph).  
Figure 9 illustrates four examples of traversed 

areas, one for each of the simple moving types. In the 

case of the traversed Moving_LineString, we notice 

that the returned geometry is not a single polygon but 

a multi polygon due to the fact that the periods of the 

unit moving objects that compose the Mov-

ing_LineString do not “meet” each other or the va-

riables that define the unit functions between subse-

quent unit moving objects present a substantial dif-

ference.  

Op13. Geometry f_trajectory (): This function is 

the f_traversed method for the case of a Mov-

ing_Point object. In other words, this operation simu-

lates the trajectory traversed by a Moving_Point. 



 

More specifically, this projection of the movement of 

a Moving_Point to the Cartesian plane is done by 

mapping the time-dependent coordinates of the object 

at the beginning, ending and a random intermediate 

time instant of each one of the periods that identify 

the Unit_Moving_Point objects that compose the 

Moving_Point. Subsequently, the algorithm examines 

whether the intermediate projected coordinates “fall” 

upon the line formed by the other two pairs of coor-

dinates. Depending on the result, a linear or arc seg-

ment connecting the beginning and ending projected 

coordinates is implied. A process of merging these 

segments follows, to form the returned LineString 

geometry. 

Set Relationships 

HERMES provides three object methods for de-

scribing set-relationships between moving types for 

intersection, union and set difference, respectively. 

Each comes with two overloaded versions, one for 

describing a geometry object as the result of applying 

the set-relationship at a user-defined time point and 

one for describing a moving geometry that is defined 

as the set-relationship at all the time periods that this 

relationship is meaningful. For example the intersec-

tion of a Moving_Point with a Moving_Polygon re-

sults in a Moving_Object that represents another 

moving point, which is the restriction of the initial 

Moving_Point inside or on the boundary of the Mov-

ing_Polygon.  

Subsequently, we only present the intersection op-

eration between any moving type and a Mov-

ing_Polygon object. Similar definitions exist for the 

rest two set relationships (union and set difference) 

and for all the other moving types, as well as for the 

respective operations describing set-relationships of a 

moving type with a pure spatial object. 

Op14. Geometry {Moving_Object} f_intersection 

(Moving_Polygon, tolerance, Timepoint): The 

f_intersection object method returns either a geome-

try object that is the topological intersection (AND 

operation) of the two associated moving types pro-

jected at a user-defined time point or a Mov-

ing_Object whose mapping at each instant represents 

a geometry that is the outcome of this set operation. 

Figure 10 depicts the instantiation of a Mov-

ing_Object modeling the intersection of a Mov-

ing_LineString with a polygon, at three different 

timepoints t1, t2, and t3. At timepoint t1 it is obvious 

that the result of the operation is a linestring geome-

try. At timepoint t2 this intersection has as result a 

multi-linestring geometry due to the development of 

Moving_LineString, while at timepoint t3 the resulted 

geometry is a heterogeneous collection of lines and 

points. 

Numeric operations 

HERMES supports a special class of object methods 

that either compute a numeric value of a moving ob-

ject at a specific timepoint (e.g., the current perimeter 

of a moving polygon) or construct a Moving_Object 

representing the same time-varying numeric value. 

More specifically, we provide the subsequent numer-

ic operations: 

Op15. number {Moving_Object} f_area (toler-

ance, Timepoint): The f_area operation is defined for 

those moving types that their projection to the Carte-

sian plane depicts a closed region and computes the 

area for this region. The second (time-independent) 

version of the method returns a Moving_Object 

representing the time-varying area of a moving, ex-

tending and/or shrinking region. This function works 

with any moving polygon, including polygons with 

moving holes.  

Op16. number {Moving_Object} f_length (toler-

ance, Timepoint): The f_length object method com-

putes the length of a Moving_LineString object or the 

perimeter of a Moving_Circle, Moving_Rectangle or 

Moving_Polygon projected at the Cartesian plane at a 

user-defined time point. For a Moving_Polygon that 

contains one or more holes, this function calculates 

the perimeters of the exterior boundary and all holes 

at the given time point, and returns the sum of all the 

perimeters. The second version of the method returns 

a Moving_Object representing the time-varying 

length or perimeter of the moving type that invokes 

the operation. 

Finally, as moving objects are time-dependent ob-

jects it would be useful to support operations that 

describe their rate of change. The only type that 

clearly qualifies the notion of derivation is the Mov-

ing_Point type. We define two operations called 

speed and velocity, respectively.  

Op17. number {Moving_Object} f_speed (Time-

point): The speed operation comes in two overloaded 

signatures. The time-dependent version returns a 

Intersection

time

Polygon boundaries

t1 t3t2

Moving LineString  

Figure 10 Demonstrating f_intersection Operation 



 

number representing the speed of a moving point at a 

specific timepoint, while the time-independent ver-

sion returns a Moving_Object modeling the time-

varying speed at any time instant. The interested 

reader may find more numeric operations (such as 

f_velocity, f_direction etc.) in (Pelekis, & Theodoridis, 

2010). 

RELATED WORK 

Several research efforts have tried to model spatio-

temporal databases using the moving object concept. 

In (Erwig, Güting, Schneider, & Vazirgiannis, 1999) the 

authors propose a new line of research where moving 

points and moving regions are viewed as three-

dimensional (2D + time) or higher dimensional enti-

ties whose structure and behavior is captured by 

modeling them as abstract data types. Such abstract 

data types for moving points and moving regions 

have been introduced in (Güting et al., 2000), together 

with a set of operations on such entities. The model 

presented in (Güting et al., 2000) was the first attempt 

to deal with continuous motion while in (Forlizzi et al., 

2000) the definition of the discrete representation of 

the above-discussed abstract data types is presented. 

The interesting part of the discrete model is how 

“moving” types are represented. The authors describe 

the sliced representation behind which, the basic idea 

is to decompose the temporal development of a value 

into fragments called “slices” such that within the 

slice this development can be described by some kind 

of “simple” function. The next step in this develop-

ment was the study of algorithms for the rather large 

set of operations defined in (Güting et al., 2000). 

Whereas (Forlizzi et al., 2000) just provides a brief 

look into this issue by presenting two example algo-

rithms at the end, in (Lema et al., 2003) the authors 

present a comprehensive, systematic study of algo-

rithms for a subset of the operations introduced in 

(Güting et al., 2000). Whereas some algorithms are 

relatively straightforward and simple, there are still a 

considerable number of quite involved ones. In all 

cases the authors analyze the complexity of the algo-

rithms. In (Lema et al., 2003) the data structures from 

(Forlizzi et al., 2000) are also refined and extended by 

auxiliary fields to speed up computations. This paper 

also offers a blueprint for implementing such a “mov-

ing objects” extension package for suitable extensible 

database architectures. More specifically, the details 

and the current status of a prototypical implementa-

tion of the data structures and algorithms described 

are presented. The final outcome of this work has 

been recently demonstrated in (Almeida et al., 2006). 

The prototype is being developed as an algebra mod-

ule for the experimental database system SECONDO 

(Dieker et al., 2000). 

As an extension to the abstract model in (Güting et 

al., 2000), the concept of spatio-temporal predicates 

is introduced in (Erwig, Schneider, 2002). The goal is to 

investigate temporal changes of topological relation-

ships induced by temporal changes of spatial objects. 

Further work on modeling includes (Su, Xu, & Ibarra, 

2001) where the authors focus on moving point ob-

jects and the inclusion of concepts of differential 

geometry (speed, acceleration) in a calculus based 

query language. In (Becker, Blunck, Hinrichs, & Vahr-

enhold., 2004), a non-linear representation for moving 

objects is discussed in detail, while in (Vazirgiannis, & 

Wolfson, 2001) the authors consider movement in 

networks and some evaluation strategies. 

Another model using moving objects is proposed 

in (Sistla, Wolfson, Chamberlain, & Dao, 1997; Wolfson, 

Sistla, Chamberlain, & Yesha, 1999; Wolfson, Xu, Cham-

berlain, & Jiang, 1998). The authors propose the so-

called Moving Objects Spatio-Temporal (MOST) 

data model for databases with dynamic attributes, i.e. 

attributes that change continuously as a function of 

time, without being explicitly updated. This model 

enables the DBMS to predict the future location of a 

moving object by providing a motion vector, which 

consists of its location, speed and direction for a re-

cent period of time. In the model, the answer to a 

query depends not only on the database contents, but 

also on the time at which the query is entered. As 

long as the predicted position based on the motion 

vector does not deviate from the actual position more 

than some threshold, no update to the database is 

necessary. An important issue here is to balance the 

cost of updates against the cost of imprecise informa-

tion. The authors also offer a query language (Future 

Temporal Logic - FTL) based on temporal logic to 

formulate questions about the near future movement. 

The approach is restricted to moving points and does 

not address more complex time-varying geometries 

such as moving regions. 

Related work in the field also includes our initial 

approach in designing HERMES. More specifically, in 

(Pelekis, Theodoridis, Vosinakis, & Panayiotopoulos, 

2006) we briefly described the envisioned architecture 

of HERMES framework, in (Pelekis et al., 2006) we 

presented the primitives of the proposed datatype-

oriented model and provides a preliminary insight on 

the supported functionality, while in (Pelekis, Frentzos, 

Giatrakos, & Theodoridis, 2008) we demonstrated the 

software developed theretofore, focusing in a specific 

(i.e. LBS) application domain. The current paper 

presents the complete system and describes all the 

necessary infrastructure for introducing our datatype 

system for moving objects. More specifically, we 

describe all the base, temporal and spatial types that 

compose the basic constructs for the definition of the 

moving objects datatypes, while we discuss in detail 



 

the fundamentals for extending the previous with 

moving objects. In addition, all the datatypes, which 

are the core of the data type system of HERMES, are 

now formally defined and discussed in detail. The 

definition of the data type system is followed by a 

presentation of the design decisions and techniques 

for the physical representation of the proposed ab-

stract data types. We further discuss the principles 

adhered by HERMES for designing moving objects 

operations and present in detail the full set of me-

thods defined upon the proposed data types. Our de-

sign extends the data definition and manipulation 

language of OGC-compliant ORDBMS with spatio-

temporal semantics and functionality. The proposed 

operations are accompanied with a discussion regard-

ing their development and fruitful examples and illu-

strations for depicting the supported functionality. We 

also include a description of the implementation de-

tails of our system taking advantage of extensibility 

interfaces provided by state-of-the-art ORDBMS. 

Finally, we provide a qualitative comparison of our 

research effort with related work. 

In (Güting, Behr, & Xu, 2010) the authors extended 

the SECONDO system with algorithms for efficient 

k-nearest neighbor search on moving object trajecto-

ries, while in (Güting, Behr, & Xu, 2010) they intro-

duced a benchmark that defines datasets and queries 

for experimental evaluations. Another recent ap-

proach is TrajStore (Cudre-Mauroux, Wu, & Madden 

2010), which focuses on supporting efficient spatio-

temporal range queries in very large datasets. 

In the following paragraphs we briefly present the 

differences of HERMES features proposed in this pa-

per with the approach described in (Güting et al., 

2000; Forlizzi et al., 2000) and (Lema et al., 2003), 
which is the most related to our work. 

HERMES introduces time-varying geometries that 

change location or shape in discrete steps and/or con-

tinuously. Our approach for supporting both discrete-

ly and continuously changing spatio-temporal objects 

and which is based on the Unit_Function object is 

more generic and flexible than the tactic adopted in 

(Forlizzi et al., 2000) that asserts the same functionality. 

Apart from linear interpolations of spatial and spatio-

temporal (moving) types utilized in (Forlizzi et al., 

2000) and (Lema et al., 2003), HERMES also utilizes 

arc interpolations by proposing a categorization ac-

cording to the quadrant the motion takes place and 

the motion heading. The user of HERMES is facilitated 

with a flexible and extensible interface for additional 

types of motion for moving types (e.g. splines, poly-

nomials of degree higher than one etc.), which is pro-

vided via the Unit_Function object type. 

In addition to Moving_Point, Moving_LineString, 

Moving_Polygon, proposed in (Forlizzi et al., 2000), 
the proposed MOD Type System also includes types 

like Moving_Circle, Moving_Rectangle, Mov-

ing_Collection and Moving_Object. A rich set of ob-

ject methods is introduced that expresses all the inter-

esting spatio-temporal phenomena and processes. 

This set of operations is a superset of the operations 

introduced in (Güting et al., 2000). The operation set 

commenced in (Güting et al., 2000) at an abstract lev-

el, is reduced in (Forlizzi et al., 2000) where specific 

finite representations and data structures are given for 

all the types of the abstract model, and is further re-

duced in (Lema et al., 2003) where a subset of the 

algorithms are selected to make the implementation 

manageable.  

Of course, there are more differences between the 

two operations sets supplied by (Güting et al., 2000) 
and HERMES. For example, all topological operations 

introduced in (Güting et al., 2000) are combined in 

HERMES under a single operator, which distinguishes 

the different topological relationships via a “mask” 

parameter. Furthermore, HERMES introduces new 

operations describing the buffer, the convex hull, the 

centre of gravity and points on the surface of moving 

geometries. Additionally, particular attention has 

been paid to operations that facilitate the user to 

check the construction of moving objects and to keep 

such kind of spatio-temporal data in a consistent 

state. This leads to effective database maintenance 

and reliable error-handling mechanism. 

The Moving_Collection object supports not only a 

homogeneous collection of moving types but also a 

heterogeneous collection of them. In (Güting et al., 

2000), heterogeneous collections are not supported 

and a single moving type corresponds to a homoge-

neous Moving_Collection of the proposed MOD Type 

System. The Moving_Object can substitute any of the 

other moving types, as well as moving geometries 

that result as operations on other moving geometries 

and moreover, it can model time-varying objects like 

the time-changing perimeter of a moving region. In 

(Güting et al., 2000) such degenerated moving types 

(moving reals, strings and booleans) are constructed 

as separate objects, which leads to a proliferation of 

object types that mainly are not spatio-temporal, 

which makes more difficult and unnatural the utiliza-

tion of such data types by end users. 

Generally speaking, the proposed MOD Type Sys-

tem is richer and more flexible than the one presented 

in (Güting et al., 2000). For example, it supports mov-

ing linestrings that intersect themselves during their 

development, while such a behavior is not allowed in 

(Güting et al., 2000) due to the fact that the spatial 

model does not accept self-intersecting linestrings. 

This is a very simple example of the importance that 

HERMES is OGC-compliant. 



 

CONCLUSIONS AND OUTLOOK 

In this paper, a formal framework and its imple-

mentation for managing and analyzing moving ob-

jects, called HERMES, was introduced. HERMES is a 

system extension that provides spatio-temporal func-

tionality to OGC-compliant ORDBMS and supports 

modeling and querying of moving objects changing 

location either in discrete steps or continuously. A 

collection of data types and their corresponding oper-

ations are defined and implemented. Embedding the 

functionality offered by HERMES in ORDBMS data 

manipulation language provides a flexible, expressive 

and easy to use query language for moving object 

databases. 

Another contribution of this work is that it pre-

scribes straightforward future research directions. 

First of all, due to the fact that our study concerns 

only two-dimensional spatial objects as well as the 

change and motion of such geometries in the 2D 

plane, there is need to investigate the way we could 

model surfaces and three-dimensional spatial objects 

and the time-changing variants of them. Additionally, 

a future direction we are planning to follow is to util-

ize the optimization extensibility interface of existing 

ORDBMS in order to enhance the performance of 

HERMES. Finally, we will follow and extend the 

benchmark introduced in (Düntgen et al., 2009) for a 

more extensive comparison of HERMES with the ap-

proach of SECONDO. 
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