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Streams – A Brave New World

� Traditional DBMS: data stored in finite, persistent data sets

� Data Streams: distributed, continuous, unbounded, rapid, 
time varying, noisy, . . . 

� Data-Stream Management: variety of modern applications
– Network monitoring and traffic engineering
– Sensor networks
– Telecom call-detail records
– Network security 
– Financial applications
– Manufacturing processes
– Web logs and clickstreams
– Other massive data sets…
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� Data is continuously growing faster than our ability 
to store or index it

� There are 3 Billion Telephone Calls in US each day, 
30 Billion emails daily, 1 Billion SMS, IMs

� Scientific data: NASA's observation satellites 
generate billions of readings each per day

� IP Network Traffic: up to 1 Billion packets per hour 
per router.  Each ISP has many (hundreds) routers!

� Whole genome sequences for many species now 
available: each megabytes to gigabytes in size

Massive Data Streams

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
4

Massive Data Stream Analysis

Must analyze this massive data:
� Scientific research (monitor environment, species)
� System management (spot faults, drops, failures)
� Business intelligence (marketing rules, new offers) 
� For revenue protection (phone fraud, service abuse)
Else, why even measure this data?
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Example: IP Network Data

� Networks are sources of massive data: the metadata per 
hour per IP router is gigabytes

� Fundamental problem of data stream analysis: 
Too much information to store or transmit

� So process data as it arrives – One pass, small space: 
the data stream approach

� Approximate answers to many questions are OK, if 
there are guarantees of result quality
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IP Network Monitoring Application

� 24x7 IP packet/flow data-streams at network elements
� Truly massive streams arriving at rapid rates

– AT&T/Sprint collect  ~1 Terabyte of NetFlow data each day

� Often shipped off-site to data warehouse for off-line analysis

Source        Destination Duration Bytes       Protocol
10.1.0.2            16.2.3.7             12                20K            http
18.6.7.1            12.4.0.3             16                24K            http
13.9.4.3            11.6.8.2             15                20K            http
15.2.2.9            17.1.2.1             19                40K            http
12.4.3.8            14.8.7.4             26                58K            http
10.5.1.3            13.0.0.1             27                100K          ftp
11.1.0.6            10.3.4.5             32                300K          ftp
19.7.1.2            16.5.5.8             18                80K            ftp

Example NetFlow
IP Session Data

DSL/Cable
Networks

• Broadband
Internet Access

Converged IP/MPLS
Core

PSTNEnterprise
Networks

• Voice over IP• FR, ATM, IP VPN

Network Operations
Center  (NOC)

SNMP/RMON,
NetFlow records

Peer
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Packet-Level Data Streams

�Single 2Gb/sec link;  say avg packet size is 50bytes

� Number of packets/sec = 5 million

�Time per packet = 0.2 microsec

� If we only capture header information per packet: src/dest IP, 
time, no. of bytes, etc. – at least 10bytes.

– Space per second is 50Mb

– Space per day is 4.5Tb per link

– ISPs typically have hundreds of links!

� Analyzing packet content streams – whole different 
ballgame!!
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Network Monitoring Queries

DBMS
(Oracle, DB2)

Back-end Data Warehouse

Off-line analysis –
slow, expensive

DSL/Cable
Networks

Enterprise
Networks

Peer

Network Operations
Center  (NOC)

What are the top (most frequent) 1000 (source, dest) 
pairs seen over the last month?

SELECT COUNT (R1.source, R2.dest)
FROM  R1, R2
WHERE R1.dest = R2.source

SQL Join Query

How many distinct (source, dest) pairs have 
been seen by both R1 and R2 but not R3?

Set-Expression Query

PSTN

� Extra complexity comes from limited space and time

� Will introduce solutions for these and other problems

R1

R2

R3
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Real-Time Data-Stream Analysis

� Must process network streams in real-time and one pass
� Critical NM tasks: fraud, DoS attacks, SLA violations

– Real-time traffic engineering to improve utilization

� Tradeoff  result accuracy  vs.  space/time/communication
– Fast responses, small space/time
– Minimize use of communication resources

IP Network

PSTN

DSL/Cable
Networks

Network Operations
Center  (NOC)

BGP
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Sensor Networks

� Wireless sensor networks becoming ubiquitous in 
environmental monitoring, military applications, …

� Many (100s, 103, 106?) sensors scattered over terrain 
� Sensors observe and process a local stream of readings: 

– Measure light, temperature, pressure…
– Detect signals, movement, radiation…
– Record audio, images, motion…
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Sensornet Querying Application

� Query sensornet through a (remote) base station
� Sensor nodes have severe resource constraints

– Limited battery power, memory, processor, radio range…
– Communication is the major source of battery drain
– “transmitting a single bit of data is equivalent to 800 

instructions” [Madden et al.’02]
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(root, coordinator…)
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Tutorial Outline
� Motivation & Streaming Applications

� Centralized Stream Processing

– Basic streaming models and tools

– Stream synopses and applications

� Sampling, sketches

� The Sliding Window model

� Distributed Stream Processing

� Open Problems & Future Directions

� Conclusions
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Some Disclaimers…

� Fairly broad coverage, but still biased view of  data-
streaming world
– Revolve around personal biases (line of work and interests)
– Main focus on key algorithmic concepts, tools, and results –

for both the centralized and distributed settings
� Only minimal discussion of systems/prototypes

– A lot more information out there  

� Sensornets [Madden’06]
� Systems issues [Koudas,Srivastava’03], [Babcock et al.’02]
� Theory/algorithms [Muthukrishnan’03]
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Data Streaming Model
� Underlying signal: One-dimensional array A[1…N] with 

values A[i] all initially zero
– Multi-dimensional arrays as well (e.g., row-major)

� Signal is implicitly represented via a stream of update stream of update tuplestuples
– j-th update is  <x, c[j]> implying

� A[x] := A[x] + c[j] (c[j] can be >0, <0)

�Goal:  Compute functions on A[] subject to 
– Small space
– Fast processing of updates
– Fast function computation
– …

� Complexity arises from massive length and domain           
size (N)  of streams



8

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
15

Example IP Network Signals

� Number of bytes (packets) sent by a source IP address 
during the day

– 2^(32) sized one-d array;  increment only

� Number of flows between a source-IP, destination-IP 
address pair during the day

– 2^(64) sized two-d array; increment only,  aggregate 
packets into flows

� Number of active flows per source-IP address

– 2^(32) sized one-d array;  increment and decrement
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Streaming Model: Special Cases

� Time-Series Model
– Only x-th update  updates A[x] (i.e., A[x] := c[x])

� Cash-Register Model:  Arrivals-Only Streams
– c[x] is always > 0
– Typically, c[x]=1,  so we see a multi-set of items in one pass

– Example: <x, 3>, <y, 2>, <x, 2> encodes
the arrival of 3 copies of item x, 
2 copies of y, then 2 copies of x.

– Could represent, e.g., packets on a network; power usage

x
y
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Streaming Model: Special Cases

� Turnstile Model: Arrivals and Departures
– Most general streaming model
– c[x] can be >0 or <0

� Arrivals and departures:
– Example: <x, 3>, <y,2>, <x, -2> encodes

final state of <x, 1>, <y, 2>.
– Can represent fluctuating quantities, or measure 

differences between two distributions

x
y

� Problem difficulty varies depending on the model
– E.g., MIN/MAX in Time-Series  vs.  Turnstile!
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Approximation and Randomization

� Many things are hard to compute exactly over a stream
– Is the count of all items the same in two different streams?
– Requires linear space to compute exactly

� Approximation: find an answer correct within some factor
– Find an answer that is within 10% of correct result

– More generally, a (1± ε) factor approximation

� Randomization: allow a small probability of failure
– Answer is correct, except with probability 1 in 10,000

– More generally, success probability (1-δ)

�� Approximation Approximation andand RandomizationRandomization: (ε, δ)-approximations
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Data-Stream Algorithmics Model

� Approximate answers– e.g. trend analysis, anomaly detection
� Requirements for stream synopses

– Single Pass: Each record is examined at most once
– Small Space: Log or polylog in data stream size
– Small-time: Low per-record processing time (maintain synopses)
– Also:  delete-proof, composable, …

Stream Processor

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer with high
probability”

Stream Synopses
(in memory)

Continuous Data Streams

Query Q

R1

Rk

(Terabytes) (Kilobytes)
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Probabilistic Guarantees 

� User-tunable  (ε,δ)-approximations
– Example: Actual answer is within 5 ± 1  with prob ≥ 0.9

� Randomized algorithms: Answer returned is a specially-
built random variablerandom variable
– Unbiased (correct on expectation) 
– Combine several  Independent Identically Distributed (iid)

instantiations (average/median)

� Use Tail Inequalities to give probabilistic bounds on 
returned answer
– Markov Inequality
– Chebyshev Inequality
– Chernoff Bound
– Hoeffding Bound
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Basic Tools: Tail Inequalities 
� General bounds on tail probability of a random variable 

(that is, probability that a random variable deviates far 
from its expectation)

� Basic Inequalities: Let X be a random variable with 
expectation       and variance Var[X]. Then, for any 

µε µ µε
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Tail Inequalities for Sums 

� Possible to derive stronger bounds on tail probabilities for 
the sum of independent random variables

� Hoeffding Bound: Let X1, ..., Xm be independent random 
variables with 0� Xi � r. Let                      and      be the 

expectation of    . Then, for any         ,

� Application: Sample average � population average 

– See below…

2
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Tail Inequalities for Sums

� Possible to derive even stronger bounds on tail probabilities 
for the sum of independent Bernoulli trials

� Chernoff Bound: Let X1, ..., Xm be independent Bernoulli 

trials such that Pr[Xi=1] = p (Pr[Xi=0] = 1-p). Let                  

and               be the expectation of     . Then, for any     ,

� Application: Sample selectivity � population selectivity

– See below…

� Remark: Chernoff bound results in tighter bounds for count 
queries compared to Hoeffding bound

2

��� 2

2exp)|XPr(|
−

≤≥−

0>ε
�=

i iXX
mp=µ X

Sampling, Sketches and 
Applications
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Sampling: Basics
� Idea:  A small random sample S of the data often well-

represents all the data
– For a fast approx answer, apply “modified” query to S
– Example: select agg from R where R.e is odd

(n=12)

– If agg is avg, return average of odd elements in S 
– If agg is count, return average over all elements e in S of

� n if e is odd
� 0 if e is even

�� Unbiased EstimatorUnbiased Estimator (for count, avg, sum, etc.)
– Bound error using Hoeffding (sum, avg) or Chernoff (count) 

� ���������� ���� ����� ��������� � �������� ���������

��� ���������������������

��
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����
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Sampling from a Data Stream

� Fundamental problem: sample m items uniformly from 
stream
– Useful: approximate costly computation on small sample

� Challenge: don’t know how long stream is  
– So when/how often to sample?

� Two solutions, apply to different situations:
– Reservoir sampling (dates from 1980s?)
– Min-wise sampling (dates from 1990s?)
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Reservoir Sampling

� Sample first m items
� Choose to sample the i’th item (i>m) with probability m/i
� If sampled, randomly replace a previously sampled item

� Optimization: when i gets large, compute which item will 
be sampled next, skip over intervening items [Vitter’85]
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Reservoir Sampling - Analysis

� Analyze simple case: sample size m = 1
� Probability i’th item is the sample from stream length n:

– Prob. i is sampled on arrival × prob. i survives to end

1 i  i+1 n-2 n-1
i i+1 i+2 n-1 n

×××× ×××× … ××××

= 1/n

� Case for m > 1 is similar, easy to show uniform probability
� Drawbacks of reservoir sampling: hard to parallelize
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Min-wise Sampling

� For each item, pick a random fraction between 0 and 1

� Store item(s) with the smallest random tag [Nath et al.’04]

0.391 0.908 0.291 0.555 0.619 0.273

� Each item has same chance of least tag, so uniform
� Can run on multiple streams separately, then merge
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Sketches

� Not every problem can be solved with sampling
– Example: counting how many distinct items in the stream
– If a large fraction of items aren’t sampled, don’t know if 

they are all same or all different

� Other techniques take advantage that the algorithm can 
“see” all the data even if it can’t “remember” it all 

�� ““SketchSketch””:: essentially,  a linear transform of the input
– Model stream as defining a vector, sketch is result of 

multiplying stream vector by an (implicit) matrix

linear projection
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Trivial Example of a Sketch

� Test if two (asynchronous) binary streams are equal 
d= (x,y) = 0 iff x=y, 1 otherwise

� To test in small space: pick a random hash function h
� Test h(x)=h(y) : small chance of false positive, no chance 

of false negative. 
� Compute h(x), h(y) incrementally as new bits arrive 

(Karp-Rabin: h(x) = xi2i mod p) 
– Exercise: extend to real valued vectors in update model

1 0 1 1 1 0 1 0 1 …

1 0 1 1 0 0 1 0 1 …
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AMS Sketching 
�� Goal:Goal: Build small-space summary for distribution vector f[v] 

(v=1,..., N)  seen as a stream of v-values

�� Basic Construct:Basic Construct: Randomized Linear Projection of f =  project 
onto dot product of  f-vector

– Simple to compute: Add       whenever the value v is seen

– Generate     ‘s in small (logN) space using pseudo-random 
generators

� ���������� ������������������������������� � � 

� ���������� ������������������������������� � � 54321 22 ++++

!"�#��!"�#��!"�#��!"�#��!"�#

�� �

� �

�=
v vf[v]X $ %��������&�'�(�����!���

�� �'������!��� �

�
�������������
����������

ξ

v

vξ
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AMS Sketching  (contd.)

� Simple randomized linear projections of data distribution

– Easily computed over stream using logarithmic space

– Linear:  Compose through simple addition

� Theorem[AGMS]: Given sketches of size 

�� �

� � }{ vξ � == � �� ������
54321 22 ++++

}{ vψ

�= � �� ������
=sk(f)

)
)/1log(

(
2ε

δ
O

2j2ijiji ||f||||f||ff)sk(f)sk(f ±⋅∈⋅

f

Inner ProductInner Product
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Application: Binary-Join COUNT Query
� Problem: Compute answer for the query COUNT(R     A S)
� Example:

� Exact solution: too expensive, requires O(N) space!
– N = sizeof(domain(A))

� ���������� �) *������������������������ �
�

+

�

�� � �

:"�#!)

� ���������� �� *������������������������ �
�

�� � �

:"�#!�

�
�

� ⋅=
� �)* "�#!"�#!�#������,-./�")

&��+����"��0���0�+�0�� #

Inner ProductInner Product
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Basic AMS Sketching Technique
�Key Intuition: Use randomized linear projections of f[] to 

define random variable X such that
– X is easily computed over the stream (in small space)
– E[X] = COUNT(R     A S) 
– Var[X] is small 

�Basic Idea:
– Define a family of 4-wise independent {-1, +1} random variables

– Pr[    = +1] = Pr[    = -1] = 1/2
� Expected value of each    ,  E[    ] = 0

– Variables     are 4-wise independent
� Expected value of product of 4 distinct     = 0

– Variables     can be generated using pseudo-random generator 
using only O(log N) space (for seeding)!

������������(�������1����
�����

"� 1 ���(������
�$ �������+2��$ ��%�
����������	�+ �#

/3��   ���4 � =ξ
�ξ �ξ
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�ξ
�ξ
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AMS Sketch Construction
�Compute random variables:                         and 

– Simply add      to XR(XS) whenever the i-th value is observed in the 

R.A (S.A) stream

�Define X = XRXS to be estimate of COUNT query

�Example:

�=
i iRR (i)fX �=

i iSS (i)fX

�ξ

� ���������� �) *������������������������

� ���������� �� *������������������������

�
�

+

�� � �

:"�#!)

�
�
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��� 55 ξ+=

���) ��5 ξξξ ++=
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Binary-Join AMS Sketching Analysis 
�Expected value of X =  COUNT(R     A S)

�Using 4-wise independence, can show that

� is  self-join size of R  (second/L2 moment)

2
2S

2
2R ||f||||f||2Var[X] ⋅≤

�=
i

2
R

2
2R (i)f||f||

657857856 �) ⋅=

6�� ⋅=
i iSi iR (i)f(i)fE[

])(i'f(i)fE[](i)f(i)fE[ i'i'i iSR

2
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Boosting Accuracy
� Chebyshev Inequality:

�Boost accuracy to     by averaging over several iid copies 
of X (reduces variance)

�By Chebyshev: 

S)      COUNT(RE[X]E[Y] ==

22 E[X] 
Var[X]

E[X])|E[X]-XPr(| ≤≥

8
1

COUNT 
Var[Y]

COUNT)|COUNT-YPr(| 22 ≤≤⋅≥

9

: : : *'���1� 	

copies
COUNT 

)||f||||f||(28
s

22

2
2S

2
2R ⋅⋅⋅=

8
COUNT 

s
Var[X]

Var[Y]
22

≤=
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Boosting Confidence
�Boost confidence to         by taking median of  2log(1/   ) 

independent copies of Y
�Each  Y =  Bernoulli Trial

;� − ;
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Summary of Binary-Join AMS Sketching

�Step 1: Compute random variables:                      and 

�Step 2: Define X= XRXS
�Steps 3 & 4: Average independent copies of X;  Return median 

of averages

�=
� �)) "�#!5 ξ �=

� ��� "�#!5 ξ

22
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2
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Summary of Binary-Join AMS Sketching

� Main Theorem [AGMS99]:Main Theorem [AGMS99]: Sketching approximates COUNT to 
within a relative error of ε with probability � 1-δ using   space

– Remember: O(log N) space for “seeding” the construction of each X

� Special Case Special Case –– SelfSelf--join size:join size: COUNT(R     A R) =                         
– Gini index of heterogeneity, measure of skew in the data

– (ε,δ)−estimate using space only

– Best-case for AMS streaming join-size estimation…

– Q: What’s the worst case??

)
COUNT 

logNlog(1/ ||f||||f||
O( 22

2
2S

2
2R )⋅

2
2R ||f||

)
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O( 2

)
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AMS Sketching for Multi-Joins [Dobra et al.02]

� Problem:Problem: Estimate  COUNT(R    AS    BT) =

� Sketch-based solution
–Compute random variables XR, XS and XT

– Return X=XRXSXT (E[X]= COUNT(R    AS    BT))

� ji, TSR (j)j)f(i,(i)ff
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� Sketches for general multi-join COUNT queries (over streams 
R, S, T, ...)

– For each pair of attributes in equality join constraint, use independent 
family of {-1, +1} random variables

– Compute random variables XR, XS, XT, .......

– Return X=XRXSXT ... (E[X]= COUNT(R    S    T     ....))

– Explosive increase with the number of joins!
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AMS Sketching for Multi-Joins [Dobra et al.02]
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Boosting Accuracy by Sketch Partitioning

�For      error, need

�Key Observation: Product of self-join sizes for partitions of partitions of 
streamsstreams can be much smaller than product of self-join sizes 
– Reduce space requirements by partitioning join attribute domains

� Overall join size = sum of join size estimates for partitions

– Exploit coarse statistics (e.g., histograms) based on historical data or 
collected in an initial pass, to compute the best partitioning
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Sketch Partitioning Example: Binary Join 
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Overview of Sketch Partitioning

� Maintain independent sketches for partitions of join-
attribute space

� Improved error guarantees
– Var[X] =    Var[Xi]   is smaller  (by intelligent domain 
partitioning)

– “Variance-aware” boosting: More space to higher-
variance partitions

� Challenging optimization problems!
� Significant accuracy benefits for small number (2-4) 
of partitions 

�



24

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
47

Other Applications of AMS Sketching
� General result: Streaming            estimation of ““largelarge”” inner inner 

productsproducts using AMS sketches

� Other streaming inner products of interest
–– TopTop--k frequenciesk frequencies [Charikar et al.’02]

� Item frequency = < f, “unit_pulse” >

– Large wavelet coefficientswavelet coefficients [Gilbert et al.’01], [Cormode et al.’06]
� Coeff(i) =  < f,  w(i) >,   where  w(i) = i-th wavelet basis vector
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Recent Results on Stream Joins
� Better accuracy using ““skimmed sketchesskimmed sketches”” [Ganguly et al.’04]

– “Skim” dense items (i.e., large freqs) from the AMS sketches
– Use the “skimmed” sketch only for sparse elements
– Stronger worst-case guarantees, and much better in practice

� Same effect as sketch partitioning with no apriori knowledge!

� Sharing sketch space/computation among multiple queries
[Dobra et al.’04]
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Improving Basic AMS 

�Update time for basic AGMS sketch is                           

�� BUTBUT……
–Sketches can get large – cannot afford to touch every counter 
for rapid-rate streams!
�Complex queries, stringent error guarantees, …

–Sketch size may not be the limiting factor (PCs with GBs of 
RAM)
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The Fast AMS Sketch [Cormode, Garofalakis’05]

� Fast AMS Sketch: Organize the atomic AMS counters into 
hash-table buckets
– Each update touches only a few counters (one per table)
– Same space/accuracy tradeoff as basic AMS (in fact, better�)
– BUT,  guaranteed logarithmic update times (regardless of sketch 

size)!!
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Count-Min Sketch [Cormode, Muthukrishnan’04]

� Simple sketch idea, can be used for as the basis of many 
different stream mining tasks
– Join aggregates, range queries, moments, …

� Model input stream as a vector A of dimension N

� Creates a small summary as an array of w × d in size
� Use d hash functions to map vector entries to [1..w]
� Works on arrivals only and arrivals & departures streams

W

dArray: 
CM[i,j]
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CM Sketch Structure

� Each entry in input vector A[] is mapped to one bucket 
per row 
– h()’s are pairwise independent

� Merge two sketches by entry-wise summation
� Estimate A[j] by taking mink { CM[k,hk(j)] }

+c

+c

+c

+c

h1(j)

hd(j)

<j, +c>

d=
log 1/δ

w = 2/ε
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CM Sketch Guarantees

� [Cormode, Muthukrishnan’04] CM sketch guarantees 
approximation error on point queries less than ε||A||1 in space 
O(1/ε log 1/δ)
– Probability of more error is less than 1-δ
– Similar guarantees for range queries, quantiles, join size,…

� Hints
– Counts are biased (overestimates) due to collisions

� Limit the expected amount of extra “mass” at each 
bucket?  (Use Markov)

– Use Chernoff-like argument to boost the confidence for the 
min{} estimate
� Based on independence of row hashes
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CM Sketch Analysis
Estimate A’[j] = mink { CM[k,hk(j)] }
� Analysis: In k'th row, CM[k,hk(j)] = A[j] + Xk,j

– Xk,j = Σ A[i] | hk(i) = hk(j)

– E[Xk,j] = Σ A[i]*Pr[hk(i)=hk(j)] 
≤ (ε/2) * Σ A[i] = ε ||A||1/2 (pairwise independence of h)

– Pr[Xk,j ≥ ε||A||1] = Pr[Xk,j ≥ 2E[Xk,j]] ≤ 1/2 by Markov inequality

� So,  Pr[A’[j]≥ A[j] + ε ||A||1] = Pr[∀ k. Xk,j>ε ||A||1] ≤1/2log 1/δ = δ 

� Final result: with certainty A[j] ≤ A’[j] and 
with probability at least 1-δ,  A’[j]< A[j] + ε ||A||1

� Q:  How do CM sketch guarantees compare to AMS??
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Distinct Value Estimation
� Problem: Find the number of distinct values in a stream of 

values with domain [1,...,N]
– Zeroth frequency moment       ,   L0 (Hamming)  stream norm
– Statistics:  number of species or classes in a population
– Important for query optimizers
– Network monitoring: distinct destination IP addresses, 

source/destination pairs,  requested URLs, etc.

� Example (N=64)

� Hard problem for random sampling! [Charikar et al.’00]
– Must sample almost the entire table to guarantee the estimate is

within a factor of 10 with  probability > 1/2, regardless of the
estimator used!

� AMS and CM only good for multisetmultiset semanticssemantics
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0

FM Sketch  [Flajolet, Martin’85]

� Estimates number of distinct inputs (count distinct)

� Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by 

counting trailing zeros  

� Maintain FM Sketch =  bitmap array of L = log N bits 
– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6      5     4     3     2      1
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FM Sketch Analysis

� If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

– Let R = position of rightmost zero in FM, indicator of log(d)
– Basic estimate d = c2R for scaling constant c � 1.3

– Average many copies (different hash fns) improves accuracy

fringe of 0/1s 
around  log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position 
�

log(d)position � log(d)

1L R
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FM Sketch Properties
� With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with 

probability at least 1-δ   [Bar-Yossef et al’02], [Ganguly et al.’04]

– 10 copies gets � 30% error, 100 copies < 10% error

� Delete-Proof: Use counters instead of bits in sketch locations

– +1 for inserts,  -1 for deletes

� Composable: Component-wise OR/add distributed sketches  
together

– Estimate   |S1 ��� Sk| = set union cardinality

00 0 1 11

6    5    4    3    2     1

00 1 1 10

6    5    4    3    2     1

00 1 1 11

6    5    4    3    2     1

+ =
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Generalization: Distinct Values Queries
SELECT COUNT( DISTINCT target-attr )
FROM     relation
WHERE   predicate

SELECT COUNT( DISTINCT o_custkey )
FROM    orders
WHERE o_orderdate >= ‘2008-01-01’

– “How many distinct customers have placed orders this 
year?”

– Predicate not necessarily only on the DISTINCT target 
attribute

– Approximate answers with error guarantees over a stream of 
tuples?

Template

TPC-H example

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
60

Distinct Sampling [Gibbons’01]

� Use FM-like technique to collect a specially-tailored sample 
over the distinct values in the stream

– Use hash function to sample values from the data domain!!

– Uniform random sample of the distinct values  

– Very different from traditional random sample:  each distinct value 
is chosen uniformly regardless of its frequency

– DISTINCT query answers: simply scale up sample answer by 
sampling rate

� To handle additional predicates

– Reservoir sampling of tuples for each distinct value in the sample

– Use reservoir sample to evaluate predicates

'
���%
�
'
���%
�
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Building a Distinct Sample [Gibbons’01]

� Use  FM-like hash function h() for each streaming value x

– Prob[ h(x) = k ] =  1/ 2k

�� Key Invariant:Key Invariant: “All values with  h(x) >= level  (and only these) are in the     
distinct sample”

DistinctSampling( B , r )

// B = space bound,  r = tuple-reservoir size for each distinct value

level = 1;  S =  

for each new tuple t do

let x = value of DISTINCT target attribute in t

if   h(x) >= level  then    // x belongs in the distinct sample

use  t  to update the reservoir sample of tuples for x

if  |S| >= B then  // out of space

evict from S all  tuples with  h(target-attribute-value) = level

set  level = level + 1

φ
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Using the Distinct Sample 
� If   level = k for our sample, then  we have selected all distinct values x such 

that   h(x) >= k

– Prob[ h(x) >= k ] =  1/ 2k-1

– By h()’s randomizing properties, we have uniformly sampled a          

fraction of the distinct values in our stream

� Query Answering: Run distinct-values query on the distinct sample and scale 

the result up by 

� Distinct-value estimation: Guarantee ε relative error with probability � 1 - δ
using O(log(1/δ)/ε2) space

– For  q%  selectivity predicates the space goes up inversely with q

� Experimental results: 0-10% error vs. 50-250% error for previous best 

approaches, using  0.2% to 10% synopses

1)(k2 −−

( )��
�* $+,�-���&
.

1k2 −
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Sketching and Sampling Summary

� Sampling and sketching ideas are at the heart of many 
stream mining algorithms
– Moments/join aggregates, histograms, wavelets, top-k, 

frequent items, other mining problems, …

� A sample is a quite general representative of the data set; 
sketches tend to be specific to a particular purpose
– FM sketch for count distinct, AMS sketch for joins/L2

estimation, …

� Traditional sampling does not work in the turnstile (arrivals 
& departures) model
– BUT… see recent generalizations of distinct sampling 

[Ganguly et al.’04], [Cormode et al.’05]; as well as [Gemulla
et al.’08]
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Practicality

� Algorithms discussed here are quite simple and very fast
– Sketches can easily process millions of updates per second 

on standard hardware
– Limiting factor in practice is often I/O related

� Implemented in several practical systems:
– AT&T’s Gigascope system on live network streams
– Sprint’s CMON system on live streams
– Google’s log analysis

� Sample implementations available on the web
– http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

– or web search for ‘massdal’
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Sliding Window Streaming Model

� Model
– At every time t, a data record arrives
– The record “expires” at time t+N (N is the window length)

� When is it useful?
– Make decisions based on “recently observed” data
– Stock data
– Sensor networks

N N
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Time in Data Stream Models
Tuples arrive X1, X2, X3, …, Xt, …

� Function f(X,t,NOW)

– Input at time t: f(X1,1,t), f(X2,2,t). f(X3,3,t), …, f(Xt,t,t)

– Input at time t+1: f(X1,1,t+1), f(X2,2,t+). f(X3,3,t+1), …, f(Xt+1,t+1,t+1)

� Full history: f == identity

� Partial history: Decay

–– Exponential decayExponential decay: f(X,t, NOW) = 2-(NOW-t)*X

� Input at time t: 2-(t-1)*X1, 2-(t-2)*X2,, …, ½ * Xt-1,Xt

� Input at time t+1: 2-t*X1, 2-(t-1)*X2,, …, 1/4 * Xt-1, ½ *Xt, Xt+1 

–– Sliding windowSliding window (special type of decay):

� f(X,t,NOW) = X if NOW-t < N

� f(X,t,NOW) = 0, otherwise

� Input at time t: X1, X2, X3, …, Xt

� Input at time t+1: X2, X3, …, Xt, Xt+1,
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Simple Statistics over Sliding Windows

� Bitstream input – Count the number of ones [Datar et al.’02]
– Exact solution: (N) bits

– Algorithm BasicCounting
� (1 � ) relative error approximation 

� Space: O(1/ (log2N)) bits
� Time: O(log N) worst case, O(1) amortized per record

– Lower Bound:
� Space: (1/ (log2N)) bits
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Approach: Temporal Histograms

Example: … 01101010011111110110 0101 …
Equi-width histogram:

… 0110 1010 0111 1111 0110 0101 …
� Issues:

– Error is in the last (leftmost) bucket
– Bucket counts (left to right): Cm,Cm-1, …,C2,C1

– Absolute error  � Cm/2
– Answer � Cm-1+…+C2+C1+1.

� Relative error � Cm / (2(Cm-1+…+C2+C1+1))
– Maintain: Cm/ (2(Cm-1+…+C2+C1+1)) � ( =1/k)
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Naïve: Equi-Width Histograms

� Goal:   Maintain Cm/2 � (Cm-1+…+C2+C1+1)

Problem case:
… 0110 1010 0111 1111 0110 1111 0000 0000 0000 0000 …

� Note:
– Every bucket will be the last bucket sometime!
– New records may be all zeros �

For every bucket i,  require Ci/2 � (Ci-1+…+C2+C1+1)
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Exponential Histograms (EHs)

� Data structure invariant:

– Bucket sizes are non-decreasing powers of 2

– For every bucket size other than that of the last bucket, 
there are at least k/2 and at most k/2+1 buckets of that size

– Example:  k=4: (8,4,4,4,2,2,2,1,1..)

� Invariant implies:

– Assume Ci=2j,  then

Ci-1+…+C2+C1+1 � k/2*(
�

(1+2+4+..+2j-1))  � k*2j /2  � k/2*Ci

– Setting  k = 1/ε implies the required error guarantee!
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Space Complexity

� Number of buckets m:
– m � [# of buckets of size j]*[# of different bucket sizes]

� (k/2 +1) * ((log(2N/k)+1) = O(k* log(N))

� Each bucket requires O(log N) bits
� Total memory:

O(k log2 N) = O(1/ * log2 N) bits

� Invariant (with k = 1/ε) maintains error guarantee!
� Completely deterministic!
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EH Maintenance Algorithm

Data structures:
� For each bucket: timestamp of most recent 1, size = #1’s 

in bucket
� LAST = size of the last bucket
� TOTAL =  Total size of the buckets

New element arrives at time t
� If last bucket expired, update LAST and TOTAL

� If (element == 1)
Create new bucket with size 1; update TOTAL

� Merge buckets if there are more than k/2+2 buckets of the same size

� Update LAST if changed

Anytime estimate: TOTAL – (LAST/2)
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Example Run

� If last bucket expired, update LAST and TOTAL
� If (element == 1)

Create new bucket with size 1; update TOTAL
� Merge two oldest buckets if there are more than k/2+2 

buckets of the same size
� Update LAST if changed

Example (k=2):
32,16,8,8,4,4,2,1,1
32,16,8,8,4,4,2,2,1
32,16,8,8,4,4,2,2,1,1
32,16,16,8,4,2,1
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The Power of EHs
� Counter for N items  =  O(logN) space

� EH = ε−approximate counter over sliding window of N
items that requires O(1/ * log2 N) space

– O(1/ε logN) penalty for (approximate) sliding-window 
counting  

– Deterministic error guarantee!

� Can plug-in  EH-counters to counter-based streaming 
methods � work in slidingwork in sliding--window model!!window model!!

– Examples: histograms, CM-sketches, …

� Complication: counting is now ε−approximate

– Account for that in analysis
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Tutorial Outline

� Motivation & Streaming Applications

� Centralized Stream Processing

� Distributed Stream Processing

– Basic model and problem setup

– One-shot distributed-stream querying

– Continuous distributed-stream tracking

– Probabilistic distributed data acquisition

� Open Problems & Future Directions

� Conclusions
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Data-Stream Algorithmics Model

� Approximate answers– e.g. trend analysis, anomaly detection
� Requirements for stream synopses

– Single Pass: Each record is examined at most once
– Small Space: Log or polylog in data stream size
– Small-time: Low per-record processing time (maintain synopses)
– Also:  delete-proof, composable, …

Stream Processor

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer with high
probability”

Stream Synopses
(in memory)

Continuous Data Streams

Query Q

R1

Rk

(Terabytes) (Kilobytes)
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Distributed Streams Model

� Large-scale querying/monitoring: Inherently distributed!
– Streams physically distributed across remote sites

E.g., stream of UDP packets through subset of edge routers

� Challenge is “holistic” querying/monitoring
– Queries over the union of distributed streams Q(S1 � S2 � …)
– Streaming data is spread throughout the network

Network 
Operations

Center  (NOC)

Query site Query

0 1
1

1 1

0
0

1

1 0

0

1
1

0

1
1

0

1
1

0

1
1

Q(S1
�

S2
�

…)

S6

S5S4

S3
S1

S2
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Distributed Streams Model

� Need timely, accurate, and efficient query answers 
� Additional complexity over centralized data streaming!
� Need space/time- and communication-efficient solutions

– Minimize network overhead
– Maximize network lifetime (e.g., sensor battery life)
– Cannot afford to “centralize” all streaming data

Network 
Operations

Center  (NOC)

Query site Query

0 1
1

1 1

0
0

1

1 0

0

1
1

0

1
1

0

1
1

0

1
1

Q(S1
�

S2
�

…)

S6

S5S4

S3
S1

S2
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Distributed Stream Querying Space

“One-shot” vs. Continuous Querying
� One-shot queries: On-demand “pull”

query answer from network
– One or few rounds of communication
– Nodes may prepare for a class of queries

� Continuous queries: Track/monitor
answer at query site at all times 
– Detect anomalous/outlier behavior in 

(near) real-time, i.e., “Distributed triggers”
– Challenge is to minimize communication 

Use “push-based” techniques
May use one-shot algs as subroutines

Querying 
Model

Communication
Model

Class of
Queries
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Distributed Stream Querying Space

Minimizing communication often needs 
approximation and randomization

� E.g., Continuously monitor average value
– Must send every change for exact answer
– Only need ‘significant’ changes for approx 

(def. of “significant” specifies an algorithm)

� Probability sometimes vital to reduce 
communication
– count distinct in one shot model 

needs randomness
– Else must send complete data

Querying 
Model

Communication
Model

Class of
Queries
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Distributed Stream Querying Space
Class of Queries of Interest
� Simple algebraic vs. holistic aggregates

– E.g., count/max vs. quantiles/top-k

� Duplicate-sensitive vs. duplicate-insensitive
– “Bag” vs.  “set” semantics

� Complex correlation queries
– E.g., distributed joins, set expressions, …

Querying 
Model

Communication
Model

Class of
Queries 1S

0 1
1

1 1

0
0

1

1 0

2S

0

1
1

0

1
1

0

1
1

0

1
1

3S
6S

5S
4S

Query

|(S1� S2) ���� (S5� S6)|
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Distributed Stream Querying Space

Communication Network Characteristics
Topology:  “Flat” vs. Hierarchical 

vs. Fully-distributed (e.g., P2P DHT)

Querying 
Model

Communication
Model

Class of
Queries

Coordinator

Fully DistributedHierarchical“ Flat”

Other network characteristics:  
– Unicast (traditional wired), multicast, broadcast (radio nets)
– Node failures, loss, intermittent connectivity, …
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Tutorial Outline

� Motivation & Streaming Applications

� Centralized Stream Processing

� Distributed Stream Processing

– One-shot distributed-stream querying

� Tree-based aggregation

� Robustness and loss

� Decentralized computation and gossiping

� Open Problems & Future Directions

� Conclusions



43

Tree Based Aggregation
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Network Trees

� Tree structured networks are a basic primitive
– Much work in, e.g., sensor nets on building communication 

trees
– We assume that tree has been built, focus on issues with a 

fixed tree

Flat 
Hierarchy

Base Station

Regular Tree



44

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
87

Computation in Trees

� Goal is for root to compute a 
function of data at leaves

� Trivial solution: push all data up 
tree and compute at base station

– Strains nodes near root: batteries drain, disconnecting 
network
– Very wasteful: no attempt at saving communication

� Can do much better by “In-network” query processing
– Simple example: computing max
– Each node hears from all children, computes max and 
sends to parent (each node sends only one item)
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Efficient In-network Computation

� What are aggregates of interest?
– SQL Primitives: min, max, sum, count, avg

– More complex: count distinct, point & range queries,
quantiles, wavelets, histograms, sample

– Data mining: association rules, clusterings etc.

� Some aggregates are easy – e.g., SQL primitives

� Can set up a formal framework for in-network 
aggregation
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Generate, Fuse, Evaluate Framework

� Abstract in-network aggregation.  Define functions:
– Generate, g(i): take input, produce summary (at leaves)
– Fusion, f(x,y): merge two summaries (at internal nodes)
– Evaluate, e(x): output result (at root)

� E.g. max: g(i) = i f(x,y) = max(x,y) e(x) = x 
� E.g. avg: g(i) = (i,1) f((i,j),(k,l)) = (i+k,j+l) e(i,j) = i/j

� Can specify any function with 
g(i) ={i}, f(x,y) = x � y
Want to bound |f(x,y)|

g(i)

f(x,y)

e(x)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
90

Classification of Aggregates

� Different properties of aggregates 
(from TAG paper [Madden et al ’02])
– Duplicate sensitive – is answer same if multiple identical 

values are reported?
– Example or summary – is result some value from input 

(max) or a small summary over the input (sum)

– Monotonicity – is F(X � Y) monotonic compared to F(X)
and F(Y) (affects push down of selections)

– Partial state – are |g(x)|, |f(x,y)| constant size, or growing? 
Is the aggregate algebraic, or holistic?
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Classification of some aggregates

algebraic?NoExample(s)Yessample

holisticNoSummaryYeshistogram

holisticYesSummaryNocount distinct

holisticNoExampleYesmedian, quantiles

algebraicNoSummaryYesaverage

algebraicYesSummaryYessum, count

algebraicYesExampleNomin, max

Partial 
State

MonotonicExample or 
summary

Duplicate 
Sensitive

adapted from [Madden et al.’02]
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Cost of Different Aggregates

Simulation Results

2500 Nodes

50x50 Grid

Depth = ~10

Neighbors = ~20

Uniform Dist.

Total Bytes Sent against Aggregation Function
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Slide adapted from http://db.lcs.mit.edu/madden/html/jobtalk3.ppt
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Holistic Aggregates

� Holistic aggregates need the whole input to compute (no 
summary suffices)
– E.g., count distinct, need to remember all distinct items 

to tell if new item is distinct or not

� So, focus on approximating aggregates to limit data sent
– Adopt ideas from sampling, data reduction, streams, etc.

� Many techniques for in-network aggregate approximation:
– Sketch summaries
– Other mergeable summaries
– Building uniform samples, etc…
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Sketch Summaries

� Sketch summaries are typically pseudo-random linear 
projections of data.  Fits generate/fuse/evaluate model: 
– Suppose input is vectors xi and aggregate is F(�i xi)
– Sketch of xi, g(xi), is a matrix product Mxi

– Combination of two sketches is their summation: 
f(g(xi),g(xj)) = M(xi + xj) = Mxi + Mxj = g(xi) + g(xj)

– Extraction function e() depends on sketch, different 
sketches allow approximation of different aggregates

linear projection
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Sketch Summary

� CM sketch guarantees approximation error on point 
queries less than ε||x||1 in size O(1/ε log 1/δ)
– Probability of more error is less than 1-δ
– Similar guarantees for range queries, quantiles, join size

� AMS sketches approximate self-join and join size with error 
less than ε||x||2 ||y||2 in size O(1/ε2 log 1/δ)
– [Alon, Matias, Szegedy ’96, Alon, Gibbons, Matias, Szegedy ’99]

� FM sketches approximate number of distinct items (||x||0)
with error less than ε||x||0 in size O(1/ε2 log 1/δ)

� Bloom filters: compactly encode sets in sketch like fashion
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Other approaches: Careful Merging

� Approach 1. Careful merging of summaries
– Small summaries of a large amount of data at each site

– E.g., Greenwald-Khanna algorithm (GK) keeps a small data 
structure to allow quantile queries to be answered

– Can sometimes carefully merge summaries up the tree 
Problem: if not done properly, the merged summaries can 
grow very large as they approach root

– Balance final quality of answer against number of merges by 
decreasing approximation quality (precision gradient)

– See [Greenwald, Khanna ’04; Manjhi et al.’05; Manjhi, Nath, Gibbons ‘05]
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Other approaches: Domain Aware

� Approach 2. Domain-aware Summaries
– Each site sees information drawn from discrete domain 

[1…N] – e.g., for IP addresses, N = 232

– Build summaries by imposing tree-structure on domain 
and keeping counts of nodes representing subtrees

– [Agrawal et al ’04] show O(1/ε log N)
size summary for quantiles
and range & point queries

– Can merge repeatedly without
increasing error or summary size

1 3

2 1

3

5

1
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Other approaches: Random Samples

� Approach 3. Uniform random samples
– As in centralized databases, a uniform random sample of 

size O(1/ε2 log 1/δ) answers many queries
– Can collect a random sample of data from each node, and 

merge up the tree (will show algorithms later)
– Works for frequent items, quantile queries, histograms
– No good for count distinct, min, max, wavelets…
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Thoughts on Tree Aggregation

� Some methods too heavyweight for today’s sensor nets, 
but as technology improves may soon be appropriate

� Most are well suited for, e.g., wired network monitoring
– Trees in wired networks often treated as flat, i.e. send 

directly to root without modification along the way

� Techniques are fairly well-developed owing to work on 
data reduction/summarization and streams

� Open problems and challenges: 
– Improve size of larger summaries
– Avoid randomized methods?  

Or use randomness to reduce size?

Robustness and Loss
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Unreliability

� Tree aggregation techniques assumed a reliable network
– we assumed no node failure, nor loss of any message

� Failure can dramatically affect the computation
– E.g., sum – if a node near the root fails, then a whole 

subtree may be lost

� Clearly a particular problem in sensor networks
– If messages are lost, maybe can detect and resend
– If a node fails, may need to rebuild

the whole tree and re-run protocol
– Need to detect the failure, 

could cause high uncertainty 
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Sensor Network Issues

� Sensor nets typically based on radio communication
– So broadcast (within range) cost the same as unicast
– Use multi-path routing: improved reliability, reduced impact 

of failures, less need to repeat messages

� E.g., computation of max
– structure network into rings of nodes 

in equal hop count from root
– listen to all messages from ring below, 

then send max of all values heard
– converges quickly, high path diversity
– each node sends only once, so same cost as tree
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Order and Duplicate Insensitivity

� It works because max is Order and Duplicate Insensitive 
(ODI) [Nath et al.’04]

� Make use of the same e(), f(), g() framework as before
� Can prove correct if e(), f(), g() satisfy properties:

– g gives same output for duplicates: i=j � g(i) = g(j)

– f is associative and commutative: 
f(x,y) = f(y,x); f(x,f(y,z)) = f(f(x,y),z)

– f is same-synopsis idempotent: f(x,x) = x

� Easy to check min, max satisfy these requirements, 
sum does not
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Applying ODI idea

� Only max and min seem to be “naturally” ODI

� How to make ODI summaries for other aggregates?
� Will make use of duplicate insensitive primitives:

– Flajolet-Martin Sketch (FM)
– Min-wise hashing
– Random labeling
– Bloom Filter 
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0

FM Sketch  [Flajolet, Martin’85]

� Estimates number of distinct inputs (count distinct)

� Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by 

counting trailing zeros  

� Maintain FM Sketch =  bitmap array of L = log N bits 
– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6      5     4     3     2      1
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FM Sketch – ODI Properties

� Fits into the Generate, Fuse, Evaluate framework.
– Can fuse multiple FM summaries (with same hash h() ): 

take bitwise-OR of the summaries

� With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with 
probability at least 1-δ
– 10 copies gets � 30% error, 100 copies < 10% error

– Can pack FM into e.g., 32 bits.  Assume h() is known to all.

� Similar ideas used in [Gibbons, Tirthapura ’01]
– improves time cost to create summary, simplifies analysis

00 0 1 11

6    5    4    3    2     1

00 1 1 10

6    5    4    3    2     1

00 1 1 11

6    5    4    3    2     1

+ =
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FM within ODI

� What if we want to count, not count distinct? 
– E.g., each site i has a count ci, we want �i ci

– Tag each item with site ID, write in unary: (i,1), (i,2)… (i,ci)
– Run FM on the modified input, and run ODI protocol

� What if counts are large?
– Writing in unary might be too slow, need to make efficient

– [Considine et al.’05]: simulate a random variable that tells which 
entries in sketch are set

– [Aduri, Tirthapura ’05]: allow range updates, treat (i,ci) as range. 
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Other applications of FM in ODI

� Can take sketches and other summaries and make them 
ODI by replacing counters with FM sketches
– CM sketch + FM sketch = CMFM, ODI point queries etc. 

[Cormode, Muthukrishnan ’05]
– Q-digest + FM sketch = ODI quantiles 

[Hadjieleftheriou, Byers, Kollios ’05]
– Counts and sums 

[Nath et al.’04, Considine et al.’05]

00 1 1 11

6    5    4    3    2     1
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Combining ODI and Tree

� Tributaries and Deltas idea
[Manjhi, Nath, Gibbons ’05]

� Combine small synopsis of 
tree-based aggregation 
with reliability of ODI

– Run tree synopsis at 
edge of network, where connectivity is limited (tributary)

– Convert to ODI summary in dense core of network (delta)

– Adjust crossover point adaptively

Delta
(Multi-path region)

Tributary 
(Tree region)
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Random Samples

� Suppose each node has a (multi)set of items.
� How to find a random sample of the union of all sets?
� Use a “random tagging” trick [Nath et al.’05]:

– For each item, attach a random label in range [0…1]
– Pick the items with the K smallest labels to send
– Merge all received items, and pick K smallest labels

(a, 0.34)

(c, 0.77)

(d, 0.57)

(b,0.92)

(a, 0.34)

(c, 0.77)

(a, 0.34)

K=1
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Uniform Random Samples

� Result at the coordinator: 
– A sample of size K items from the input
– Can show that the sample is chosen uniformly at random 

without replacement (could make “with replacement”)

� Related to min-wise hashing
– Suppose we want to sample from distinct items
– Then replace random tag with hash value on item name
– Result: uniform sample from set of present items

� Sample can be used for quantiles, frequent items, etc. 
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Bloom Filters

� Bloom filters compactly encode set membership
– k hash functions map items to bit vector k times
– Set all k entries to 1 to indicate item is present
– Can lookup items, store set of size n in ~ 2n bits

� Bloom filters are ODI, and merge like FM sketches

item

1 1 1
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Open Questions and Extensions

� Characterize all queries – can everything be made ODI 
with small summaries?

� How practical for different sensor systems?
– Few FM sketches are very small (10s of bytes)
– Sketch with FMs for counters grow large (100s of KBs)
– What about the computational cost for sensors?

� Amount of randomness required, and implicit 
coordination needed to agree hash functions, etc.?

� Other implicit requirements: unique sensor IDs?

00 1 1 11

6    5    4    3    2     1

Decentralized Computation and 
Gossiping
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Decentralized Computations

� All methods so far have a single point of failure: if the 
base station (root) dies, everything collapses

� An alternative is Decentralized Computation
– Everyone participates in computation, all get the result
– Somewhat resilient to failures / departures

� Initially, assume anyone can talk to anyone else directly
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Gossiping

� “Uniform Gossiping” is a well-studied protocol for 
spreading information
– I know a secret, I tell two friends, who tell two friends …
– Formally, each round, everyone who knows the data 

sends it to one of the n participants chosen at random
– After O(log n) rounds, all n participants know the 

information (with high probability)  [Pittel 1987]
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Aggregate Computation via Gossip

� Naïve approach: use uniform gossip to share all the 
data, then everyone can compute the result. 
– Slightly different situation: gossiping to exchange n secrets
– Need to store all results so far to avoid double counting
– Messages grow large: end up sending whole input around
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ODI Gossiping

� If we have an ODI summary, we can gossip with this
– When new summary received, merge with current summary
– ODI properties ensure repeated merging stays accurate

� Number of messages required is same as uniform gossip
– After O(log n) rounds everyone knows the merged summary
– Message size and storage space is a single summary
– O(n log n) messages in total
– So, this works for FM, FM-based sketches, samples, etc. 
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Aggregate Gossiping

� ODI gossiping doesn’t always work
– May be too heavyweight for really restricted devices
– Summaries may be too large in some cases

� An alternate approach due to [Kempe et al. ’03]
– A novel way to avoid double counting: split up the counts 

and use “conservation of mass”
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Push-Sum

� Setting: all n participants have a value, want to compute 
average

� Define “Push-Sum” protocol
– In round t, node i receives set of (sumj

t-1, countj
t-1) pairs

– Compute sumi
t = �j sumj

t-1, counti
t = �j countj

– Pick k uniformly from other nodes
– Send (½ sumi

t, ½counti
t) to k and to i (self)

� Round zero: send (value,1) to self

� Conservation of counts: �i sumi
t stays same

� Estimate avg = sumi
t/countit

i

x y

(x+y)/2

(x+y)/2
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Push-Sum Convergence

8,1 8,1

8,18,1

10,1 8,1

2,112,1

6,1
9, 1

11,3/26, ½

11½,3/2 7½,1

5½,3/47½,3/4

8½,9/8 7½,7/8

8½,9/8
7½,7/8
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Convergence Speed

� Can show that after O(log n + log 1/ε + log 1/δ) rounds, 
the protocol converges within ε
– n = number of nodes

– ε = (relative) error

– δ = failure probability

� Correctness due in large part to conservation of counts
– Sum of values remains constant throughout

– (Assuming no loss or failure)



62

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
123

i

Resilience to Loss and Failures

� Some resilience comes for “free”
– If node detects message was not delivered, delay 1 round 

then choose a different target
– Can show that this only increases number of rounds by a 

small constant factor, even with many losses
– Deals with message loss, and “dead” nodes without error

� If a node fails during the protocol, some “mass” is lost, 
and count conservation does not hold
– If the mass lost is not too large, error is bounded…

i

x y
x+y lost from 
computation
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Gossip on Vectors

� Can run Push-Sum independently on each entry of vector

� More strongly, generalize to Push-Vector:

– Sum incoming vectors

– Split sum: half for self, half for randomly chosen target

– Can prove same conservation and convergence properties

� Generalize to sketches: a sketch is just a vector

– But ε error on a sketch may have different impact on result

– Require O(log n + log 1/ε + log 1/δ) rounds as before

– Only store O(1) sketches per site, send 1 per round
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Thoughts and Extensions

� How realistic is complete connectivity assumption?

– In sensor nets, nodes only see a local subset

– Variations: spatial gossip ensures nodes hear about local 
events with high probability [Kempe, Kleinberg, Demers ’01]

� Can do better with more structured gossip, but impact of 
failure is higher [Kashyap et al.’06]

� Is it possible to do better when only a subset of nodes 
have relevant data and want to know the answer? 
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Tutorial Outline

� Motivation & Streaming Applications

� Centralized Stream Processing

� Distributed Stream Processing

– One-shot distributed-stream querying

– Continuous distributed-stream tracking

� Adaptive slack allocation

� Predictive local-stream models

� Distributed triggers

� Open Problems & Future Directions

� Conclusions
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Continuous Distributed Model

� Other structures possible (e.g., hierarchical)
� Could allow site-site communication, but mostly unneeded 

Goal:: Continuously track (global) query over streams at 
the coordinator
– Large-scale network-event monitoring,  real-time anomaly/ 

DDoS attack detection, power grid monitoring, …

Coordinator

m sites

local stream(s) 
seen at each 

site

S1 Sm

Track Q(S1,…,Sm)
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Continuous Distributed Streams

� But… local site streams continuously change!
– E.g., new readings are made, new data arrives
– Assumption: Changes are somewhat smooth and gradual

� Need to guarantee an answer at the coordinator that is 
always correct, within some guaranteed accuracy bound

� Naïve solutions must continuously centralize all data 
– Enormous communication overhead!

S1 Sm

Track Q(S1,…,Sm)



65

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
129

Challenges

� Monitoring is Continuous…
– Real-time tracking, rather than one-shot query/response

� …Distributed…
– Each remote site only observes part of the global stream(s)
– Communication constraints: must minimize monitoring burden

� …Streaming…
– Each site sees a high-speed local data stream and can be 

resource (CPU/memory) constrained

� …Holistic…
– Challenge is to monitor the complete global data distribution
– Simple aggregates (e.g., aggregate traffic) are easier
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How about Periodic Polling?

� Sometimes periodic polling suffices for simple tasks

– E.g., SNMP polls total traffic at coarse granularity

� Still need to deal with holistic nature of aggregates

� Must balance polling frequency against communication 

– Very frequent polling causes high communication, 
excess battery use in sensor networks

– Infrequent polling means delays in observing events

� Need techniques to reduce communication 
while guaranteeing rapid response to events
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Communication-Efficient Monitoring

Filters
x

“ push”

Filters
x

adjust

� Exact answers are not needed
– Approximations with accuracy guarantees suffice
– Tradeoff accuracy and communication/ processing cost

� Key Insight: “Push-based” in-network processing

– Local filters installed at sites process local streaming updates

� Offer bounds on local-stream behavior (at coordinator)

– “Push” information to coordinator only when filter is violated

– Coordinator sets/adjusts local filters to guarantee accuracy 

Adaptive Slack Allocation
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Slack Allocation

� A key idea is Slack Allocation

� Because we allow approximation, there is slack: the 
tolerance for error between computed answer and truth

– May be absolute: |Y - | ≤ ε: slack is ε

– Or relative: /Y ≤ (1±ε): slack is εY

� For a given aggregate, show that the slack can be 
divided between sites

� Will see different slack division heuristics
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Top-k Monitoring

� Influential work on monitoring [Babcock, Olston’03]
– Introduces some basic heuristics for dividing slack
– Use local offset parameters so that all local distributions 

look like the global distribution
– Attempt to fix local slack violations by negotiation with 

coordinator before a global readjustment
– Showed that message delay does not affect correctness

Top 100
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Top-k Scenario

� Each site monitors n objects with local counts Vi,j

� Values change over time with updates seen at site j

� Global count Vi = �j Vi,j

� Want to find topk, an ε-approximation to true top-k set:
– OK provided i∈ topk, l ∉ topk, Vi + ε ≥ Vl

item i ∈ [n]
site j ∈ [m]

gives a little 
“wiggle room”
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Adjustment Factors

� Define a set of ‘adjustment factors’, δi,j

– Make top-k of Vi,j + δi,j same as top-k of Vi

� Maintain invariants: 
1. For item i, adjustment factors sum to zero

2. δl,0 of non-topk item l ≤ δi,0 + ε of topk item i
– Invariants and local conditions used to prove correctness
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Local Conditions and Resolution

If any local condition violated at site j, resolution is triggered

� Local resolution: site j and coordinator only try to fix
– Try to “borrow” from δi,0 and δl,0 to restore condition

� Global resolution: if local resolution fails, contact all sites
– Collect all affected Vi,js – i.e., topk plus violated counts

– Compute slacks for each count, and reallocate (next)

– Send new adjustment factors δ’i,j, continue

δi,j

Vi,j

i ∈ topk

≥≥≥≥ Vl,j

δl,j

l ∉ topk

Local Conditions:
At each site j check adjusted 
topk counts dominate non-topk
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Slack Division Strategies

� Define “slack” based on current counts and adjustments
� What fraction of slack to keep back for coordinator?

– δ
i,0

= 0: No slack left to fix local violations
– δi,0 = 100% of slack: Next violation will be soon
– Empirical setting: δi,0 = 50% of slack when ε very small 

δi,0 = 0 when ε is large (ε �
Vi/1000)

� How to divide remainder of slack?
– Uniform: 1/m fraction to each site
– Proportional: Vi,j/Vi fraction to site j for i

uniform

proportional
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Pros and Cons

� Result has many advantages:

– Guaranteed correctness within approximation bounds

– Can show convergence to correct results even with delays

– Communication reduced by 1 order magnitude 
(compared to sending Vi,j whenever it changes by ε/m)

� Disadvantages:
– Reallocation gets complex: must check O(km) conditions

– Need O(n) space at each site, O(mn) at coordinator

– Large ( � O(k)) messages

– Global resyncs are expensive: m messages to k sites
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Other Problems: Aggregate Values

� Problem 1: Single value tracking
Each site has one value vi, want to compute f(v), e.g., sum

� Allow small bound of uncertainty in answer
– Divide uncertainty (slack) between sites
– If new value is outside bounds, re-center on new value

� Naïve solution: allocate equal bounds to all sites
– Values change at different rates; queries may overlap

� Adaptive filters approach [Olston, Jiang, Widom ’03]
– Shrink all bounds and selectively grow others: 

moves slack from stable values to unstable ones
– Base growth on frequency of bounds violation, optimize
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Other Problems: Set Expressions

� Problem 2: Set Expression Tracking
A � (B C) where A, B, C defined by distributed streams

� Key ideas [Das et al.’04]:

– Use semantics of set expression: if b arrives in set B, but b
already in set A, no need to send

– Use cardinalities: if many copies of b seen already, no 
need to send if new copy of b arrives or a copy is deleted

– Combine these to create a charging scheme for each 
update: if sum of charges is small, no need to send. 

– Optimizing charging is NP-hard, heuristics work well. 
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� Problem 3: ODI aggregates
e.g., count distinct in continuous distributed model

� Two important parameters emerge: 

– How to divide the slack

– What the site sends to coordinator

� In [Cormode et al.’06]:
– Share slack evenly: hard to do otherwise for this aggregate

– Sharing sketch of global distribution saves communication

– Better to be lazy: send sketch in reply, don’t broadcast

Other Problems: ODI Aggregates

Sk0, D0 = |Sk0|
Coordinator

site 1 site k

…
Ski

Ski
…

site i
Sk1 Skk

Sk0

Ski
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General Lessons

� Break a global (holistic) aggregate into “safe” local 
conditions, so  local conditions � global correctness

� Set local parameters to help the tracking
� Use the approximation to define slack, divide slack 

between sites (and the coordinator)
� Avoid global reconciliation as much as possible, try to 

patch things up locally

Predictive Local-Stream Models
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More Sophisticated Local Predictors

� Slack allocation methods use simple “static” prediction
– Site value implicitly assumed constant since last update 
– No update from site � last update (“predicted” value) is within 

required slack bounds � global error bound

� Dynamic, more sophisticated prediction models for local 
site behavior?
– Model complex stream patterns, reduce number of updates         

to coordinator
– But... more complex to maintain and communicate (to 

coordinator)
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Tracking Complex Aggregate Queries

� Continuous distributed tracking of complex aggregate 
queries using AMS sketches and local prediction models          
[Cormode, Garofalakis’05]

� Class of queries: Generalized inner products of streams

|R�S| = fR ⋅ fS = �v fR[v] fS[v] (± ε ||fR||2 ||fS||2 )

– Join/multi-join aggregates, range queries, heavy hitters, 
histograms, wavelets, …

R S

Track |R�S|
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Local Sketches and Sketch Prediction

� Use (AMS) sketches to summarize local site distributions
– Synopsis=small collection of random linear projections sk(fR,i)
– Linear transform:  Simply add to get global stream sketch

� Minimize updates to coordinator through Sketch Prediction
– Try to predict how local-stream distributions (and their 

sketches) will evolve over time
– Concise sketch-prediction models, built locally at remote sites 

and communicated to coordinator

–– Shared knowledgeShared knowledge on expected stream behavior over time:
Achieve “stability”
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Sketch Prediction  

Predicted Distribution Predicted Sketch

True Sketch (at site)

Prediction used at 
coordinator for query 

answering

Prediction error 
tracked locally     
by sites  (local 

constraints) 

True Distribution (at site)

Rif

p
Rif

)(sk Rif

)(skp
Rif
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Query Tracking Scheme

Tracking. At site j keep sketch of stream so far, sk(fR,i)
– Track local deviation between stream and prediction:

|| sk(fR,i) – skp(fR,i)||2 ���� θ/sqrt(ki) || sk(fR,i) ||2
– Send current sketch (and other info) if violated 

Querying. At coordinator, query error ≤ (ε + 2θ)||fR||2 ||fS||2
– ε = local-sketch summarization error (at remote sites) 
– θ = upper bound on local-stream deviation from prediction

(“Lag” between remote-site and coordinator view)

� Key Insight: With local deviations bounded, the 
predicted sketches at coordinator are guaranteed accurate
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Sketch-Prediction Models

� Simple, concise models of local-stream behavior
– Sent to coordinator to keep site/coordinator “in-sync”
– Many possible alternatives

� Static model: No change in distribution since last update
– Naïve, “no change” assumption:
– No model info sent to coordinator, skp(f(t)) = sk(f(tprev))

)f(tprev (t)f p
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Sketch-Prediction Models 

� Velocity model: Predict change through “velocity” vectors 
from recent local history (simple linear model)

– Velocity model: fp(t) = f(tprev) + ∆t • v

– By sketch linearity, skp(f(t)) = sk(f(tprev)) + ∆t • sk(v)

– Just need to communicate one extra sketch

– Can extend with acceleration component

)f(tprev vt)f(t(t)f prev
p ⋅+=
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sk(v)Velocity

����Static

Predicted SketchInfoModel

Sketch-Prediction Models

� 1 – 2 orders of magnitude savings over sending all data

)()()( vskt)f(tskf(t)sk prev
p ⋅+=

)()( )f(tskf(t)sk prev
p =
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Lessons, Thoughts, and Extensions

� Dynamic prediction models are a natural choice for 
continuous in-network processing
– Can capture complex temporal (and spatial) patterns to 

reduce communication

� Many model choices possible 
– Need to carefully balance power & conciseness
– Principled way for model selection?

� General-purpose solution (generality of AMS sketch)
– Better solutions for special queries

E.g., continuous quantiles [Cormode et al.’05]

Distributed Triggers
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Tracking Distributed Triggers

� Only interested in values of the “global query” above a 
certain threshold T
– Network anomaly detection (e.g., DDoS attacks)

� Total number of connections to a destination, “fire” when it 
exceeds a threshold

– Air / water quality monitoring, total number of cars on highway
� Fire when count/average exceeds a certain amount

� Introduced in HotNets paper [Jain, Hellerstein et al.’04]

S1 Sm

Query:  f(S1,…,Sm) > T  ?
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Tracking Distributed Triggers

T

time
� Problem “easier” than approximate query tracking

– Only want accurate f() values when they’re close to threshold

– Exploit threshold for intelligent slack allocation to sites

� Push-based in-network operation even more relevant

– Optimize operation for “common case”

f(S1,…,Sm)



79

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
157

Tracking Thresholded Counts

� Monitor a distributed aggregate count
� Guarantee a user-specified accuracy only if the count 

exceeds a pre-specified threshold T [Kerlapura et al.’06]
– E.g.,  Ni = number of observed connections to 128.105.7.31 

and   N = �i Ni

N1 Nm

N̂
TNNNN

TNTN

�  when  ˆ)-1(

  when  ˆ0

<≤

<<≤

δ
“

�
-deficient counts”
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� Site i maintains a set of local thresholds  ti,j ,   j= 0, 1, 2, …

� Local filter at site i: ti,f(i)≤ Ni < ti,f(i)+1
– Local count between adjacent thresholds
– Contact coordinator with new “level” f(i) when violated

� Global estimate at coordinator       = �i ti,f(i)

� For -deficient estimate, choose local threshold sequences 
ti,j such that

�i (ti,f(i)+1-ti,f(i)) < �i ti,f(i)     whenever    �i ti,f(i)+1 > T

N̂

Thresholded Counts Approach

“ large” to minimize communication!
“ small” to ensure global error bound!
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N

N̂

UniformUniform

ProportionalProportional

T
N

N̂

T

1N 2N

1N

3N

2N
3N

N

N̂
3N

3N

N

N̂

m

Tδ

m

Tδ2

)1( δ+

0

0
1

2)1( δ+

Site 1

Site 1

Site 2

Site 2 Site 3

Site 3

Coordinator

CoordinatorBlended threshold assignment

MaxError = � T

MaxError = � N
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Blended Threshold Assignment

� Uniform: overly tight filters when N > T
� Proportional: overly tight filters when N � T
� Blended Assignment: combines best features of both:

ti,j+1 = (1+αδ)⋅ ti,j + (1-α)⋅δT/m    where α∈ [0,1]

– α = 0 � Uniform assignment
– α = 1 � Proportional assignment

� Optimal value of α exists for given N (expected or 
distribution) 
– Determined through, e.g.,  gradient descent
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Adaptive Thresholding

� So far, static threshold sequences 

– Every site only has “local” view and just pushes updates to  
coordinator

� Coordinator has global view of current count estimate

– Can adaptively adjust the local site thresholds (based on 
estimate and T)

– E.g., dynamically switch from uniform to proportional
growth strategy as estimate approaches/exceeds T

adjust local thresholdspush “ level” change
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What about Non-Linear Functions?

� For general, non-linear f(), the problem becomes a lot 
harder!
– E.g., information gain or entropy over global data distribution 

– Non-trivial  to decompose the global threshold into “safe”
local site constraints

� E.g., consider N=(N1+N2)/2 and   f(N) = 6N – N2 > 1
Impossible to break into thresholds for  f(N1) and  f(N2)

S1 Sm

Query:  f(S1,…,Sm) > T  ?
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Monitoring General Threshold Functions

� Interesting geometric approach  [Scharfman et al.’06]

� Each site tracks a local statistics vector vi   (e.g., data 
distribution)

� Global condition is  f(v) > T, where  v = �iλi vi (�iλi = 1)

– v = convex combination of local statistics vectors

� All sites have an estimate e = �ιλi vi
’ of v based on latest 

update vi
’ from site i

� Each site i continuously tracks its drift from its most recent 
update vi = vi-vi

’
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Monitoring General Threshold Functions

� Key observation:   v = �iλi⋅(e+ vi)    
(a convex combination of “translated” local drifts)

e

�
v1

�
v2

�
v3

�
v4

�
v5

� v lies in the convex hull of 
the (e+ vi) vectors 

� Convex hull is completely 
covered  by the  balls 
with radii || vi/2||2
centered at e+ vi/2

� Each such ball can be 
constructed independently
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Monitoring General Threshold Functions

� Monochromatic Region:  For all points x in the region f(x)
is on the same side of the threshold (f(x) > T or f(x) ≤ T)

� Each site independently checks its ball is monochromatic 

– Find max and min for f() in local ball region (may be costly)

– Broadcast updated value of vi if not monochrome

e

�
v1

�
v2

�
v3

�
v4

�
v5

f(x) > T
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Monitoring General Threshold Functions

� After broadcast,  || vi||2 = 0 � Ball at i is monochromatic

e

�
v1

�
v2

�
v3

�
v4

�
v5

f(x) > T
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Monitoring General Threshold Functions

� After broadcast,  || vi||2 = 0 � Ball at i is monochromatic
– Global estimate e is updated, which may cause more site 

update broadcasts

� Coordinator case: Can allocate local slack vectors to sites 
to enable “localized” resolutions
– Drift (=radius) depends on slack (adjusted locally for subsets)

e

�
v1

�
v2

�
v3 = 0

�
v4

�
v5

f(x) > T
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Extension: Filtering for PCA Tracking

� Threshold total energy of the low PCA coefficients of Y = 
Robust indicator of network-wide anomalies [Lakhina et al.’04]
– Non-linear matrix operator over combined time-series 

� Can combine local filtering ideas with stochastic matrix 
perturbation theory  [Huang et al.’06]

x11 x12 x13 . . .                          x1n

x21 x22 x23 . . .                          x2n

. . .              . . .                  . . .                 . . .
xm1  xm2 xm3 . . . xmn

Link Traffic Monitors
NOC

time
window

= Y
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Lessons, Thoughts and Extensions

� Key idea in trigger tracking: The threshold is your friend! 
– Exploit for more intelligent (looser, yet “safe”)  local filtering

� Also, optimize for the common case!
– Threshold violations are typically “outside the norm”
– “Push-based” model makes even more sense here
– Local filters eliminate most/all of the “normal” traffic

� Use richer, dynamic prediction models for triggers?
– Perhaps adapt depending on distance from threshold?

� More realistic network models?
� Geometric ideas for approximate query tracking?

– Connections to approximate join-tracking scheme?
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Tutorial Outline

1

2

63

4 5

� Motivation & Streaming Applications
� Centralized Stream Processing
� Distributed Stream Processing

– One-shot distributed-stream querying
– Continuous distributed-stream tracking
– Probabilistic distributed data acquisition

� Open Problems & Future Directions
� Conclusions
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Model-Driven Data Acquisition

� Not only aggregates – Approximate, bounded-error 
acquisition of individual sensor values [Deshpande et al. ’04]
– (ε,δ)−approximate acquisition: |Y – | � ε with prob. > 1−δ

� Regular readings entails large amounts of data, noisy or 
incomplete data, inefficient, low battery life, …

� Intuition: Sensors give (noisy, incomplete) samples of 
real-world processes

� Use dynamic probabilistic model of real-world process to
– Robustly complement & interpret obtained readings
– Drive efficient acquisitional query processing
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Query Processing in TinyDB

Query Processor

Declarative Query
sel ect  nodeI D,  t emp
wher e nodeI D i n { 1. . 6}

Query Results
1, 22.73,
…
6, 22.1.

Observation Plan
{[temp, 1], [temp, 2],

… , [temp, 6]}

Data
1, temp = 22.73,
…
6, temp = 22.1.

USER

SENSOR
NETWORK

X1

X4

X6
X5

X2

X3

………

2210am2

2110am1

tempTimenodeID

Virtual Table seen
by the User
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Model-Based Data Acquisition: BBQ

Query Processor

Declarative Query
Sel ect  nodeI D,  
t emp ± . 1C,  conf ( . 95)
wher e nodeI D i n { 1. . 6}

Observation Plan
{[temp, 1], 
[voltage, 3],
[voltage, 6]}

Data
1, temp = 22.73,
3, voltage = 2.73
6, voltage = 2.65

USER

SENSOR
NETWORK

X1

X4

X6
X5

X2

X3

Probabilistic
Model

Query Results
1, 22.73, 100%
…
6, 22.1, 99%

A dynamic probabilistic model of how the data (or the 
underlying physical process) behaves
• Models the evolution over time
• Captures inter-attribute correlations
• Domain-dependent
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BBQ Details

Probabilistic model captures the joint pdf p(X1,…, Xn)
� Spatial/temporal correlations

– Sensor-to-sensor
– Attribute-to-attribute

E.g., voltage & temperature

� Dynamic: pdf evolves over time
– BBQ: Time-varying multivariate

Gaussians

� Given user query Q and accuracy guarantees (ε, δ)
– Try to answer Q directly from the current model
– If not possible, use model to find efficient observation plan
– Observations update the model & generate (ε,δ) answer
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BBQ Probabilistic Queries 

� Classes of probabilistic queries

– Range predicates: Is Xi � [ai, bi] with prob. > 1−δ

– Value estimates: Find X’i such that Pr[ |Xi – X’i| < ε] > 1 - δ

– Aggregate estimates: (ε,δ)-estimate avg/sum(Xi1, Xi2… Xik)

� Acquire readings if model cannot answer Q at δ conf. level

� Key model operations are

– Marginalization: p(Xi) =  � p(X1,…,Xn) dx

– Conditioning: p(X1,…, Xn | observations)

– Integration: �a
b p(X1,…,Xn) dx, also expectation X’i = E[Xi]

All significantly simplified for Gaussians!
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No

BBQ Query Processing
Joint pdf at time=t

p(Xt
1,…, Xt

n)

Probabilistic query
Value of X2±ε

with prob. > 1-δ below 1-δδδδ?

Is

Yes

Return µ2Must sense more data
Example: Observe X1=18

Incorporate into model

P(X2|X1=18)

Higher prob.,
can now 

answer query
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Evolving the Model over Time

Joint pdf at time=t
p(Xt

1,…, Xt
n |Xt

1=18)

Use a (Markov)
Transition Model

Joint pdf at time=t+1
p(Xt+1

1,…, Xt+1
n |X

t
1=18)

� In general, a two-step process:

)|( ...1 tt obsXp )|( ...11+ tt obsXp )|( 1+...11+ tt obsXp
Trans. Model Condition

� Bayesian filtering (for Gaussians this yields Kalman filters)
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Optimizing Data Acquisition

� Energy/communication-efficient observation plans
– Non-uniform data acquisition costs and network 

communication costs  
– Exploit data correlations and knowledge of topology

� Minimize Cost(obs) over all obs ���� {1,…, n} so expected 
confidence in query answer given obs (from model) > 1−δ

� NP-hard to optimize in general

1
2

63

4 5

cheaper?
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Conditional Plans for Data Acquisition
� Observation plans ignore the attribute values observed

– Attribute subset chosen is observed in its entirety
– The observed attribute values give a lot more information

� Conditional observation plans (outlined in [Deshpande et al.’05])
– Change the plan depending on observed attribute values 

(not necessarily in the query)
– Not yet explored for probabilistic  query answers

SELECT *  FROM sensor s WHERE l i ght <100Lux and t emp>20oC

Cost =11

Light < 
100 Lux

Temp >
20° C

Cost = 10
σ= .1

Cost = 10
σ = .9
Light < 
100 Lux

Temp > 
20° C

Cost = 10
σ = .1

Cost = 10
σ = .9

Time in 
[6pm, 6am]

N

Y

Cost = 15

Light < 
100 Lux

Temp > 
20° C

Cost = 10
σ = .5

Cost = 10
σ = .5

Cost = 15

Light < 
100 Lux

Temp > 
20° C

Cost = 10
σ = .5

Cost = 10
σ = .5
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Continuous Model-Driven Acquisition

Dynamic Replicated Prob Models (Ken)  
[Chu et al.’06]

� Model shared and sync’d across base-
station and sensornet

� Nodes continuously check & maintain 
model accuracy based on ground truth

– Push vs. Pull (BBQ)

� Problem: In-network model maintenance

– Exploit spatial data correlations

– Model updates decided in-network 
and sent to base-station

– Always keep model (ε,δ)-approximate

sel ect  nodeI D,  
t emp ± . 1C,  conf ( . 95)
wher e nodeI D i n { 1. . 6}
epoch 2 min

Query 
Processor

X1

X4
X6

X5

X2

X3

Probabilistic
Model

in-sync
model
updates

Probabilistic
Model
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In-Network Model Maintenance
� Mapping model maintenance 

onto network topology
– At each step, nodes check (ε,δ)

accuracy, send updates to base 

� Choice of model drastically 
affects communication cost
– Must centralize correlated data 

for model check/update 
– Can be expensive!

� Effect of degree of spatial correlations:

Single-node models Π p(Xi)
No spatial correlations
Cheap – check is local!

Full-network model p(X1,…,Xn)
Full spatial correlations
Expensive – centralize all data!

Query 
Processor

X1

X4

X6

X5

X2

X3

Probabilistic
Model

in-sync
model
updates

Probabilistic
Model
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In-Network Model Maintenance 

� Problem: Find dynamic probabilistic model and in-network 
maintenance schedule to  minimize overall communication
– Map maintenance/update operations to network topology

� Key idea for “practical” in-network models
– Exploit  limited-radius spatial correlations of measurements
– Localize model checks/updates to small regions

BBQ 
[Deshpande et al. ’04]

Single-node Kalman filters 
[Jain et al.’04]

Single-node models Π p(Xi)
No spatial correlations
Cheap – check is local!

Full-network model p(X1,…,Xn)
Full spatial correlations
Expensive – centralize all data!
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Disjoint-Cliques Models 
� Idea: Partition joint pdf into a set of small, localized 

“cliques” of random variables
– Each clique maintained and updated independently at 

“clique root” nodes

Model   p(X1,…,X6) = 
p(X1,X2,X3) ⋅ p(X4,X5,X6) 

� Finding optimal DC model is NP-hard
– Natural analogy to  Facility Location

Distributed Data Stream 
Systems/Prototypes
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Current Systems/Prototypes

� Main algorithmic idea in the tutorial:  Trade-off space/time 
and communication with approximation quality

� Unfortunately, approximate query processing tools are still 
not widely adopted in current Stream Processing engines
– Despite obvious relevance, especially for streaming data

� In the sensornet context
– Simple in-network aggregation techniques (e.g., for 

aver age, count , etc.) are widely used
E.g., TAG/TinyDB [Madden et al ’02]

– More complex tools for approximate                                           
in-network data processing/collection                              
have yet to gain wider acceptance
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Distributed SP Engine Prototypes

� Telegraph/TelegraphCQ [Chandrasekaran et al.’03] ,  
Borealis/Medusa [Balazinska et al.’05],   P2 [Loo et al.’06]

� Query processing typically viewed as a large dataflow
– Network of connected, pipelined query operators

– Schedule a large dataflow over a distributed system
� Objectives: Load-balancing, availability, early results, …

Source
Union

Join

Select

Union

Other 
ops

Source

Source Other 
ops

Client

Node 1

Node 2

Node 3
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Distributed SP Engine Prototypes

� Approximate answers and error guarantees not considered
– General relational queries, push/pull-ing tuples through the 

query network
– Load-shedding techniques to manage overload

� No hard error guarantees

� Network costs (bandwidth/latency) considered in some 
recent work [Pietzuch et al.’06]

Source Union

Join

Select

Union

Other 
ops

Source

Source Other 
ops

Client

Node 1

Node 2

Node 3
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Other Systems & Prototypes

� PIER – Scaling to large, dynamic site populations using 
DHTs [Huebsch et al.’03]
– See also the Seaweed paper  [Narayanan et al.’06]

� Gigascope – Streaming DB engine for large-scale 
network/ application monitoring
– Optimized for high-rate data streams (“line speeds”)
– Exploits approximate query processing tools (sampling,   

sketches, …) for tracking streams at endpoints
– Distribution issues not addressed  (yet…)
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Tutorial Outline

� Motivation & Streaming Applications

� Centralized Stream Processing

� Distributed Stream Processing

� Open Problems & Future Directions

� Conclusions
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Basic Streaming Models & Issues

� Lots of other work on streaming data analysis problems
– Stream mining (clustering, associations, classification, 

change detection,…)
– XML stream filtering (pub/sub systems)
– Geometric data/queries (location streams) 

� Other emerging richer streaming models and problems 
– XML & text stream mining  (beyond simple filtering)
– Graph-data streams (e.g., stream of graph edges)
– Both bound to gain importance with the proliferation of 

huge  web data sets (e.g., WebGraph, social networks)
� E.g., PageRank computation over a streaming WebGraph?
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Extensions for P2P Networks

� Much work focused on specifics of sensor and wired nets
� P2P and Grid computing present alternate models

– Structure of multi-hop overlay networks
– “Controlled failure” model: nodes explicitly leave and join

� Allows us to think beyond model of “highly resource 
constrained” sensors. 

� Implementations such as OpenDHT over PlanetLab
[Rhea et al.’05]
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Delay-Tolerant Networks

� How to cope when connectivity is intermittent ? 

– Roaming devices, exploring outer and inner space, network 
infrastructure for emerging regions (e.g., rural India), …

– Round trip times may be very long and varying

� Radio to Mars is many minutes

� Connectivity to remote villages varies [Jain, Fall, Patra ’05]

� Goal is to minimize the number of communications and 
maximize timeliness

– Size of communication is secondary
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Authenticated Stream Aggregation

� Wide-area query processing

– Possible malicious aggregators

– Can suppress or add spurious 
information

� Authenticate query results at 
the querier?

– Perhaps, to within some 
approximation error

� Initial steps in [Garofalakis et al.’07]
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Other Classes of Queries

� Mostly talked about specific, well-defined aggregates

� What about set-valued  query answers?
– No principled, “universal” approximation error metric

� A general distributed query language (dist-streamSQL?)

– Define a language so a query optimizer can find a plan that 
guarantees good performance, small communication? 

� Other tasks, e.g., data mining, machine learning, over 
distributed streams? 

– ML/AI communities are already starting to consider 
communication-efficient distributed learning
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Theoretical Foundations

“Communication complexity” studies lower bounds of 
distributed one-shot computations

� Gives lower bounds for various problems,  e.g.,            
count di st i nct (via reduction to abstract problems)

� Need new theory for continuous computations
– Based on info. theory and models of how streams evolve?
– Link to distributed source coding or network coding?
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Richer Prediction models

� The better we can capture and anticipate future stream 
direction, the less communication is needed

� So far, only look at predicting each stream alone

� Correlation/anti-correlation across streams should help?

– But then, checking validity of model is expensive!

� Explore tradeoff-between power (expressiveness) of 
model and complexity (number of parameters)

– Optimization via Minimum Description Length (MDL)?  
[Rissanen 1978]
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Conclusions
� Data Streaming: Major departure from traditional 

persistent database paradigm
– Fundamental re-thinking of models, assumptions, algorithms, 

system architectures, …

� Many new streaming problems posed by developing 
technologies

� Simple tools from approximation and/or randomization play 
a critical role in effective solutions

– Sampling,  sketches (AMS, CM, FM, …), Exponential 
histograms, …

– Simple, yet powerful, ideas with great reach

– Can often “mix & match” for specific scenarios
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Conclusions
� Distributed Streams: Common features allow for general 

techniques/principles instead of “point” solutions

– In-network query processing
Local filtering at sites, trading-off approximation with 
processing/network costs, …

– Models of “normal” operation
Static, dynamic (“predictive”), probabilistic, …

– Exploiting network locality and avoiding global resyncs

� Many new directions unstudied, more will emerge as new 
technologies arise

� Lots of exciting research to be done! �
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Thank you! 

http://www.cs.berkeley.edu/~minos/http://www.cs.berkeley.edu/~minos/

minos@acm.orgminos@acm.org
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