
Identifying Unknown Border Lines from Historical

Spatiotemporal Data: The DIACHORON Approach

Elias Frentzos, Nikos Pelekis, Nikos Giatrakos and Yannis Theodoridis

Department of Informatics, University of Piraeus,

80 Karaoli-Dimitriou St, GR-18534 Piraeus, Greece

{efrentzo, npelekis, ngiatrak, ytheod}@unipi.gr

Abstract

Recently, a special type of Multimedia Information Systems (MIS) called Cultural Heritage Management

Systems (CHMS) has appeared confirming the special interest for applications accessing historical thematic data

that are accompanied by spatio-temporal information. Such kind of data can easily be analysed in any

Geographical Information System (GIS); however the main inherent shortcomings for enabling highly

interactive usage of them is that, usually the spatio-temporal information is either missing, or it is given in a way

that it cannot be directly visualized in a map by a GIS in a precise way, or it can not be inferred given certain

spatio-temporal query predicates by an end user. For instance, consider an analytical query asking for the

possible border between two empires given that certain cities have are occupied by each one of them. Difficulties

in answering such kind of queries is not just a limitation of current GIS software, but rather an intrinsic

constraint of storing the historical information in a way that does not allow inferences that result in new spatio-

temporal data. In this paper we present a methodology for dealing with such kind of queries and propose

efficient algorithms that produce meaningful, non-stored border lines between spatial entities, by taking into

advantage their thematic characteristics as well as morphological information of the region of interest.

Keywords

Multimedia, Cultural Heritage Information Systems, Spatio-Temporal Query Processing,

Voronoi Diagrams, Delaunay Triangulation

1. Introduction

Lately CHMS have gained the interest of researchers from many disciplines like historians,

(anthropo) geographers, historic and thematic cartographers as the means, not only to get

deeper insight into unrevealed knowledge hidden into vast historical spatio-temporal datasets,

but also to provide interactive learning procedures to the general public. Despite the

availability of huge spatio-temporal datasets and the advances in GIS software technology,

there are certain types of analytical queries that can not be resolved by the functionality

offered by state-of-the-art commercial GIS. Example queries include those that do not simply

retrieve a proper subset of the database; rather the answer is new, previously unknown data

that can be rationally deduced by the actual stored data. Such unseen spatial data may be

further visualized and presented to the user providing new knowledge and supporting

educational and research purposes.

To illustrate this idea we describe a motivating example where a user studies the historic

development of the administrative areas of countries A, B in Figure 1. More specifically,

consider the rectangular area where a set of spatial point entities exist. These points

correspond to certain historical events and each distinct point may be associated with

temporal information either as a time period (i.e. city Γ belonged to country A during the 5
th

century B.C.) or as a time point (i.e. a battle took place in place Δ that belongs to country B, at

323 B.C.). An implicit conclusion from the above discussion is that country A (country B)

may be considered as a thematic attribute of point Γ (point Δ) events (represented by the

orange (magenta) circles in the figure). In the other words, these spatio-temporal events imply

an imaginary border between A and B that also defines the boundaries of these two non

overlapping surfaces.

Figure 1 - Determination of administrative boundaries of A and B surfaces using a set of

point references and geomorphologic characteristics

Having in hand such kind of knowledge, the aim is the approximate determination of the

border line between the two countries. Obviously, the linear spatial entity representing a

suitable boundary, will cross the line between points Δ, Γ and any other pair of points in the

aforementioned set distinguished by their thematic characteristics. If no additional knowledge

is available, we can only assume that the points of the border line should lie in the middle of

each pair. However, in this case additional information can be acquired by geomorphologic

knowledge of the underlying ground. In Figure 1, such knowledge comes in the form of a

river Π and acts as another distinguishing parameter of the initial point set. Similarly, other

types of background information implying physical border existence (e.g. mountain chains,

lakes, coastlines etc.) may be utilized as additional disjunctive factors.

Generalizing the problem, consider that some of the thematic properties of the data points

may be dynamically changing over time. For instance, a point on a map representing a village

may belong to different provinces in different historical periods. Per se, the challenge is to

efficiently formulate such time changing borders among regions that include a set of points of

interest, by utilizing appropriately underlying geomorphologic data. In this paper we deal with

this problem by proposing effective algorithms for the computation of the unknown border

lines, between areas that during different time periods are associated with different spatial

points. Our approach is based on the incremental Delaunay Triangulation algorithm of the

Guibas and Stolfi (1985), which allows us to efficiently adjust the computed border line in

user exploratory queries with different parameters.

The rest of this paper is structured as follows: section 2 outlines some basic background

knowledge of our approach; the algorithms and results of our approach are described in

Section 3, while Section 4 concludes the paper, giving future perspectives of the approach.

2. Background

In this section we present some basic definitions of well-known structures upon which we

base our study. The first such structure, is the so-called Voronoi diagram (also called set of

Thiessen Polygons), which is a fragmentation of the space using polygons of irregular shape.

More formally:

Definition 1 (Voronoi diagram): Given a set of points S={pi}, i=1,…,n in a 2-dimensional

space, the Voronoi diagram V of S is the fragmentation of the space into a set of cells Vi such

that the distance of any point p in cell Vi is smaller than its distance from any other pi in S:

V = {Vi= {p}: distance(p, pi) ≤ distance(p, pj),  pj  S}

Thiessen Polygons, as the outcome of Voronoi cell computation, are widely used in

geosciences in order to define zones of influence for certain data points based on the criterion

of spatial proximity. Figure 2 illustrates a set of random data points along with the

corresponding Voronoi cells.

Figure 2 - Voronoi Diagram of a data

points set

Figure 3 - Duality between Delaunny

Triangulation and Voronoi Diagram

For any point pi  S, the Voronoi cell Vi is unbounded if and only if pi is on the convex hull of

S. If Vi is bounded, then Vi is a convex polygon. Since in our study we consider certain

rectangular areas of interest, the Voronoi cells are always bounded. Usually, the construction

of the Voronoi diagram is achieved through the computation of its dual, namely the Delaunay

Triangulation.

Definition 2 (Delaunay Triangulation): The Delaunay Triangulation of a set P of points in

the plane, is a triangulation DT(P) such that no point in P is inside the circumcircle of any

triangle in DT(P).

Delaunay triangulations maximize the minimum angle of all the angles of the triangles in the

triangulation; they tend to avoid "sliver" triangles. The triangulation was invented by Boris

Delaunay in 1934. The computation of the Voronoi cells via the Delaunay Triangulation is

attained by traversing the perpendicular bisectors of the edges of each triangle, and then by

performing appropriate cutoffs at the intersection points of the perpendicular lines (Figure 3);

moreover, these intersection points can be straightforwardly determined as the center of the

circumcircle of each triangle. In the subsequent section we appropriate utilize the above

mentioned structures so as to design an effective solution to our problem.

3. The proposed algorithms

Rephrasing the aforementioned basic problem, the aim of this paper is to discover the

boundaries between spatial polygon entities, using the Voronoi Diagram constructed by a set

of points with known thematic properties. Furthermore, in order to refine the border lines and

make them more realistic, we adjust them by leveraging morphological knowledge of the

underlying ground.

e.Org The starting point of the edge.

e.Dest The terminal point of the edge.

e.Sym The symmetric of the edge (inverse direction).

e.Lnext The next edge that results after rotating e in a clockwise fashion around

its terminal point.

e.Rprev The next edge that results after rotating e in counter-clockwise fashion

around its terminal point.

e.Onext The next edge that results after rotating e in counter-clockwise fashion

around its starting point.

e.Oprev The next edge that results after rotating e in a clockwise fashion around

its starting point.

Table 1 – Auxiliary fields of an edge e in Delaunay Triangulation

Figure 4 – Edge Functions (Guibas and Stolfi (1985))

In order to achieve this goal, we adopt notion of the Delaunay triangulation, implementing the

incremental algorithm of Guibas and Stolfi (1985) used to efficiently construct a Delaunay

triangulation. More specifically, the structure proposed by Guibas and Stolfi (1985)

implements the Delaunay Triangulation as a directed graph. Each directed edge e is equipped

with a set of seven auxiliary fields that can be used during the navigation in the graph. Table 1

exemplifies the usage of these fields, while Figure 4 describes a number of supporting

functions for traversing the graph. The structure of each point participating in the

triangulation process consists of the fields illustrated in Table 2

Id The unique identifier of the point

x The x coordinate of the point

y The y coordinate of the point

attrib Thematic information associated with the point; e.g the province in which

the point belongs to

Table 2 - Structure of a point participating in the triangulation

The incremental algorithm of Guibas and Stolfi (1985) allow us to build the triangulation in a

dynamic (incremental) way. This means that we can progressively add new points that might

not be available in advance. In addition, as we may have ad hoc deletions similarly to ad hoc

insertions, we adopt the algorithm proposed by Devillerst (1999), for the dynamic

reorganization of the resulted triangulation after the deletion of expired (in terms of time

range selection) points.

Algorithm Create_Polygon (Points Collection, PolyLines Collection, att string)

 1. // Create a new Delaunay Triangulation and add all Points

 2. TIN = NEW Delaunay_Triangulation;

 3. FOR EACH Point IN Points

 4. TIN.Add Point;

 5. NEXT;

 6. // Determine the triangulation edges with the attrib of their starting point

 = att and the attrib of their terminal point <> att. Put the edges in the

 ColAttrib Collection

 7. FOR i=1 TO TIN.count

 8. IF TIN.Edges(i).Org.attrib=att AND TIN.Edges(i).Dest.attrib<>att THEN

 9. ColAttrib.Add TIN.Edges(i);

10. ENDIF;

11. NEXT;

12. // Cycle through all edges in the collection

13. DO UNTIL ColAttrib.Count=0

14. First=ColAttrib(1); // First, Current and Previous are Delaunay Edges

15. DO UNTIL Current=First

16. Previous = Current; PreviousInterPoly=InterPoly;

17. // Choose the next edge among two edges on the right side of the Current one.

18. IF Current.Rprev.Dest.Attrib=att THEN

19. Current=Current.Dnext;

20. ELSE

21. Current=Current.Oprev;

22. ENDIF;

23. ColAttrib.Remove Current;

24. // Check whether Current intersects a PolyLine contained in PolyLines

25. IF Ιntersects(Current,PolyLines) THEN

26. InterPoly=Ιntersection(Current,PolyLines);

27. // Check whether Previous and Current intersect the same Polyline

28. IF InterPoly=PreviousInterPoly THEN

29. // If so, add in the boundary the part of the polyline contained between the

 Previous and the Current edge.

30. BoundaryLines.Add Part_Between_Edges(

 Polylines(InterPoly),Previous,Current);

31. ELSE

32. // Otherwise, add in the boundary the second half of the part of the polyline

contained between the previous and the current edge.

33. BoundaryLines.Add Last_Half_Between_Edges(Polylines(InterPoly),

 Previous,Current);

34. ENDIF;

35. ELSE

36. // Otherwise, check whether the previous edge intersects a polyline

37. IF PreviousInterPoly<>0 THEN

38. // If so, add in the boundary the first half of the part of the polyline

 contained between the previous and the current edge.

39. BoundaryLines.Add First_Half_Between_Edges(

 Polylines(PreviousInterPoly), Previous,Current);

41. ELSE

42. // Otherwise the perpendicular bisector is the boundary

43. BoundaryLines.Add Perpendicular_Bisector(Lines(i))

44. ENDIF

45. ENDIF

46. LOOP

47. LOOP

48. RETURN BoundaryLines

Figure 5 - The Create_Polygon algorithm

Having described the basic notions used in this work, we can proceed to the core of the paper;

the algorithm illustrated in Figure 5 was developed so as to construct a Voronoi diagram

generalization of a set of points that are available during a given time period, taking also into

consideration other subsidiary linear spatial entities. In particular, the algorithm takes as

arguments the set of Points that are available for the given time period (in terms of their

coordinates, along with their thematic attribute), a set of Polylines representing natural

boundaries, such as rivers e.t.c., and a thematic property att used to group points (and

subsequently, regions of space) together. The algorithm initially builds a new Delaunay

Triangulation (called TIN) by adding each one of the Points initially provided (lines 2-5). It

subsequently determines the subset of the triangulation edges, such that the thematic property

of their origin matches the one requested (att), being at the same time different with the

corresponding property of their destination (lines 7-11). This is due to the fact that the actual

border between an area including points with common attribute (same as the one requested),

and all other spatial regions, passes through these edges. In the sequel, this set of edges is

exhaustively examined in order to determine the actual boundary.

The algorithm tries to detect regions including points with common thematic property, being

equal with the one requested. Thus, more than one, non overlapping polygons might be

returned describing the area that satisfies a desired attribute. During each iteration the

algorithm determines the next edge to be traversed as illustrated in Figure 6 (Lines 18-22). In

particular, Figure 6 illustrates an instance during the algorithm’s execution, where the Current

edge has Origin (Destination) thematic property A (B). Thus, there are two possible cases

regarding the vertex being at the right of the current edge (which is also the third vertex of the

triangle): either the point has a thematic property with value A (Figure 6 (a)) or the property’s

value is B≠A (Figure 6 (b)). As also shown in the figure, in the first case the boundary will

cross edge Dnext, while in the latter Oprev edge will be crossed.

Α

Current

Dnext B

A

Α

Current

Oprev

B

B

(a) (b)

Figure 6 - Searching for the polygonal border of a region of interest

Having determined the next edge to be examined, the algorithm checks whether it intersects

any of the Polylines in the input collection that correspond to additional geomorphologic data,

such as rivers e.t.c. (Line 25). In case such an intersection exists, the algorithm checks

whether this particular Polyline also intersects the previously examined edge (Previous in

Line 28); if so, the algorithm adds in the boundary the entire part of the Polyline being

between the Previous and the Current edge (Line 30); otherwise, the previous boundary point

is located on the middle of the Previous edge, and the algorithm determines the second half of

the part of the Polyline being between the Previous and the Current edge, and adds it in the

output BoundaryLines. A similar procedure is also executed in the case where the Current

edge intersects no Polyline (Lines 37-44), checking whether there is an intersection between

the Previous edge and any member of the Polylines, and acting accordingly by adding the first

half of the part of the Polyline being between the Previous and the Current edge; otherwise,

the perpendicular bisector of the edge is added in the BoundaryLines. This procedure

terminates after all edges in the collection have been examined, or after making a full cycle

reaching the starting edge.

r3

r2

r1

r4

r5

p2

p1

p3

p4

p5

p6

p9

p8

p7

p10

c1

c2

r3

r2

r1

r4

r5

p2

p1

p3

p4

p5

p6

p9

p8

p7

p10

(a) (b)

Figure 7 - Constructing regions of interest with (a) and without (b) the usage of

additional resources

The above algorithm can be further exemplified with the usage of the example illustrated in

Figure 7 (a). In particular, Figure 7 (a) presents two sets of points {p1, p2,..p10} and {r1, r2,..r5}

along with two rivers (illustrated with blue color); both sets share a common value for their

attribute (e.g., the country on which they belong), which is represented using their color: gray

regarding the first set and green for the second. Consider now the boundary line that crosses

the Delaunay edge (p4, r3) connecting points p4 and r3, and, without loss of generality, assume

that the algorithm approaches the edge from point r4, e.g., the Previous is the edge (p4, r4). In

this case, the algorithm comes from a normal Voronoi boundary (e.g. the boundary is the

perpendicular bisector between p4 and r4); as such the previous boundary point is the middle

of edge (p4, r4), and the boundary must find the point c1 from which the second half of the

blue Polyline (that crosses the Current edge) begins. In the sequel, edge (p3, r3) is examined,

and given that it does not intersect any Polyline, the algorithm first determines point c2 which

is the middle of the blue Polyline (that intersected the previous edge) inside the triangle (p3,

r3, p4), and then, adds the middle of (p3, r3) as the new boundary point, and so on.

Figure 7 (b) also illustrates the result of the same procedure without taking into account the

additional information provided (e.g., the blue rivers); in this case the algorithm produces

significantly different and less realistic boundaries than the ones calculated by our proposal.

Having developed the Create_Polygon algorithm, we are able to proceed to the time focused

construction of the boundaries that contain a set of points of interest sharing a common value

for their thematic attributes. The Create_Polygon_Period algorithm, illustrated in Figure 8,

begins by retrieving the set of valid points for the querying time period and by storing their

identifiers in the GeoPoints list. The next step involves the retrieval of the available

geomorphologic information stored in the GeoLinks list (line 7), as well as the spatial

components of all points contained in the GeoPoints list (line 6). Finally, Ceate_Polyon

algorithm is invoked with arguments the GeoPoints and GeoLinks lists along with the

requested attribute (denoted as att), and outputs the BoundaryLines created by the respective

Create_Polygon algorithm. The following class diagram of Figure 9 depicts the developed

algorithm modules.

Algorithm Create_Polygon_Period(DB Database,AGIS GIS,

 t time_period, att string)

 1. // Retrieve from the database the set of points

 that are valid candidates Given the time

 period parameter. Corresponding Ids are

 stored in the GeoPoints list

 2. GeoPoints = DB.Execute (“SELECT GEO_OBJECTS.*

 FROM GEO_OBJECTS, SPATIO_TEMP,

 TIME_STAMP, TIME_PERIOD WHERE ..”)

 3. // Retrieve the set of geomorphologic data (from

 the database or selected files) Corresponding

 Ids are stored in the GeoLinks list

 4. GeoLinks = DB.Execute (“SELECT * FROM

 GEO_OBJECTS, SPATIO_TEMP,

 THEM_CATEGORIES WHERE ...”)

 5. // Retrieve the geometries (in terms of the

 underlying GIS system) of the points using the

 GeoPoints list

 6. GeoPoints = AGIS.RetrieveGeometries(GeoPoints)

 7. // Retrieve the geometry (in terms of the

 underlying GIS system) of the geomorphologic

 data using the GeoLinks list

 8. GeoLinks = AGIS.RetrieveGeometries(GeoLinks)

 9. // Invoke the Create Polygon Algorithm using

 GeoPoints, GeoLinks, att as input parameters

10. BoundaryLines = Create_Polygon(GeoPoints,

 GeoLinks, att)

11. RETURN BoundaryLines

Figure 8 - The Create_Polygon_Period

algorithm

Figure 9 – Implementation Classes of the

Create_Polygon_Period Algorithm.

4. Conclusions

In this paper we proposed a methodology for supporting a special kind of query that

determines the spatial border lines between regions that are distinguished via different

thematic properties, as well as, additional morphological information of the region of interest.

The contribution of this work is straightforward as, to the best of our knowledge such queries

are not supported by current GIS software. As future work we plan to further improve the

efficiency of the processing mechanism as to be able to provide the resolution of successive

queries as real-time streaming video to end users.

5. Acknowledgement

This research work is supported by the Diachoron project, founded by the Greek Ministry of

Development, General Secretariat for Research and Technology, co-funded by the European

Union. URL: www.diachoron.gr.

6. References

Guibas, L., Stolfi, J. (1985) “Primitives for the Manipulation of General Subdivisions and

Computation of Voronoi Diagrams”. ACM Trans. Graph. 4(2): 74-123.

Devillerst, O. (1999) “On Deletion in Delaunay Triangulations”, Symposium on

Computational Geometry.

