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1 Challenges of Big Streaming Data 19

Today, organisations and businesses have the ability to collect, store and analyse as 20

much data as they need, exploiting powerful computing machines in corporate data 21

centres or the cloud. To extract value out of the raw Big Data that are accumulated, 22

application workflows are designed and executed over these infrastructures engag- 23

ing simpler (such as grouping and aggregations) or more complex (data mining and 24

machine learning) analytics tasks. These tasks may involve data at rest or data in 25

motion. 26

Data at rest are historic data stored on disks, getting retrieved and loaded for 27

processing by some analytics workflow. Analytics tasks participating in such a 28

workflow perform computations on massive amounts of data, lasting for hours or 29

days. They finally deliver useful outcomes. Using a running example from the 30

maritime domain, historic vessel position data are used to extract Patterns-of-Life 31

(PoL) information. These are essentially collections of geometries representing 32

normal navigational routes of vessels in various sea areas [78], used as the basis 33

for judging anomalies. 34

Data in motion involve Big streaming Data which are unbounded, high-speed 35

streams of data that need to get continuously analysed in an online, real-time 36

fashion. Storing the data in permanent storage is not an option, since the I/O latency 37

would prevent the real-time delivery of the analytics output. Application workflows 38

get a single look on the streaming data tuples, which are kept in memory for a 39

short period of time and are soon stored or discarded to process newly received data 40

tuples. 41

At an increasing rate, numerous industrial and scientific institutions face such 42

business requirements for real-time, online analytics so as to derive actionable 43

items and timely support decision-making procedures. For instance, in the maritime 44

domain, to pinpoint potentially illegal activities at sea [54] and allow the authorities 45

to timely act, position streams of thousands of vessels need to be analysed online. 46

To handle the volume and velocity of Big streaming Data, Big Data platforms 47

such as Apache Flink [2], Spark [5] or toolkits like Akka [1] have been designed to 48

facilitate scaling-out, i.e., parallelising, the computation of streaming analytics tasks 49

horizontally to a number of Virtual Machines (VM) available in corporate computer 50

clusters or the cloud. Thus, multiple VMs simultaneously execute analytics on 51

portions of the streaming data undertaking part of the processing load, and therefore 52

throughput, i.e., number of tuples being processed per time unit, is increased. This 53

aids in transforming raw data in motion to useful results delivered in real time. 54

Big Data platforms also offer APIs with basic stream transformation operators such 55

as filter, join, attribute selection, among others, to program and execute streaming 56

workflows. However useful these facilities may be, they only focus on a narrow part 57

of the challenges that business workflows need to encounter in streaming settings. 58

First, Big Data platforms currently provide none or suboptimal support for 59

advanced streaming analytics tasks engaging Machine Learning (ML) or Data 60

Mining (DM) operators. The major dedicated ML/DM APIs they provide, such as 61
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MLlib [5] or FlinkML [2], do not focus on parallel implementations of streaming 62

algorithms. 63

Second, Big Data platforms by design focus only on horizontal scalability as 64

described above, while there are two additional types of scalability that are of 65

essence in streaming settings. Vertical scalability, i.e., scaling the computation with 66

the number of processed streams, is also a necessity. Federated scalability, i.e., 67

scaling the computation one step further out, to settings composed of multiple, 68

potentially geo-dispersed computer clusters, is another type of required scalability. 69

For instance, in maritime applications, vessels transmit their positions to satellite or 70

ground-based receivers. These data can be ingested in proximate data centres and 71

communicated only on demand upon executing global workflows, i.e., involving the 72

entire set of monitored vessels, over the fragmented set of streams. 73

Third, Big Data technologies are significantly fragmented. Delivering advanced 74

analytics requires optimising the execution of workflows over a variety of Big Data 75

platforms and tools located at a number of potentially geo-dispersed clusters or 76

clouds [30, 34, 36]. In such cases, the challenge is to automate the selection ofAQ1 77

an optimal setup prescribing (a) which network cluster will execute each analytics 78

operator, (b) which Big Data platform available at this cluster, and (c) how to 79

distribute the computing resources of that cluster to the operators that are assigned 80

to it. 81

Connecting the above challenges to a real-world setting from the maritime 82

domain, on a typical day at MarineTraffic,1 100GB vessel position data and approx- 83

imately 750M messages (volume, velocity—horizontal scalability) are processed 84

online. This data is complemented by other data sources such as satellite image data 85

of tens of TBs [54]. At any given time, MarineTraffic is tracking over 200K vessels 86

in real-time (vertical scalability) over a network of approximately 5K stations 87

(federated scalability). Additionally, the analysis engages a variety of Big Data 88

platforms including Apache Spark, Flink, Akka and Kafka (details in Sect. 3). 89

Finally, applications often require an additional level of abstraction on the derived 90

analytics results. Consider a vessel that slows down, then makes a U-turn and then 91

starts speeding up. Such a behaviour may occur in case of an imminent piracy 92

event where a vessel attempts to run away from pirates. The application is not 93

interested in knowing the absolute speed, heading or direction information in the 94

raw stream. Instead, it wants to receive continuous reports directly on a series of 95

detected, simple events (slowing down, U-turn, speeding) and the higher 96

level, complex piracy event or to be able to forecast such events [79]. Complex 97

Event Processing (CEP) and Forecasting (CEF) encompass the ability to query for 98

business rules (patterns) that match incoming streams on the basis of their content 99

and some topological ordering on them (CEP) or to forecast the appearance of 100

patterns (CEF) [31, 33, 35]. 101

In this chapter, we discuss core system components required to tackle these 102

challenges and the state of the art in their internal architectures. We further describe 103

1 https://www.marinetraffic.com.

https://www.marinetraffic.com
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how we advance the state of the art within the scope of the EU H2020 project 104

INFORE. Finally, we showcase the INFORE approach into a real-world use case 105

from the maritime domain. We, however, stress that INFORE applies to any 106

application domain, and we refer the interested reader to [34] for more application 107

scenarios. 108

This chapter relates to the technical priorities (a) Data Management, (b) Data 109

Processing Architectures and (c) Data Analytics of the European Big Data Value 110

Strategic Research & Innovation Agenda [77]. It addresses the horizontal concerns 111

Cloud, HPC and Sensor/Actuator infrastructure of the BDV Technical Reference 112

Model and the vertical concern of Big Data Types and Semantics (Structured data, 113

Time series data, Geospatial data). Moreover, the chapter relates to (a) Knowledge 114

and Learning, (b) Reasoning and Decision Making, (c) Action and Interaction and 115

(d) Systems, Hardware, Methods and Tools, cross-sectorial technology enablers 116

of the AI, Data and Robotics Strategic Research, Innovation and Deployment 117

Agenda [76]. 118

2 Core Components and System Architectures 119

2.1 The Case for Data Synopses 120

Motivation There is a wide consensus in the stream processing community [25, 121

26, 32] that approximate but rapid answers to analytics tasks, more often than not, 122

suffice. For instance, detecting a group of approximately 50 highly similar vessel tra- 123

jectories with sub-second latency is more important than knowing minutes later that 124

the group actually composes 55 such streams with a similarity value accurate to the 125

last decimal. In the latter case, some vessels may have been engaged in a collision. 126

Data synopses techniques such as samples, histograms and sketches constitute a 127

powerful arsenal of data summarisation tools useful across the challenges discussed 128

in the introduction of this chapter. Approximate, with tunable quality guarantees, 129

synopses operators including, but not limited to [25, 26, 32, 46], cardinality (FM 130

Sketches), frequency moment (CountMin, AMS Sketches, Sampling), correlation 131

(Fourier Transforms, Locality Sensitive Hashing [37]), set membership (Bloom 132

Filters) or quantile (GK Quantile) estimation, can replace respective exact operators 133

in application workflows to enable or enhance all three types of required scalability 134

as well as to reduce memory utilisation. More precisely, data summaries leave only 135

a footprint of the stream in memory and they also enhance horizontal scalability 136

since not only is the processing load distributed to a number of available VMs, but 137

also it is shed by letting each VM operate on compact data summaries. Moreover, 138

synopses enable federated scalability since only summaries, instead of the full (set 139

of) streams, can be communicated when needed. Finally, synopses provide vertical 140

scalability by enabling locality-aware hashing [37, 38, 46]. 141
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Related Work and State of the Art From a research viewpoint, there is a large 142

number of related works on data synopsis techniques. Such prominent techniques 143

are reviewed in [25, 26, 32] and have been implemented into real-world synopses 144

libraries, such as Yahoo!DataSketch [9], Stream-lib [8], SnappyData [57] and 145

Proteus [7]. Yahoo!DataSketch [9] and Stream-lib [8] are libraries of stochastic 146

streaming algorithms and summarisation techniques, correspondingly, but imple- 147

mentations are detached from parallelisation and distributed execution aspects 148

over streaming Big Data platforms. Apache Spark provides utilities for data 149

synopsis via sampling operators, CountMin sketches and Bloom Filters. Moreover, 150

SnappyData’s [57] stream processing is based on Spark and its synopses engine can 151

serve approximate, simple sum, count and average queries. Similarly, Proteus [7] 152

extends Flink with data summarisation utilities. Spark utilities, SnappyData and 153

Proteus combine the potential of data summarisation with horizontal scalability, 154

i.e., parallel processing over Big Data platforms, by providing libraries of parallel 155

versions of data synopsis techniques. However, they neither handle all types ofAQ2 156

required scalability nor cross Big Data platform execution scenarios. 157

INFORE Contribution In the scope of the INFORE project, we have developed 158

a Synopses Data Engine (SDE) [46] that advances the state of the art by tackling 159

all three types of the required scalability and also accounting for sharing synopses 160

common to various running workflows and for cross-platform execution. INFORE 161

SDE goes far beyond the implementation of a library of data summarisation 162

techniques. Instead, it also implements an entire component with its own internal 163

architecture, employing a Synopses-as-a-Service (SDEaaS) paradigm. That is, the 164

SDE is a constantly running service (job) in one or more clusters (federated 165

scalability) that can accept on-the-fly requests for start maintaining, updating and 166

querying a parallel synopsis built on a single high-speed stream (e.g. vessel) of 167

massive data proportions (horizontal scalability) or on a collection of a large number 168

of streams (vertical scalability). The SDEaaS is customisable to specific application 169

needs by allowing dynamic loading of code for new synopses operators at runtime, 170

with zero downtime for the workflows that it serves. 171

The architecture of INFORE SDEaaS [46] is illustrated in Fig. 1a. INFORE’s 172

SDEaaS proof-of-concept implementation is based on Apache Kafka and Flink. 173

Nevertheless, the design is generic enough to remain equally applicable to other 174

Big Data platforms. For instance, an equally plausible alternative would be to 175

implement the whole SDE in Kafka leveraging the Kafka Streams API. Nonetheless, 176

Kafka Streams is simply a client library for developing micro-services, lack- 177

ing a master node for global cluster management and coordination. Following 178

Fig. 1a, when a request for maintaining a new synopsis is issued, it reaches the 179

RegisterRequest and RegisterSynopsisFlatMaps which produce keys 180

for workers (i.e., VM resources) which will handle this synopsis. Each of this pair of 181

FlatMaps uses these keys for a different purpose. RegisterRequest uses the 182

keys to direct queries to responsible workers, while RegisterSynopsis uses the 183

keys to update the synopses on new data arrivals (blue-coloured path). In particular, 184

when a new streaming data tuple is ingested, theHashData FlatMap looks up the 185
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keys of RegisterSynopsis to see to which workers the tuple should be directed 186

to update the synopsis. This update is performed by the add FlatMap in the blue- 187

coloured path. The rest of the operators in Fig. 1a are used for merging partial 188

synopses results [11] maintained across workers or even across geo-distributed 189

computer clusters. Please refer to [46] for further details. In Sect. 3.2.3, we analyse 190

the functionality of a domain-specific synopsis building samples of vessel positions. 191

2.2 Distributed Online Machine Learning and Data Mining 192

Motivation As discussed in Sect. 1, ML/DM APIs such as Spark’s MLlib [5] or 193

FlinkML [2] are focused on analysing data at rest. Therefore, advanced analytics 194

tasks on data in motion call for filling the gap of a stream processing-oriented 195

ML/DM module. ML and DM algorithms that can meet the challenges discussed 196

in the introduction of this chapter are those that (1) are online, i.e., restricting 197

themselves on a single pass over the data instead of requiring multiple passes, 198

and (2) can run in a distributed fashion, i.e., they are parallelisable and thus the 199

load can be distributed to parallel learners and parallel predictors across a number 200

of VMs so as to provide the primitives for horizontal scalability over Big Data 201

platforms and computer clusters. There exists a variety of algorithms that satisfy 202

these preliminary requirements in diverse ML/DM categories, including [18, 34, 69] 203

classification (such as (Multiclass) Passive Aggressive Classifiers, Online Support 204

Vector Machines, Hoeffding Trees, Random Forests), clustering (BIRCH, Online k- 205

Means, StreamKM++) and regression (Passive Aggressive Regressor, Online Ridge 206

Regression, Polynomial Regression) tasks. These algorithms are designed or can be 207

adapted to get executed in an online, distributed setting. The primary focus, then, is 208

not on the algorithms themselves, but on the architecture an ML/DM module should 209

be built upon, so that various algorithms can be incorporated and also allow for 210

vertical scalability, federated scalability and cross-platform execution with reduced 211

memory utilisation. 212

Related Work and State of the Art Towards this direction, the two most 213

prominent approaches and modules that exist in the literature are StreamDM [19] 214

and Apache SAMOA [48]. StreamDM is a library of ML/DM algorithms designed 215

to be easily extensible with new algorithms, but dedicated to run on top of the Spark 216

Streaming API [5]. Thus, it does not cover cross-platform execution scenarios, 217

also lacking provisions for vertical and federated scalability. The only framework 218

with a clear commitment to the cross-platform execution goals is Apache SAMOA. 219

SAMOA is portable between Apache Flink, Storm [6] and Samza [4]. When it 220

comes to its model of computation, the architecture of SAMOA follows the Agent- 221

based pattern. In other words, an algorithm is a set of distributed processors 222

that communicate with streams of messages. Little more is provided, which is 223

intentional [48], claiming that a more structured model of computation reduces the 224

applicability of the framework. 225
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The state of the art in distributed ML and DM architectures is the Parameter 226

Server (PS) distributed model [51] as illustrated in Fig. 1b, where a set of distributed 227

learners receive portions of the training streams and extract local models in parallel. 228

The local models are from time to time synchronised to extract a global model 229

at the PS side. The global model is then communicated back to learners via a 230

feedback loop (Fig. 1b). Consider for instance a set of learners each handling a 231

subset of vessel streams within the scope of a vessel type classification task. The 232

learners coordinate with the PS sending their locally trained classification models, 233

while the PS responds back with an up-to-date global model. The PS paradigm 234

enhances horizontal and federated scalability via the option of an asynchronous 235

(besides synchronous) synchronisation policy to reduce the effect of stragglers 236

and bandwidth consumption, respectively. In the synchronous policy, learners are 237

communicating with the PS in predefined rounds/batches, while in the asynchronous 238

case each learner decides individually as to when it should send updates to the PS.AQ3 239

Performance-wise, the synchronous policy does not encourage enhanced horizontal 240

scalability because when many learners are used, the total utilisation is usually low, 241

should only few stragglers exist. The asynchronous one is the policy of choice in 242

large-scale ML; the processing speed is much higher when many learners are used 243

and the training is more scalable. 244

The PS paradigm has been criticised for limited training speed due to potential 245

network congestion at the PS side and for severely getting affected by low- 246

speed links between the learners and the PS. Under these claims, a number of 247

decentralised ML/DM architectures have evolved which employ a more peer-to- 248

peer alike structure, where the training rationale is based on gossiping [42, 70]. The 249

drawback of these approaches, though, is that it is unclear how the continuously 250

updated, but decentralised, global model can be directly deployed for real-time 251

inference purposes. This is because knowing the network node holding the updated 252

global model at any given time requires extra communication. Hence, in case we 253

want to train and simultaneously deploy the updated global ML/DM models at 254

runtime, such a decentralised architecture does not seem to mitigate low-speed 255

issues but moves the problem to the prediction, instead of the training, stage. 256

INFORE Contribution In the scope of the INFORE project, we follow a PS 257

distributed model [51]. As is the case with the SDEaaS described in the previous sec- 258

tion, INFORE’s ML/DM module includes provisions for cross-platform execution 259

scenarios by receiving input and output streams in JSON formatted Kafka messages. 260

Moreover, the communication between learners and the PS is performed using a 261

lightweight middleware where a generic API for PS and learner (bidirectional) 262

communication is provided. In that, learners can be implemented over any Big 263

Data platform and run in any cluster, while still being able to participate in the 264

common ML/DM task. Besides learners, INFORE’s ML/DM module includes a 265

separate pipeline of parallel predictors that can communicate with the PS in order to 266

receive up-to-date global models continuously extracted during the training process 267

and directly deploy them for inference purposes. 268
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INFORE’s ML/DM module accounts for vertical and boosts horizontal scala- 269

bility as well. This is achieved by using INFORE’s SDEaaS to partition streams 270

to learners or to allow learners to operate on compact stream summaries, corre- 271

spondingly. Remarkably, to effectively encounter congestions or low-speed links 272

and also allow to easily and effectively deploy/update the developed models, 273

instead of resorting to decentralised approaches [42, 70], we develop our own 274

synchronisation policy termed FGM [67] (Fig. 1b) that improves the employed 275

PS paradigm. The new synchronisation protocol strengthens horizontal (within a 276

cluster) and federated scalability by bridging the gap between synchronous and 277

asynchronous communication. Instead of having learners communicating in pre- 278

defined rounds/batches (synchronous) or when each one is updated (asynchronous), 279

FGM requires communication only when a concept drift (i.e., the global model has 280

significantly changed based on some criterion) is likely to have occurred. This is 281

determined based on conditions each learner can individually examine. 282

2.3 Distributed and Online CEF 283

Motivation Big Data analytics tools mine data views to extract patterns conveying 284

insights into what has happened, and then apply those patterns to make sense of 285

the fresh data that stream in. This only permits to react upon the detection of 286

such patterns, which is often inadequate. In order to allow for proactive decision- 287

making, predictive analytics tools that allow to forecast future events of interest 288

are required. Consider, for instance, the ability to forecast and proactively respond 289

to hazardous events, such as vessel collisions or groundings, in the maritime 290

domain. The ability to forecast, as early as possible, a good approximation to 291

the outcome of a time-consuming and resource-demanding computational task 292

allows to quickly identify possible outcomes and save valuable reaction time, 293

effort and computational resources. Diverse application domains possess different 294

characteristics. For example, monitoring of moving entities has a strong geospatial 295

component, whereas in stock data analysis this component is minimal. Domain- 296

specific solutions (e.g. trajectory prediction for moving objects) cannot thus be 297

universally applied. We need a more general Complex Event Forecasting (CEF) 298

framework. 299

Related Work and State of the Art Time-series forecasting is an area with some 300

similarities to CEF, with a significant history of contributions [56]. However, it is 301

not possible to directly apply techniques from time-series forecasting to CEF. Time- 302

series forecasting typically focuses on streams of (mostly) real-valued variables and 303

the goal is to forecast relatively simple patterns. On the contrary, in CEF we are 304

also interested in categorical values, related through complex patterns and involving 305

multiple variables. Another related field is that of prediction of discrete sequences 306

over finite alphabets and is closely related to the field of compression, as any com- 307

pression algorithm can be used for prediction and vice versa [17, 20, 24, 63, 64, 73]. 308
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The main problem with these approaches is that they focus exclusively on next 309

symbol prediction, i.e., they try to forecast the next symbol(s) in a stream/string 310

of discrete symbols. This is a serious limitation for CEF. An additional limitation 311

is that they work on single-variable discrete sequences of symbols, whereas CEF 312

systems consume streams of events, i.e., streams of tuples with multiple variables, 313

both numerical and categorical. Forecasting methods have also appeared in the field 314

of temporal pattern mining [22, 50, 71, 75]. A common assumption in these methods 315

is that patterns are usually defined either as association rules [13] or as frequent 316

episodes [53]. From the perspective of CEF, the disadvantage of these methods is 317

that they usually target simple patterns, defined either as strictly sequential or as 318

sets of input events. Moreover, the input stream is composed of symbols from a 319

finite alphabet, as is the case with the compression methods mentioned previously. 320

INFORE Contribution In a nutshell, the current, state-of-the-art solutions for 321

forecasting, even when they are domain-independent, are not suitable for the kind 322

of challenges that INFORE attempts to address. In INFORE, the streaming input 323

can be constantly matched against a set of event patterns, i.e. arbitrarily complex 324

combinations of time-stamped pieces of information. An event pattern can either 325

be fully matched against the streaming data, in which case events are detected, 326

or partially matched, in which case events are forecast with various degrees of 327

certainty. The latter usually stems from stochastic models of future behaviour, 328

embedded into the event processing loop, which project into the future the sequence 329

of events that resulted to a partial event pattern match, to estimate the likelihood of 330

a full match, i.e. the actual occurrence of a particular complex event. 331

Given that INFORE’s input consists of a multitude of data streams, interesting 332

events may correlate sub-events across a large number of different streams, with 333

different attributes and different time granularities. For instance, in the maritime 334

domain relevant streams may originate from position signals of thousands of vessels 335

which may be fused with satellite image data [54] or even acoustic signals [40]. It 336

is necessary to allow for a highly expressive event pattern specification language, 337

capable of capturing complex relations between events. Moreover, the actual 338

patterns of what constitutes an interesting event are often not known in advance, 339

and even if they are, event patterns need to be frequently updated to cope with the 340

drifting nature of streaming data. Not only do we need an expressive formalism in 341

order to capture complex events in streams of data, but we also need to do so in a 342

distributed and online manner. 343

Towards this direction, the CEF module of INFORE uses a highly expressive, 344

declarative event pattern specification formalism, which combines logic, probability 345

theory and automata theory. This formalism has a number of key advantages: 346

• It is capable of expressing arbitrarily complex relations and constraints between 347

events. We are thus not limited to simple sequential patterns applied to streams 348

with only numerical or symbolic values. 349

• It can be used for event forecasting and offering support for robust temporal 350

reasoning. By converting a pattern into an automaton, we can then use historical 351
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data to construct a probabilistic description of the automaton’s behaviour and 352

thus to estimate at any point in time its expected future behaviour. 353

• It offers direct connections to machine learning techniques for refining event 354

patterns, or learning them from scratch, via tools and methods from the field 355

of grammatical inference. In cases where we only have some historical data and 356

some labels, we must find a way to automatically learn the interesting patterns. 357

This is also the case when there is concept drift in the streaming data and the 358

patterns with which we started may eventually become stale. It is therefore 359

important to be able to infer the patterns in the data in an online manner. 360

INFORE’s CEF module is built on top of Apache Kafka and Flink and has the 361

ability to handle highly complex patterns in an online manner, constantly updating 362

its probabilistic models. Figure 1d shows one possible scheme (pattern-based) for 363

structuring multiple parallel CEF pipelines. As shown in the figure, each such 364

pipeline processes a different CEF query [33, 35]. It is composed of a training 365

process, which estimates the probabilities of a future event to occur, as well as a 366

CEF process that utilises these probabilities to actually forecast complex events. 367

Finally, one implementation detail is that each pipeline also receives a subset of the 368

patterns (part1 to partX in Fig. 1d). The role of these loops is similar to the feedback 369

loop of Fig. 1b. Remarkably, the CEF module can also act as a CEP one since it can 370

not only predict but also detect occurred events of interest [14]. 371

2.4 Geo-distributed Cross-Platform Optimisation 372

Motivation All the aforementioned advanced stream processing techniques and 373

technologies will only serve their goal if they are properly used. Consider, for 374

instance, that we perfectly tune the execution of a synopsis, ML/DM or CEF 375

operator in a specific cluster, but we assign the execution of the downstream operator 376

of a broader workflow to a distant cluster. The execution speed up achieved for one 377

operator may be diminished by network latency of long network paths. Therefore, 378

developing algorithms for optimising the execution of streaming workflows (a) 379

over a network of many clusters located in various geographic areas, (b) across 380

a number of Big Data platforms available in each cluster and (c) simultaneously 381

elastically devoting VMs and resources (CPU, memory, etc.) is a prerequisite 382

to efficiently deliver in practice real-time analytics. Within a cluster, common 383

optimisation objectives include throughput maximisation, execution latency and 384

memory usage minimisation, while in multi-cluster settings communication cost, 385

bandwidth consumption and network latency are also accounted for. Quality-of- 386

Service (QoS) and computer cluster (CPU, memory, storage) capacity constraints 387

also apply to these objectives. 388

Related Work and State of the Art There are a number of works that assign 389

the execution of operators targeting at optimising network-related metrics, such 390

as communication cost and network latency, while executing global analytics 391
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workflows across a number of networked machines or computer clusters. The 392

seminal work of SBON [59] seeks to optimise a quantity similar to network 393

usage (dataRate × latency), but with a squared latency, across multi-hop paths 394

followed by communicated data. An important limitation in SBON is that by 395

using such a blended metric, the optimisation process cannot support constrained 396

optimisation per metric (communication cost or latency). Due to that, also other 397

related techniques [49, 59, 62] which employ blended metrics cannot incorporate 398

resource or QoS constraints while determining operators’ assignment to clusters. 399

Although some [49, 62] claim to support latency constraints, this comes after having 400

determined where an operator will be executed. Finally, the approach of Geode [72] 401

purely focuses on minimising bandwidth consumption in the presence of regulatory 402

constraints, but it does not account for network latency. 403

A series of works aim at optimising the execution of analytics operators within 404

a single computer cluster. Such works focus on optimal assignment of operators 405

to VMs such that high performance (mainly, in terms of throughput) and load 406

balancing among VMs is achieved; subject to multiple function, resource and QoS 407

constraints. Related works mainly provide optimisations on load assignment and 408

distribution, load shedding, resource provisioning and scheduling policies inside 409

the cluster. In Medusa [16], Borealis [10], Flux [68] and Nexus [23], the focus is to 410

primarily balance the load, choose appropriate ways to partition data streams across 411

a number of machines and minimise the usage of available resources (CPU cycles, 412

bandwidth, memory, etc.) while maintaining high performance. 413

Another category of techniques examines the optimisation of network-wide 414

analytics, simultaneously scaling-out the computation of an operator to the VMs 415

of the cluster that undertakes its execution. JetStream [61] trades-off network 416

bandwidth minimisation with timely query answer and correctness, but while 417

exploring the cluster at which an operator will be executed, it restricts itself to 418

the MapReduce rationale (i.e. the operator is executed at the cluster where data 419

rests), nearest site of relevant data presence or a central location. Iridium [60], 420

basically targeting optimisation of analytics over data at rest, assumes control over 421

where relevant data are transferred and moves these data around clusters to optimise 422

query response latency. SQPR [45] and [21] propose more generic frameworks for 423

the constraint-aware optimal execution of global workflows across clusters, and 424

they also optimise resources devoted to each operator execution at each cluster. 425

However, [21, 45] do not account for cross-platform optimisation in the presence 426

of different Big Data technologies. 427

Systems such as Rheem [12], Ires [27], BigDawg [28] and Musketeer [39] are 428

designed towards cross-platform execution of workflows, but they can only optimise 429

the processing of data at rest,2 instead of data in motion. Furthermore, only Rheem 430

accounts for network-related optimisation parameters such as communication cost. 431

2 BigDawg supports stream processing over S-Store and Rheem supports JavaStreams, but no
alternatives are included to allow for optimising across different streaming platforms.
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INFORE Contribution The INFORE Optimiser is the first complete solution for 432

streaming operators [30, 34]. INFORE’s Optimiser is not simply the only one which 433

can simultaneously instruct the streaming Big Data platform, cluster and computing 434

resources for each analytics operator, but also it does so for a wide variety of 435

diverse operator classes including (1) synopses, (2) ML/DM, (3) CEF and (4) stream 436

transformations. INFORE’s Optimiser incorporates the richest set of optimisation 437

criteria related to throughput, network and computational latency, communication 438

cost, memory consumption and accuracy of SDE operators, and it also accounts for 439

constraints per metric, fostering the notion of Pareto optimality [30, 34]. 440

The internals of INFORE Optimiser are illustrated in Fig. 1c. We use a statistics 441

collector to derive performance measurements from each executed workflow. 442

Statistics are collected via JMX or Slurm3 and are ingested in an ELK stack4
443

while monitoring jobs. A Benchmarking submodule automates the acquisition of 444

performance metrics for SDE, OMLDM and CEF/CEP operators run in different 445

Big Data platforms. The Benchmarking submodule utilises statistics and builds 446

performance (cost) models. Cost models are derived via a Bayesian Optimisation 447

approach inspired by CherryPick [15]. The cost models are utilised by the optimi- 448

sation algorithms [30, 34] to prescribe preferable physical execution plans. 449

3 Real-Life Application to a Maritime Use Case 450

3.1 Background on Maritime Situation Awareness (MSA) 451

According to the US National Concept of Operations for Maritime Domain Aware- 452

ness,5 “Global Maritime Intelligence is the product of legacy, as well as changing 453

intelligence capabilities, policies and operational relationships used to integrate all 454

available data, information, and intelligence in order to identify, locate, and track 455

potential maritime threats. Global MSA results from the persistent monitoring of 456

maritime activities in such a way that trends and anomalies can be identified”. 457

Maritime reporting systems are distinguished into two broad categories: cooper- 458

ative and non-cooperative. An example of a cooperative maritime reporting system 459

is the Automatic Identification System (AIS) [43]. All commercial vessels above 460

300 gross tonnage are obliged to bear AIS transponders. AIS forms the basis of 461

a lot of MSA applications, such as the MarineTraffic vessel tracking platform. 462

Other cooperative, but not public, maritime reporting systems are the Long Range 463

Identification and Tracking system (LRIT) [44], as well as the Vessel Monitoring 464

3 https://docs.oracle.com/javase/tutorial/jmx/overview/, https://slurm.schedmd.com/.
4 https://www.elastic.co/what-is/elk-stack.
5 https://web.archive.org/web/20111004213300/http://www.gmsa.gov/twiki/bin/view/Main/
MDAConOps.

https://docs.oracle.com/javase/tutorial/jmx/overview/
https://slurm.schedmd.com/
https://www.elastic.co/what-is/elk-stack
https://web.archive.org/web/20111004213300/http://www.gmsa.gov/twiki/bin/view/Main/MDAConOps
https://web.archive.org/web/20111004213300/http://www.gmsa.gov/twiki/bin/view/Main/MDAConOps
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System (VMS) [29] for fishing vessels. Radar on-board or ashore installations can 465

be used as maritime surveillance systems, such as the ones installed by default in 466

a vessel’s bridge, as well as in ports. Thermal cameras and satellite imagery can 467

also be used as additional monitoring systems for vessels. Due to the time elapsed 468

between the actual image acquisition from a satellite and its availability on the 469

satellite repository that can be several hours, satellite imagery data do not offer real- 470

time snapshots of the maritime domain but can be used combined with other sources 471

such as AIS to “fill in the gaps” of AIS coverage (e.g., identify the whereabouts of 472

a vessel while its transponder was switched off). 473

Global and continuous monitoring of the maritime domain as well as the 474

identification of trends and anomalies require to address the challenges pointed 475

out throughout this chapter as well as the following generic Big Data challenges 476

described in the scope of the maritime domain: 477

• Volume, the number of available surveillance systems and sensors increases. 478

• Velocity, applications rely on continuous monitoring (e.g., vessel tracking) and 479

need to process high velocity streaming data in real time. 480

• Variety, data from heterogeneous surveillance systems should be combined. 481

• Veracity, most of the maritime data sources are heavily prone to noise requiring 482

data cleaning and analysis tasks to filter out unnecessary or invalid information. 483

• Value, as the availability of more sources of maritime data as well as the advanced 484

Big Data processing, ML and AI technologies that are now available can help to 485

maximise the derived knowledge that can be inferred from maritime data. 486

3.2 Building Blocks of MSA Workflows in the Big Data Era 487

Figure 2b shows an example of a generic workflow, implemented in the Maritime 488

Use Case of the INFORE project, for MSA purposes. Different applications may 489

include a subset of operators of Fig. 2b or implement different steps. In the 490
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following, we describe the functionality of the workflow operators of Fig. 2b which 491

serve as the building blocks of modern MSA applications. 492

3.2.1 Maritime Data Sources 493

The kinds of data sources that are provided as input in a typical MSA application 494

(Fig. 2b) are the following: 495

• Vessel positions. Data about vessel positions derive from vessel reporting 496

systems, the most popular of which is AIS. AIS forms the ground of a wide 497

variety of MSA applications. AIS relies on VHF communication: Vessels send 498

AIS messages that contain dynamic information (e.g., information about the 499

current voyage, such as vessel position, speed, heading, etc.) as well as static 500

information (e.g., vessel identifier, dimensions, etc.). For real-time applications, 501

positional data arrive in streaming fashion to the data consumers. 502

• Data from other sensors. Some applications do not rely only on one source of 503

information. For example, AIS data can be combined with acoustic data, thermal 504

camera data and satellite data. Vessel detection algorithms are applied on this 505

data to extract the positions of vessels. For example, AI techniques are applied 506

on satellite imagery to extract the vessel positions which is important in the cases 507

when a vessel is out of AIS coverage [54]. 508

• Other datasets describing assets and activities in the maritime domain. These 509

are datasets that describe ports, harbours, lighthouses, the boundaries of areas 510

of interest, bathymetry datasets (e.g., for shallow waters estimation), datasets 511

containing vessel schedules, weather data, etc. These datasets are often combined 512

with other data (e.g., vessel positions) in order to enrich the information 513

displayed to the end-users (e.g., the different layers of the MarineTraffic Live 514

Map). 515

Kafka [3] is used at the data ingestion layer, as a fast, scalable and fault-tolerant 516

messaging system for large data (at rest or in motion) portions. 517

3.2.2 Maritime Data Fusion 518

Data from multiple sources besides AIS, such as radars and cameras, are available 519

in real time though in order to be used in MSA modules they must be fused 520

together with AIS and create a unified map. This essentially translates to a need 521

for tracking algorithms that can monitor moving objects globally and in real time 522

using overlapping detections from multiple sensors. The Fusion operator in Fig. 2b 523

is a custom operator with distributed implementations in order to achieve this goal. 524

Trackers are comprised of three main components [65, 66]: (a) a method for the 525

assignment of detections to tracks, (b) the prediction of a target’s movement and (c) 526

the architecture of the tracker that coordinates how the detections are processed. 527
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A detection arriving to the tracker can be assigned to a track using three 528

strategies, and each tracker implementation is based on one of them. The first way 529

is to simply choose the track that is closest to the detection, which has the lowest 530

computational complexity but it is not accurate in cases where two objects move 531

very close to each other. The second method focuses on improving the accuracy in 532

cases where a detection is close to multiple tracks by deferring the final assignment 533

until more detections arrive, thus making a more informed decision but at the cost of 534

significantly increasing the complexity and decreasing the responsiveness (i.e., real- 535

time challenge). The third approach stands between the two methods and allows that 536

a detection is assigned to multiple tracks as soon as it arrives, thus increasing the 537

accuracy satisfactorily without increasing complexity. 538

Each moving object is characterised by certain physical parameters and con- 539

straints according to which several kinematic models can predict its movement 540

under different conditions. A simple option is to choose one model, such as constant 541

velocity that assumes the object maintains the last speed, but this affects the 542

accuracy when an object manoeuvres. A better option is to use multiple models, 543

such as constant turn and acceleration, at the same time so that the tracker is able to 544

successfully detect a manoeuvring target. 545

3.2.3 SDE Operator For Trajectory Simplification 546

The plethora of incoming data from multiple overlapping sources poses a challenge 547

for data processing workflows. A data synopsis technique with which this challenge 548

can be tackled is trajectory simplification, i.e., reducing the amount of data 549

(positions) so that the computational effort required is reduced as well. The ideal 550

goal is to keep only those positions that are adequate in order to recreate the 551

trajectory with minimal losses in the accuracy of the data processing workflow. 552

For that, we use INFORE’s SDEaaS (Sect. 2.1) which includes an application- 553

specific synopses, namely STSampler. The STSampler scheme resembles the 554

concept of threshold-guided sampling in [58] but executes the sampling process in a 555

more simplistic, yet effective in practice, way. More precisely, the sampling process 556

is executed in a per stream fashion, i.e., for the currently monitored trajectory of 557

each vessel separately. The core concept is that if the velocity and the direction 558

of the movement of the vessel do not change significantly, the corresponding AIS 559

message is not sampled. The last two reported trajectory positions are cached in 560

the add FlatMap of Fig. 1a. When an AIS message holding information about 561

the current status of the vessel streams in via HashData, the add FlatMap 562

computes the change in the velocity between the lastly cached and the new AIS 563

report, i.e., ∆vel = |vel(prev) − vel(now)|, and compares this value to a velocity 564

threshold Tvel . Using the previously cached points, the vector describing the lastly 565

reported direction of the vessel dir(prev) is computed, while using the last cached 566

and the newly reported positions we also compute dir(now). Then, we compare 567

∆dir = |dir(prev) − dir(now)| against a direction threshold Tdir . If at least one 568

of these deltas does not exceed the corresponding threshold, the newly received 569
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AIS message is not included in the sample by the add FlatMap. This holds, 570

provided that a couple of additional spatiotemporal constraints are satisfied: (a) the 571

time difference between the newly received AIS message and the last one that was 572

included in the sample does not exceed a given time interval threshold Ttdiff and 573

(b) the distance among the most recently sampled and the current position of the 574

vessel does not surpass a distance threshold Tdist . SDEaaS is implemented in Flink 575

instead of Kafka, for the reasons explained in Sect. 2.1. 576

3.2.4 Complex Maritime Event Processing 577

A very important module of the modern MSA applications is the Maritime Event 578

Detection module. This is essentially a CEP module tailored to the maritime domain. 579

For now, our analysis concentrates on distributed and online CEP, i.e., detecting 580

complex events, while future work will also exploit the potential of CEF (Sect. 2.3). 581

A description of some of the most common vessel events that can occur in the 582

maritime domain is provided below: 583

• Turn: A vessel turns to a different direction. 584

• Acceleration: A vessel accelerates. 585

• Route Deviation: The course of a vessel deviates from “common” routes. 586

• Shallow waters: A vessel navigates in shallow waters. 587

• Proximity: A vessel is in close distance to another vessel. 588

• Out of coverage. A vessel is out of coverage with respect to one or more vessel 589

monitoring systems such as AIS [47]. 590

The events described above are simple events, i.e., they can be computed without 591

depending on other events. Complex events, on the other hand, are events composed 592

from other events. Below we provide examples of complex events: 593

• Ship-to-ship: Transfer of cargo between vessels. 594

• Bunkering: One vessel provides fuel to another vessel. 595

• Tugging: A smaller vessel (a tug) is tugging another vessel. 596

• Piloting: A smaller vessel (pilot vessel) approaches a bigger vessel so that the 597

pilot of the vessel boards the bigger vessel in order to help it navigate into a port 598

where special local conditions apply. 599

• Fishing: A vessel is engaged in fishing activities. 600

For distributed processing of streaming data in the CEP context, the Akka 601

framework is used [1]. Akka adopts an Actor-based architecture based on message- 602

passing communication, and it is preferred due to the fact that it is more customis- 603

able than Spark and Flink. Each Actor, run in parallel instances, is responsible for 604

detecting a simple or complex event as those described above (Fig. 2a and b). 605
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3.2.5 ML-Based Anomaly Detection 606

The ML algorithms that are relevant to the MSA workflow relate to Deep Neural 607

Network techniques for classifying vessels according to their type (such as cargo, 608

fishing vessel) [54]. Moreover, we are investigating ML-based techniques such as 609

Random Forests for classifying vessel trajectories and recognise simple or complex 610

events in them. This effort is also aided by advanced ML-based operators we have 611

developed to extract the common routes followed by the majority of vessels for 612

every voyage, defined as a pair of origin and destination ports [78]. At the moment, 613

these ML tasks are performed in an offline fashion mostly using Spark’s MLlib [5], 614

which we also use to estimate sea-port area regions in [55]. The outcomes of this 615

process performed at the batch layer of Fig. 2a can then be used as added value 616

knowledge to the event detection or the Fusion operator of Fig. 2b. Our ongoing 617

work focuses on incorporating INFORE’s module (Sect. 2.2) to materialise ML/DM 618

analytics in an online, real-time fashion, where possible (see restrictions on satellite 619

images in Sect. 3.1). 620

3.2.6 MSA Workflow Optimisation 621

Across the workflow of Fig. 2b, the INFORE Optimiser is responsible for prescrib- 622

ing the parallelisation Degree, and the provisioned resources for the maintained 623

trajectory synopses (Sect. 3.2.3) determine the computer cluster and the number of 624

Akka Actors devoted to MSA-related CEP tasks (Sect. 3.2.4). The Optimiser can 625

also do the same for ML-based anomaly detection tasks (Sect. 3.2.5). An initial 626

workflow execution plan can be re-optimised and adjusted at runtime to adapt 627

(e.g., by increasing/decreasing the number of Akka Actors) to changing data stream 628

distributions or to a load of concurrently executed maritime workflows. Moreover, 629

the ongoing integration of the INFORE CEF module will allow the Optimiser to 630

prescribe the most efficient implementation among Akka (Sect. 3.2.4) and Flink 631

(Sect. 2.3) options for event processing tasks. 632

4 Future Research and Development Directions 633

Future research and development directions mainly lie in the synergies of ML/DM, 634

Synopses, CEP/CEF and optimisation technologies discussed in this chapter. 635

Resource-Constrained ML/DM Resource-Constrained ML/DM goes beyond 636

data processing over distributed, but computationally powerful infrastructures such 637

as computer clusters or the cloud. The objective in resource constrained ML/DM is 638

to bridge the gap between the very high computation and communication demands 639

of state-of-the-art ML algorithms, such as Deep Neural Nets and Kernel Support 640

Vector Machines, and the goal of running such algorithms (e.g. various classifiers) 641
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on a large, heavily distributed system of resource-constrained devices. Resource- 642

constrained devices, such as sensors, pose limitations to the power supply, memory, 643

computation and communication capacity. Fast and efficient classifiers requiring 644

reduced power and memory should be developed, along with novel algorithms to 645

train, apply and update the classifiers. Synergies between synopses and distributed, 646

online ML/DM utilities are critical for such tasks. 647

Optimisation over Internet of Things (IoT) Platforms Optimisation over Inter- 648

net of Things (IoT) platforms, since existing optimisation frameworks, should be 649

extended to allow for planning the execution of workflows taking into consideration 650

the whole set IoT features including: (a) resource scarcity, (b) hardware hetero- 651

geneity, (c) data heterogeneity, (d) dynamic population of devices, (e) mobility 652

of devices, (f) security aspects over massively distributed architectures, and (g) 653

resilience and accuracy of analytics in the presence of device failures. 654

CEP/CEF-Oriented Synopses CEP/CEF-Oriented Synopses techniques tailored 655

for CEP/CEF are becoming a necessity. The work in [41] was the first to point out 656

that load shedding schemes tailored for CEP are missing and that shedding the load 657

in CEP significantly differentiates itself from doing so in conventional streaming 658

settings. A few more approaches emerged since then [52, 74], but still little attention 659

has been paid on the distributed environments and the mergeability properties of 660

such techniques [11]. 661
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