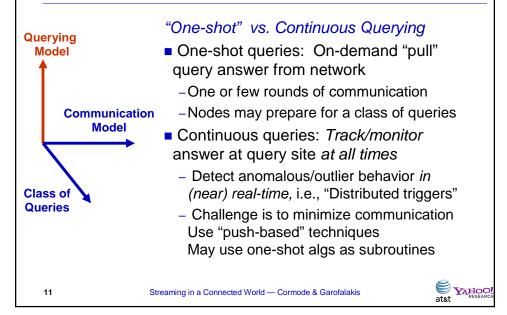
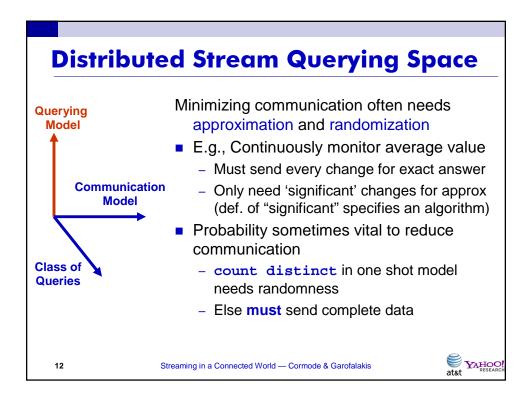
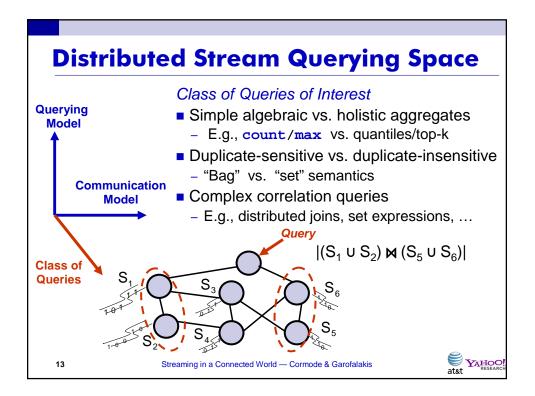
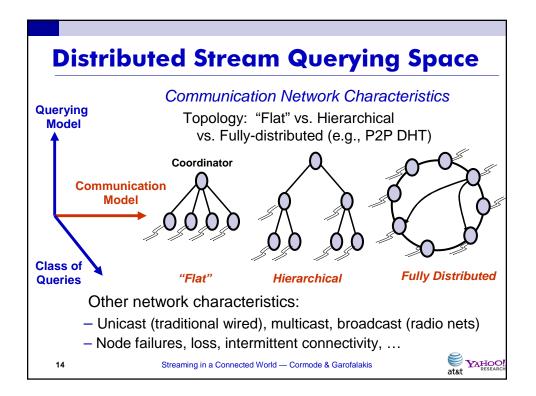


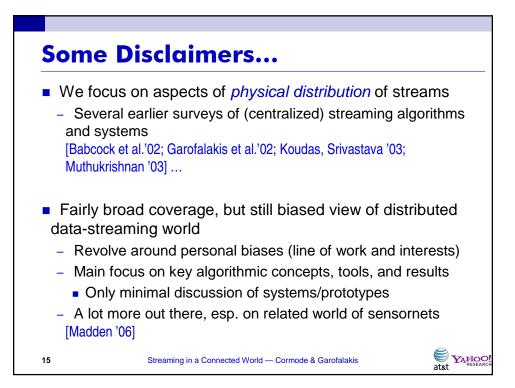
Distributed Stream Querying Space

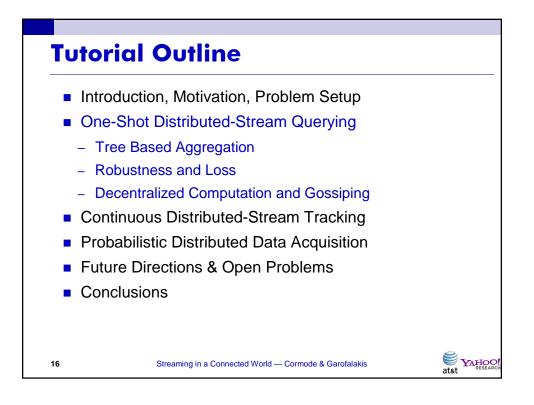


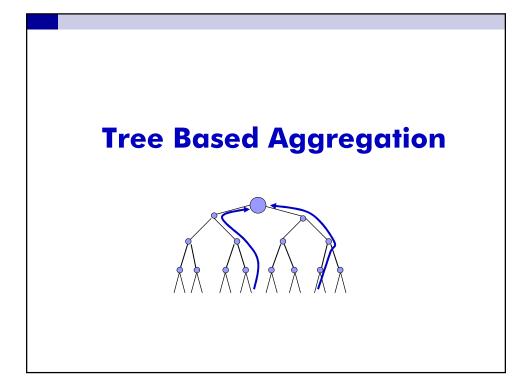


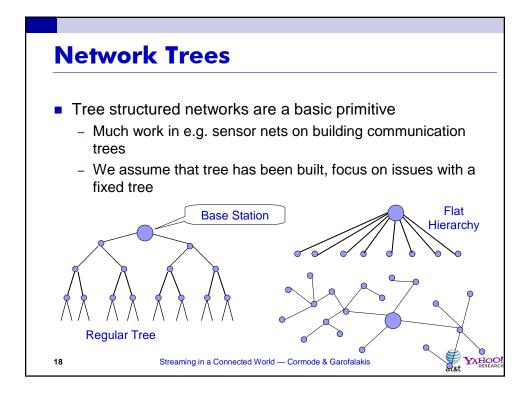


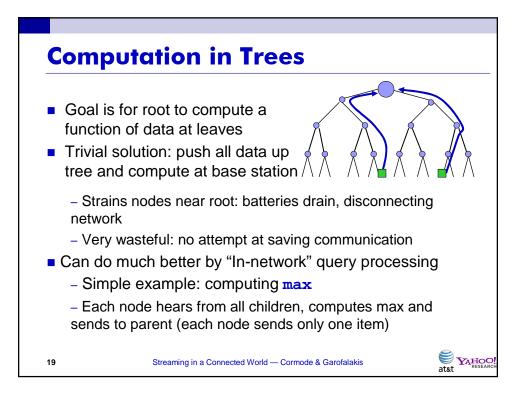


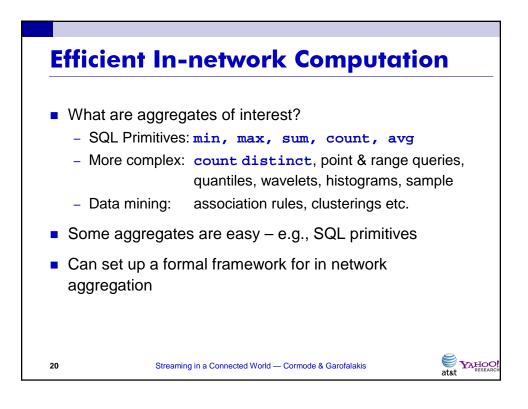


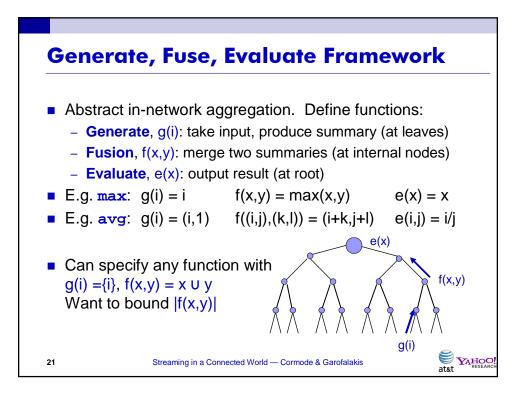


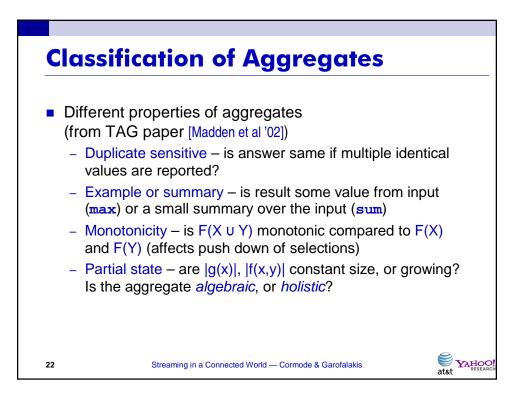












	Duplicate Sensitive	Example or summary	Monotonic	Partial State
min, max	No	Example	Yes	algebraic
sum, count	Yes	Summary	Yes	algebraic
average	Yes	Summary	No	algebraic
median, quantiles	Yes	Example	No	holistic
count distinct	No	Summary	Yes	holistic
sample	Yes	Example(s)	No	algebraic?
histogram	Yes	Summary	No	holistic

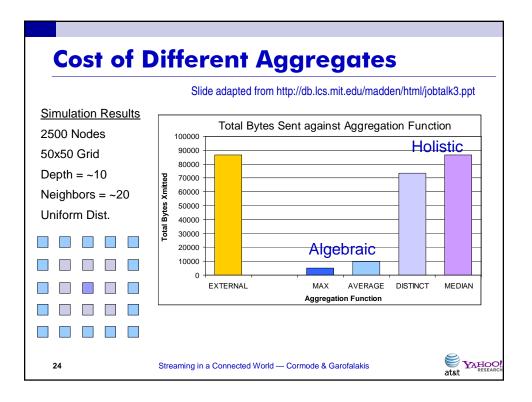
Streaming in a Connected World - Cormode & Garofalakis

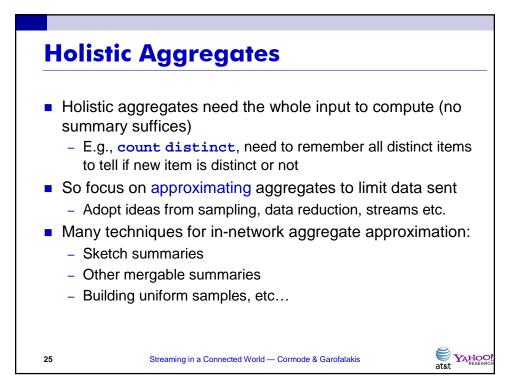
adapted from [Madden et al.'02]

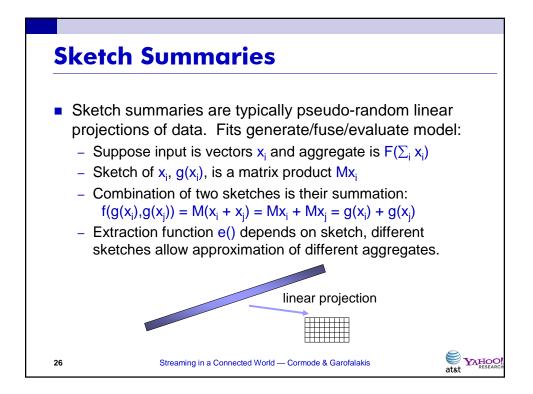
ee at&t

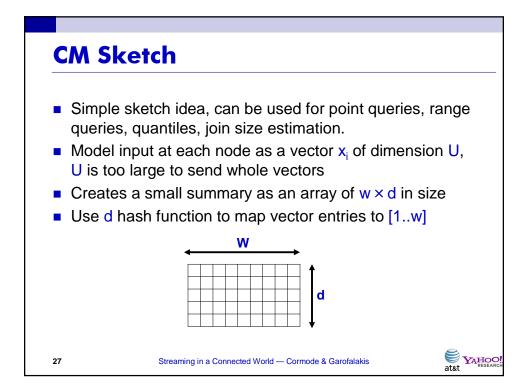
YAHOO

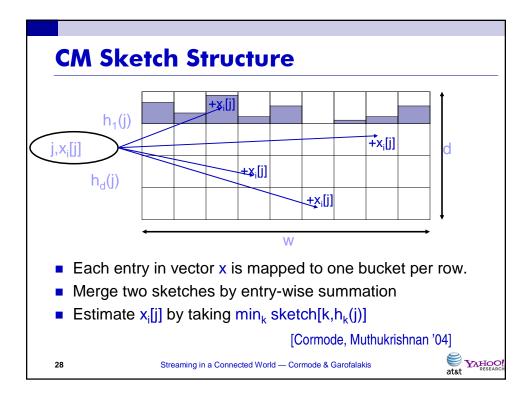
23

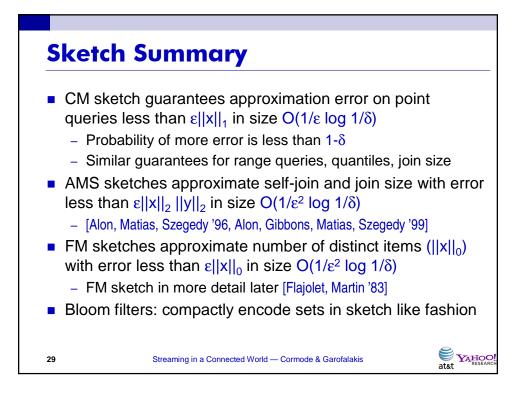


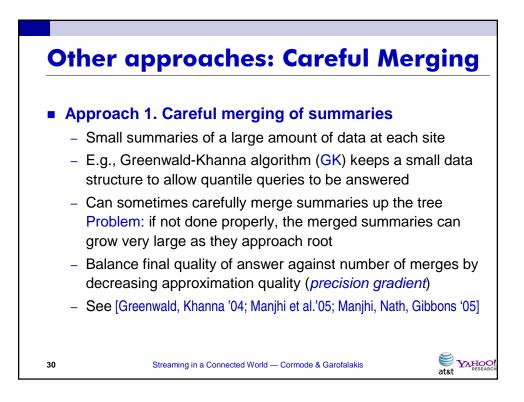


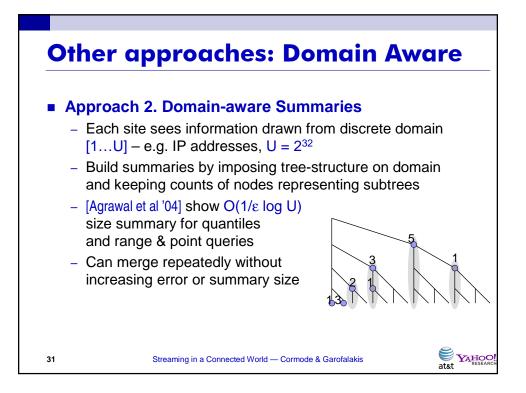


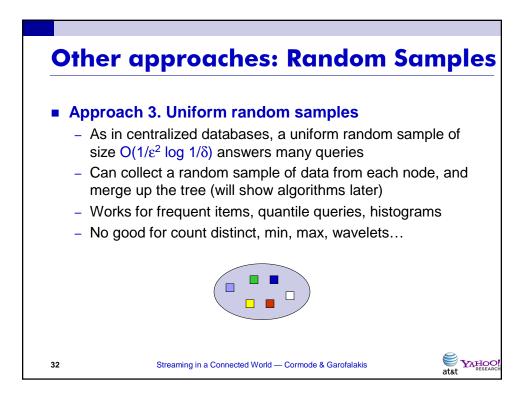


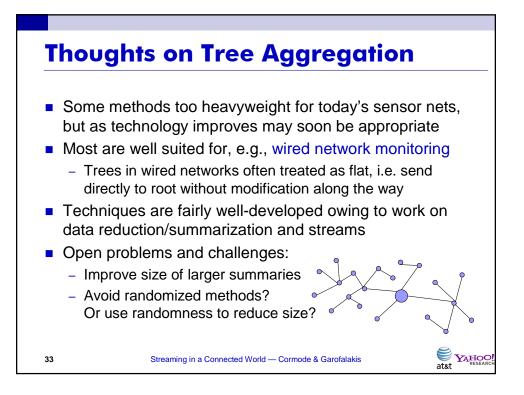




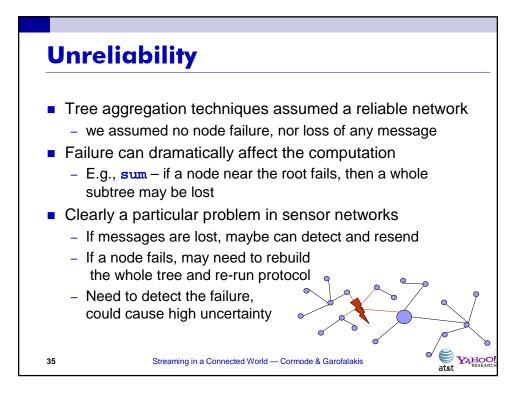


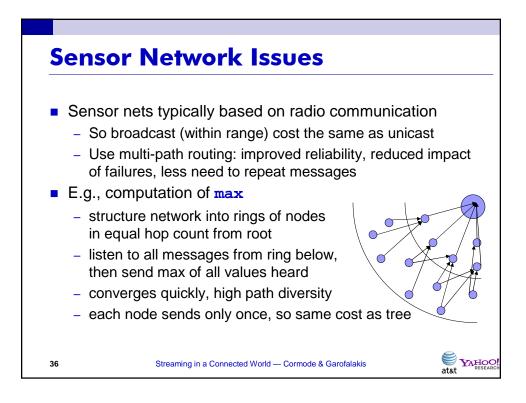


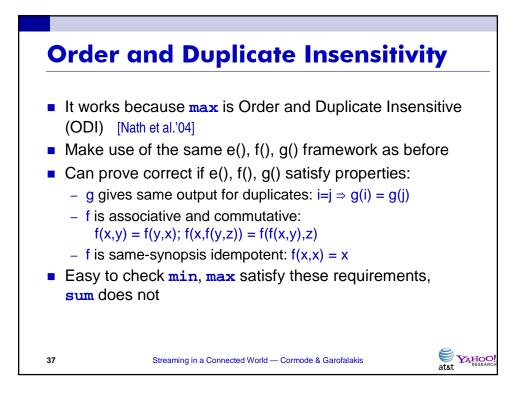


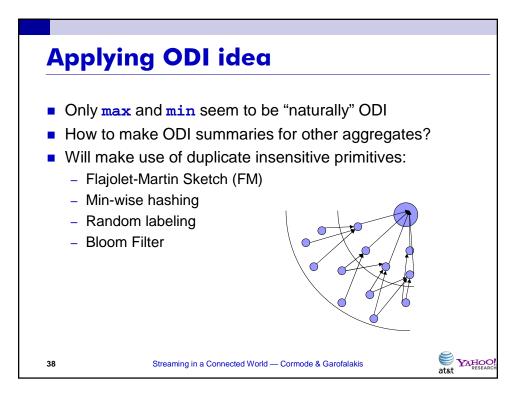


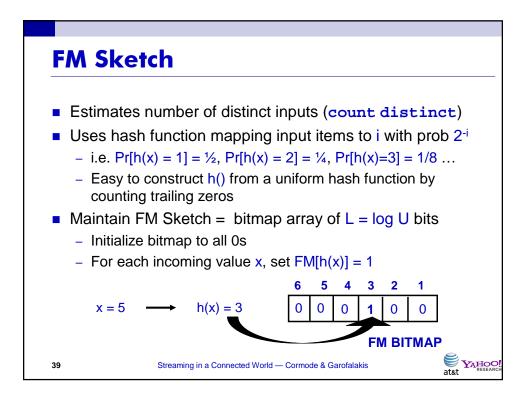


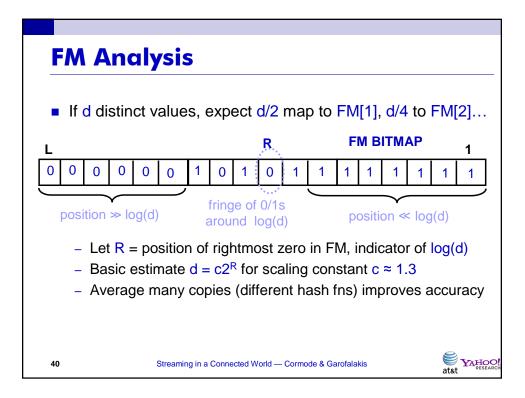


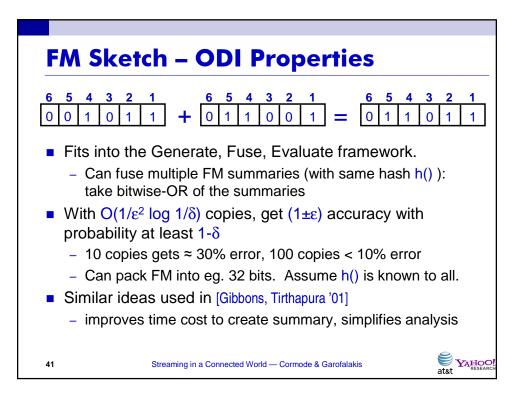


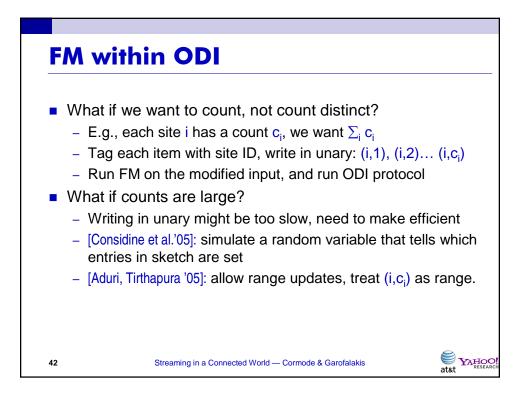


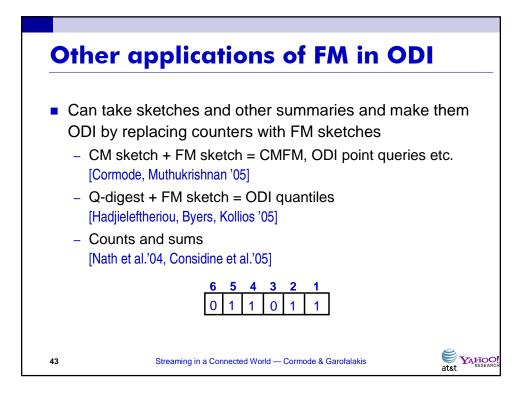


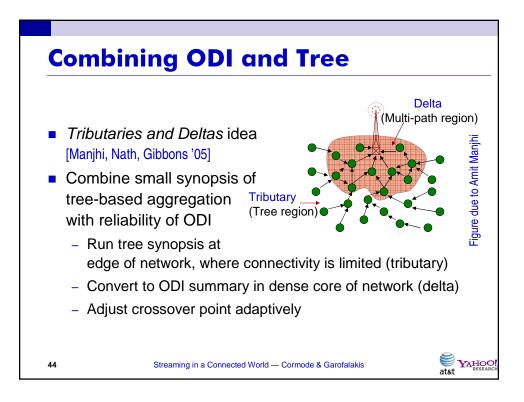


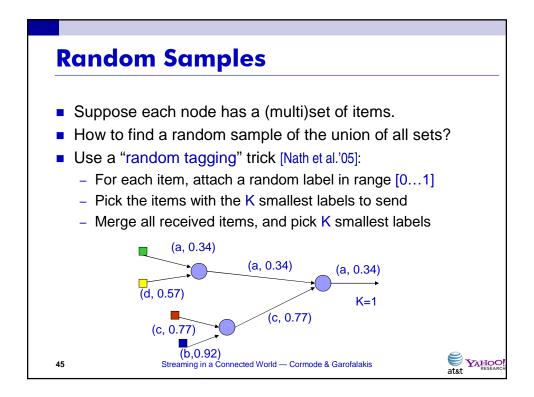


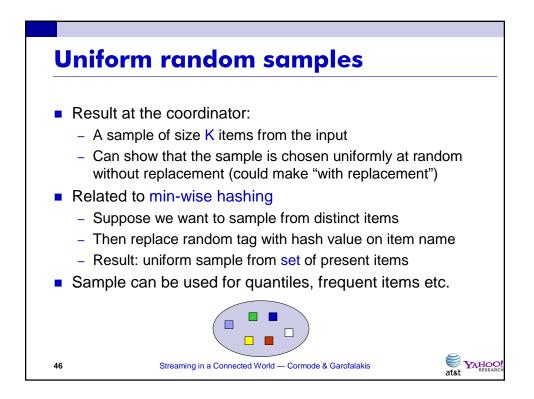


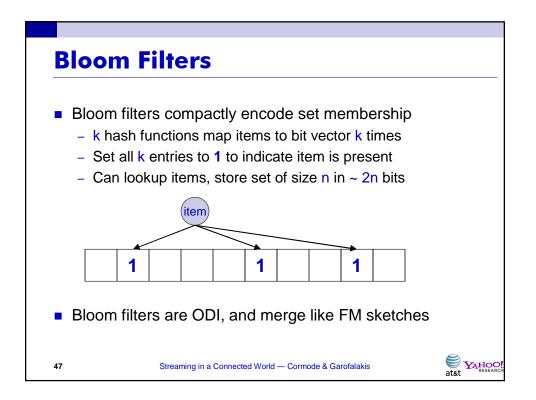


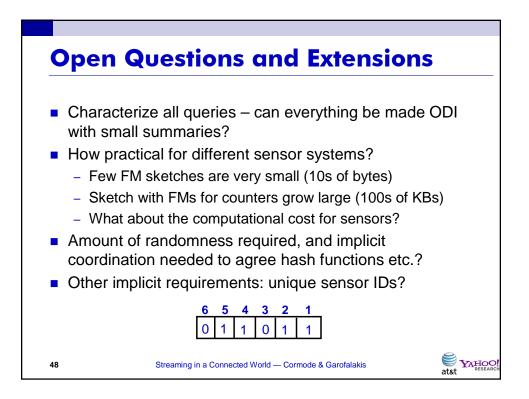


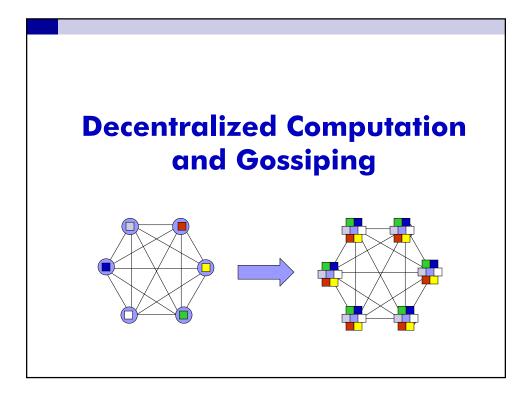


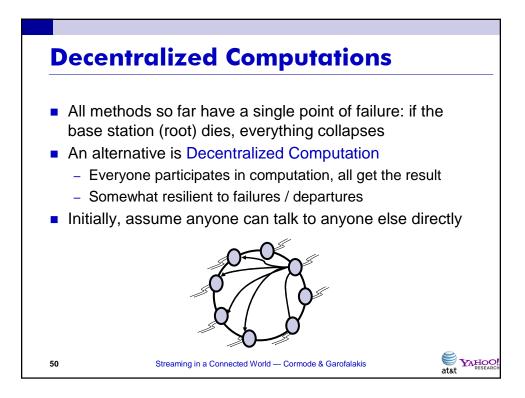


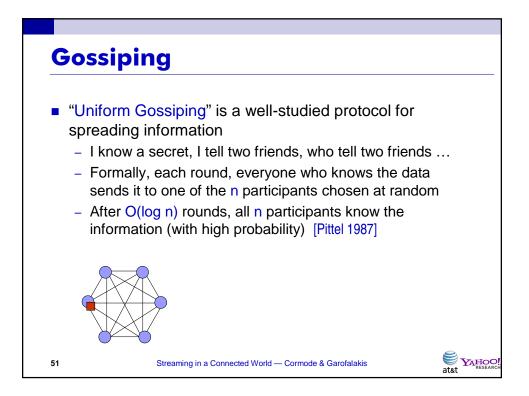


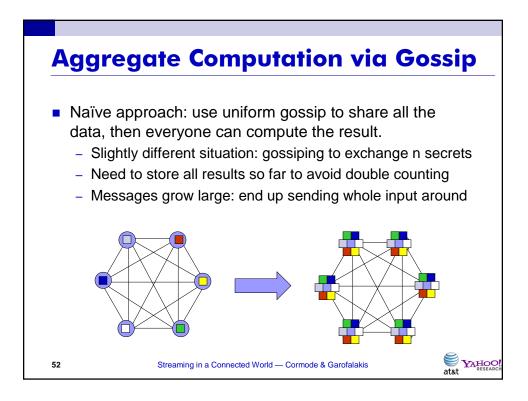


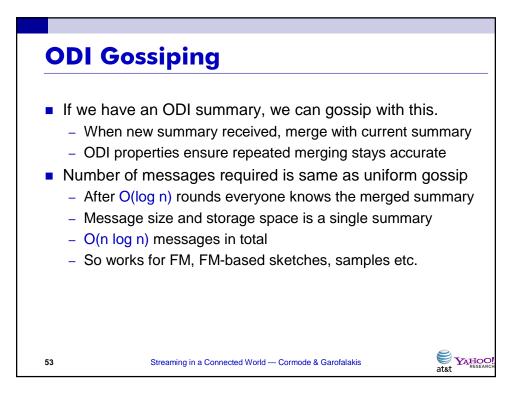


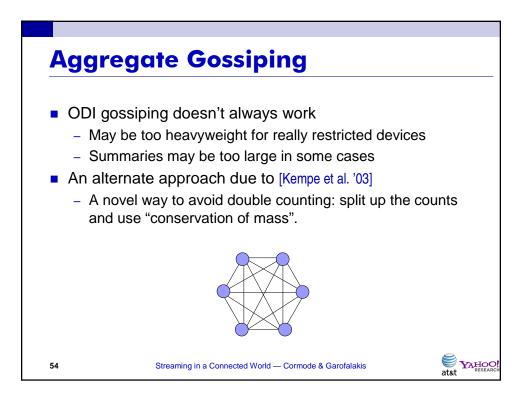


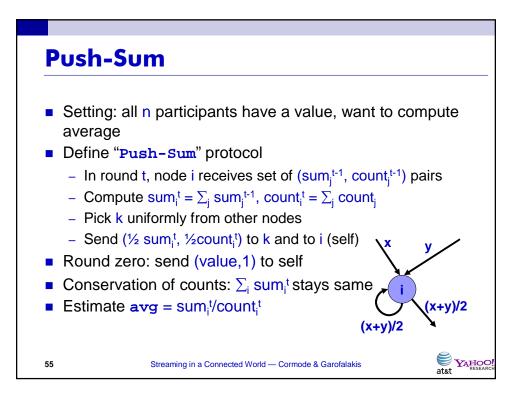


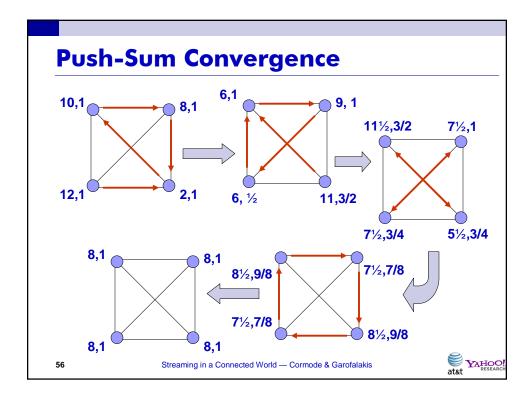


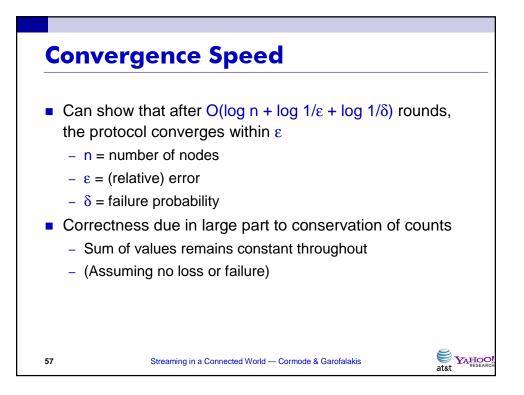


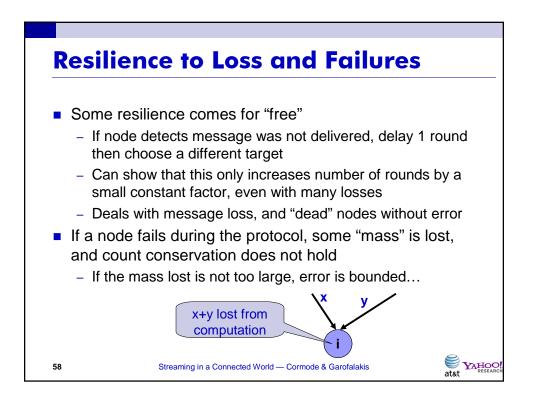


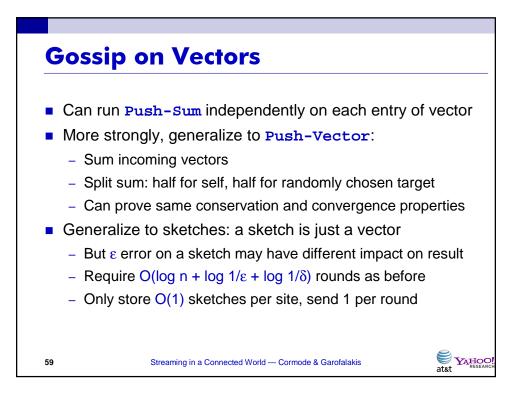


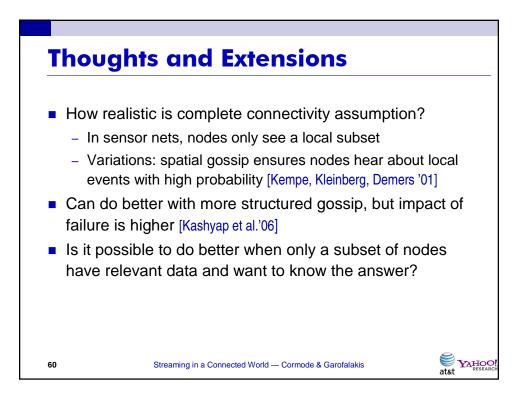


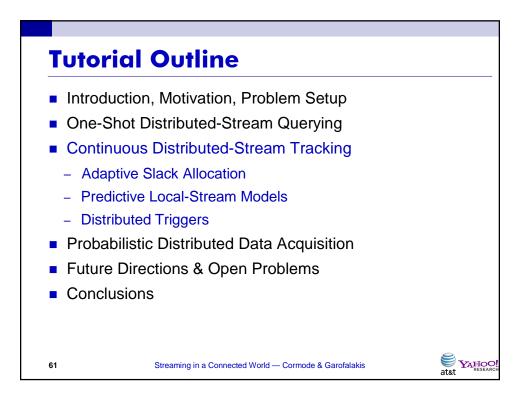


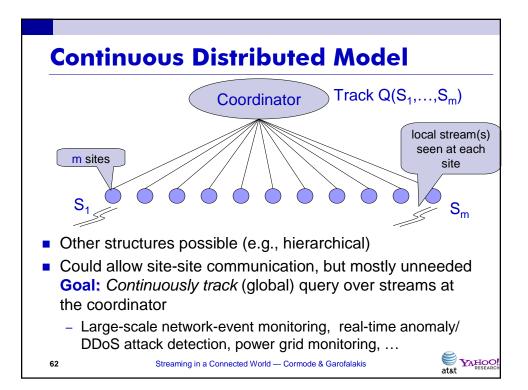


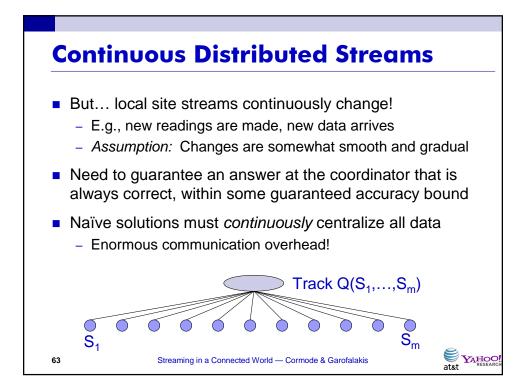


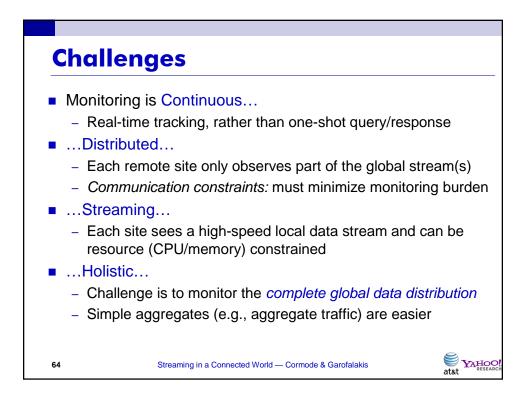


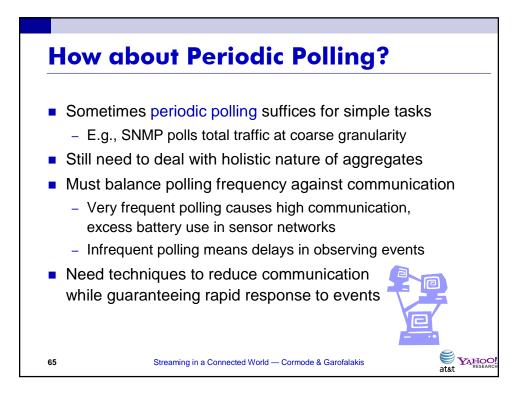


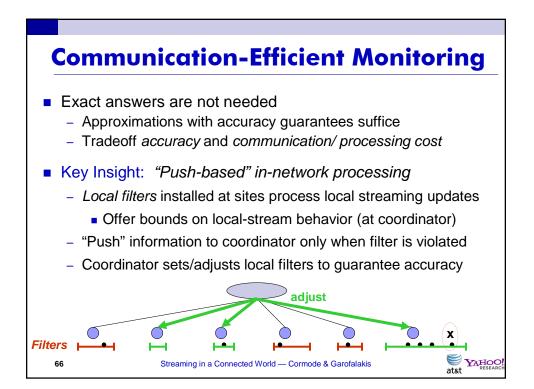


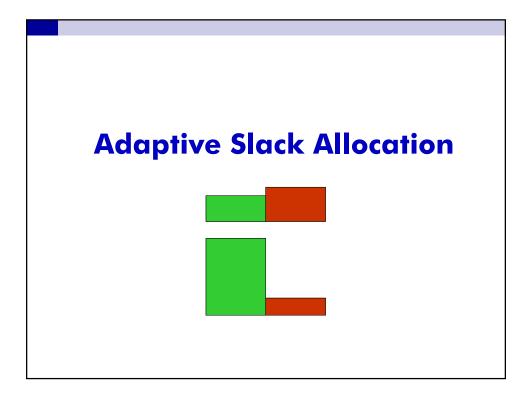


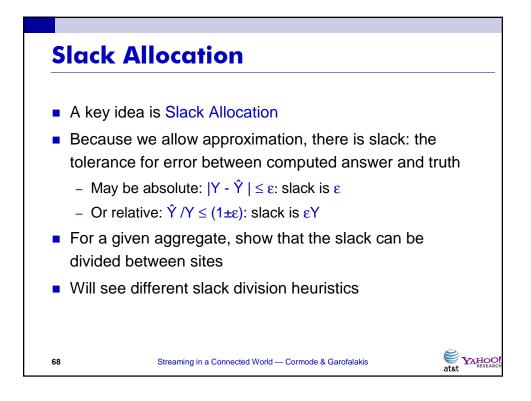


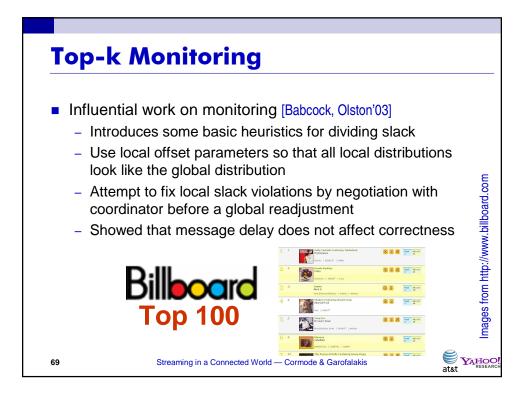


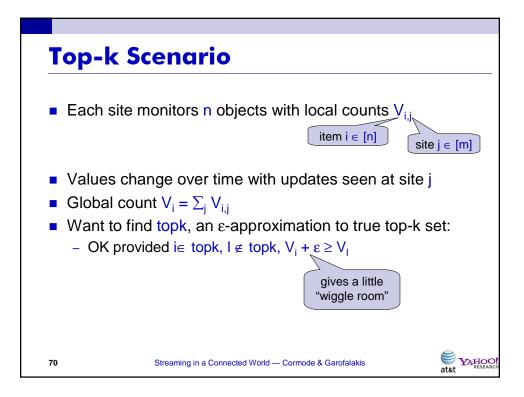


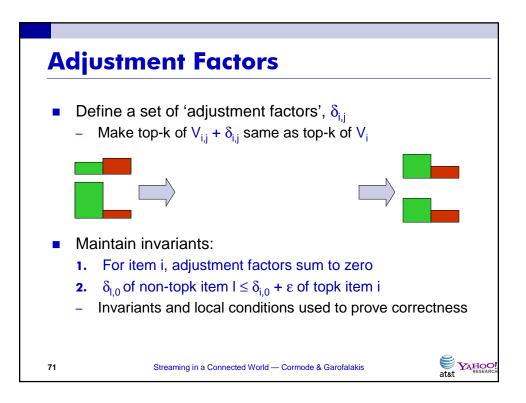


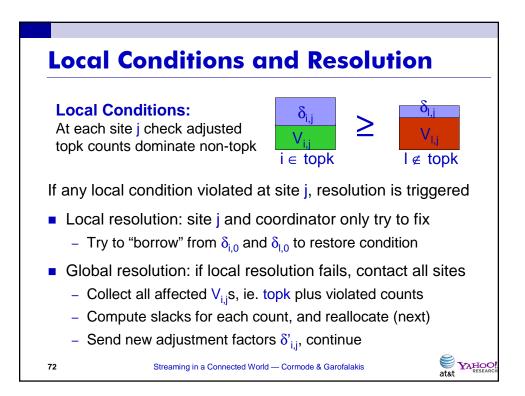


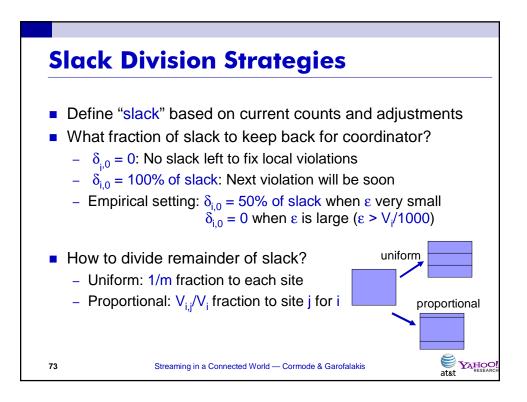


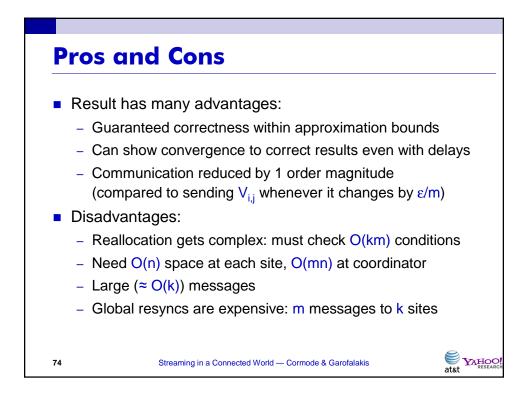


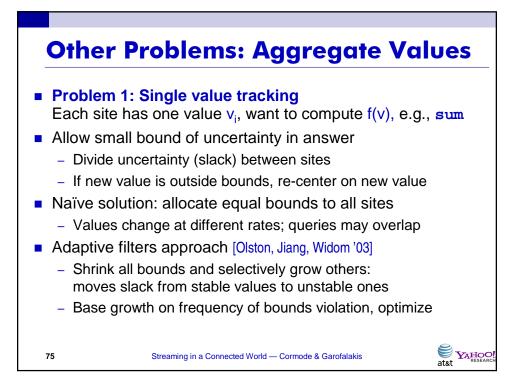


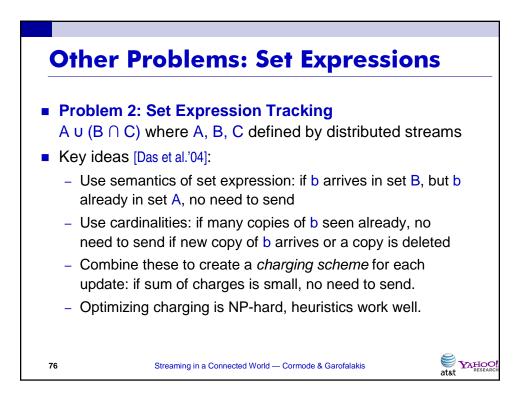


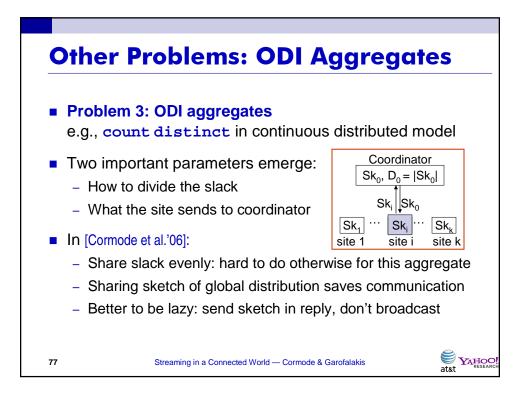


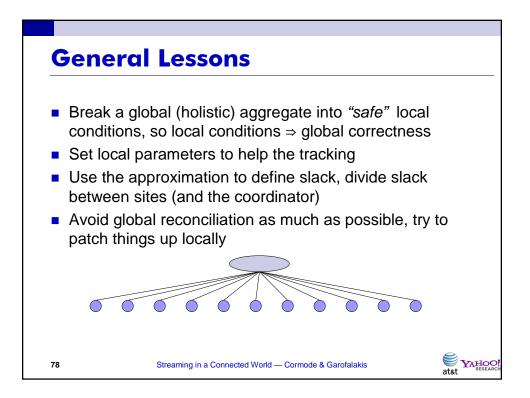


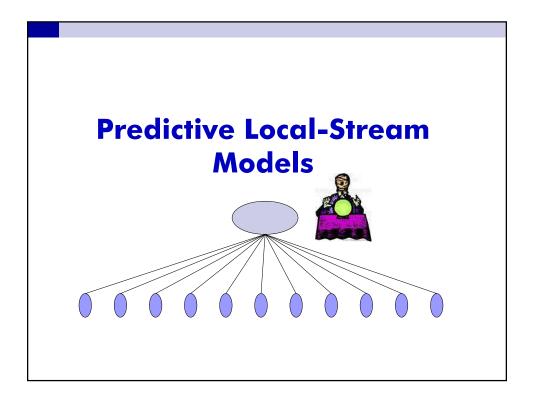


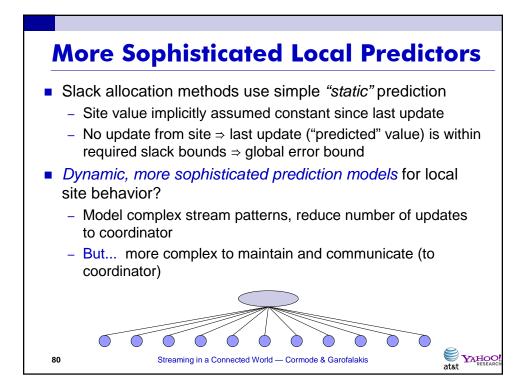


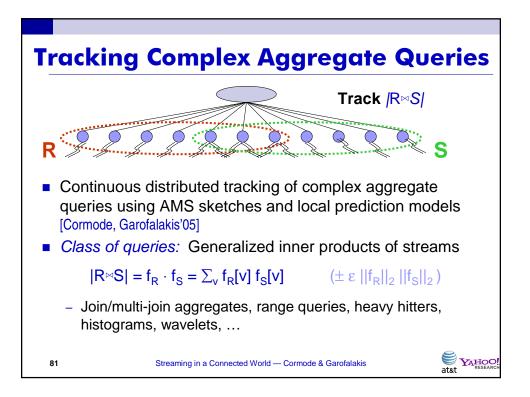


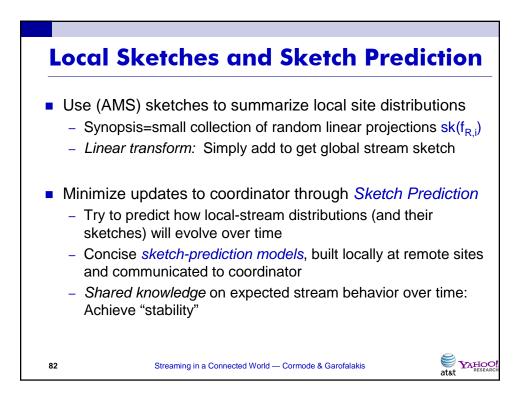


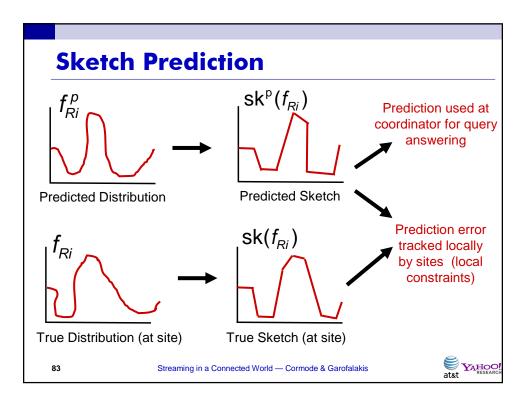


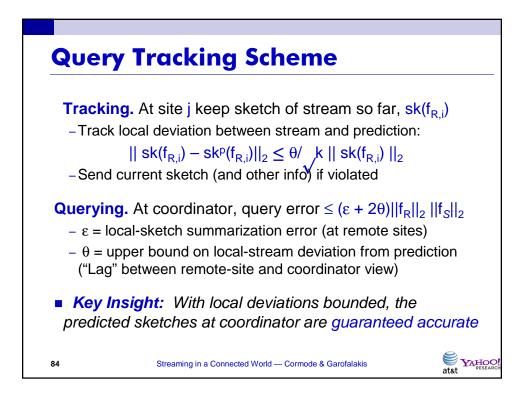


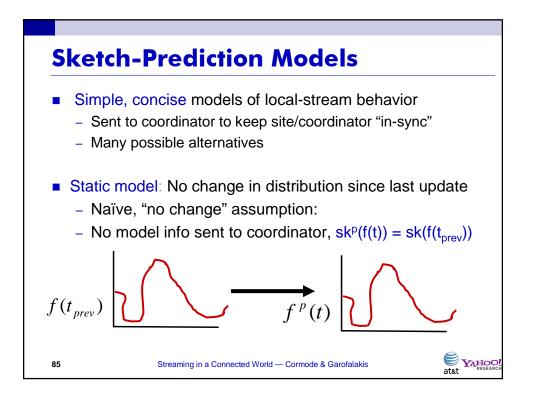


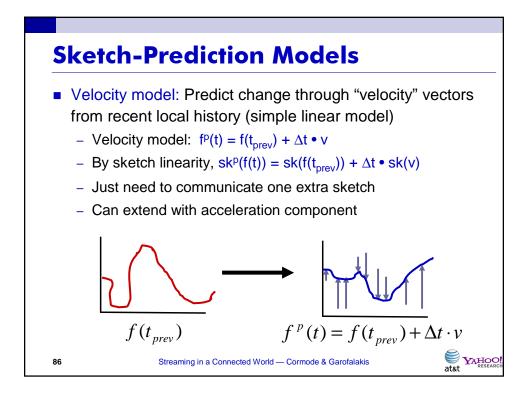




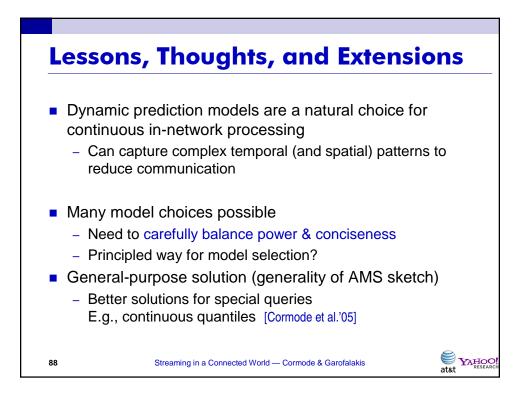


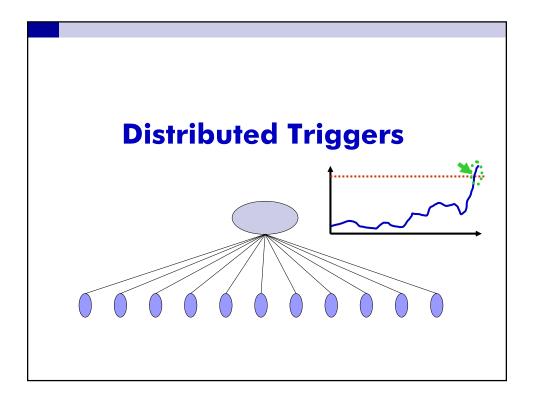


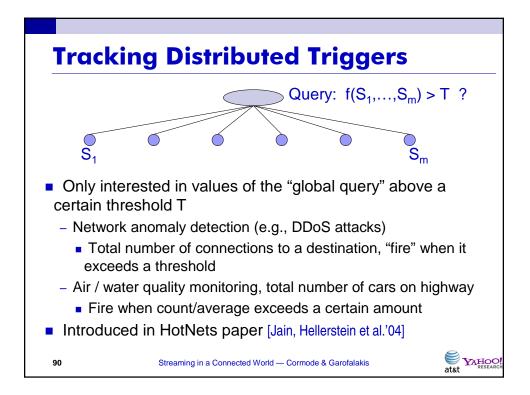


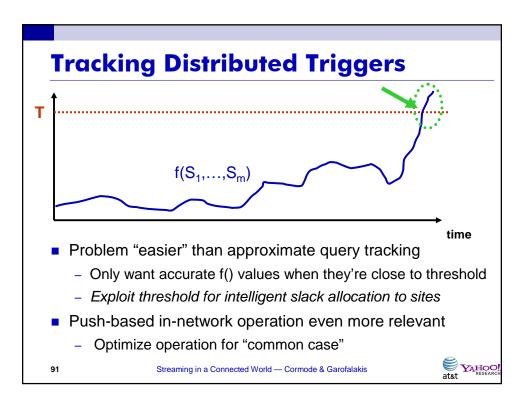


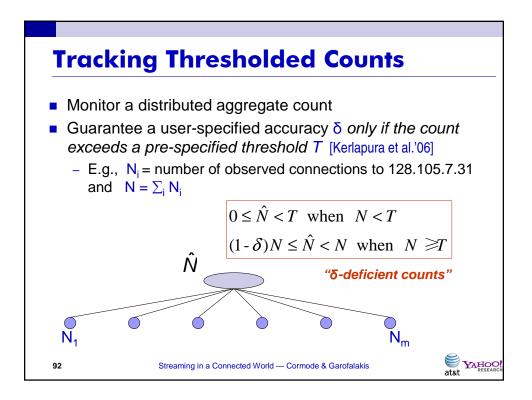
Model	Info	Predicted Sketch
Static	ø	$\mathbf{Sk}^{p}(f(t)) = \mathbf{Sk}(f(t_{prev}))$
Velocity	sk(v)	$sk^{p}(f(t)) = sk(f(t_{prev})) + \Delta t \cdot sk(v)$
■ 1 – 2 orde	ers of mag	nitude savings over sending all data

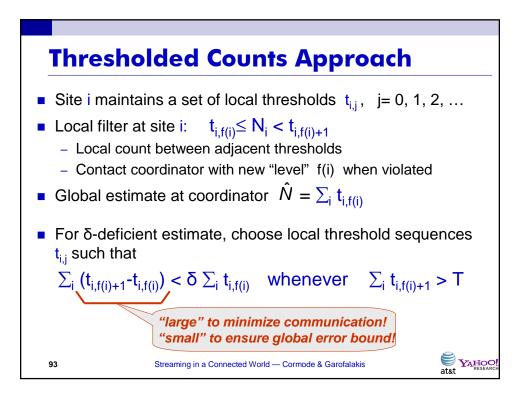


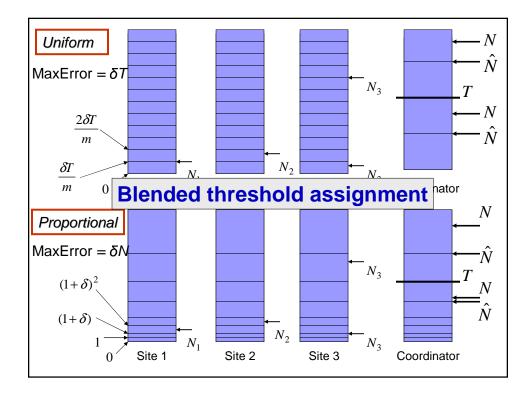


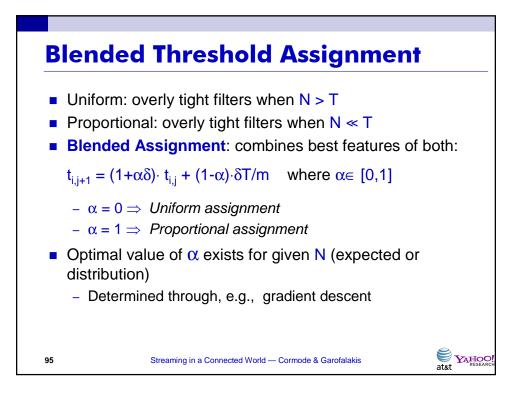


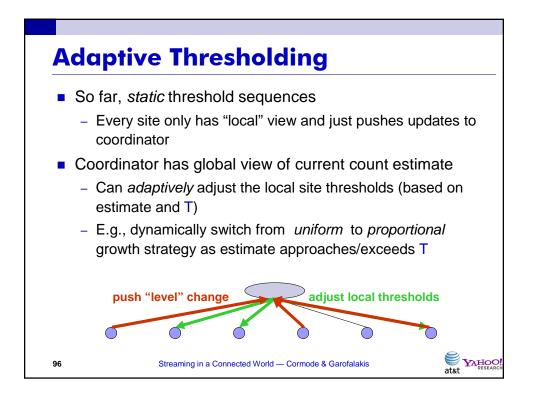


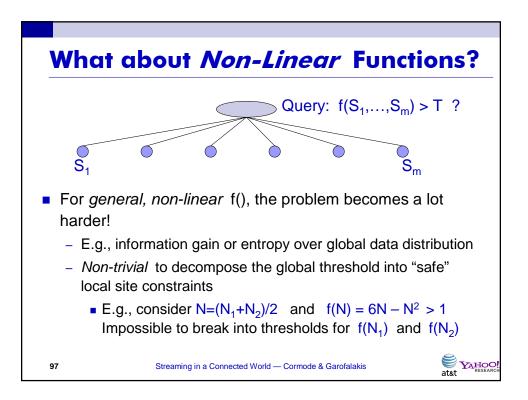


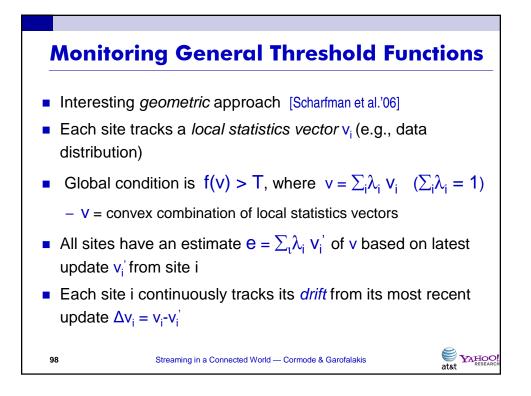


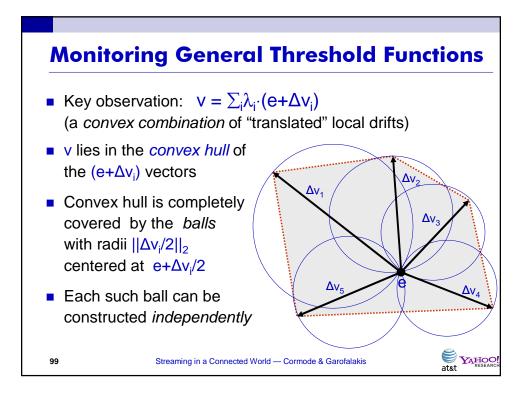


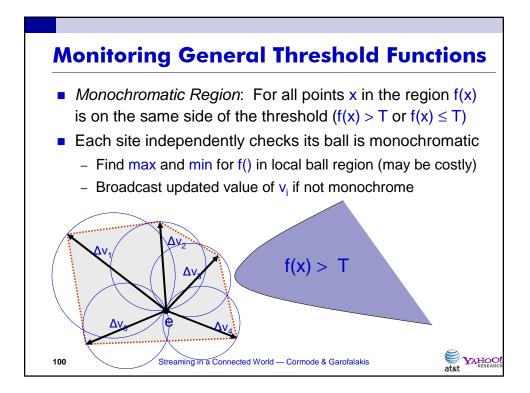


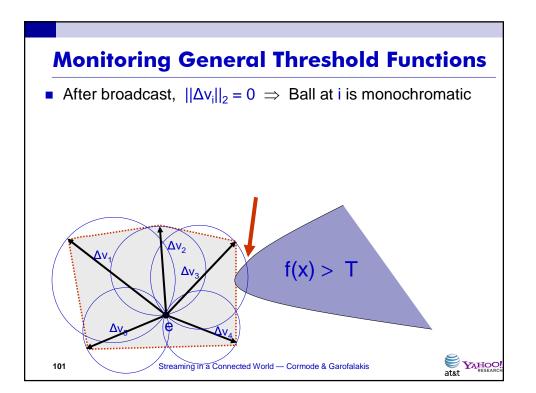


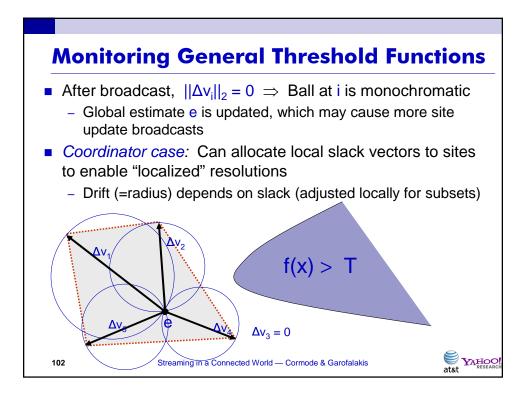


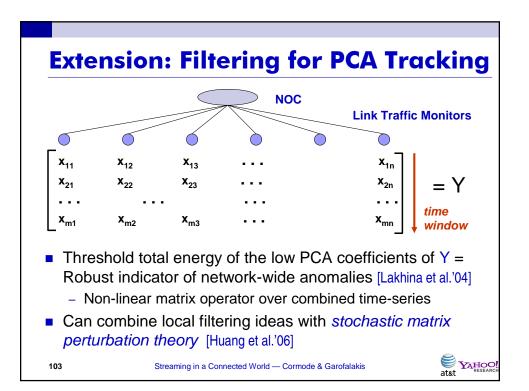


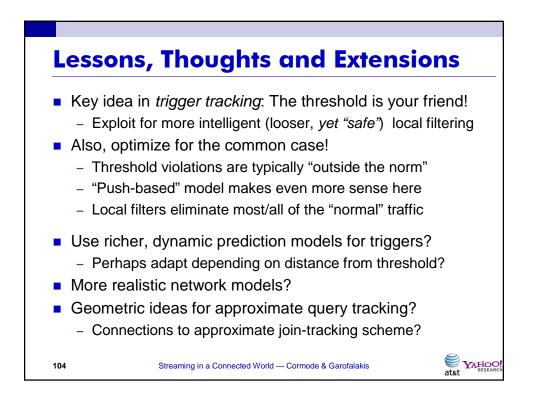


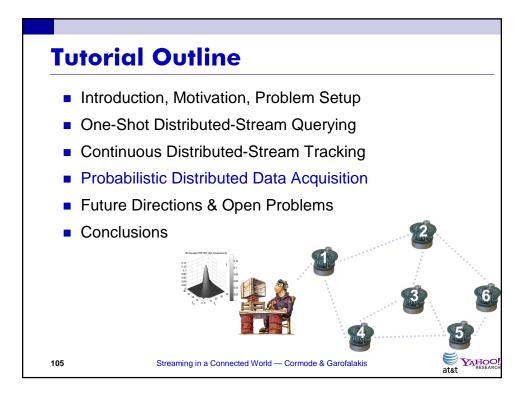


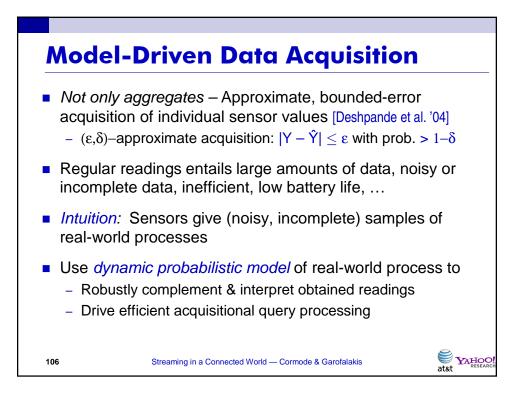


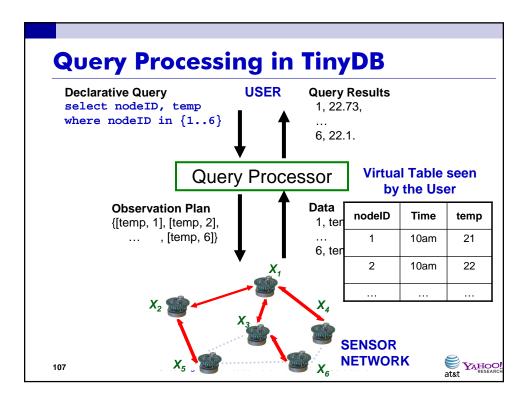


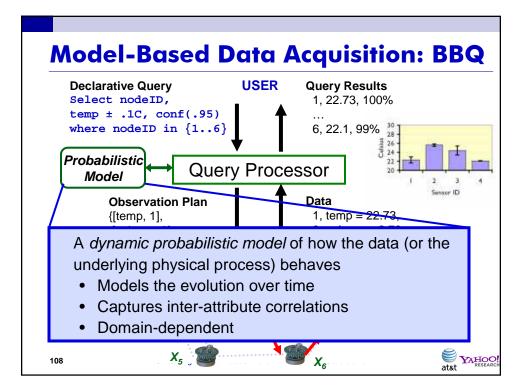


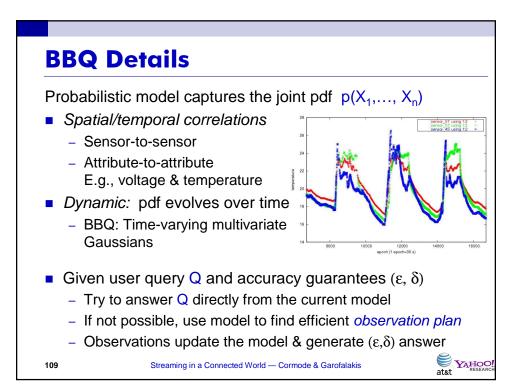


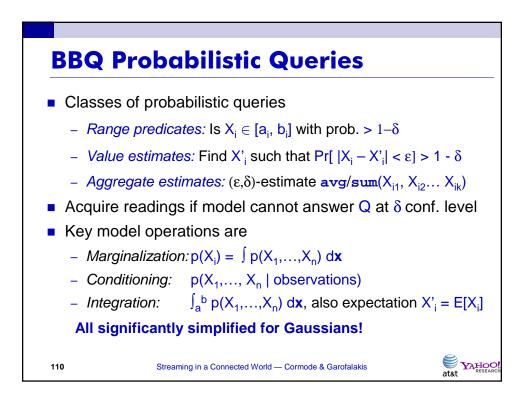


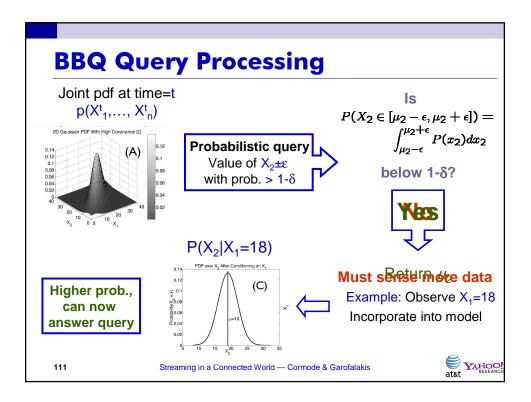


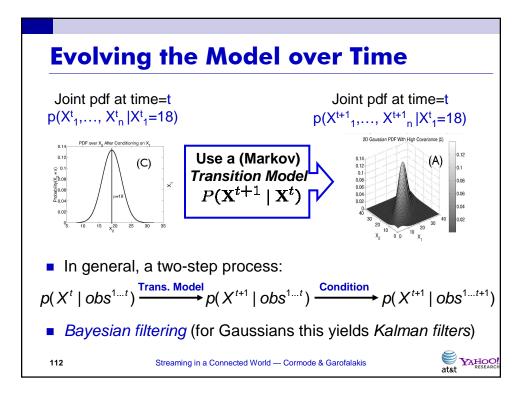


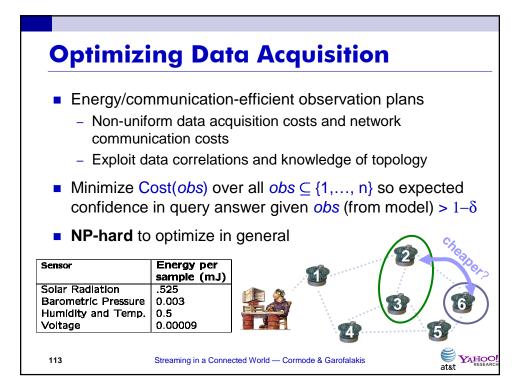


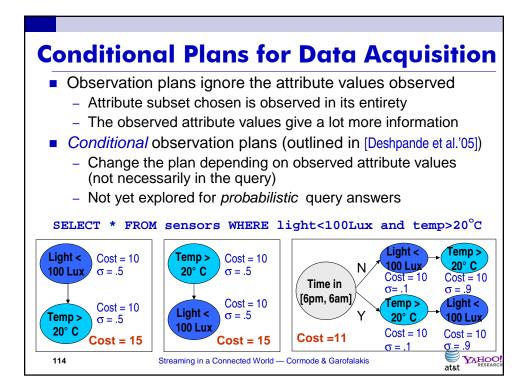


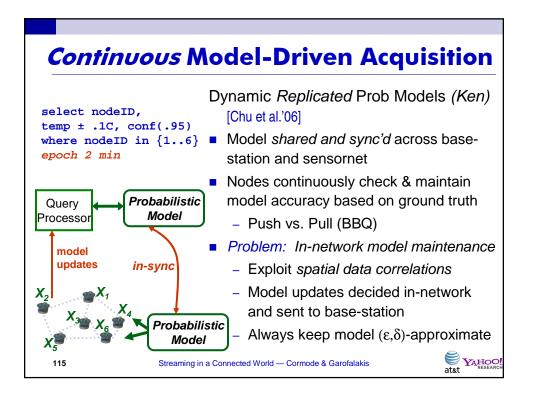


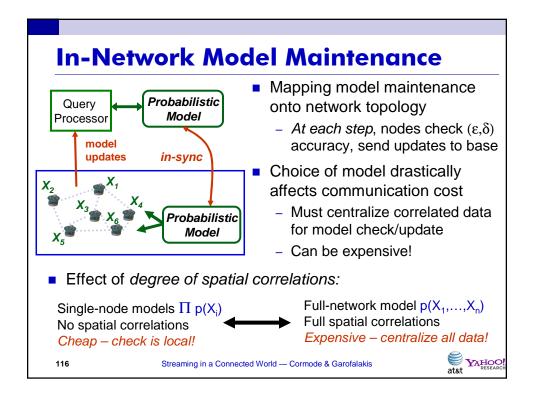


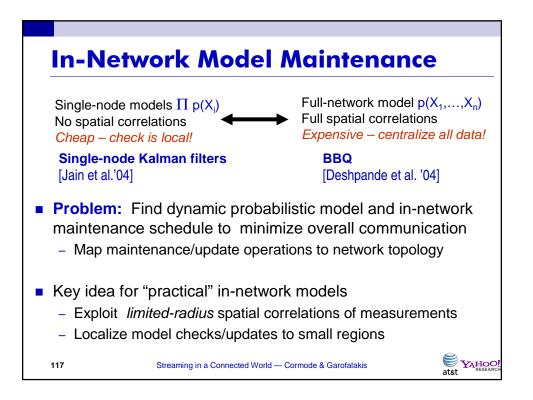


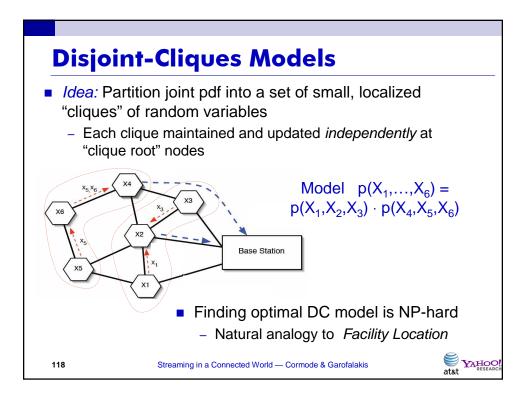


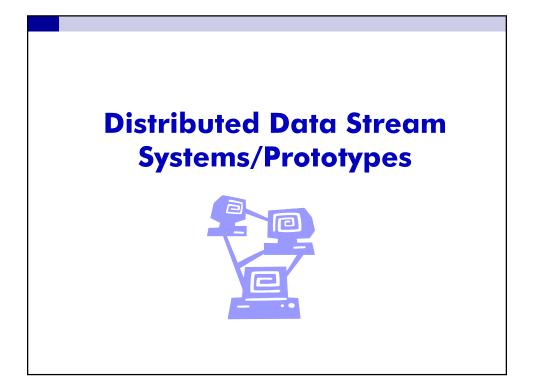


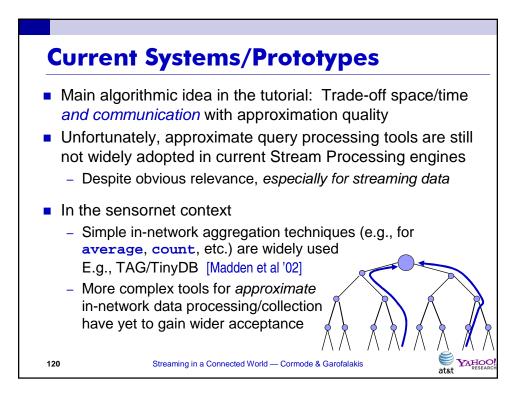


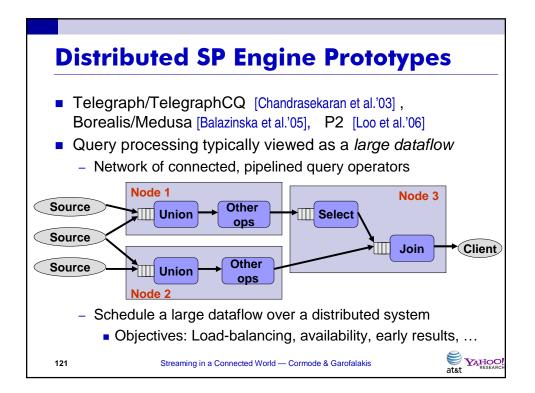


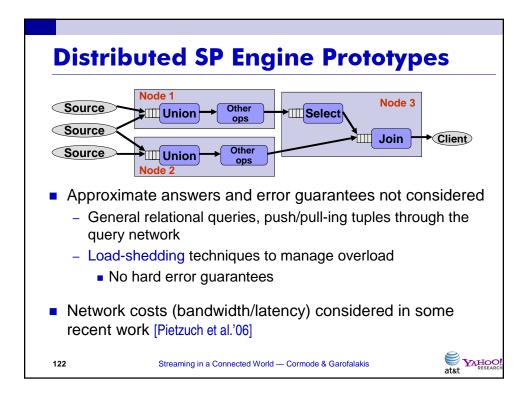


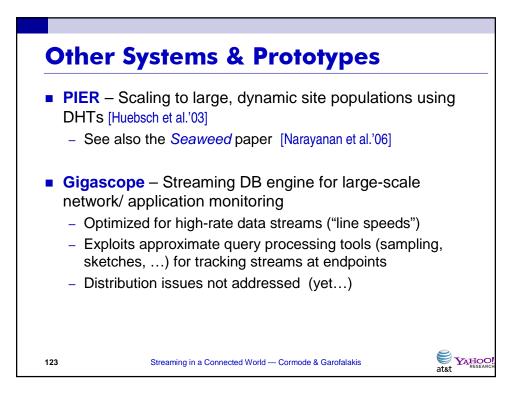


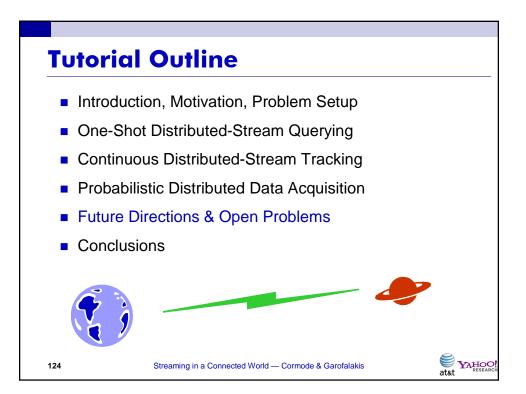


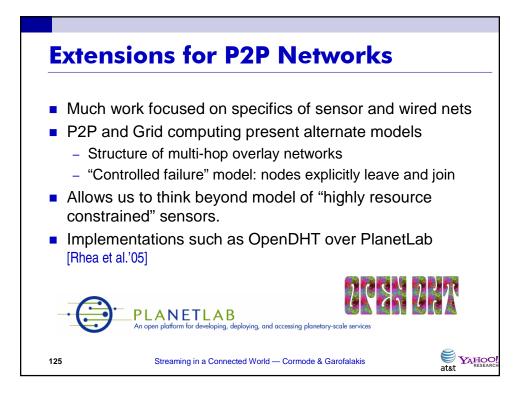


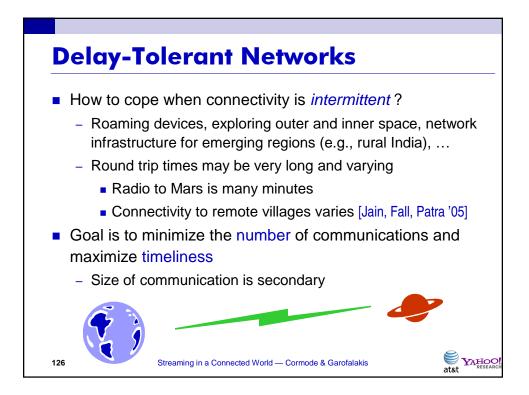


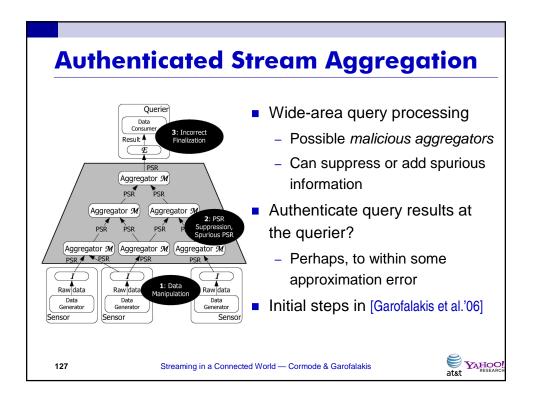


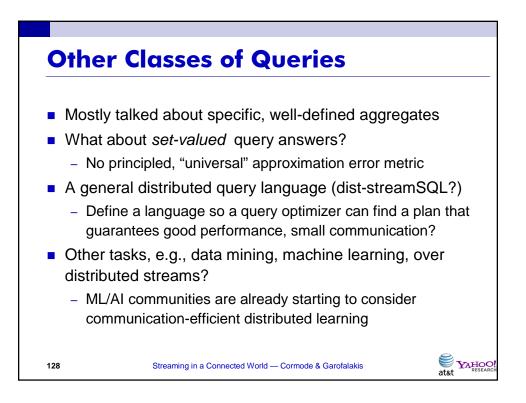


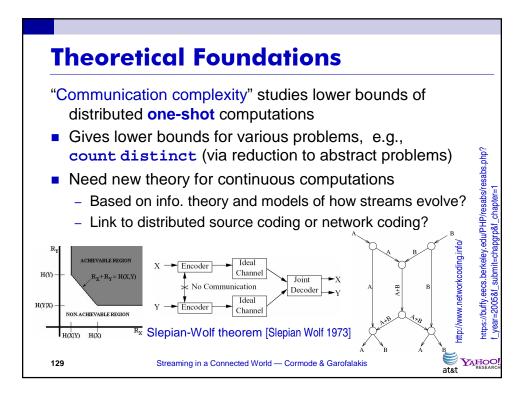


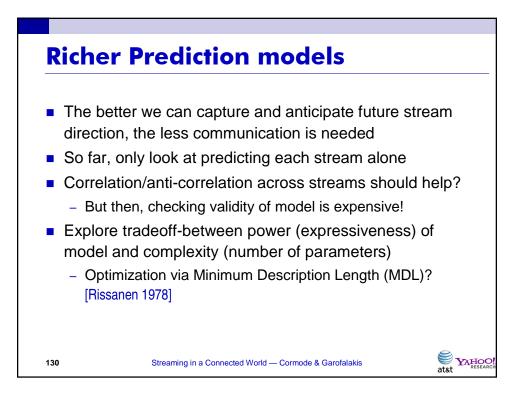












Conclusions

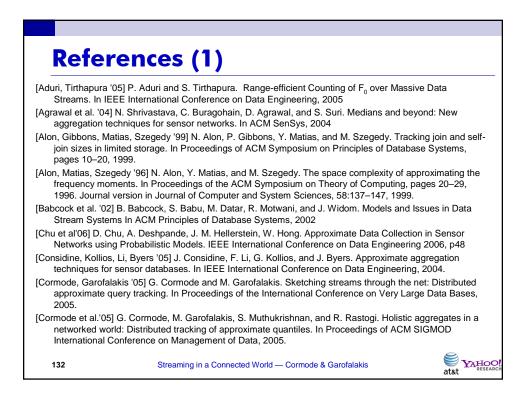
131

- Many new problems posed by developing technologies
- Common features of *distributed streams* allow for general techniques/principles instead of "point" solutions
 - In-network query processing
 Local filtering at sites, trading-off approximation with processing/network costs, …
 - Models of "normal" operation
 Static, dynamic ("predictive"), probabilistic, ...
 - Exploiting network locality and avoiding global resyncs
- Many new directions unstudied, more will emerge as new technologies arise

YAHOC

Lots of exciting research to be done! ③

Streaming in a Connected World — Cormode & Garofalakis



References (2)

[Cormode, Muthukrishnan '04] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[Cormode, Muthukrishnan '05] G. Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In Proceedings of ACM Principles of Database Systems, 2005.

[Das et al.'04] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed Set-Expression Cardinality Estimation. In Proceedings of VLDB, 2004.

[Deshpande et al'04] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, W. Hong. Model-Driven Data Acquisition in Sensor Networks. In VLDB 2004, p 588-599

[Deshpande et al'05] A. Deshpande, C. Guestrin, W. Hong, S. Madden. Exploiting Correlated Attributes in Acquisitional Query Processing. In IEEE International Conference on Data Engineering 2005, p143-154

[Dilman, Raz '01] M. Dilman, D. Raz. Efficient Reactive Monitoring. In IEEE Infocom, 2001.

[Flajolet, Martin '83] P. Flajolet and G. N. Martin. Probabilistic counting. In IEEE Conference on Foundations of Computer Science, pages 76–82, 1983. Journal version in Journal of Computer and System Sciences, 31:182–209, 1985.

[Garofalakis et al. '02] M. Garofalakis, J. Gehrke, R. Rastogi. Querying and Mining Data Streams: You Only Get One Look. Tutorial in ACM SIGMOD International Conference on Management of Data, 2002.

[Garofalakis et al.'06] M. Garofalakis, J. Hellerstein, and P. Maniatis. Proof Sketches: Verifiable Multi-Party Aggregation. UC-Berkeley EECS Tech. Report, 2006.

[Gibbons, Tirthapura '01] P. Gibbons, S. Tirthapura. Estimating simple functions on the union of data streams. In ACM Symposium on Parallel Algorithms and Architectures, 2001.

[Greenwald, Khanna '01] M. Greenwald, S. Khanna. Space-efficient online computation of quantile summaries. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2001.

133

Streaming in a Connected World - Cormode & Garofalakis

YAHOO

References (4)

- [Kerlapura et al.'06] R. Kerlapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed monitoring of thresholded counts. In ACM SIGMOD, 2006.
- [Koudas, Srivastava '03] N. Koudas and D. Srivastava. Data stream query processing: A tutorial. In VLDB, 2003.
- [Madden '06] S. Madden. Data management in sensor networks. In Proceedings of European Workshop on Sensor Networks, 2006.
- [Madden et al. '02] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: a Tiny AGgregation service for ad-hoc sensor networks. In Proceedings of Symposium on Operating System Design and Implementation, 2002.
- [Manjhi, Nath, Gibbons '05] A. Manjhi, S. Nath, and P. Gibbons. Tributaries and deltas: Efficient and robust aggregation in sensor network streams. In Proceedings of ACM SIGMOD International Conference on Management of Data, 2005.
- [Manjhi et al.'05] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items in distributed data streams. In IEEE International Conference on Data Engineering, pages 767–778, 2005.
- [Muthukirshnan '03] S. Muthukrishnan. Data streams: algorithms and applications. In ACM-SIAM Symposium on Discrete Algorithms, 2003.
- [Narayanan et al.'06] D. Narayanan, A. Donnelly, R. Mortier, and A. Rowstron. Delay-aware querying with Seaweed. In VLDB, 2006.
- [Nath et al.'04] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust aggrgation in sensor networks. In ACM SenSys, 2004.

135

Streaming in a Connected World - Cormode & Garofalakis

YAHOC

