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Approximate Query Processing intel

Decision
Support “ SQL Query @
Systems
(DSS) » Exact Answer

GB/TB Long Response Times!
C
DZ/;"’C/ID act < “Transformed” Query
Synopses » Approximate Answer

KB/MB

FAST!!

Exact answers NOT always required

- DSS applications usually exploratory: early feedback to help identify
“interesting” regions
- Aggregate queries: precision to “last decimal” not needed
+ e.g., "What percentage of the US sales are in NJ?"

Construct effective data synopses ??

Haar Wavelet Decomposition intgl.

Wavelets: mathematical tool for hierarchical decomposition of
functions/signals

Haar wavelets: simplest wavelet basis, easy to understand and
implement
- Recursive pairwise averaging and differencing at different resolutions

Resolution Averages Detail Coefficients
3 D=[2,20,2375,4,4]
2 2, 1, 4, 4] [0, -1, -1, 0]
1 [1.5, 4] [0.5, 0]
0 < [2.75] f-p[-1.25]
. VA A

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]

Construction extends naturally o multiple dimensions




Haar Wavelet Coefficients intel

+ Hierarchical decomposition structure ( a.k.a. Error Tree)
- Conceptual tool to “visualize” coefficient supports & data reconstruction

Reconstruct data values d(i)
- d() Z(+/ 1) * (coefficient on path)

Range sum calculation d(I:h)

- d(I:h) = simple linear combination of
coefficients on paths to |, h

Only O(logN) terms

Original data

3=275-(-1.25)+ 0+ (-1)

6 = 4%2.75 + 4%(-1.25)

Wavelet Data Synopses intgl.

Compute Haar wavelet decomposition of D
Coefficient thresholding : only B«|D| coefficients can be kept
- B is determined by the available synopsis space
+ Approximate query engine can do all its processing over such compact
coefficient synopses (joins, aggregates, selections, etc.)

- Matias, Vitter, Wang [SIGMOD'98]; Vitter, Wang [SIGMOD'99];
Chakrabarti, Garofalakis, Rastogi, Shim [VLDB'00]

Conventional thresholding: Take B largest coefficients in absolute
normalized value

- Normalized Haar basis: divide coefficients at resolution j by \/;
- All other coefficients are ignored (assumed to be zero)
- Provably optimal in terms of the overall Sum-Squared (L2) Error

* Unfortunately, no meaningful approximation-quality guarantees for
- Individual reconstructed data values or range-sum query results




Problems with Conventional Synopses intel

An example data vector and wavelet synopsis (|D|=16, B=8 largest
coefficients retained)

Al tel
Over 2,000% relative errorl ways dccdrate

Original Data Values| 127 71 87 31 59 [\43 99 | 100 42 0 58 30 88 72 130

Wavelet Answers I65 65 6Fi I65 65 \GS/I 65 65, 100 42 0 58 30 88 72 130

Estimate = 195, actual values: d(0:2)=285, d(3:5)=93!
* Large variation in answer quality

- Within the same data set, when synopsis is /arge, when data values are
about the same, when actual answers are about the same

- Heavily-biased approximate answers!
* Rooft causes
- Thresholding for aggregate L2 error metric
- Independent, greedy thresholding (= large regions without any coefficient!)
- Heavy bias from dropping coefficients without compensating for loss

Approach: Optimize for Maximum-Error intel.
Metrics

* Key metric for effective approximate answers: Relative error with
sanity bound  1d; —d; |
max{l d, |, s}

- Sanity bound "s” to avoid domination by small data values

To provide tight error guarantees for a// reconstructed data values

Minimize maxi{—ldi —d, | }
max{l d, I, s}

- Minimize maximum relative errorin the data reconstruction

Another option: Minimize maximum absolute error Max ;{l d; —d; I}

Algorithms can be extended to general ‘distributive” metrics

(e.i., avemie relative error)




A Solution: Probabilistic Wavelet Synopses

Novel, probabilistic thresholding scheme for Haar coefficients
- Ideas based on Randomized Rounding

In a nutshell
- Assign coefficient probability of retention (based on importance)
- Flip biased coins to select the synopsis coefficients

- Deterministically retain most important coefficients, randomly
rounding others either up fo a larger value or down to zero

- Key: Each coefficient is correct on expectation
Basic technique
- For each non-zero Haar coefficient ci, define random variable Ci

C
_{Ai with probability —-0(0.1]
= _

O with probability 1-%‘
- Round each ci independently to A or zero by flipping a coin
with success probability /TI (zeros are discarded)

intgl.
Probabilistic Wavelet Synopses (cont.) “
Each Ci is correct on expectation, i.e., E[Ci]=ci
- Our synopsis guarantees wnbiased estimators for data values and range
sums (by Linearity of Expectation)
Holds for any A's , BUT choice of A 's is crucial to quality of
approximation and synopsis size
- Variance of Ci: Var[Ci]= (A —C) L&
- By independent rounding, Variance[reconstructed di] = Z et d.>( . —C) e
« Better approximation/error guarantees for Sma//er A, (closer to ci)
- Expected size of the final synopsis E[size] = Z—
- Smaller synopsis size for larger A

* Novel optimization problems for “tuning” our synopses

- Choose A 's toensure tight approximation guarantees (i.e., small
reconstruction variance), while E[synopsis size]< B

- Alfernative probabilistic scheme
* Retain exact coefficient with probabilities chosen to minimize bias




MinRelVar: Minimizing Max. Relative Error intel.

Relative error metric | ai — di [

max{l d, |, s}

Since estimate di is a random variable, we want to ensure a tight bound
for our relative error metric with high probability
- By Chebyshev's inequality

|d-d|
Pr[max{ld- |.s} )

Normalized Standard Error (NSE) of reconstructed value

To provide tight error guarantees for all data values
- Minimize the Maximum NSE among all reconstructed values di

Minimizing Maximum Relative Error (cont.) Initel.

Problem: Find rounding values A, to minimize the maximum NSE

\/ZiDpath(dk) (/]i —G ) E:' Error Tree
max{ld, |, s} root

G
SUbjeCT o C| //]I D (0,1] and ZI <B

sum variances on path
and normalize

mMax pain(dk)IPATHS

Hard non-linear optimization problem!

dk
Propose solution based on a Dynamic-Programming (DP) formulation

- Key technical ideas
+ Exploit the hierarchical structure of the problem (Haar error tree)
+ Exploit properties of the optimal solution
* Quantizing the solution space




Minimizing Maximum Relative Error (cont.) intel
Let Y, =C /A = the probability of retaining ci

- yi = "fractional space” allotted to coefficient ci ( Zyi < B)

M[j.b] = optimal value of the (squared) maximum NSE for the subtree
rooted at coefficient cj for a space allotment of b

. Var[ j,y] :
M J. Bl = min g 10y, c0-y1 maX{W +MI[2],b.],

Vel Yl L m2i+1b-y=b 1)
] y—0b
@ @ Norm,.,

* Normalization factors "Norm” depend only on the

minimum data value in each subtree
* See paper for full details...

Quantize choices fory to {1/q, 2/q, ..., 1}
- q = input infeger parameter, "knob" for run-time vs. solution accuracy

- O(Ng°Blog(gB)) time,  O(qBlogN) memory

But, still...

Potential concerns for probabilistic wavelet synopses

- Pitfalls of randomized techniques
* Possibility of a "bad" sequence of coin flips resulting in a poor synopsis

- Dependence on a quantization parameter/knob q
+ Effect on optimality of final solution is not entirely clear

“Indirect” Solution: try to probabilistically contro/ maximum
relative error through appropriate probabilistic metrics
+ E.g., minimizing maximum NSE

Natural Question
- Can we design an efficient deterministic thresholding scheme for

minimizing non-L2 error metrics, such as maximum relative error?

+ Completely avoid pitfalls of randomization
* Guarantee error-optimal synopsis for a given space budget B




Do our Earlier Ideas Apply? intel

Unfortunately, probabilistic DP formulations rely on
- Ability to assign fractional storage ¥, U(0,1] to each coefficient ci

- Optimization metrics (maximum NSE) with monotonic/additive
structure over the error tree

M[j,b] = optimal NSE for subtree T(j) with space b
Principle of Optimality
- Can compute M[j*] from M[2j,*] and M[2j+1*]

When directly optimizing for maximum relative (or, absolute) error with
storage [ {0,1}, principle of optimality fails! d—d |
- Assume that M[jb]= optimal value for max {——"———
most b coefficients selected in T(j) max{l d; | s}
- Optimal solution at j may not comprise optimal solutions for its children
- Remember that d :z (+/-)* SelectedCoefficient, where coefficient
values can be positive or negative

} with at

BUT, it can be done!!

Our Approach: Deterministic Wavelet intel.
Thresholding for Maximum Error

Key Idea: Dynamic-Programming formulation that conditions the
optimal solution on the error that "enters” the subtree (through the
selection of ancestor nodes)

root=Q S = subset of proper  * Our DP table:

ancestors of j included M[j, b, S] = optimal maximum relative (or,

in the synopsis . N
absolute) error in T(j) with space budget of b
coefficients (chosen in T(j)), assuming subset
5 of j's proper ancestors have already been

= selected for the synopsis

+ - - Clearly, |S| < min{B-b, logN+1}
2j j+1 - Want to compute M[O, B, ¢ ]

Basic Observation: Depth of the error tree is only logN+1 —=p
we can explore and tabulate all S-subsets for a given node at a
space/time cost of only O(N)!




Base Case for DP Recurrence: Leaf (Data) intel.
Nodes

Base case in the bottom-up DP computation: Leaf (i.e., data) node d;
- Assume for simplicity that data values are numbered N, ..., 2N-1

M[j, b, S] is not defined for b>0
- Never allocate space to leaves
For b=0
, |d. - sign(c,d.)¢|
M[J,O,S] - J ZCDS 9
max{|d, |,s}

d d for each coefficient subset S [ path(d))
i i+l with |S| < min{B, logN+1}
- Similarly for absolute error

Again, time/space complexity per leaf node is only O(N)

DP Recurrence: Internal (Coefficient) intel.
Nodes

Two basic cases when examining node/coefficient j for inclusion in the
synopsis: (1) Drop j: (2) Keep j

Case (1): Drop Coefficient j

S = subset of - In this case, the minimum possible maximum
oot=g) \oelected J-ancestors relative error in T(j) is
M., [J.0,S]= (;’nsbilgb max{ M[2j,b",S],
M[2j+1,b-b',S]}

- Optimally distribute space b between j's two
child subtrees

Note that the RHS of the recurrence is
well-defined

- Ancestors of j are obviously ancestors of 2
and 2j+1




DP Recurrence: Internal (Coefficient) intel.
Nodes (cont.)

Case (2): Keep Coefficient j

S = subset of + In this case, the minimum possible maximum
goot=Q) \selected j-ancestors  polative error in T(j) is

M...,[j.b.S]= OQD-L?-lmGX{ M[2j,b",SU{c;}].
M[2j+1,b-b'-1,5U{c;}1}

J - Take 1 unit of space for coefficient j, and
optimally distribute remaining space

- Selected subsets in RHS change, since we
choose fo retain j

2j j*l

Again, the recurrence RHS is well-defined

Finally, define M[j,b,5]= min{ M. [j.b,5], Mye., Lj.b,S]}
Overall complexity: O(N?) time, O(Nmin{B,logN}) space

Multi-dimensional Haar Wavelets intel.

Haar decomposition in d dimensions = d-dimensional array of wavelet
coefficients

- Coefficient support region = d-dimensional rectangle of cells in the
original data array

- Sign of coefficient's contribution can vary along the quadrants of its

support R —

3 ? —ﬂ Ff —ﬁ%

Support regions & signs i
for the 16 nonstandard 2 i j E ﬁ:
2-dimensional Haar V\A_ :
coefficients of a 4X4 | — | i
data array A 1 i EEF —q:
'l e &

— 0o 1: 2 37

=0 ! =1

10



Multi-dimensional Haar Error Trees intgl.

Conceptual tool for data reconstruction - more complex structure than
in the 1-dimensional case

- Internal node = Set of (up to) 21 coefficients (identical support
regions, different quadrant signs)

- Each internal node can have (up to) 2 children (corresponding to the
quadrants of the node's support)

Maintains /inearity of reconstruction for data values/range sums

@ Error-tree structure
for 2-dimensional

4X4 example (data
values omitted)

Problem: Even though depth is still O(logN), each node now comprises
up to 2¢-1 coefficients, al/ of which contribute to every child
- Data-value reconstruction involves up to O((2¢ -1)logN) coefficients
- Number of potential ancestor subsets (S) explodes with dimensionality
Up to OIN? ™) ancestor subsets per node!

- Space/time requirements of our DP formulation quickly become infeasible
(even for d=3,4)

Our Solution: £ -approximation schemes for multi-d thresholding




Approximate Maximum-Error Thresholding il
in Multiple Dimensions .
Time/space efficient approximation schemes for deterministic multi-
dimensional wavelet thresholding for maximum error metrics
Propose two different approximation schemes
- Both are based on approximate dynamic programs

- Explore a much smaller number of options while offering g-approximation
gurantees for the final solution

Scheme #1: Sparse DP formulation that rounds off possible values
for subtree-entering errors to powers of (1+&)
O(IOLRNBIOQN logB) time
- Additive g&-error guarantees for maximum relative/absolute error

Scheme #2: Use scaling & rounding of coefficient values to convert a
pseudo]polynomial solution to an efficient approximation scheme
- 0(°RNBlog’NIogB)  time

- (1+ &) -approximation algorithm for maximum absolute error

Experimental Study intgl.

- Deterministic vs. Probabilistic (vs. Conventional L2)

+ Synthetic and real-life data sets
- Zipfian data distributions
* Various permutations, skew z=0.3 - 2.0
- Weather, Corel Images (UCI), ...

* Relative error metrics
- Sanity bound = 10-percentile value in data
- Maximum and average relative error in approximation

+ Deterministic optimization algorithms extend fo any
"distributive” error metric

12



Synthetic Data - Max. Rel. Error ™

Normal-Shaped Zipfian, Skew z = 1.5

06 L T T T T
& L2opt ——
i MinRelVar(worst) ——x—-
05 MinRelVar(best) - .
_ i MinRelBias(worst) =
o W MinRelBias(best) ---=--
o 04 MinMaxRelErr o 1
o i
2 i
s 03} i
3] i
x =,
X 02 N
=
0.1 r
0

500 1000 1500 2000
No. of Retained Coefficients

Synthetic Data - Avg. Rel. Error ™

Normal-Shaped Zipfian, Skew z = 1.5

0.1 . , , .
1 MinRelVar(worst) ——x=—
0.08 L & MinRelVar(best) -
= ' At MinRelBias(worst) o
= ' MinRelBias(best) =
w MinAvgRelErr -----
o 0.06 i
=
3
i
T 0.04 ]
©
5]
=
0.02 2 i
® i%‘é?%‘% \é
. om B L ET T -
500 1000 1500 2000

No. of Retained Coefficients

13



Corel Color Histogram (Attribute 1) in I I

Real Data -- Corel

Corel Color Histogram (Attribute 1)

0 10000 20000 30000 40000 50000 60000

14 T T T ; . Index
MinRelVar(best)/MinAvgRelErr -+
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il Xy e
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Real Data -- Weather [T
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g

Weather Attribute #5 (Solar Irradiance), First 65,536 entries ®
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Conclusions & Future Work intel

+ Introduced the first efficient schemes for wavelet
thresholding for maximum-error metrics
- Probabilistic and Deterministic
- Based on novel DP formulations

- Deterministic avoids pitfalls of probabilistic solutions and extends
naturally to general error metrics

+ Extensions to multi-dimensional Haar wavelets
- Complexity of exact solution becomes prohibitive

- Efficient polynomial-time approximation schemes based on
approximate DPs

« Future Research Directions

- Streaming computation/incremental maintenance of max-error wavele
synopses : Heuristic solution proposed recently (VLDB'05)

- Extend methodology and max-error guarantees for more complex
queries (joins??)
- Suitability of Haar wavelets, e.g., for relative error? Other bases??

Thank you! S

‘..

minos.garofalakis@intel.com
http://www2 .berkeley.intel-research.net/~minos/
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Runtimes

Weather Attr. #6 (Relative Humidity), Synopsis Size B=2000

16000 [ T T T T T T ]
MinMaxRelErr ——
14000 - MinRelvar ----x---- g

12000
10000
8000 r
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Running Time (sec)

4000
2000 r

0 L= S ey . ,
10000 20000 30000 40000 50000 60000 70000

Domain Size (N)

Memory Requirements

Weather Attr. #6 (Relative Humidity), Synopsis Size B=2000

7000 MinMaxRelErr

6000 r

5000 |

4000 r

3000

Memory (KB)

2000

1000 r i

10000 20000 30000 40000 50000 60000 70000
Domain Size (N)
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MinRelBias: Minimizing Normalized Bias intel

Scheme: Retain the exact coefficient ci with probability yi and discard
with probability (1-yi) -- no randomized rounding
- Our Cirandom variables are no longer unbiased estimators for ci
- Bias[Ci]= | E[Ci]-ci|= |ci|*(1-yi)
Choose yi's to minimize an upper bound on the normalized reconstruction
bias for each data value; that is, minimize

Zimpam(dk)l Gl - Yi)

max{ld, |, s}

subject to ¥, 0(0.1] and D ¥ B

max path(dk)OPATHS

Same dynamic-programming solution as MinRelVar works!

Avoids pitfalls of conventional thresholding due to
- Randomized, non-greedy selection
- Choice of optimization metric (minimize maximum resulting bias)

Multi-dimensional Probabilistic intgl.
Wavelet Synopses

A First Issue: Data density can increase dramatically due to recursive
pairwise averaging/differencing (during decomposition)
- Previous approaches suffer from additional bias due to ad-hoc
construction-time thresholding

Our Solution: “Adaptively threshold" coefficients probabilistically
during decomposition without intfroducing reconstruction bias

Once decomposition is complete, basic ideas/principles of probabilistic
thresholding carry over directly to the d-dimensional case

- Linear data/range-sum reconstruction

- Hierarchical error-tree structure for coefficients

Still, our algorithms need to deal with the added complexity of the
d-dimensional error-tree...

17



Multi-dimensional Probabilistic intgl.
Wavelet Synopses (cont.)

0 @ \:c;umm;':l
GEe o =) )

up to 2°d child nodes

Idea: Generalize optimal DP formulation
Computing M[j, B] = optimal max. 1 effectively “order” the search

NSE value at node j for space B, * MI<nodeList>, B] = optimal max. NSE for
involves examining all possible all subtrees with roots in <nodeList> and
allotments to j's children total space budget B ‘
Ndive/brute-force solution would * MI[<j>, B] only examines possible
increase complexity by allotments between <j1> and <j2,..,jk>
291 - Only increases space/time complexity by
O((qB) ) 2°d  (typically, d< 4-5 dimensions

Sets of coefficients per error-tree node can also be effectively handled
Details in the paper...

MinL2: Minimizing Expected L2 Error intel.
Goal: Compute rounding values A to minimize expected value of overall
L2 error

- Expectation since L2 error is now a random variable

Problem: Find A that minimize Z(A'Z;VTC'(ZI)[C'

constraints

, subject to the

¢ /A 0] and Zj—'sB

Can be solved optimally: Simple iterative algorithm, O(N logN) time

BUT, again, overall L2 error cannot offer error guarantees for
individual approximate answers (data/range-sum values)




Range-SUM Queries: Relative Error Ratio intgl.
vs. Space

Deterministic/MinRelBias, Normal-Shaped Zipfian, Range Size=20
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Range-SUM Queries: Relative Error Ratio intgl.
vs. Range Size
Deterministic/MinRelBias, Normal-Shaped Zipfian, 15 Retained Coefficients
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intel
Detarministic/MinHelBias, 15 Hetgined Cosfficients
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Mormal-Zhaped Lipfian, Skew z =07
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