
1

Processing Massive Processing Massive
Data StreamsData Streams

Minos GarofalakisMinos Garofalakis
Yahoo! Research & UC BerkeleyYahoo! Research & UC Berkeley

minos@acm.orgminos@acm.org

1,1
f

s,1
f

1,k
f

s,k
f

s
f

1
f

local update streams local update streams

Site 1 Site k
State−Update

Coordinator
Global Streams

Approximate Answer

User Query Q(fi, fj, ...)

for Q(fi, fj, ...)

Messages

(Thanks to: Graham Cormode, Johannes Gehrke, Rajeev Rastogi)(Thanks to: Graham Cormode, Johannes Gehrke, Rajeev Rastogi)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
2

Streams – A Brave New World

� Traditional DBMS: data stored in finite, persistent data sets

� Data Streams: distributed, continuous, unbounded, rapid,
time varying, noisy, . . .

� Data-Stream Management: variety of modern applications
– Network monitoring and traffic engineering
– Sensor networks
– Telecom call-detail records
– Network security
– Financial applications
– Manufacturing processes
– Web logs and clickstreams
– Other massive data sets…

2

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
3

� Data is continuously growing faster than our ability
to store or index it

� There are 3 Billion Telephone Calls in US each day,
30 Billion emails daily, 1 Billion SMS, IMs

� Scientific data: NASA's observation satellites
generate billions of readings each per day

� IP Network Traffic: up to 1 Billion packets per hour
per router. Each ISP has many (hundreds) routers!

� Whole genome sequences for many species now
available: each megabytes to gigabytes in size

Massive Data Streams

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
4

Massive Data Stream Analysis

Must analyze this massive data:
� Scientific research (monitor environment, species)
� System management (spot faults, drops, failures)
� Business intelligence (marketing rules, new offers)
� For revenue protection (phone fraud, service abuse)
Else, why even measure this data?

3

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
5

Example: IP Network Data

� Networks are sources of massive data: the metadata per
hour per IP router is gigabytes

� Fundamental problem of data stream analysis:
Too much information to store or transmit

� So process data as it arrives – One pass, small space:
the data stream approach

� Approximate answers to many questions are OK, if
there are guarantees of result quality

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
6

IP Network Monitoring Application

� 24x7 IP packet/flow data-streams at network elements
� Truly massive streams arriving at rapid rates

– AT&T/Sprint collect ~1 Terabyte of NetFlow data each day

� Often shipped off-site to data warehouse for off-line analysis

Source Destination Duration Bytes Protocol
10.1.0.2 16.2.3.7 12 20K http
18.6.7.1 12.4.0.3 16 24K http
13.9.4.3 11.6.8.2 15 20K http
15.2.2.9 17.1.2.1 19 40K http
12.4.3.8 14.8.7.4 26 58K http
10.5.1.3 13.0.0.1 27 100K ftp
11.1.0.6 10.3.4.5 32 300K ftp
19.7.1.2 16.5.5.8 18 80K ftp

Example NetFlow
IP Session Data

DSL/Cable
Networks

• Broadband
Internet Access

Converged IP/MPLS
Core

PSTNEnterprise
Networks

• Voice over IP• FR, ATM, IP VPN

Network Operations
Center (NOC)

SNMP/RMON,
NetFlow records

Peer

4

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
7

Packet-Level Data Streams

�Single 2Gb/sec link; say avg packet size is 50bytes

� Number of packets/sec = 5 million

�Time per packet = 0.2 microsec

� If we only capture header information per packet: src/dest IP,
time, no. of bytes, etc. – at least 10bytes.

– Space per second is 50Mb

– Space per day is 4.5Tb per link

– ISPs typically have hundreds of links!

� Analyzing packet content streams – whole different
ballgame!!

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
8

Network Monitoring Queries

DBMS
(Oracle, DB2)

Back-end Data Warehouse

Off-line analysis –
slow, expensive

DSL/Cable
Networks

Enterprise
Networks

Peer

Network Operations
Center (NOC)

What are the top (most frequent) 1000 (source, dest)
pairs seen over the last month?

SELECT COUNT (R1.source, R2.dest)
FROM R1, R2
WHERE R1.dest = R2.source

SQL Join Query

How many distinct (source, dest) pairs have
been seen by both R1 and R2 but not R3?

Set-Expression Query

PSTN

� Extra complexity comes from limited space and time

� Will introduce solutions for these and other problems

R1

R2

R3

5

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
9

Real-Time Data-Stream Analysis

� Must process network streams in real-time and one pass
� Critical NM tasks: fraud, DoS attacks, SLA violations

– Real-time traffic engineering to improve utilization

� Tradeoff result accuracy vs. space/time/communication
– Fast responses, small space/time
– Minimize use of communication resources

IP Network

PSTN

DSL/Cable
Networks

Network Operations
Center (NOC)

BGP

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
10

Sensor Networks

� Wireless sensor networks becoming ubiquitous in
environmental monitoring, military applications, …

� Many (100s, 103, 106?) sensors scattered over terrain
� Sensors observe and process a local stream of readings:

– Measure light, temperature, pressure…
– Detect signals, movement, radiation…
– Record audio, images, motion…

6

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
11

Sensornet Querying Application

� Query sensornet through a (remote) base station
� Sensor nodes have severe resource constraints

– Limited battery power, memory, processor, radio range…
– Communication is the major source of battery drain
– “transmitting a single bit of data is equivalent to 800

instructions” [Madden et al.’02]

base station
(root, coordinator…)

ht
tp

://
ww

w.
in

te
l.c

om
/re

se
ar

ch
/e

xp
lo

ra
to

ry
/m

ot
es

.h
tm

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
12

Tutorial Outline
� Motivation & Streaming Applications

� Centralized Stream Processing

– Basic streaming models and tools

– Stream synopses and applications

� Sampling, sketches

� The Sliding Window model

� Distributed Stream Processing

� Open Problems & Future Directions

� Conclusions

7

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
13

Some Disclaimers…

� Fairly broad coverage, but still biased view of data-
streaming world
– Revolve around personal biases (line of work and interests)
– Main focus on key algorithmic concepts, tools, and results –

for both the centralized and distributed settings
� Only minimal discussion of systems/prototypes

– A lot more information out there

� Sensornets [Madden’06]
� Systems issues [Koudas,Srivastava’03], [Babcock et al.’02]
� Theory/algorithms [Muthukrishnan’03]

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
14

Data Streaming Model
� Underlying signal: One-dimensional array A[1…N] with

values A[i] all initially zero
– Multi-dimensional arrays as well (e.g., row-major)

� Signal is implicitly represented via a stream of update stream of update tuplestuples
– j-th update is <x, c[j]> implying

� A[x] := A[x] + c[j] (c[j] can be >0, <0)

�Goal: Compute functions on A[] subject to
– Small space
– Fast processing of updates
– Fast function computation
– …

� Complexity arises from massive length and domain
size (N) of streams

8

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
15

Example IP Network Signals

� Number of bytes (packets) sent by a source IP address
during the day

– 2^(32) sized one-d array; increment only

� Number of flows between a source-IP, destination-IP
address pair during the day

– 2^(64) sized two-d array; increment only, aggregate
packets into flows

� Number of active flows per source-IP address

– 2^(32) sized one-d array; increment and decrement

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
16

Streaming Model: Special Cases

� Time-Series Model
– Only x-th update updates A[x] (i.e., A[x] := c[x])

� Cash-Register Model: Arrivals-Only Streams
– c[x] is always > 0
– Typically, c[x]=1, so we see a multi-set of items in one pass

– Example: <x, 3>, <y, 2>, <x, 2> encodes
the arrival of 3 copies of item x,
2 copies of y, then 2 copies of x.

– Could represent, e.g., packets on a network; power usage

x
y

9

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
17

Streaming Model: Special Cases

� Turnstile Model: Arrivals and Departures
– Most general streaming model
– c[x] can be >0 or <0

� Arrivals and departures:
– Example: <x, 3>, <y,2>, <x, -2> encodes

final state of <x, 1>, <y, 2>.
– Can represent fluctuating quantities, or measure

differences between two distributions

x
y

� Problem difficulty varies depending on the model
– E.g., MIN/MAX in Time-Series vs. Turnstile!

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
18

Approximation and Randomization

� Many things are hard to compute exactly over a stream
– Is the count of all items the same in two different streams?
– Requires linear space to compute exactly

� Approximation: find an answer correct within some factor
– Find an answer that is within 10% of correct result

– More generally, a (1± ε) factor approximation

� Randomization: allow a small probability of failure
– Answer is correct, except with probability 1 in 10,000

– More generally, success probability (1-δ)

�� Approximation Approximation andand RandomizationRandomization: (ε, δ)-approximations

10

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
19

Data-Stream Algorithmics Model

� Approximate answers– e.g. trend analysis, anomaly detection
� Requirements for stream synopses

– Single Pass: Each record is examined at most once
– Small Space: Log or polylog in data stream size
– Small-time: Low per-record processing time (maintain synopses)
– Also: delete-proof, composable, …

Stream Processor

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer with high
probability”

Stream Synopses
(in memory)

Continuous Data Streams

Query Q

R1

Rk

(Terabytes) (Kilobytes)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
20

Probabilistic Guarantees

� User-tunable (ε,δ)-approximations
– Example: Actual answer is within 5 ± 1 with prob ≥ 0.9

� Randomized algorithms: Answer returned is a specially-
built random variablerandom variable
– Unbiased (correct on expectation)
– Combine several Independent Identically Distributed (iid)

instantiations (average/median)

� Use Tail Inequalities to give probabilistic bounds on
returned answer
– Markov Inequality
– Chebyshev Inequality
– Chernoff Bound
– Hoeffding Bound

11

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
21

Basic Tools: Tail Inequalities
� General bounds on tail probability of a random variable

(that is, probability that a random variable deviates far
from its expectation)

� Basic Inequalities: Let X be a random variable with
expectation and variance Var[X]. Then, for any

µε µ µε

����������	

����������

���������������	

0>εµ

������� �	
��
	
��

22

Var[X]
)|XPr(| ≤≥−

1
1

))(1Pr(X
+

≤+≥

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
22

Tail Inequalities for Sums

� Possible to derive stronger bounds on tail probabilities for
the sum of independent random variables

� Hoeffding Bound: Let X1, ..., Xm be independent random
variables with 0� Xi � r. Let and be the

expectation of . Then, for any ,

� Application: Sample average � population average

– See below…

2

2

r

2m �

2exp)|XPr(|
−

≤≥−

0>ε
�=

i iX
m

X
1 µ

X

12

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
23

Tail Inequalities for Sums

� Possible to derive even stronger bounds on tail probabilities
for the sum of independent Bernoulli trials

� Chernoff Bound: Let X1, ..., Xm be independent Bernoulli

trials such that Pr[Xi=1] = p (Pr[Xi=0] = 1-p). Let

and be the expectation of . Then, for any ,

� Application: Sample selectivity � population selectivity

– See below…

� Remark: Chernoff bound results in tighter bounds for count
queries compared to Hoeffding bound

2

��� 2

2exp)|XPr(|
−

≤≥−

0>ε
�=

i iXX
mp=µ X

Sampling, Sketches and
Applications

13

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
25

Sampling: Basics
� Idea: A small random sample S of the data often well-

represents all the data
– For a fast approx answer, apply “modified” query to S
– Example: select agg from R where R.e is odd

(n=12)

– If agg is avg, return average of odd elements in S
– If agg is count, return average over all elements e in S of

� n if e is odd
� 0 if e is even

�� Unbiased EstimatorUnbiased Estimator (for count, avg, sum, etc.)
– Bound error using Hoeffding (sum, avg) or Chernoff (count)

� ���������� ���� ����� ��������� � �������� ���������

��� ���������������������

��
�
����

��
�
������������

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
26

Sampling from a Data Stream

� Fundamental problem: sample m items uniformly from
stream
– Useful: approximate costly computation on small sample

� Challenge: don’t know how long stream is
– So when/how often to sample?

� Two solutions, apply to different situations:
– Reservoir sampling (dates from 1980s?)
– Min-wise sampling (dates from 1990s?)

14

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
27

Reservoir Sampling

� Sample first m items
� Choose to sample the i’th item (i>m) with probability m/i
� If sampled, randomly replace a previously sampled item

� Optimization: when i gets large, compute which item will
be sampled next, skip over intervening items [Vitter’85]

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
28

Reservoir Sampling - Analysis

� Analyze simple case: sample size m = 1
� Probability i’th item is the sample from stream length n:

– Prob. i is sampled on arrival × prob. i survives to end

1 i i+1 n-2 n-1
i i+1 i+2 n-1 n

×××× ×××× … ××××

= 1/n

� Case for m > 1 is similar, easy to show uniform probability
� Drawbacks of reservoir sampling: hard to parallelize

15

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
29

Min-wise Sampling

� For each item, pick a random fraction between 0 and 1

� Store item(s) with the smallest random tag [Nath et al.’04]

0.391 0.908 0.291 0.555 0.619 0.273

� Each item has same chance of least tag, so uniform
� Can run on multiple streams separately, then merge

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
30

Sketches

� Not every problem can be solved with sampling
– Example: counting how many distinct items in the stream
– If a large fraction of items aren’t sampled, don’t know if

they are all same or all different

� Other techniques take advantage that the algorithm can
“see” all the data even if it can’t “remember” it all

�� ““SketchSketch””:: essentially, a linear transform of the input
– Model stream as defining a vector, sketch is result of

multiplying stream vector by an (implicit) matrix

linear projection

16

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
31

Trivial Example of a Sketch

� Test if two (asynchronous) binary streams are equal
d= (x,y) = 0 iff x=y, 1 otherwise

� To test in small space: pick a random hash function h
� Test h(x)=h(y) : small chance of false positive, no chance

of false negative.
� Compute h(x), h(y) incrementally as new bits arrive

(Karp-Rabin: h(x) = xi2i mod p)
– Exercise: extend to real valued vectors in update model

1 0 1 1 1 0 1 0 1 …

1 0 1 1 0 0 1 0 1 …

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
32

AMS Sketching
�� Goal:Goal: Build small-space summary for distribution vector f[v]

(v=1,..., N) seen as a stream of v-values

�� Basic Construct:Basic Construct: Randomized Linear Projection of f = project
onto dot product of f-vector

– Simple to compute: Add whenever the value v is seen

– Generate ‘s in small (logN) space using pseudo-random
generators

� ���������� ������������������������������� � �

� ���������� ������������������������������� � � 54321 22 ++++

!"�#��!"�#��!"�#��!"�#��!"�#

�� �

� �

�=
v vf[v]X $ %��������&�'�(�����!���

�� �'������!��� �

�
�������������
����������

ξ

v

vξ

17

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
33

AMS Sketching (contd.)

� Simple randomized linear projections of data distribution

– Easily computed over stream using logarithmic space

– Linear: Compose through simple addition

� Theorem[AGMS]: Given sketches of size

�� �

� � }{ vξ � == � �� ������
54321 22 ++++

}{ vψ

�= � �� ������
=sk(f)

)
)/1log(

(
2ε

δ
O

2j2ijiji ||f||||f||ff)sk(f)sk(f ±⋅∈⋅

f

Inner ProductInner Product

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
34

Application: Binary-Join COUNT Query
� Problem: Compute answer for the query COUNT(R A S)
� Example:

� Exact solution: too expensive, requires O(N) space!
– N = sizeof(domain(A))

� ���������� �) *������������������������ �
�

+

�

�� � �

:"�#!)

� ���������� �� *������������������������ �
�

�� � �

:"�#!�

�
�

� ⋅=
� �)* "�#!"�#!�#������,-./�")

&��+����"��0���0�+�0�� #

Inner ProductInner Product

18

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
35

Basic AMS Sketching Technique
�Key Intuition: Use randomized linear projections of f[] to

define random variable X such that
– X is easily computed over the stream (in small space)
– E[X] = COUNT(R A S)
– Var[X] is small

�Basic Idea:
– Define a family of 4-wise independent {-1, +1} random variables

– Pr[= +1] = Pr[= -1] = 1/2
� Expected value of each , E[] = 0

– Variables are 4-wise independent
� Expected value of product of 4 distinct = 0

– Variables can be generated using pseudo-random generator
using only O(log N) space (for seeding)!

������������(�������1����
�����

"� 1 ���(������
�$ �������+2��$ ��%�
����������	�+ �#

/3�� ���4 � =ξ
�ξ �ξ

�ξ �ξ
�ξ

�ξ
�ξ

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
36

AMS Sketch Construction
�Compute random variables: and

– Simply add to XR(XS) whenever the i-th value is observed in the

R.A (S.A) stream

�Define X = XRXS to be estimate of COUNT query

�Example:

�=
i iRR (i)fX �=

i iSS (i)fX

�ξ

� ���������� �) *������������������������

� ���������� �� *������������������������

�
�

+

�� � �

:"�#!)

�
�

�� � �

:"�#!�

�
�

�)) 55 ξ+=

��� 55 ξ+=

���) ��5 ξξξ ++=

�

����� �5 ξξξξ 2+++=

19

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
37

Binary-Join AMS Sketching Analysis
�Expected value of X = COUNT(R A S)

�Using 4-wise independence, can show that

� is self-join size of R (second/L2 moment)

2
2S

2
2R ||f||||f||2Var[X] ⋅≤

�=
i

2
R

2
2R (i)f||f||

657857856 �) ⋅=

6�� ⋅=
i iSi iR (i)f(i)fE[

])(i'f(i)fE[](i)f(i)fE[i'i'i iSR

2

i iSR �� ≠
⋅+⋅=

� ⋅=
i SR (i)f(i)f

��

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
38

Boosting Accuracy
� Chebyshev Inequality:

�Boost accuracy to by averaging over several iid copies
of X (reduces variance)

�By Chebyshev:

S) COUNT(RE[X]E[Y] ==

22 E[X]
Var[X]

E[X])|E[X]-XPr(| ≤≥

8
1

COUNT
Var[Y]

COUNT)|COUNT-YPr(| 22 ≤≤⋅≥

9

: : : *'���1� 	

copies
COUNT

)||f||||f||(28
s

22

2
2S

2
2R ⋅⋅⋅=

8
COUNT

s
Var[X]

Var[Y]
22

≤=

20

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
39

Boosting Confidence
�Boost confidence to by taking median of 2log(1/)

independent copies of Y
�Each Y = Bernoulli Trial

;� − ;

��8<� �
��
"= #>,-./�<��������,-./�6⋅≥ 9

;≤ "�	�,%��
�!! ?��

#&���8�@ �!���������
�����1"�A��#��������B&����1"�A��#�6;;

	

	

	(�����
9#,-./�"� − 9#,-./�"� +,-./�

� �
��

;��� −≥

�A��� ≤

;���1"�A��#

���� �� !"�� �� !" ##��

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
40

Summary of Binary-Join AMS Sketching

�Step 1: Compute random variables: and

�Step 2: Define X= XRXS
�Steps 3 & 4: Average independent copies of X; Return median

of averages

�=
� �)) "�#!5 ξ �=

� ��� "�#!5 ξ

22

2
2S

2
2R

COUNT �

)||f||||f||(28 ⋅⋅

: : : *'���1� 	

: : : *'���1� 	

: : : *'���1� 	

(�����

(����� � �
��
;���1"�A��#

Rf

Sf

21

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
41

Summary of Binary-Join AMS Sketching

� Main Theorem [AGMS99]:Main Theorem [AGMS99]: Sketching approximates COUNT to
within a relative error of ε with probability � 1-δ using space

– Remember: O(log N) space for “seeding” the construction of each X

� Special Case Special Case –– SelfSelf--join size:join size: COUNT(R A R) =
– Gini index of heterogeneity, measure of skew in the data

– (ε,δ)−estimate using space only

– Best-case for AMS streaming join-size estimation…

– Q: What’s the worst case??

)
COUNT

logNlog(1/ ||f||||f||
O(22

2
2S

2
2R)⋅

2
2R ||f||

)
logNlog(1/

O(2

)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
42

AMS Sketching for Multi-Joins [Dobra et al.02]

� Problem:Problem: Estimate COUNT(R AS BT) =

� Sketch-based solution
–Compute random variables XR, XS and XT

– Return X=XRXSXT (E[X]= COUNT(R AS BT))

� ji, TSR (j)j)f(i,(i)ff

������ �) *������������������������

������ ����*������������������������

�)) 55 ξ+=

���� 55 θξ+=

?������������������������

������ �� ?������������������������

�=
� �)) "�#!5 ξ

�=
C C�� "C#!5 θ

34 �ξ

34 Cθ

��� �� ξξξ ++=

������ �� θξθξθξ ++=

��� ��� θθθ ++=

�=
C�� C��� C#"��!5 θξ

D

���

�
��!�� �����
�!�4>��0�3���

��
'��������

CE�C����E���!��+6#"CE!C#�"�E!"�#78! CEC�E���) ≠≠=⋅⋅ θθξξ

22

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
43

� Sketches for general multi-join COUNT queries (over streams
R, S, T, ...)

– For each pair of attributes in equality join constraint, use independent
family of {-1, +1} random variables

– Compute random variables XR, XS, XT,

– Return X=XRXSXT ... (E[X]= COUNT(R S T ))

– Explosive increase with the number of joins!

⋅⋅⋅⋅≤ 2
2T

2
2S

2
2R

2m ||f||||f||||f||2Var[X]

������ ����*������������������������
?������������������������
,������������������������

� ⋅⋅⋅
⋅⋅⋅⋅⋅⋅=

FC��� FC��� #F�C�"��!5 λθξ

⋅⋅⋅+= ����� 55 λθξ

D

���

�
��
!�� �������!�4>��0�3
��

�� �'��������

⋅⋅⋅3�43�43�4 FC� λθξ

AMS Sketching for Multi-Joins [Dobra et al.02]

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
44

Boosting Accuracy by Sketch Partitioning

�For error, need

�Key Observation: Product of self-join sizes for partitions of partitions of
streamsstreams can be much smaller than product of self-join sizes
– Reduce space requirements by partitioning join attribute domains

� Overall join size = sum of join size estimates for partitions

– Exploit coarse statistics (e.g., histograms) based on historical data or
collected in an initial pass, to compute the best partitioning

8
COUNT

Var[Y]
22

≤

: : : *'���1� 	

copies
COUNT

)||f||||f||(28
s

22

2
2S

2
2R

2m ⋅⋅⋅⋅=

8
COUNT

s
Var[X]

Var[Y]
22

≤=

9

23

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
45

Sketch Partitioning Example: Binary Join

�+

�

G ��%������������
�
1 G ��%���������
�
1�"��&4���3����&4���3#

�

�H")#&�+�

�H"�#&��+�

�+

�

�+ �+

�� � �

:)!

:�!

�� � �

�

�+

�

�H")�#&�++

�H"��#&�

�+

� �

:)�!

:��!

��

�

�+ �+

� �

� �

:��!

:)�!
� �

�H")�#&�

�H"��#&��++

5�&�5�05����7856�&�,-./�")������#

�H"�#�H")#�I*)856 ⋅⋅≈

�H"��#�H")�#�I*)85�6 ⋅⋅≈ �H"��#�H")�#�I*)85�6 ⋅⋅≈

�+JI*)85�6I*)85�6I*)856 ≈+=

��+J≈

��J≈ �J≈

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
46

Overview of Sketch Partitioning

� Maintain independent sketches for partitions of join-
attribute space

� Improved error guarantees
– Var[X] = Var[Xi] is smaller (by intelligent domain
partitioning)

– “Variance-aware” boosting: More space to higher-
variance partitions

� Challenging optimization problems!
� Significant accuracy benefits for small number (2-4)
of partitions

�

24

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
47

Other Applications of AMS Sketching
� General result: Streaming estimation of ““largelarge”” inner inner

productsproducts using AMS sketches

� Other streaming inner products of interest
–– TopTop--k frequenciesk frequencies [Charikar et al.’02]

� Item frequency = < f, “unit_pulse” >

– Large wavelet coefficientswavelet coefficients [Gilbert et al.’01], [Cormode et al.’06]
� Coeff(i) = < f, w(i) >, where w(i) = i-th wavelet basis vector

� /

�

$ "�#�&�
� /

$ "+#�&�
� /

�A/

),(δε

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
48

Recent Results on Stream Joins
� Better accuracy using ““skimmed sketchesskimmed sketches”” [Ganguly et al.’04]

– “Skim” dense items (i.e., large freqs) from the AMS sketches
– Use the “skimmed” sketch only for sparse elements
– Stronger worst-case guarantees, and much better in practice

� Same effect as sketch partitioning with no apriori knowledge!

� Sharing sketch space/computation among multiple queries
[Dobra et al.’04]

) ξ θ
�=

i iRR (i)�fX
jji, iSS �j)�(i,fX �= �=

j jTT (j)�fX

* * ? ?

��) 5555��K��7�� ⋅⋅=

� �

λ* ?

�=′
i iRR (i)�fX �=′

i iTT (i)�fX

) �

�) 555��K��7�� ′⋅′=′ ��� ��!�� ��	�

ξ
θ

ξ
�=

i iRR (i)�fX

jji, iSS �j)�(i,fX �= �=
j jTT (j)	fX

*

* ? ?

* ?

�=′
i iTT (i)
fX

)
�

�� ��) 5555��K��7�� ⋅⋅=

�) 555��K��7�� ′⋅=′

/��'� �%���
1

25

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
49

Improving Basic AMS

�Update time for basic AGMS sketch is

�� BUTBUT……
–Sketches can get large – cannot afford to touch every counter
for rapid-rate streams!
�Complex queries, stringent error guarantees, …

–Sketch size may not be the limiting factor (PCs with GBs of
RAM)

�
� �

�
�
�

�

�
�
�
�

�����������

<#�F��(%"<Ω

L�(����������
* M � ��F��(% $%�&

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
50

The Fast AMS Sketch [Cormode, Garofalakis’05]

� Fast AMS Sketch: Organize the atomic AMS counters into
hash-table buckets
– Each update touches only a few counters (one per table)
– Same space/accuracy tradeoff as basic AMS (in fact, better�)
– BUT, guaranteed logarithmic update times (regardless of sketch

size)!!

�����

�����

�����

�
��

�
�

�

�

�
�
�

�

 $%�&

26

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
51

Count-Min Sketch [Cormode, Muthukrishnan’04]

� Simple sketch idea, can be used for as the basis of many
different stream mining tasks
– Join aggregates, range queries, moments, …

� Model input stream as a vector A of dimension N

� Creates a small summary as an array of w × d in size
� Use d hash functions to map vector entries to [1..w]
� Works on arrivals only and arrivals & departures streams

W

dArray:
CM[i,j]

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
52

CM Sketch Structure

� Each entry in input vector A[] is mapped to one bucket
per row
– h()’s are pairwise independent

� Merge two sketches by entry-wise summation
� Estimate A[j] by taking mink { CM[k,hk(j)] }

+c

+c

+c

+c

h1(j)

hd(j)

<j, +c>

d=
log 1/δ

w = 2/ε

27

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
53

CM Sketch Guarantees

� [Cormode, Muthukrishnan’04] CM sketch guarantees
approximation error on point queries less than ε||A||1 in space
O(1/ε log 1/δ)
– Probability of more error is less than 1-δ
– Similar guarantees for range queries, quantiles, join size,…

� Hints
– Counts are biased (overestimates) due to collisions

� Limit the expected amount of extra “mass” at each
bucket? (Use Markov)

– Use Chernoff-like argument to boost the confidence for the
min{} estimate
� Based on independence of row hashes

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
54

CM Sketch Analysis
Estimate A’[j] = mink { CM[k,hk(j)] }
� Analysis: In k'th row, CM[k,hk(j)] = A[j] + Xk,j

– Xk,j = Σ A[i] | hk(i) = hk(j)

– E[Xk,j] = Σ A[i]*Pr[hk(i)=hk(j)]
≤ (ε/2) * Σ A[i] = ε ||A||1/2 (pairwise independence of h)

– Pr[Xk,j ≥ ε||A||1] = Pr[Xk,j ≥ 2E[Xk,j]] ≤ 1/2 by Markov inequality

� So, Pr[A’[j]≥ A[j] + ε ||A||1] = Pr[∀ k. Xk,j>ε ||A||1] ≤1/2log 1/δ = δ

� Final result: with certainty A[j] ≤ A’[j] and
with probability at least 1-δ, A’[j]< A[j] + ε ||A||1

� Q: How do CM sketch guarantees compare to AMS??

28

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
55

Distinct Value Estimation
� Problem: Find the number of distinct values in a stream of

values with domain [1,...,N]
– Zeroth frequency moment , L0 (Hamming) stream norm
– Statistics: number of species or classes in a population
– Important for query optimizers
– Network monitoring: distinct destination IP addresses,

source/destination pairs, requested URLs, etc.

� Example (N=64)

� Hard problem for random sampling! [Charikar et al.’00]
– Must sample almost the entire table to guarantee the estimate is

within a factor of 10 with probability > 1/2, regardless of the
estimator used!

� AMS and CM only good for multisetmultiset semanticssemantics

��������������� ���� ���� ���� ���� �������� ���� �������� ���� ����

/ �������!�
����
(��'���������

0F

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
56

0

FM Sketch [Flajolet, Martin’85]

� Estimates number of distinct inputs (count distinct)

� Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by

counting trailing zeros

� Maintain FM Sketch = bitmap array of L = log N bits
– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6 5 4 3 2 1

29

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
57

FM Sketch Analysis

� If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

– Let R = position of rightmost zero in FM, indicator of log(d)
– Basic estimate d = c2R for scaling constant c � 1.3

– Average many copies (different hash fns) improves accuracy

fringe of 0/1s
around log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position
�

log(d)position � log(d)

1L R

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
58

FM Sketch Properties
� With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with

probability at least 1-δ [Bar-Yossef et al’02], [Ganguly et al.’04]

– 10 copies gets � 30% error, 100 copies < 10% error

� Delete-Proof: Use counters instead of bits in sketch locations

– +1 for inserts, -1 for deletes

� Composable: Component-wise OR/add distributed sketches
together

– Estimate |S1 ��� Sk| = set union cardinality

00 0 1 11

6 5 4 3 2 1

00 1 1 10

6 5 4 3 2 1

00 1 1 11

6 5 4 3 2 1

+ =

30

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
59

Generalization: Distinct Values Queries
SELECT COUNT(DISTINCT target-attr)
FROM relation
WHERE predicate

SELECT COUNT(DISTINCT o_custkey)
FROM orders
WHERE o_orderdate >= ‘2008-01-01’

– “How many distinct customers have placed orders this
year?”

– Predicate not necessarily only on the DISTINCT target
attribute

– Approximate answers with error guarantees over a stream of
tuples?

Template

TPC-H example

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
60

Distinct Sampling [Gibbons’01]

� Use FM-like technique to collect a specially-tailored sample
over the distinct values in the stream

– Use hash function to sample values from the data domain!!

– Uniform random sample of the distinct values

– Very different from traditional random sample: each distinct value
is chosen uniformly regardless of its frequency

– DISTINCT query answers: simply scale up sample answer by
sampling rate

� To handle additional predicates

– Reservoir sampling of tuples for each distinct value in the sample

– Use reservoir sample to evaluate predicates

'
���%
�
'
���%
�

31

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
61

Building a Distinct Sample [Gibbons’01]

� Use FM-like hash function h() for each streaming value x

– Prob[h(x) = k] = 1/ 2k

�� Key Invariant:Key Invariant: “All values with h(x) >= level (and only these) are in the
distinct sample”

DistinctSampling(B , r)

// B = space bound, r = tuple-reservoir size for each distinct value

level = 1; S =

for each new tuple t do

let x = value of DISTINCT target attribute in t

if h(x) >= level then // x belongs in the distinct sample

use t to update the reservoir sample of tuples for x

if |S| >= B then // out of space

evict from S all tuples with h(target-attribute-value) = level

set level = level + 1

φ

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
62

Using the Distinct Sample
� If level = k for our sample, then we have selected all distinct values x such

that h(x) >= k

– Prob[h(x) >= k] = 1/ 2k-1

– By h()’s randomizing properties, we have uniformly sampled a

fraction of the distinct values in our stream

� Query Answering: Run distinct-values query on the distinct sample and scale

the result up by

� Distinct-value estimation: Guarantee ε relative error with probability � 1 - δ
using O(log(1/δ)/ε2) space

– For q% selectivity predicates the space goes up inversely with q

� Experimental results: 0-10% error vs. 50-250% error for previous best

approaches, using 0.2% to 10% synopses

1)(k2 −−

()��
�* $+,�-���&
.

1k2 −

32

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
63

Sketching and Sampling Summary

� Sampling and sketching ideas are at the heart of many
stream mining algorithms
– Moments/join aggregates, histograms, wavelets, top-k,

frequent items, other mining problems, …

� A sample is a quite general representative of the data set;
sketches tend to be specific to a particular purpose
– FM sketch for count distinct, AMS sketch for joins/L2

estimation, …

� Traditional sampling does not work in the turnstile (arrivals
& departures) model
– BUT… see recent generalizations of distinct sampling

[Ganguly et al.’04], [Cormode et al.’05]; as well as [Gemulla
et al.’08]

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
64

Practicality

� Algorithms discussed here are quite simple and very fast
– Sketches can easily process millions of updates per second

on standard hardware
– Limiting factor in practice is often I/O related

� Implemented in several practical systems:
– AT&T’s Gigascope system on live network streams
– Sprint’s CMON system on live streams
– Google’s log analysis

� Sample implementations available on the web
– http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

– or web search for ‘massdal’

33

The Sliding Window Model

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
66

Sliding Window Streaming Model

� Model
– At every time t, a data record arrives
– The record “expires” at time t+N (N is the window length)

� When is it useful?
– Make decisions based on “recently observed” data
– Stock data
– Sensor networks

N N

34

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
67

Time in Data Stream Models
Tuples arrive X1, X2, X3, …, Xt, …

� Function f(X,t,NOW)

– Input at time t: f(X1,1,t), f(X2,2,t). f(X3,3,t), …, f(Xt,t,t)

– Input at time t+1: f(X1,1,t+1), f(X2,2,t+). f(X3,3,t+1), …, f(Xt+1,t+1,t+1)

� Full history: f == identity

� Partial history: Decay

–– Exponential decayExponential decay: f(X,t, NOW) = 2-(NOW-t)*X

� Input at time t: 2-(t-1)*X1, 2-(t-2)*X2,, …, ½ * Xt-1,Xt

� Input at time t+1: 2-t*X1, 2-(t-1)*X2,, …, 1/4 * Xt-1, ½ *Xt, Xt+1

–– Sliding windowSliding window (special type of decay):

� f(X,t,NOW) = X if NOW-t < N

� f(X,t,NOW) = 0, otherwise

� Input at time t: X1, X2, X3, …, Xt

� Input at time t+1: X2, X3, …, Xt, Xt+1,

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
68

Simple Statistics over Sliding Windows

� Bitstream input – Count the number of ones [Datar et al.’02]
– Exact solution: (N) bits

– Algorithm BasicCounting
� (1 �) relative error approximation

� Space: O(1/ (log2N)) bits
� Time: O(log N) worst case, O(1) amortized per record

– Lower Bound:
� Space: (1/ (log2N)) bits

35

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
69

Approach: Temporal Histograms

Example: … 01101010011111110110 0101 …
Equi-width histogram:

… 0110 1010 0111 1111 0110 0101 …
� Issues:

– Error is in the last (leftmost) bucket
– Bucket counts (left to right): Cm,Cm-1, …,C2,C1

– Absolute error � Cm/2
– Answer � Cm-1+…+C2+C1+1.

� Relative error � Cm / (2(Cm-1+…+C2+C1+1))
– Maintain: Cm/ (2(Cm-1+…+C2+C1+1)) � (=1/k)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
70

Naïve: Equi-Width Histograms

� Goal: Maintain Cm/2 � (Cm-1+…+C2+C1+1)

Problem case:
… 0110 1010 0111 1111 0110 1111 0000 0000 0000 0000 …

� Note:
– Every bucket will be the last bucket sometime!
– New records may be all zeros �

For every bucket i, require Ci/2 � (Ci-1+…+C2+C1+1)

36

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
71

Exponential Histograms (EHs)

� Data structure invariant:

– Bucket sizes are non-decreasing powers of 2

– For every bucket size other than that of the last bucket,
there are at least k/2 and at most k/2+1 buckets of that size

– Example: k=4: (8,4,4,4,2,2,2,1,1..)

� Invariant implies:

– Assume Ci=2j, then

Ci-1+…+C2+C1+1 � k/2*(
�

(1+2+4+..+2j-1)) � k*2j /2 � k/2*Ci

– Setting k = 1/ε implies the required error guarantee!

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
72

Space Complexity

� Number of buckets m:
– m � [# of buckets of size j]*[# of different bucket sizes]

� (k/2 +1) * ((log(2N/k)+1) = O(k* log(N))

� Each bucket requires O(log N) bits
� Total memory:

O(k log2 N) = O(1/ * log2 N) bits

� Invariant (with k = 1/ε) maintains error guarantee!
� Completely deterministic!

37

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
73

EH Maintenance Algorithm

Data structures:
� For each bucket: timestamp of most recent 1, size = #1’s

in bucket
� LAST = size of the last bucket
� TOTAL = Total size of the buckets

New element arrives at time t
� If last bucket expired, update LAST and TOTAL

� If (element == 1)
Create new bucket with size 1; update TOTAL

� Merge buckets if there are more than k/2+2 buckets of the same size

� Update LAST if changed

Anytime estimate: TOTAL – (LAST/2)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
74

Example Run

� If last bucket expired, update LAST and TOTAL
� If (element == 1)

Create new bucket with size 1; update TOTAL
� Merge two oldest buckets if there are more than k/2+2

buckets of the same size
� Update LAST if changed

Example (k=2):
32,16,8,8,4,4,2,1,1
32,16,8,8,4,4,2,2,1
32,16,8,8,4,4,2,2,1,1
32,16,16,8,4,2,1

38

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
75

The Power of EHs
� Counter for N items = O(logN) space

� EH = ε−approximate counter over sliding window of N
items that requires O(1/ * log2 N) space

– O(1/ε logN) penalty for (approximate) sliding-window
counting

– Deterministic error guarantee!

� Can plug-in EH-counters to counter-based streaming
methods � work in slidingwork in sliding--window model!!window model!!

– Examples: histograms, CM-sketches, …

� Complication: counting is now ε−approximate

– Account for that in analysis

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
76

Tutorial Outline

� Motivation & Streaming Applications

� Centralized Stream Processing

� Distributed Stream Processing

– Basic model and problem setup

– One-shot distributed-stream querying

– Continuous distributed-stream tracking

– Probabilistic distributed data acquisition

� Open Problems & Future Directions

� Conclusions

39

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
77

Data-Stream Algorithmics Model

� Approximate answers– e.g. trend analysis, anomaly detection
� Requirements for stream synopses

– Single Pass: Each record is examined at most once
– Small Space: Log or polylog in data stream size
– Small-time: Low per-record processing time (maintain synopses)
– Also: delete-proof, composable, …

Stream Processor

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer with high
probability”

Stream Synopses
(in memory)

Continuous Data Streams

Query Q

R1

Rk

(Terabytes) (Kilobytes)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
78

Distributed Streams Model

� Large-scale querying/monitoring: Inherently distributed!
– Streams physically distributed across remote sites

E.g., stream of UDP packets through subset of edge routers

� Challenge is “holistic” querying/monitoring
– Queries over the union of distributed streams Q(S1 � S2 � …)
– Streaming data is spread throughout the network

Network
Operations

Center (NOC)

Query site Query

0 1
1

1 1

0
0

1

1 0

0

1
1

0

1
1

0

1
1

0

1
1

Q(S1
�

S2
�

…)

S6

S5S4

S3
S1

S2

40

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
79

Distributed Streams Model

� Need timely, accurate, and efficient query answers
� Additional complexity over centralized data streaming!
� Need space/time- and communication-efficient solutions

– Minimize network overhead
– Maximize network lifetime (e.g., sensor battery life)
– Cannot afford to “centralize” all streaming data

Network
Operations

Center (NOC)

Query site Query

0 1
1

1 1

0
0

1

1 0

0

1
1

0

1
1

0

1
1

0

1
1

Q(S1
�

S2
�

…)

S6

S5S4

S3
S1

S2

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
80

Distributed Stream Querying Space

“One-shot” vs. Continuous Querying
� One-shot queries: On-demand “pull”

query answer from network
– One or few rounds of communication
– Nodes may prepare for a class of queries

� Continuous queries: Track/monitor
answer at query site at all times
– Detect anomalous/outlier behavior in

(near) real-time, i.e., “Distributed triggers”
– Challenge is to minimize communication

Use “push-based” techniques
May use one-shot algs as subroutines

Querying
Model

Communication
Model

Class of
Queries

41

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
81

Distributed Stream Querying Space

Minimizing communication often needs
approximation and randomization

� E.g., Continuously monitor average value
– Must send every change for exact answer
– Only need ‘significant’ changes for approx

(def. of “significant” specifies an algorithm)

� Probability sometimes vital to reduce
communication
– count distinct in one shot model

needs randomness
– Else must send complete data

Querying
Model

Communication
Model

Class of
Queries

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
82

Distributed Stream Querying Space
Class of Queries of Interest
� Simple algebraic vs. holistic aggregates

– E.g., count/max vs. quantiles/top-k

� Duplicate-sensitive vs. duplicate-insensitive
– “Bag” vs. “set” semantics

� Complex correlation queries
– E.g., distributed joins, set expressions, …

Querying
Model

Communication
Model

Class of
Queries 1S

0 1
1

1 1

0
0

1

1 0

2S

0

1
1

0

1
1

0

1
1

0

1
1

3S
6S

5S
4S

Query

|(S1� S2) ���� (S5� S6)|

42

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
83

Distributed Stream Querying Space

Communication Network Characteristics
Topology: “Flat” vs. Hierarchical

vs. Fully-distributed (e.g., P2P DHT)

Querying
Model

Communication
Model

Class of
Queries

Coordinator

Fully DistributedHierarchical“ Flat”

Other network characteristics:
– Unicast (traditional wired), multicast, broadcast (radio nets)
– Node failures, loss, intermittent connectivity, …

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
84

Tutorial Outline

� Motivation & Streaming Applications

� Centralized Stream Processing

� Distributed Stream Processing

– One-shot distributed-stream querying

� Tree-based aggregation

� Robustness and loss

� Decentralized computation and gossiping

� Open Problems & Future Directions

� Conclusions

43

Tree Based Aggregation

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
86

Network Trees

� Tree structured networks are a basic primitive
– Much work in, e.g., sensor nets on building communication

trees
– We assume that tree has been built, focus on issues with a

fixed tree

Flat
Hierarchy

Base Station

Regular Tree

44

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
87

Computation in Trees

� Goal is for root to compute a
function of data at leaves

� Trivial solution: push all data up
tree and compute at base station

– Strains nodes near root: batteries drain, disconnecting
network
– Very wasteful: no attempt at saving communication

� Can do much better by “In-network” query processing
– Simple example: computing max
– Each node hears from all children, computes max and
sends to parent (each node sends only one item)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
88

Efficient In-network Computation

� What are aggregates of interest?
– SQL Primitives: min, max, sum, count, avg

– More complex: count distinct, point & range queries,
quantiles, wavelets, histograms, sample

– Data mining: association rules, clusterings etc.

� Some aggregates are easy – e.g., SQL primitives

� Can set up a formal framework for in-network
aggregation

45

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
89

Generate, Fuse, Evaluate Framework

� Abstract in-network aggregation. Define functions:
– Generate, g(i): take input, produce summary (at leaves)
– Fusion, f(x,y): merge two summaries (at internal nodes)
– Evaluate, e(x): output result (at root)

� E.g. max: g(i) = i f(x,y) = max(x,y) e(x) = x
� E.g. avg: g(i) = (i,1) f((i,j),(k,l)) = (i+k,j+l) e(i,j) = i/j

� Can specify any function with
g(i) ={i}, f(x,y) = x � y
Want to bound |f(x,y)|

g(i)

f(x,y)

e(x)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
90

Classification of Aggregates

� Different properties of aggregates
(from TAG paper [Madden et al ’02])
– Duplicate sensitive – is answer same if multiple identical

values are reported?
– Example or summary – is result some value from input

(max) or a small summary over the input (sum)

– Monotonicity – is F(X � Y) monotonic compared to F(X)
and F(Y) (affects push down of selections)

– Partial state – are |g(x)|, |f(x,y)| constant size, or growing?
Is the aggregate algebraic, or holistic?

46

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
91

Classification of some aggregates

algebraic?NoExample(s)Yessample

holisticNoSummaryYeshistogram

holisticYesSummaryNocount distinct

holisticNoExampleYesmedian, quantiles

algebraicNoSummaryYesaverage

algebraicYesSummaryYessum, count

algebraicYesExampleNomin, max

Partial
State

MonotonicExample or
summary

Duplicate
Sensitive

adapted from [Madden et al.’02]

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
92

Cost of Different Aggregates

Simulation Results

2500 Nodes

50x50 Grid

Depth = ~10

Neighbors = ~20

Uniform Dist.

Total Bytes Sent against Aggregation Function

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

EXTERNAL MAX AVERAGE DISTINCT MEDIAN

Aggregation Function

T
o

ta
l B

yt
es

 X
m

itt
ed

Holistic

Algebraic

Slide adapted from http://db.lcs.mit.edu/madden/html/jobtalk3.ppt

47

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
93

Holistic Aggregates

� Holistic aggregates need the whole input to compute (no
summary suffices)
– E.g., count distinct, need to remember all distinct items

to tell if new item is distinct or not

� So, focus on approximating aggregates to limit data sent
– Adopt ideas from sampling, data reduction, streams, etc.

� Many techniques for in-network aggregate approximation:
– Sketch summaries
– Other mergeable summaries
– Building uniform samples, etc…

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
94

Sketch Summaries

� Sketch summaries are typically pseudo-random linear
projections of data. Fits generate/fuse/evaluate model:
– Suppose input is vectors xi and aggregate is F(�i xi)
– Sketch of xi, g(xi), is a matrix product Mxi

– Combination of two sketches is their summation:
f(g(xi),g(xj)) = M(xi + xj) = Mxi + Mxj = g(xi) + g(xj)

– Extraction function e() depends on sketch, different
sketches allow approximation of different aggregates

linear projection

48

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
95

Sketch Summary

� CM sketch guarantees approximation error on point
queries less than ε||x||1 in size O(1/ε log 1/δ)
– Probability of more error is less than 1-δ
– Similar guarantees for range queries, quantiles, join size

� AMS sketches approximate self-join and join size with error
less than ε||x||2 ||y||2 in size O(1/ε2 log 1/δ)
– [Alon, Matias, Szegedy ’96, Alon, Gibbons, Matias, Szegedy ’99]

� FM sketches approximate number of distinct items (||x||0)
with error less than ε||x||0 in size O(1/ε2 log 1/δ)

� Bloom filters: compactly encode sets in sketch like fashion

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
96

Other approaches: Careful Merging

� Approach 1. Careful merging of summaries
– Small summaries of a large amount of data at each site

– E.g., Greenwald-Khanna algorithm (GK) keeps a small data
structure to allow quantile queries to be answered

– Can sometimes carefully merge summaries up the tree
Problem: if not done properly, the merged summaries can
grow very large as they approach root

– Balance final quality of answer against number of merges by
decreasing approximation quality (precision gradient)

– See [Greenwald, Khanna ’04; Manjhi et al.’05; Manjhi, Nath, Gibbons ‘05]

49

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
97

Other approaches: Domain Aware

� Approach 2. Domain-aware Summaries
– Each site sees information drawn from discrete domain

[1…N] – e.g., for IP addresses, N = 232

– Build summaries by imposing tree-structure on domain
and keeping counts of nodes representing subtrees

– [Agrawal et al ’04] show O(1/ε log N)
size summary for quantiles
and range & point queries

– Can merge repeatedly without
increasing error or summary size

1 3

2 1

3

5

1

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
98

Other approaches: Random Samples

� Approach 3. Uniform random samples
– As in centralized databases, a uniform random sample of

size O(1/ε2 log 1/δ) answers many queries
– Can collect a random sample of data from each node, and

merge up the tree (will show algorithms later)
– Works for frequent items, quantile queries, histograms
– No good for count distinct, min, max, wavelets…

50

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
99

Thoughts on Tree Aggregation

� Some methods too heavyweight for today’s sensor nets,
but as technology improves may soon be appropriate

� Most are well suited for, e.g., wired network monitoring
– Trees in wired networks often treated as flat, i.e. send

directly to root without modification along the way

� Techniques are fairly well-developed owing to work on
data reduction/summarization and streams

� Open problems and challenges:
– Improve size of larger summaries
– Avoid randomized methods?

Or use randomness to reduce size?

Robustness and Loss

51

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
101

Unreliability

� Tree aggregation techniques assumed a reliable network
– we assumed no node failure, nor loss of any message

� Failure can dramatically affect the computation
– E.g., sum – if a node near the root fails, then a whole

subtree may be lost

� Clearly a particular problem in sensor networks
– If messages are lost, maybe can detect and resend
– If a node fails, may need to rebuild

the whole tree and re-run protocol
– Need to detect the failure,

could cause high uncertainty

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
102

Sensor Network Issues

� Sensor nets typically based on radio communication
– So broadcast (within range) cost the same as unicast
– Use multi-path routing: improved reliability, reduced impact

of failures, less need to repeat messages

� E.g., computation of max
– structure network into rings of nodes

in equal hop count from root
– listen to all messages from ring below,

then send max of all values heard
– converges quickly, high path diversity
– each node sends only once, so same cost as tree

52

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
103

Order and Duplicate Insensitivity

� It works because max is Order and Duplicate Insensitive
(ODI) [Nath et al.’04]

� Make use of the same e(), f(), g() framework as before
� Can prove correct if e(), f(), g() satisfy properties:

– g gives same output for duplicates: i=j � g(i) = g(j)

– f is associative and commutative:
f(x,y) = f(y,x); f(x,f(y,z)) = f(f(x,y),z)

– f is same-synopsis idempotent: f(x,x) = x

� Easy to check min, max satisfy these requirements,
sum does not

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
104

Applying ODI idea

� Only max and min seem to be “naturally” ODI

� How to make ODI summaries for other aggregates?
� Will make use of duplicate insensitive primitives:

– Flajolet-Martin Sketch (FM)
– Min-wise hashing
– Random labeling
– Bloom Filter

53

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
105

0

FM Sketch [Flajolet, Martin’85]

� Estimates number of distinct inputs (count distinct)

� Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by

counting trailing zeros

� Maintain FM Sketch = bitmap array of L = log N bits
– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6 5 4 3 2 1

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
106

FM Sketch – ODI Properties

� Fits into the Generate, Fuse, Evaluate framework.
– Can fuse multiple FM summaries (with same hash h()):

take bitwise-OR of the summaries

� With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with
probability at least 1-δ
– 10 copies gets � 30% error, 100 copies < 10% error

– Can pack FM into e.g., 32 bits. Assume h() is known to all.

� Similar ideas used in [Gibbons, Tirthapura ’01]
– improves time cost to create summary, simplifies analysis

00 0 1 11

6 5 4 3 2 1

00 1 1 10

6 5 4 3 2 1

00 1 1 11

6 5 4 3 2 1

+ =

54

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
107

FM within ODI

� What if we want to count, not count distinct?
– E.g., each site i has a count ci, we want �i ci

– Tag each item with site ID, write in unary: (i,1), (i,2)… (i,ci)
– Run FM on the modified input, and run ODI protocol

� What if counts are large?
– Writing in unary might be too slow, need to make efficient

– [Considine et al.’05]: simulate a random variable that tells which
entries in sketch are set

– [Aduri, Tirthapura ’05]: allow range updates, treat (i,ci) as range.

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
108

Other applications of FM in ODI

� Can take sketches and other summaries and make them
ODI by replacing counters with FM sketches
– CM sketch + FM sketch = CMFM, ODI point queries etc.

[Cormode, Muthukrishnan ’05]
– Q-digest + FM sketch = ODI quantiles

[Hadjieleftheriou, Byers, Kollios ’05]
– Counts and sums

[Nath et al.’04, Considine et al.’05]

00 1 1 11

6 5 4 3 2 1

55

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
109

Combining ODI and Tree

� Tributaries and Deltas idea
[Manjhi, Nath, Gibbons ’05]

� Combine small synopsis of
tree-based aggregation
with reliability of ODI

– Run tree synopsis at
edge of network, where connectivity is limited (tributary)

– Convert to ODI summary in dense core of network (delta)

– Adjust crossover point adaptively

Delta
(Multi-path region)

Tributary
(Tree region)

Fi
gu

re
 d

ue
 to

 A
m

it
M

an
jh

i

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
110

Random Samples

� Suppose each node has a (multi)set of items.
� How to find a random sample of the union of all sets?
� Use a “random tagging” trick [Nath et al.’05]:

– For each item, attach a random label in range [0…1]
– Pick the items with the K smallest labels to send
– Merge all received items, and pick K smallest labels

(a, 0.34)

(c, 0.77)

(d, 0.57)

(b,0.92)

(a, 0.34)

(c, 0.77)

(a, 0.34)

K=1

56

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
111

Uniform Random Samples

� Result at the coordinator:
– A sample of size K items from the input
– Can show that the sample is chosen uniformly at random

without replacement (could make “with replacement”)

� Related to min-wise hashing
– Suppose we want to sample from distinct items
– Then replace random tag with hash value on item name
– Result: uniform sample from set of present items

� Sample can be used for quantiles, frequent items, etc.

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
112

Bloom Filters

� Bloom filters compactly encode set membership
– k hash functions map items to bit vector k times
– Set all k entries to 1 to indicate item is present
– Can lookup items, store set of size n in ~ 2n bits

� Bloom filters are ODI, and merge like FM sketches

item

1 1 1

57

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
113

Open Questions and Extensions

� Characterize all queries – can everything be made ODI
with small summaries?

� How practical for different sensor systems?
– Few FM sketches are very small (10s of bytes)
– Sketch with FMs for counters grow large (100s of KBs)
– What about the computational cost for sensors?

� Amount of randomness required, and implicit
coordination needed to agree hash functions, etc.?

� Other implicit requirements: unique sensor IDs?

00 1 1 11

6 5 4 3 2 1

Decentralized Computation and
Gossiping

58

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
115

Decentralized Computations

� All methods so far have a single point of failure: if the
base station (root) dies, everything collapses

� An alternative is Decentralized Computation
– Everyone participates in computation, all get the result
– Somewhat resilient to failures / departures

� Initially, assume anyone can talk to anyone else directly

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
116

Gossiping

� “Uniform Gossiping” is a well-studied protocol for
spreading information
– I know a secret, I tell two friends, who tell two friends …
– Formally, each round, everyone who knows the data

sends it to one of the n participants chosen at random
– After O(log n) rounds, all n participants know the

information (with high probability) [Pittel 1987]

59

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
117

Aggregate Computation via Gossip

� Naïve approach: use uniform gossip to share all the
data, then everyone can compute the result.
– Slightly different situation: gossiping to exchange n secrets
– Need to store all results so far to avoid double counting
– Messages grow large: end up sending whole input around

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
118

ODI Gossiping

� If we have an ODI summary, we can gossip with this
– When new summary received, merge with current summary
– ODI properties ensure repeated merging stays accurate

� Number of messages required is same as uniform gossip
– After O(log n) rounds everyone knows the merged summary
– Message size and storage space is a single summary
– O(n log n) messages in total
– So, this works for FM, FM-based sketches, samples, etc.

60

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
119

Aggregate Gossiping

� ODI gossiping doesn’t always work
– May be too heavyweight for really restricted devices
– Summaries may be too large in some cases

� An alternate approach due to [Kempe et al. ’03]
– A novel way to avoid double counting: split up the counts

and use “conservation of mass”

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
120

Push-Sum

� Setting: all n participants have a value, want to compute
average

� Define “Push-Sum” protocol
– In round t, node i receives set of (sumj

t-1, countj
t-1) pairs

– Compute sumi
t = �j sumj

t-1, counti
t = �j countj

– Pick k uniformly from other nodes
– Send (½ sumi

t, ½counti
t) to k and to i (self)

� Round zero: send (value,1) to self

� Conservation of counts: �i sumi
t stays same

� Estimate avg = sumi
t/countit

i

x y

(x+y)/2

(x+y)/2

61

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
121

Push-Sum Convergence

8,1 8,1

8,18,1

10,1 8,1

2,112,1

6,1
9, 1

11,3/26, ½

11½,3/2 7½,1

5½,3/47½,3/4

8½,9/8 7½,7/8

8½,9/8
7½,7/8

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
122

Convergence Speed

� Can show that after O(log n + log 1/ε + log 1/δ) rounds,
the protocol converges within ε
– n = number of nodes

– ε = (relative) error

– δ = failure probability

� Correctness due in large part to conservation of counts
– Sum of values remains constant throughout

– (Assuming no loss or failure)

62

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
123

i

Resilience to Loss and Failures

� Some resilience comes for “free”
– If node detects message was not delivered, delay 1 round

then choose a different target
– Can show that this only increases number of rounds by a

small constant factor, even with many losses
– Deals with message loss, and “dead” nodes without error

� If a node fails during the protocol, some “mass” is lost,
and count conservation does not hold
– If the mass lost is not too large, error is bounded…

i

x y
x+y lost from
computation

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
124

Gossip on Vectors

� Can run Push-Sum independently on each entry of vector

� More strongly, generalize to Push-Vector:

– Sum incoming vectors

– Split sum: half for self, half for randomly chosen target

– Can prove same conservation and convergence properties

� Generalize to sketches: a sketch is just a vector

– But ε error on a sketch may have different impact on result

– Require O(log n + log 1/ε + log 1/δ) rounds as before

– Only store O(1) sketches per site, send 1 per round

63

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
125

Thoughts and Extensions

� How realistic is complete connectivity assumption?

– In sensor nets, nodes only see a local subset

– Variations: spatial gossip ensures nodes hear about local
events with high probability [Kempe, Kleinberg, Demers ’01]

� Can do better with more structured gossip, but impact of
failure is higher [Kashyap et al.’06]

� Is it possible to do better when only a subset of nodes
have relevant data and want to know the answer?

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
126

Tutorial Outline

� Motivation & Streaming Applications

� Centralized Stream Processing

� Distributed Stream Processing

– One-shot distributed-stream querying

– Continuous distributed-stream tracking

� Adaptive slack allocation

� Predictive local-stream models

� Distributed triggers

� Open Problems & Future Directions

� Conclusions

64

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
127

Continuous Distributed Model

� Other structures possible (e.g., hierarchical)
� Could allow site-site communication, but mostly unneeded

Goal:: Continuously track (global) query over streams at
the coordinator
– Large-scale network-event monitoring, real-time anomaly/

DDoS attack detection, power grid monitoring, …

Coordinator

m sites

local stream(s)
seen at each

site

S1 Sm

Track Q(S1,…,Sm)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
128

Continuous Distributed Streams

� But… local site streams continuously change!
– E.g., new readings are made, new data arrives
– Assumption: Changes are somewhat smooth and gradual

� Need to guarantee an answer at the coordinator that is
always correct, within some guaranteed accuracy bound

� Naïve solutions must continuously centralize all data
– Enormous communication overhead!

S1 Sm

Track Q(S1,…,Sm)

65

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
129

Challenges

� Monitoring is Continuous…
– Real-time tracking, rather than one-shot query/response

� …Distributed…
– Each remote site only observes part of the global stream(s)
– Communication constraints: must minimize monitoring burden

� …Streaming…
– Each site sees a high-speed local data stream and can be

resource (CPU/memory) constrained

� …Holistic…
– Challenge is to monitor the complete global data distribution
– Simple aggregates (e.g., aggregate traffic) are easier

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
130

How about Periodic Polling?

� Sometimes periodic polling suffices for simple tasks

– E.g., SNMP polls total traffic at coarse granularity

� Still need to deal with holistic nature of aggregates

� Must balance polling frequency against communication

– Very frequent polling causes high communication,
excess battery use in sensor networks

– Infrequent polling means delays in observing events

� Need techniques to reduce communication
while guaranteeing rapid response to events

66

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
131

Communication-Efficient Monitoring

Filters
x

“ push”

Filters
x

adjust

� Exact answers are not needed
– Approximations with accuracy guarantees suffice
– Tradeoff accuracy and communication/ processing cost

� Key Insight: “Push-based” in-network processing

– Local filters installed at sites process local streaming updates

� Offer bounds on local-stream behavior (at coordinator)

– “Push” information to coordinator only when filter is violated

– Coordinator sets/adjusts local filters to guarantee accuracy

Adaptive Slack Allocation

67

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
133

Slack Allocation

� A key idea is Slack Allocation

� Because we allow approximation, there is slack: the
tolerance for error between computed answer and truth

– May be absolute: |Y - | ≤ ε: slack is ε

– Or relative: /Y ≤ (1±ε): slack is εY

� For a given aggregate, show that the slack can be
divided between sites

� Will see different slack division heuristics

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
134

Top-k Monitoring

� Influential work on monitoring [Babcock, Olston’03]
– Introduces some basic heuristics for dividing slack
– Use local offset parameters so that all local distributions

look like the global distribution
– Attempt to fix local slack violations by negotiation with

coordinator before a global readjustment
– Showed that message delay does not affect correctness

Top 100

Im
ag

es
 fr

om
 h

ttp
://

ww
w.

bi
llb

oa
rd

.c
om

68

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
135

Top-k Scenario

� Each site monitors n objects with local counts Vi,j

� Values change over time with updates seen at site j

� Global count Vi = �j Vi,j

� Want to find topk, an ε-approximation to true top-k set:
– OK provided i∈ topk, l ∉ topk, Vi + ε ≥ Vl

item i ∈ [n]
site j ∈ [m]

gives a little
“wiggle room”

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
136

Adjustment Factors

� Define a set of ‘adjustment factors’, δi,j

– Make top-k of Vi,j + δi,j same as top-k of Vi

� Maintain invariants:
1. For item i, adjustment factors sum to zero

2. δl,0 of non-topk item l ≤ δi,0 + ε of topk item i
– Invariants and local conditions used to prove correctness

69

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
137

Local Conditions and Resolution

If any local condition violated at site j, resolution is triggered

� Local resolution: site j and coordinator only try to fix
– Try to “borrow” from δi,0 and δl,0 to restore condition

� Global resolution: if local resolution fails, contact all sites
– Collect all affected Vi,js – i.e., topk plus violated counts

– Compute slacks for each count, and reallocate (next)

– Send new adjustment factors δ’i,j, continue

δi,j

Vi,j

i ∈ topk

≥≥≥≥ Vl,j

δl,j

l ∉ topk

Local Conditions:
At each site j check adjusted
topk counts dominate non-topk

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
138

Slack Division Strategies

� Define “slack” based on current counts and adjustments
� What fraction of slack to keep back for coordinator?

– δ
i,0

= 0: No slack left to fix local violations
– δi,0 = 100% of slack: Next violation will be soon
– Empirical setting: δi,0 = 50% of slack when ε very small

δi,0 = 0 when ε is large (ε �
Vi/1000)

� How to divide remainder of slack?
– Uniform: 1/m fraction to each site
– Proportional: Vi,j/Vi fraction to site j for i

uniform

proportional

70

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
139

Pros and Cons

� Result has many advantages:

– Guaranteed correctness within approximation bounds

– Can show convergence to correct results even with delays

– Communication reduced by 1 order magnitude
(compared to sending Vi,j whenever it changes by ε/m)

� Disadvantages:
– Reallocation gets complex: must check O(km) conditions

– Need O(n) space at each site, O(mn) at coordinator

– Large (� O(k)) messages

– Global resyncs are expensive: m messages to k sites

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
140

Other Problems: Aggregate Values

� Problem 1: Single value tracking
Each site has one value vi, want to compute f(v), e.g., sum

� Allow small bound of uncertainty in answer
– Divide uncertainty (slack) between sites
– If new value is outside bounds, re-center on new value

� Naïve solution: allocate equal bounds to all sites
– Values change at different rates; queries may overlap

� Adaptive filters approach [Olston, Jiang, Widom ’03]
– Shrink all bounds and selectively grow others:

moves slack from stable values to unstable ones
– Base growth on frequency of bounds violation, optimize

71

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
141

Other Problems: Set Expressions

� Problem 2: Set Expression Tracking
A � (B C) where A, B, C defined by distributed streams

� Key ideas [Das et al.’04]:

– Use semantics of set expression: if b arrives in set B, but b
already in set A, no need to send

– Use cardinalities: if many copies of b seen already, no
need to send if new copy of b arrives or a copy is deleted

– Combine these to create a charging scheme for each
update: if sum of charges is small, no need to send.

– Optimizing charging is NP-hard, heuristics work well.

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
142

� Problem 3: ODI aggregates
e.g., count distinct in continuous distributed model

� Two important parameters emerge:

– How to divide the slack

– What the site sends to coordinator

� In [Cormode et al.’06]:
– Share slack evenly: hard to do otherwise for this aggregate

– Sharing sketch of global distribution saves communication

– Better to be lazy: send sketch in reply, don’t broadcast

Other Problems: ODI Aggregates

Sk0, D0 = |Sk0|
Coordinator

site 1 site k

…
Ski

Ski
…

site i
Sk1 Skk

Sk0

Ski

72

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
143

General Lessons

� Break a global (holistic) aggregate into “safe” local
conditions, so local conditions � global correctness

� Set local parameters to help the tracking
� Use the approximation to define slack, divide slack

between sites (and the coordinator)
� Avoid global reconciliation as much as possible, try to

patch things up locally

Predictive Local-Stream Models

73

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
145

More Sophisticated Local Predictors

� Slack allocation methods use simple “static” prediction
– Site value implicitly assumed constant since last update
– No update from site � last update (“predicted” value) is within

required slack bounds � global error bound

� Dynamic, more sophisticated prediction models for local
site behavior?
– Model complex stream patterns, reduce number of updates

to coordinator
– But... more complex to maintain and communicate (to

coordinator)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
146

Tracking Complex Aggregate Queries

� Continuous distributed tracking of complex aggregate
queries using AMS sketches and local prediction models
[Cormode, Garofalakis’05]

� Class of queries: Generalized inner products of streams

|R�S| = fR ⋅ fS = �v fR[v] fS[v] (± ε ||fR||2 ||fS||2)

– Join/multi-join aggregates, range queries, heavy hitters,
histograms, wavelets, …

R S

Track |R�S|

74

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
147

Local Sketches and Sketch Prediction

� Use (AMS) sketches to summarize local site distributions
– Synopsis=small collection of random linear projections sk(fR,i)
– Linear transform: Simply add to get global stream sketch

� Minimize updates to coordinator through Sketch Prediction
– Try to predict how local-stream distributions (and their

sketches) will evolve over time
– Concise sketch-prediction models, built locally at remote sites

and communicated to coordinator

–– Shared knowledgeShared knowledge on expected stream behavior over time:
Achieve “stability”

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
148

Sketch Prediction

Predicted Distribution Predicted Sketch

True Sketch (at site)

Prediction used at
coordinator for query

answering

Prediction error
tracked locally
by sites (local

constraints)

True Distribution (at site)

Rif

p
Rif

)(sk Rif

)(skp
Rif

75

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
149

Query Tracking Scheme

Tracking. At site j keep sketch of stream so far, sk(fR,i)
– Track local deviation between stream and prediction:

|| sk(fR,i) – skp(fR,i)||2 ���� θ/sqrt(ki) || sk(fR,i) ||2
– Send current sketch (and other info) if violated

Querying. At coordinator, query error ≤ (ε + 2θ)||fR||2 ||fS||2
– ε = local-sketch summarization error (at remote sites)
– θ = upper bound on local-stream deviation from prediction

(“Lag” between remote-site and coordinator view)

� Key Insight: With local deviations bounded, the
predicted sketches at coordinator are guaranteed accurate

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
150

Sketch-Prediction Models

� Simple, concise models of local-stream behavior
– Sent to coordinator to keep site/coordinator “in-sync”
– Many possible alternatives

� Static model: No change in distribution since last update
– Naïve, “no change” assumption:
– No model info sent to coordinator, skp(f(t)) = sk(f(tprev))

)f(tprev (t)f p

76

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
151

Sketch-Prediction Models

� Velocity model: Predict change through “velocity” vectors
from recent local history (simple linear model)

– Velocity model: fp(t) = f(tprev) + ∆t • v

– By sketch linearity, skp(f(t)) = sk(f(tprev)) + ∆t • sk(v)

– Just need to communicate one extra sketch

– Can extend with acceleration component

)f(tprev vt)f(t(t)f prev
p ⋅+=

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
152

sk(v)Velocity

����Static

Predicted SketchInfoModel

Sketch-Prediction Models

� 1 – 2 orders of magnitude savings over sending all data

)()()(vskt)f(tskf(t)sk prev
p ⋅+=

)()()f(tskf(t)sk prev
p =

77

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
153

Lessons, Thoughts, and Extensions

� Dynamic prediction models are a natural choice for
continuous in-network processing
– Can capture complex temporal (and spatial) patterns to

reduce communication

� Many model choices possible
– Need to carefully balance power & conciseness
– Principled way for model selection?

� General-purpose solution (generality of AMS sketch)
– Better solutions for special queries

E.g., continuous quantiles [Cormode et al.’05]

Distributed Triggers

78

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
155

Tracking Distributed Triggers

� Only interested in values of the “global query” above a
certain threshold T
– Network anomaly detection (e.g., DDoS attacks)

� Total number of connections to a destination, “fire” when it
exceeds a threshold

– Air / water quality monitoring, total number of cars on highway
� Fire when count/average exceeds a certain amount

� Introduced in HotNets paper [Jain, Hellerstein et al.’04]

S1 Sm

Query: f(S1,…,Sm) > T ?

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
156

Tracking Distributed Triggers

T

time
� Problem “easier” than approximate query tracking

– Only want accurate f() values when they’re close to threshold

– Exploit threshold for intelligent slack allocation to sites

� Push-based in-network operation even more relevant

– Optimize operation for “common case”

f(S1,…,Sm)

79

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
157

Tracking Thresholded Counts

� Monitor a distributed aggregate count
� Guarantee a user-specified accuracy only if the count

exceeds a pre-specified threshold T [Kerlapura et al.’06]
– E.g., Ni = number of observed connections to 128.105.7.31

and N = �i Ni

N1 Nm

N̂
TNNNN

TNTN

� when ˆ)-1(

 when ˆ0

<≤

<<≤

δ
“

�
-deficient counts”

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
158

� Site i maintains a set of local thresholds ti,j , j= 0, 1, 2, …

� Local filter at site i: ti,f(i)≤ Ni < ti,f(i)+1
– Local count between adjacent thresholds
– Contact coordinator with new “level” f(i) when violated

� Global estimate at coordinator = �i ti,f(i)

� For -deficient estimate, choose local threshold sequences
ti,j such that

�i (ti,f(i)+1-ti,f(i)) < �i ti,f(i) whenever �i ti,f(i)+1 > T

N̂

Thresholded Counts Approach

“ large” to minimize communication!
“ small” to ensure global error bound!

80

N

N̂

UniformUniform

ProportionalProportional

T
N

N̂

T

1N 2N

1N

3N

2N
3N

N

N̂
3N

3N

N

N̂

m

Tδ

m

Tδ2

)1(δ+

0

0
1

2)1(δ+

Site 1

Site 1

Site 2

Site 2 Site 3

Site 3

Coordinator

CoordinatorBlended threshold assignment

MaxError = � T

MaxError = � N

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
160

Blended Threshold Assignment

� Uniform: overly tight filters when N > T
� Proportional: overly tight filters when N � T
� Blended Assignment: combines best features of both:

ti,j+1 = (1+αδ)⋅ ti,j + (1-α)⋅δT/m where α∈ [0,1]

– α = 0 � Uniform assignment
– α = 1 � Proportional assignment

� Optimal value of α exists for given N (expected or
distribution)
– Determined through, e.g., gradient descent

81

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
161

Adaptive Thresholding

� So far, static threshold sequences

– Every site only has “local” view and just pushes updates to
coordinator

� Coordinator has global view of current count estimate

– Can adaptively adjust the local site thresholds (based on
estimate and T)

– E.g., dynamically switch from uniform to proportional
growth strategy as estimate approaches/exceeds T

adjust local thresholdspush “ level” change

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
162

What about Non-Linear Functions?

� For general, non-linear f(), the problem becomes a lot
harder!
– E.g., information gain or entropy over global data distribution

– Non-trivial to decompose the global threshold into “safe”
local site constraints

� E.g., consider N=(N1+N2)/2 and f(N) = 6N – N2 > 1
Impossible to break into thresholds for f(N1) and f(N2)

S1 Sm

Query: f(S1,…,Sm) > T ?

82

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
163

Monitoring General Threshold Functions

� Interesting geometric approach [Scharfman et al.’06]

� Each site tracks a local statistics vector vi (e.g., data
distribution)

� Global condition is f(v) > T, where v = �iλi vi (�iλi = 1)

– v = convex combination of local statistics vectors

� All sites have an estimate e = �ιλi vi
’ of v based on latest

update vi
’ from site i

� Each site i continuously tracks its drift from its most recent
update vi = vi-vi

’

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
164

Monitoring General Threshold Functions

� Key observation: v = �iλi⋅(e+ vi)
(a convex combination of “translated” local drifts)

e

�
v1

�
v2

�
v3

�
v4

�
v5

� v lies in the convex hull of
the (e+ vi) vectors

� Convex hull is completely
covered by the balls
with radii || vi/2||2
centered at e+ vi/2

� Each such ball can be
constructed independently

83

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
165

Monitoring General Threshold Functions

� Monochromatic Region: For all points x in the region f(x)
is on the same side of the threshold (f(x) > T or f(x) ≤ T)

� Each site independently checks its ball is monochromatic

– Find max and min for f() in local ball region (may be costly)

– Broadcast updated value of vi if not monochrome

e

�
v1

�
v2

�
v3

�
v4

�
v5

f(x) > T

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
166

Monitoring General Threshold Functions

� After broadcast, || vi||2 = 0 � Ball at i is monochromatic

e

�
v1

�
v2

�
v3

�
v4

�
v5

f(x) > T

84

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
167

Monitoring General Threshold Functions

� After broadcast, || vi||2 = 0 � Ball at i is monochromatic
– Global estimate e is updated, which may cause more site

update broadcasts

� Coordinator case: Can allocate local slack vectors to sites
to enable “localized” resolutions
– Drift (=radius) depends on slack (adjusted locally for subsets)

e

�
v1

�
v2

�
v3 = 0

�
v4

�
v5

f(x) > T

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
168

Extension: Filtering for PCA Tracking

� Threshold total energy of the low PCA coefficients of Y =
Robust indicator of network-wide anomalies [Lakhina et al.’04]
– Non-linear matrix operator over combined time-series

� Can combine local filtering ideas with stochastic matrix
perturbation theory [Huang et al.’06]

x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

.
xm1 xm2 xm3 . . . xmn

Link Traffic Monitors
NOC

time
window

= Y

85

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
169

Lessons, Thoughts and Extensions

� Key idea in trigger tracking: The threshold is your friend!
– Exploit for more intelligent (looser, yet “safe”) local filtering

� Also, optimize for the common case!
– Threshold violations are typically “outside the norm”
– “Push-based” model makes even more sense here
– Local filters eliminate most/all of the “normal” traffic

� Use richer, dynamic prediction models for triggers?
– Perhaps adapt depending on distance from threshold?

� More realistic network models?
� Geometric ideas for approximate query tracking?

– Connections to approximate join-tracking scheme?

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
170

Tutorial Outline

1

2

63

4 5

� Motivation & Streaming Applications
� Centralized Stream Processing
� Distributed Stream Processing

– One-shot distributed-stream querying
– Continuous distributed-stream tracking
– Probabilistic distributed data acquisition

� Open Problems & Future Directions
� Conclusions

86

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
171

Model-Driven Data Acquisition

� Not only aggregates – Approximate, bounded-error
acquisition of individual sensor values [Deshpande et al. ’04]
– (ε,δ)−approximate acquisition: |Y – | � ε with prob. > 1−δ

� Regular readings entails large amounts of data, noisy or
incomplete data, inefficient, low battery life, …

� Intuition: Sensors give (noisy, incomplete) samples of
real-world processes

� Use dynamic probabilistic model of real-world process to
– Robustly complement & interpret obtained readings
– Drive efficient acquisitional query processing

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
172

Query Processing in TinyDB

Query Processor

Declarative Query
sel ect nodeI D, t emp
wher e nodeI D i n { 1. . 6}

Query Results
1, 22.73,
…
6, 22.1.

Observation Plan
{[temp, 1], [temp, 2],

… , [temp, 6]}

Data
1, temp = 22.73,
…
6, temp = 22.1.

USER

SENSOR
NETWORK

X1

X4

X6
X5

X2

X3

………

2210am2

2110am1

tempTimenodeID

Virtual Table seen
by the User

87

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
173

Model-Based Data Acquisition: BBQ

Query Processor

Declarative Query
Sel ect nodeI D,
t emp ± . 1C, conf (. 95)
wher e nodeI D i n { 1. . 6}

Observation Plan
{[temp, 1],
[voltage, 3],
[voltage, 6]}

Data
1, temp = 22.73,
3, voltage = 2.73
6, voltage = 2.65

USER

SENSOR
NETWORK

X1

X4

X6
X5

X2

X3

Probabilistic
Model

Query Results
1, 22.73, 100%
…
6, 22.1, 99%

A dynamic probabilistic model of how the data (or the
underlying physical process) behaves
• Models the evolution over time
• Captures inter-attribute correlations
• Domain-dependent

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
174

BBQ Details

Probabilistic model captures the joint pdf p(X1,…, Xn)
� Spatial/temporal correlations

– Sensor-to-sensor
– Attribute-to-attribute

E.g., voltage & temperature

� Dynamic: pdf evolves over time
– BBQ: Time-varying multivariate

Gaussians

� Given user query Q and accuracy guarantees (ε, δ)
– Try to answer Q directly from the current model
– If not possible, use model to find efficient observation plan
– Observations update the model & generate (ε,δ) answer

88

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
175

BBQ Probabilistic Queries

� Classes of probabilistic queries

– Range predicates: Is Xi � [ai, bi] with prob. > 1−δ

– Value estimates: Find X’i such that Pr[|Xi – X’i| < ε] > 1 - δ

– Aggregate estimates: (ε,δ)-estimate avg/sum(Xi1, Xi2… Xik)

� Acquire readings if model cannot answer Q at δ conf. level

� Key model operations are

– Marginalization: p(Xi) = � p(X1,…,Xn) dx

– Conditioning: p(X1,…, Xn | observations)

– Integration: �a
b p(X1,…,Xn) dx, also expectation X’i = E[Xi]

All significantly simplified for Gaussians!

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
176

No

BBQ Query Processing
Joint pdf at time=t

p(Xt
1,…, Xt

n)

Probabilistic query
Value of X2±ε

with prob. > 1-δ below 1-δδδδ?

Is

Yes

Return µ2Must sense more data
Example: Observe X1=18

Incorporate into model

P(X2|X1=18)

Higher prob.,
can now

answer query

89

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
177

Evolving the Model over Time

Joint pdf at time=t
p(Xt

1,…, Xt
n |Xt

1=18)

Use a (Markov)
Transition Model

Joint pdf at time=t+1
p(Xt+1

1,…, Xt+1
n |X

t
1=18)

� In general, a two-step process:

)|(...1 tt obsXp)|(...11+ tt obsXp)|(1+...11+ tt obsXp
Trans. Model Condition

� Bayesian filtering (for Gaussians this yields Kalman filters)

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
178

Optimizing Data Acquisition

� Energy/communication-efficient observation plans
– Non-uniform data acquisition costs and network

communication costs
– Exploit data correlations and knowledge of topology

� Minimize Cost(obs) over all obs ���� {1,…, n} so expected
confidence in query answer given obs (from model) > 1−δ

� NP-hard to optimize in general

1
2

63

4 5

cheaper?

90

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
179

Conditional Plans for Data Acquisition
� Observation plans ignore the attribute values observed

– Attribute subset chosen is observed in its entirety
– The observed attribute values give a lot more information

� Conditional observation plans (outlined in [Deshpande et al.’05])
– Change the plan depending on observed attribute values

(not necessarily in the query)
– Not yet explored for probabilistic query answers

SELECT * FROM sensor s WHERE l i ght <100Lux and t emp>20oC

Cost =11

Light <
100 Lux

Temp >
20° C

Cost = 10
σ= .1

Cost = 10
σ = .9
Light <
100 Lux

Temp >
20° C

Cost = 10
σ = .1

Cost = 10
σ = .9

Time in
[6pm, 6am]

N

Y

Cost = 15

Light <
100 Lux

Temp >
20° C

Cost = 10
σ = .5

Cost = 10
σ = .5

Cost = 15

Light <
100 Lux

Temp >
20° C

Cost = 10
σ = .5

Cost = 10
σ = .5

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
180

Continuous Model-Driven Acquisition

Dynamic Replicated Prob Models (Ken)
[Chu et al.’06]

� Model shared and sync’d across base-
station and sensornet

� Nodes continuously check & maintain
model accuracy based on ground truth

– Push vs. Pull (BBQ)

� Problem: In-network model maintenance

– Exploit spatial data correlations

– Model updates decided in-network
and sent to base-station

– Always keep model (ε,δ)-approximate

sel ect nodeI D,
t emp ± . 1C, conf (. 95)
wher e nodeI D i n { 1. . 6}
epoch 2 min

Query
Processor

X1

X4
X6

X5

X2

X3

Probabilistic
Model

in-sync
model
updates

Probabilistic
Model

91

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
181

In-Network Model Maintenance
� Mapping model maintenance

onto network topology
– At each step, nodes check (ε,δ)

accuracy, send updates to base

� Choice of model drastically
affects communication cost
– Must centralize correlated data

for model check/update
– Can be expensive!

� Effect of degree of spatial correlations:

Single-node models Π p(Xi)
No spatial correlations
Cheap – check is local!

Full-network model p(X1,…,Xn)
Full spatial correlations
Expensive – centralize all data!

Query
Processor

X1

X4

X6

X5

X2

X3

Probabilistic
Model

in-sync
model
updates

Probabilistic
Model

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
182

In-Network Model Maintenance

� Problem: Find dynamic probabilistic model and in-network
maintenance schedule to minimize overall communication
– Map maintenance/update operations to network topology

� Key idea for “practical” in-network models
– Exploit limited-radius spatial correlations of measurements
– Localize model checks/updates to small regions

BBQ
[Deshpande et al. ’04]

Single-node Kalman filters
[Jain et al.’04]

Single-node models Π p(Xi)
No spatial correlations
Cheap – check is local!

Full-network model p(X1,…,Xn)
Full spatial correlations
Expensive – centralize all data!

92

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
183

Disjoint-Cliques Models
� Idea: Partition joint pdf into a set of small, localized

“cliques” of random variables
– Each clique maintained and updated independently at

“clique root” nodes

Model p(X1,…,X6) =
p(X1,X2,X3) ⋅ p(X4,X5,X6)

� Finding optimal DC model is NP-hard
– Natural analogy to Facility Location

Distributed Data Stream
Systems/Prototypes

93

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
185

Current Systems/Prototypes

� Main algorithmic idea in the tutorial: Trade-off space/time
and communication with approximation quality

� Unfortunately, approximate query processing tools are still
not widely adopted in current Stream Processing engines
– Despite obvious relevance, especially for streaming data

� In the sensornet context
– Simple in-network aggregation techniques (e.g., for

aver age, count , etc.) are widely used
E.g., TAG/TinyDB [Madden et al ’02]

– More complex tools for approximate
in-network data processing/collection
have yet to gain wider acceptance

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
186

Distributed SP Engine Prototypes

� Telegraph/TelegraphCQ [Chandrasekaran et al.’03] ,
Borealis/Medusa [Balazinska et al.’05], P2 [Loo et al.’06]

� Query processing typically viewed as a large dataflow
– Network of connected, pipelined query operators

– Schedule a large dataflow over a distributed system
� Objectives: Load-balancing, availability, early results, …

Source
Union

Join

Select

Union

Other
ops

Source

Source Other
ops

Client

Node 1

Node 2

Node 3

94

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
187

Distributed SP Engine Prototypes

� Approximate answers and error guarantees not considered
– General relational queries, push/pull-ing tuples through the

query network
– Load-shedding techniques to manage overload

� No hard error guarantees

� Network costs (bandwidth/latency) considered in some
recent work [Pietzuch et al.’06]

Source Union

Join

Select

Union

Other
ops

Source

Source Other
ops

Client

Node 1

Node 2

Node 3

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
188

Other Systems & Prototypes

� PIER – Scaling to large, dynamic site populations using
DHTs [Huebsch et al.’03]
– See also the Seaweed paper [Narayanan et al.’06]

� Gigascope – Streaming DB engine for large-scale
network/ application monitoring
– Optimized for high-rate data streams (“line speeds”)
– Exploits approximate query processing tools (sampling,

sketches, …) for tracking streams at endpoints
– Distribution issues not addressed (yet…)

95

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
189

Tutorial Outline

� Motivation & Streaming Applications

� Centralized Stream Processing

� Distributed Stream Processing

� Open Problems & Future Directions

� Conclusions

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
190

Basic Streaming Models & Issues

� Lots of other work on streaming data analysis problems
– Stream mining (clustering, associations, classification,

change detection,…)
– XML stream filtering (pub/sub systems)
– Geometric data/queries (location streams)

� Other emerging richer streaming models and problems
– XML & text stream mining (beyond simple filtering)
– Graph-data streams (e.g., stream of graph edges)
– Both bound to gain importance with the proliferation of

huge web data sets (e.g., WebGraph, social networks)
� E.g., PageRank computation over a streaming WebGraph?

96

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
191

Extensions for P2P Networks

� Much work focused on specifics of sensor and wired nets
� P2P and Grid computing present alternate models

– Structure of multi-hop overlay networks
– “Controlled failure” model: nodes explicitly leave and join

� Allows us to think beyond model of “highly resource
constrained” sensors.

� Implementations such as OpenDHT over PlanetLab
[Rhea et al.’05]

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
192

Delay-Tolerant Networks

� How to cope when connectivity is intermittent ?

– Roaming devices, exploring outer and inner space, network
infrastructure for emerging regions (e.g., rural India), …

– Round trip times may be very long and varying

� Radio to Mars is many minutes

� Connectivity to remote villages varies [Jain, Fall, Patra ’05]

� Goal is to minimize the number of communications and
maximize timeliness

– Size of communication is secondary

97

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
193

Authenticated Stream Aggregation

� Wide-area query processing

– Possible malicious aggregators

– Can suppress or add spurious
information

� Authenticate query results at
the querier?

– Perhaps, to within some
approximation error

� Initial steps in [Garofalakis et al.’07]

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
194

Other Classes of Queries

� Mostly talked about specific, well-defined aggregates

� What about set-valued query answers?
– No principled, “universal” approximation error metric

� A general distributed query language (dist-streamSQL?)

– Define a language so a query optimizer can find a plan that
guarantees good performance, small communication?

� Other tasks, e.g., data mining, machine learning, over
distributed streams?

– ML/AI communities are already starting to consider
communication-efficient distributed learning

98

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
195

Theoretical Foundations

“Communication complexity” studies lower bounds of
distributed one-shot computations

� Gives lower bounds for various problems, e.g.,
count di st i nct (via reduction to abstract problems)

� Need new theory for continuous computations
– Based on info. theory and models of how streams evolve?
– Link to distributed source coding or network coding?

ht
tp

://
ww

w.
ne

tw
or

kc
od

in
g.

in
fo

/

ht
tp

s:
//b

uf
fy

.e
ec

s.
be

rk
el

ey
.e

du
/P

HP
/re

sa
bs

/re
sa

bs
.p

hp
?

f_
ye

ar
=2

00
5&

f_
su

bm
it=

ch
ap

gr
p&

f_
ch

ap
te

r=
1

Slepian-Wolf theorem [Slepian Wolf 1973]

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
196

Richer Prediction models

� The better we can capture and anticipate future stream
direction, the less communication is needed

� So far, only look at predicting each stream alone

� Correlation/anti-correlation across streams should help?

– But then, checking validity of model is expensive!

� Explore tradeoff-between power (expressiveness) of
model and complexity (number of parameters)

– Optimization via Minimum Description Length (MDL)?
[Rissanen 1978]

99

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
197

Conclusions
� Data Streaming: Major departure from traditional

persistent database paradigm
– Fundamental re-thinking of models, assumptions, algorithms,

system architectures, …

� Many new streaming problems posed by developing
technologies

� Simple tools from approximation and/or randomization play
a critical role in effective solutions

– Sampling, sketches (AMS, CM, FM, …), Exponential
histograms, …

– Simple, yet powerful, ideas with great reach

– Can often “mix & match” for specific scenarios

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
198

Conclusions
� Distributed Streams: Common features allow for general

techniques/principles instead of “point” solutions

– In-network query processing
Local filtering at sites, trading-off approximation with
processing/network costs, …

– Models of “normal” operation
Static, dynamic (“predictive”), probabilistic, …

– Exploiting network locality and avoiding global resyncs

� Many new directions unstudied, more will emerge as new
technologies arise

� Lots of exciting research to be done! �

100

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
199

Thank you!

http://www.cs.berkeley.edu/~minos/http://www.cs.berkeley.edu/~minos/

minos@acm.orgminos@acm.org

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
200

References (1)
[Aduri, Tirthapura ’05] P. Aduri and S. Tirthapura. Range-efficient Counting of F0 over Massive Data Streams. In

IEEE International Conference on Data Engineering, 2005
[Agrawal et al. ’04] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: New

aggregation techniques for sensor networks. In ACM SenSys, 2004
[Alon, Gibbons, Matias, Szegedy ’99] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join

sizes in limited storage. In Proceedings of ACM Symposium on Principles of Database Systems, pages 10–
20, 1999.

[Alon, Matias, Szegedy ’96] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the ACM Symposium on Theory of Computing, pages 20–29, 1996.
Journal version in Journal of Computer and System Sciences, 58:137–147, 1999.

[Babcock et al. '02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in Data Stream
Systems In ACM Principles of Database Systems, 2002

[Bar-Yossef et al.’02] Z. Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, Luca Trevisan: Counting Distinct
Elements in a Data Stream. Proceedings of RANDOM 2002.

[Chu et al'06] D. Chu, A. Deshpande, J. M. Hellerstein, W. Hong. Approximate Data Collection in Sensor Networks
using Probabilistic Models. IEEE International Conference on Data Engineering 2006, p48

[Considine, Kollios, Li, Byers ’05] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation
techniques for sensor databases. In IEEE International Conference on Data Engineering, 2004.

[Cormode, Garofalakis '05] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed
approximate query tracking. In Proceedings of the International Conference on Very Large Data Bases, 2005.

[Cormode et al.'05] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a
networked world: Distributed tracking of approximate quantiles. In Proceedings of ACM SIGMOD International
Conference on Management of Data, 2005.

[Cormode, Muthukrishnan ’04] G. Cormode and S. Muthukrishnan. An improved data stream summary: The
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2004.

[Cormode, Muthukrishnan ’05] G. Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams.
In Proceedings of ACM Principles of Database Systems, 2005.

101

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
201

References (2)
[Cormode et al. ’05] G. Cormode,S. Muthukrishnan, I. Rozenbaum. Summarizing and Mining Inverse Distributions

on Data Streams via Dynamic Inverse Sampling . In Proceedings of VLDB 2005.
[Cormode et al.’06] Graham Cormode, Minos N. Garofalakis, Dimitris Sacharidis: Fast Approximate Wavelet

Tracking on Streams. In Proceedings of EDBT 2006.
[Das et al.’04] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed Set-Expression Cardinality

Estimation. In Proceedings of VLDB, 2004.
[Datar et al.’02] M. Datar, Aristides Gionis, Piotr Indyk, Rajeev Motwani. Maintaining stream statistics over sliding

windows (extended abstract). In Proceedings of SODA 2002.
[Deshpande et al'04] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, W. Hong. Model-Driven Data

Acquisition in Sensor Networks. In VLDB 2004, p 588-599
[Deshpande et al'05] A. Deshpande, C. Guestrin, W. Hong, S. Madden. Exploiting Correlated Attributes in

Acquisitional Query Processing. In IEEE International Conference on Data Engineering 2005, p143-154
[Dilman, Raz ’01] M. Dilman, D. Raz. Efficient Reactive Monitoring. In IEEE Infocom, 2001.
[Dobra et al.’02] A. Dobra, M. Garofalakis, J, Gehrke, R. Rastogi. Processing Complex Aggregate Queries over

Data Streams. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2002.
[Dobra et al.’04] A. Dobra, M. Garofalakis, J, Gehrke, R. Rastogi. Sketch-Based Multi-query Processing over Data

Streams. In Proceedings of EDBT 2004.
[Flajolet, Martin ’83] P. Flajolet and G. N. Martin. Probabilistic counting. In IEEE Conference on Foundations of

Computer Science, pages 76–82, 1983. Journal version in Journal of Computer and System Sciences,
31:182–209, 1985.

[Ganguly et al.’04] S. Ganguly, M. Garofalakis, R. Rastogi. Tracking set-expression cardinalities over continuous
update streams. The VLDB Journal, 2004

[Ganguly et al.’04] S. Ganguly, M. Garofalakis, R. Rastogi. Processing Data-Stream Join Aggregates Using
Skimmed Sketches. In Proceedings of EDBT 2004.

[Garofalakis et al. '02] M. Garofalakis, J. Gehrke, R. Rastogi. Querying and Mining Data Streams: You Only Get
One Look. Tutorial in ACM SIGMOD International Conference on Management of Data, 2002.

[Garofalakis et al.’07] M. Garofalakis, J. Hellerstein, and P. Maniatis. Proof Sketches: Verifiable Multi-Party
Aggregation. In Proceedings of ICDE 2007.

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
202

References (3)
[Gemulla et al.’08] Rainer Gemulla, Wolfgang Lehner, Peter J. Haas. Maintaining bounded-size sample synopses

of evolving datasets. In The VLDB Journal, 2008.
[Gibbons’01] P. Gibbons. Distinct Sampling for Highly-Accurate Answers to Distinct Values Queries and Event

Reports. Proceedings of VLDB’2001.
[Gibbons, Tirthapura ’01] P. Gibbons, S. Tirthapura. Estimating simple functions on the union of data streams. In

ACM Symposium on Parallel Algorithms and Architectures, 2001.
[Gilbert et al.’01] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, Martin Strauss. Surfing Wavelets on

Streams: One-Pass Summaries for Approximate Aggregate Queries. In Proceedings of VLDB 2001.
[Greenwald, Khanna ’01] M. Greenwald, S. Khanna. Space-efficient online computation of quantile summaries. In

Proceedings of ACM SIGMOD International Conference on Management of Data, 2001.
[Greenwald, Khanna ’04] M. Greenwald and S. Khanna. Power-conserving computation of order-statistics over

sensor networks. In Proceedings of ACM Principles of Database Systems, pages 275–285, 2004.
[Hadjieleftheriou, Byers, Kollios ’05] M. Hadjieleftheriou, J. W. Byers, and G. Kollios. Robust sketching and

aggregation of distributed data streams. Technical Report 2005-11, Boston University Computer Science
Department, 2005.

[Huang et al.’06] L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph, and N. Taft. Distributed PCA and
Network Anomaly Detection. In NIPS, 2006.

[Huebsch et al.’03] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, I. Stoica. Querying the
Internet with PIER. In VLDB, 2003.

[Jain et al'04] A. Jain, E. Y. Chang, Y-F. Wang. Adaptive stream resource management using Kalman Filters. In
ACM SIGMOD International Conference on Management of Data, 2004.

[Jain, Fall, Patra ’05] S. Jain, K. Fall, R. Patra, Routing in a Delay Tolerant Network, In IEEE Infocom, 2005
[Jain, Hellerstein et al'04] A. Jain, J.M.Hellerstein, S. Ratnasamy, D. Wetherall. A Wakeup Call for Internet

Monitoring Systems: The Case for Distributed Triggers. In Proceedings of HotNets-III, 2004.
[Johnson et al.’05] T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and O. Spateschek. A heartbeat mechanism

and its application in Gigascope. In VLDB, 2005.

102

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
203

References (4)
[Kashyap et al. ’06] S. Kashyap, S. Deb, K.V.M. Naidu, R. Rastogi, A. Srinivasan. Efficient Gossip-Based

Aggregate Computation. In ACM Principles of Database Systems, 2006.
[Kempe, Dobra, Gehrke ’03] D. Kempe, A. Dobra, and J. Gehrke. Computing aggregates using gossip. In IEEE

Conference on Foundations of Computer Science, 2003.
[Kempe, Kleinberg, Demers ’01] D. Kempe, J. Kleinberg, and A. Demers. Spatial gossip and resource location

protocols. In Proceedings of the ACM Symposium on Theory of Computing, 2001.
[Kerlapura et al.’06] R. Kerlapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed

monitoring of thresholded counts. In ACM SIGMOD, 2006.
[Koudas, Srivastava '03] N. Koudas and D. Srivastava. Data stream query processing: A tutorial. In VLDB, 2003.
[Madden ’06] S. Madden. Data management in sensor networks. In Proceedings of European Workshop on

Sensor Networks, 2006.
[Madden et al. ’02] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: a Tiny AGgregation service for ad-

hoc sensor networks. In Proceedings of Symposium on Operating System Design and Implementation, 2002.
[Manjhi, Nath, Gibbons ’05] A. Manjhi, S. Nath, and P. Gibbons. Tributaries and deltas: Efficient and robust

aggregation in sensor network streams. In Proceedings of ACM SIGMOD International Conference on
Management of Data, 2005.

[Manjhi et al.’05] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items in
distributed data streams. In IEEE International Conference on Data Engineering, pages 767–778, 2005.

[Muthukirshnan '03] S. Muthukrishnan. Data streams: algorithms and applications. In ACM-SIAM Symposium on
Discrete Algorithms, 2003.

[Narayanan et al.’06] D. Narayanan, A. Donnelly, R. Mortier, and A. Rowstron. Delay-aware querying with
Seaweed. In VLDB, 2006.

[Nath et al.’04] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust aggrgation in
sensor networks. In ACM SenSys, 2004.

[Olston, Jiang, Widom ’03] C. Olston, J. Jiang, J. Widom. Adaptive Filters for Continuous Queries over Distributed
Data Streams. In ACM SIGMOD, 2003.

Processing Massive Data Streams – VLDB School’2008, Cairo, Egypt
204

References (5)
[Pietzuch et al.’06] P. R. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, M. I. Seltzer.

Network-Aware Operator Placement for Stream-Processing Systems. In IEEE ICDE, 2006.
[Pittel ’87] B. Pittel On Spreading a Rumor. In SIAM Journal of Applied Mathematics, 47(1) 213-223,

1987
[Rhea et al. ’05] S. Rhea, G. Brighten, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, Y.

Harlan. OpenDHT: A public DHT service and its uses. In ACM SIGCOMM, 2005
[Rissanen ’78] J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.
[Sharfman et al.’06] Izchak Sharfman, Assaf Schuster, Daniel Keren: A geometric approach to

monitoring threshold functions over distributed data streams. SIGMOD Conference 2006: 301-312
[Slepian, Wolf ’73] D. Slepian, J. Wolf. Noiseless coding of correlated information sources. IEEE

Transactions on Information Theory, 19(4):471-480, July 1973.
[Vitter’85] Jeffrey S. Vitter. Random Sampling with a reservoir. ACM Trans. on Math. Software, 11(1),

1985.

