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� Traditional DBMS: data stored in finite, persistent data sets

� Data Streams: distributed, continuous, unbounded, rapid, 
time varying, noisy, . . . 

� Data-Stream Management: variety of modern applications
– Network monitoring and traffic engineering
– Sensor networks
– Telecom call-detail records
– Network security 
– Financial applications
– Manufacturing processes
– Web logs and clickstreams
– Other massive data sets…
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� 24x7 IP packet/flow data-streams at network elements
� Truly massive streams arriving at rapid rates

– AT&T collects 600-800 Gigabytes of NetFlow data each day.

� Often shipped off-site to data warehouse for off-line analysis

Source        Destination Duration Bytes       Protocol
10.1.0.2            16.2.3.7             12                20K            http
18.6.7.1            12.4.0.3             16                24K            http
13.9.4.3            11.6.8.2             15                20K            http
15.2.2.9            17.1.2.1             19                40K            http
12.4.3.8            14.8.7.4             26                58K            http
10.5.1.3            13.0.0.1             27                100K          ftp
11.1.0.6            10.3.4.5             32                300K          ftp
19.7.1.2            16.5.5.8             18                80K            ftp

Example NetFlow
IP Session Data

DSL/Cable
Networks

• Broadband
Internet Access

Converged IP/MPLS
Core

PSTNEnterprise
Networks

• Voice over IP• FR, ATM, IP VPN

Network Operations
Center  (NOC)

SNMP/RMON,
NetFlow records

Peer
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DBMS
(Oracle, DB2)

Back-end Data Warehouse

Off-line analysis –
slow, expensive

DSL/Cable
Networks

Enterprise
Networks

Peer

Network Operations
Center  (NOC)

What are the top (most frequent) 1000 (source, dest) 
pairs seen over the last month?

SELECT COUNT (R1.source, R2.dest)
FROM  R1, R2
WHERE R1.dest = R2.source

SQL Join Query

How many distinct (source, dest) pairs have 
been seen by both R1 and R2 but not R3?

Set-Expression Query

PSTN
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� Must process network streams in real-time and one pass
� Critical NM tasks: fraud, DoS attacks, SLA violations

– Real-time traffic engineering to improve utilization

� Tradeoff communication and computation to reduce load
– Make responses fast, minimize use of network resources
– Secondarily, minimize space and processing cost at nodes

IP Network

PSTN

DSL/Cable
Networks

Network Operations
Center  (NOC)

BGP
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� Wireless sensor networks becoming ubiquitous in 
environmental monitoring, military applications, …

� Many (100s, 103, 106?) sensors scattered over terrain 
� Sensors observe and process a local stream of readings: 

– Measure light, temperature, pressure…
– Detect signals, movement, radiation…
– Record audio, images, motion…
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� Query sensornet through a (remote) base station
� Sensor nodes have severe resource constraints

– Limited battery power, memory, processor, radio range…
– Communication is the major source of battery drain
– “transmitting a single bit of data is equivalent to 800 

instructions” [Madden et al.’02]
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(root, coordinator…)
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� Approximate answers– e.g. trend analysis, anomaly detection
� Requirements for stream synopses

– Single Pass: Each record is examined at most once
– Small Space: Log or polylog in data stream size
– Small-time: Low per-record processing time (maintain synopses)
– Also:  delete-proof, composable, …

Stream Processor

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer with high
probability”

Stream Synopses
(in memory)Continuous Data Streams

Query Q

R1

Rk

(Terabytes) (Kilobytes)
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� Large-scale querying/monitoring: Inherently distributed!
– Streams physically distributed across remote sites

E.g., stream of UDP packets through subset of edge routers

� Challenge is “holistic” querying/monitoring
– Queries over the union of distributed streams Q(S1 

� S2 
� …)

– Streaming data is spread throughout the network

Network 
Operations

Center  (NOC)

Query site Query

0 1
1

1 1

0
0

1

1 0

0

1
1

0

1
1

0

1
1

0

1
1

Q(S1
� S2

� …)

S6

S5S4

S3
S1

S2
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� Need timely, accurate, and efficient query answers 
� Additional complexity over centralized data streaming!
� Need space/time- and communication-efficient solutions

– Minimize network overhead
– Maximize network lifetime (e.g., sensor battery life)
– Cannot afford to “centralize” all streaming data

Network 
Operations

Center  (NOC)

Query site Query

0 1
1

1 1

0
0

1

1 0

0

1
1

0

1
1

0

1
1
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Q(S1
� S2

� …)

S6

S5S4

S3
S1

S2
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“One-shot” vs. Continuous Querying
� One-shot queries:  On-demand “pull”

query answer from network
– One or few rounds of communication
– Nodes may prepare for a class of queries

� Continuous queries: Track/monitor
answer at query site at all times 
– Detect anomalous/outlier behavior in 

(near) real-time, i.e., “Distributed triggers”
– Challenge is to minimize communication 

Use “push-based” techniques
May use one-shot algs as subroutines

Querying 
Model

Communication
Model

Class of
Queries
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Minimizing communication often needs 
approximation and randomization

� E.g., Continuously monitor average value
– Must send every change for exact answer
– Only need ‘significant’ changes for approx 

(def. of “significant” specifies an algorithm)

� Probability sometimes vital to reduce 
communication
– count distinct in one shot model 

needs randomness
– Else must send complete data

Querying 
Model

Communication
Model

Class of
Queries
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Class of Queries of Interest
� Simple algebraic vs. holistic aggregates

– E.g., count/max vs. quantiles/top-k

� Duplicate-sensitive vs. duplicate-insensitive
– “Bag” vs.  “set” semantics

� Complex correlation queries
– E.g., distributed joins, set expressions, …

Querying 
Model

Communication
Model

Class of
Queries 1S

0 1
1

1 1

0
0

1

1 0

2S

0

1
1

0

1
1

0

1
1

0

1
1

3S
6S

5S
4S

Query

|(S1 � S2) ���� (S5 � S6)|
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Communication Network Characteristics
Topology:  “Flat” vs. Hierarchical 

vs. Fully-distributed (e.g., P2P DHT)

Querying 
Model

Communication
Model

Class of
Queries

Coordinator

Fully DistributedHierarchical“ Flat”

Other network characteristics:  
– Unicast (traditional wired), multicast, broadcast (radio nets)
– Node failures, loss, intermittent connectivity, …
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� We focus on aspects of physical distribution of streams
– Several earlier surveys of (centralized) streaming algorithms 

and systems 
[Babcock et al.’02; Garofalakis et al.’02; Koudas, Srivastava ’03; 
Muthukrishnan ’03] …

� Fairly broad coverage, but still biased view of distributed   
data-streaming world
– Revolve around personal biases (line of work and interests)
– Main focus on key algorithmic concepts, tools, and results

� Only minimal discussion of systems/prototypes
– A lot more out there, esp. on related world of sensornets

[Madden ’06]
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� Introduction, Motivation, Problem Setup

� One-Shot Distributed-Stream Querying

– Tree Based Aggregation

– Robustness and Loss

– Decentralized Computation and Gossiping

� Continuous Distributed-Stream Tracking

� Probabilistic Distributed Data Acquisition

� Future Directions & Open Problems

� Conclusions
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� Tree structured networks are a basic primitive
– Much work in e.g. sensor nets on building communication 

trees
– We assume that tree has been built, focus on issues with a 

fixed tree

Flat 
Hierarchy

Base Station

Regular Tree



10

Streaming in a Connected World — Cormode & Garofalakis19

���#�������
��
�����

� Goal is for root to compute a 
function of data at leaves

� Trivial solution: push all data up 
tree and compute at base station

– Strains nodes near root: batteries drain, disconnecting 
network
– Very wasteful: no attempt at saving communication

� Can do much better by “In-network” query processing
– Simple example: computing max
– Each node hears from all children, computes max and 
sends to parent (each node sends only one item)

Streaming in a Connected World — Cormode & Garofalakis20
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� What are aggregates of interest?
– SQL Primitives: min, max, sum, count, avg

– More complex: count distinct, point & range queries,
quantiles, wavelets, histograms, sample

– Data mining: association rules, clusterings etc.

� Some aggregates are easy – e.g., SQL primitives

� Can set up a formal framework for in network 
aggregation
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� Abstract in-network aggregation.  Define functions:
– Generate, g(i): take input, produce summary (at leaves)
– Fusion, f(x,y): merge two summaries (at internal nodes)
– Evaluate, e(x): output result (at root)

� E.g. max: g(i) = i f(x,y) = max(x,y) e(x) = x 
� E.g. avg: g(i) = (i,1) f((i,j),(k,l)) = (i+k,j+l) e(i,j) = i/j

� Can specify any function with 
g(i) ={i}, f(x,y) = x � y
Want to bound |f(x,y)|

g(i)

f(x,y)

e(x)
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� Different properties of aggregates 
(from TAG paper [Madden et al ’02])
– Duplicate sensitive – is answer same if multiple identical 

values are reported?
– Example or summary – is result some value from input 

(max) or a small summary over the input (sum)

– Monotonicity – is F(X � Y) monotonic compared to F(X)
and F(Y) (affects push down of selections)

– Partial state – are |g(x)|, |f(x,y)| constant size, or growing? 
Is the aggregate algebraic, or holistic?
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algebraic?NoExample(s)Yessample

holisticNoSummaryYeshistogram

holisticYesSummaryNocount distinct

holisticNoExampleYesmedian, quantiles

algebraicNoSummaryYesaverage

algebraicYesSummaryYessum, count

algebraicYesExampleNomin, max

Partial 
State

MonotonicExample or 
summary

Duplicate 
Sensitive

adapted from [Madden et al.’02]
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Simulation Results

2500 Nodes

50x50 Grid

Depth = ~10

Neighbors = ~20

Uniform Dist.

Total Bytes Sent against Aggregation Function
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Slide adapted from http://db.lcs.mit.edu/madden/html/jobtalk3.ppt
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� Holistic aggregates need the whole input to compute (no 
summary suffices)
– E.g., count distinct, need to remember all distinct items 

to tell if new item is distinct or not

� So focus on approximating aggregates to limit data sent
– Adopt ideas from sampling, data reduction, streams etc.

� Many techniques for in-network aggregate approximation:
– Sketch summaries
– Other mergable summaries
– Building uniform samples, etc…
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� Sketch summaries are typically pseudo-random linear 
projections of data.  Fits generate/fuse/evaluate model: 
– Suppose input is vectors xi and aggregate is F(�i xi)
– Sketch of xi, g(xi), is a matrix product Mxi

– Combination of two sketches is their summation: 
f(g(xi),g(xj)) = M(xi + xj) = Mxi + Mxj = g(xi) + g(xj)

– Extraction function e() depends on sketch, different 
sketches allow approximation of different aggregates.

linear projection
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� Simple sketch idea, can be used for point queries, range 
queries, quantiles, join size estimation.

� Model input at each node as a vector xi of dimension U, 
U is too large to send whole vectors

� Creates a small summary as an array of w � d in size

� Use d hash function to map vector entries to [1..w]

W

d
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� Each entry in vector x is mapped to one bucket per row.
� Merge two sketches by entry-wise summation
� Estimate xi[j] by taking mink sketch[k,hk(j)]

+xi[j]

+xi[j]

+xi[j]

+xi[j]

h1(j)

hd(j)

j,xi[j] d

w

[Cormode, Muthukrishnan ’04]
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� CM sketch guarantees approximation error on point 
queries less than ε||x||1 in size O(1/ε log 1/δ)
– Probability of more error is less than 1-δ
– Similar guarantees for range queries, quantiles, join size

� AMS sketches approximate self-join and join size with error 
less than ε||x||2 ||y||2 in size O(1/ε2 log 1/δ)
– [Alon, Matias, Szegedy ’96, Alon, Gibbons, Matias, Szegedy ’99]

� FM sketches approximate number of distinct items (||x||0)
with error less than ε||x||0 in size O(1/ε2 log 1/δ)
– FM sketch in more detail later [Flajolet, Martin ’83]

� Bloom filters: compactly encode sets in sketch like fashion

Streaming in a Connected World — Cormode & Garofalakis30
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� Approach 1. Careful merging of summaries
– Small summaries of a large amount of data at each site

– E.g., Greenwald-Khanna algorithm (GK) keeps a small data 
structure to allow quantile queries to be answered

– Can sometimes carefully merge summaries up the tree 
Problem: if not done properly, the merged summaries can 
grow very large as they approach root

– Balance final quality of answer against number of merges by 
decreasing approximation quality (precision gradient)

– See [Greenwald, Khanna ’04; Manjhi et al.’05; Manjhi, Nath, Gibbons ‘05]
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� Approach 2. Domain-aware Summaries
– Each site sees information drawn from discrete domain 

[1…U] – e.g. IP addresses, U = 232

– Build summaries by imposing tree-structure on domain 
and keeping counts of nodes representing subtrees

– [Agrawal et al ’04] show O(1/ε log U)
size summary for quantiles
and range & point queries

– Can merge repeatedly without
increasing error or summary size

1 3

2 1

3

5

1
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� Approach 3. Uniform random samples
– As in centralized databases, a uniform random sample of 

size O(1/ε2 log 1/δ) answers many queries
– Can collect a random sample of data from each node, and 

merge up the tree (will show algorithms later)
– Works for frequent items, quantile queries, histograms
– No good for count distinct, min, max, wavelets…
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� Some methods too heavyweight for today’s sensor nets, 
but as technology improves may soon be appropriate

� Most are well suited for, e.g., wired network monitoring
– Trees in wired networks often treated as flat, i.e. send 

directly to root without modification along the way

� Techniques are fairly well-developed owing to work on 
data reduction/summarization and streams

� Open problems and challenges: 
– Improve size of larger summaries
– Avoid randomized methods?  

Or use randomness to reduce size?

$���������
���
/���
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� Tree aggregation techniques assumed a reliable network
– we assumed no node failure, nor loss of any message

� Failure can dramatically affect the computation
– E.g., sum – if a node near the root fails, then a whole 

subtree may be lost

� Clearly a particular problem in sensor networks
– If messages are lost, maybe can detect and resend
– If a node fails, may need to rebuild

the whole tree and re-run protocol
– Need to detect the failure, 

could cause high uncertainty 
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� Sensor nets typically based on radio communication
– So broadcast (within range) cost the same as unicast
– Use multi-path routing: improved reliability, reduced impact 

of failures, less need to repeat messages

� E.g., computation of max
– structure network into rings of nodes 

in equal hop count from root
– listen to all messages from ring below, 

then send max of all values heard
– converges quickly, high path diversity
– each node sends only once, so same cost as tree
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� It works because max is Order and Duplicate Insensitive 
(ODI)   [Nath et al.’04]

� Make use of the same e(), f(), g() framework as before
� Can prove correct if e(), f(), g() satisfy properties:

– g gives same output for duplicates: i=j � g(i) = g(j)

– f is associative and commutative: 
f(x,y) = f(y,x); f(x,f(y,z)) = f(f(x,y),z)

– f is same-synopsis idempotent: f(x,x) = x

� Easy to check min, max satisfy these requirements, 
sum does not
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� Only max and min seem to be “naturally” ODI

� How to make ODI summaries for other aggregates?
� Will make use of duplicate insensitive primitives:

– Flajolet-Martin Sketch (FM)
– Min-wise hashing
– Random labeling
– Bloom Filter 
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� Estimates number of distinct inputs (count distinct)

� Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …
– Easy to construct h() from a uniform hash function by 

counting trailing zeros  

� Maintain FM Sketch =  bitmap array of L = log U bits 
– Initialize bitmap to all 0s
– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6      5     4     3     2      1
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� If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]…

– Let R = position of rightmost zero in FM, indicator of log(d)
– Basic estimate d = c2R for scaling constant c � 1.3

– Average many copies (different hash fns) improves accuracy

fringe of 0/1s 
around  log(d)

0 0 0 00 1

FM BITMAP

0 00 111 1 11111

position 
�

log(d)position � log(d)

1L R
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� Fits into the Generate, Fuse, Evaluate framework.
– Can fuse multiple FM summaries (with same hash h() ): 

take bitwise-OR of the summaries

� With O(1/ε2 log 1/δ) copies, get (1±ε) accuracy with 
probability at least 1-δ
– 10 copies gets � 30% error, 100 copies < 10% error

– Can pack FM into eg. 32 bits.  Assume h() is known to all.

� Similar ideas used in [Gibbons, Tirthapura ’01]
– improves time cost to create summary, simplifies analysis

00 0 1 11

6    5    4    3    2     1

00 1 1 10

6    5    4    3    2     1

00 1 1 11

6    5    4    3    2     1

+ =
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� What if we want to count, not count distinct? 
– E.g., each site i has a count ci, we want �i ci

– Tag each item with site ID, write in unary: (i,1), (i,2)… (i,ci)
– Run FM on the modified input, and run ODI protocol

� What if counts are large?
– Writing in unary might be too slow, need to make efficient

– [Considine et al.’05]: simulate a random variable that tells which 
entries in sketch are set

– [Aduri, Tirthapura ’05]: allow range updates, treat (i,ci) as range. 
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� Can take sketches and other summaries and make them 
ODI by replacing counters with FM sketches
– CM sketch + FM sketch = CMFM, ODI point queries etc. 

[Cormode, Muthukrishnan ’05]
– Q-digest + FM sketch = ODI quantiles 

[Hadjieleftheriou, Byers, Kollios ’05]
– Counts and sums 

[Nath et al.’04, Considine et al.’05]

00 1 1 11

6    5    4    3    2     1
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� Tributaries and Deltas idea
[Manjhi, Nath, Gibbons ’05]

� Combine small synopsis of 
tree-based aggregation 
with reliability of ODI

– Run tree synopsis at 
edge of network, where connectivity is limited (tributary)

– Convert to ODI summary in dense core of network (delta)

– Adjust crossover point adaptively

Delta
(Multi-path region)

Tributary 
(Tree region)
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� Suppose each node has a (multi)set of items.
� How to find a random sample of the union of all sets?
� Use a “random tagging” trick [Nath et al.’05]:

– For each item, attach a random label in range [0…1]
– Pick the items with the K smallest labels to send
– Merge all received items, and pick K smallest labels

(a, 0.34)

(c, 0.77)

(d, 0.57)

(b,0.92)

(a, 0.34)

(c, 0.77)

(a, 0.34)

K=1
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� Result at the coordinator: 
– A sample of size K items from the input
– Can show that the sample is chosen uniformly at random 

without replacement (could make “with replacement”)

� Related to min-wise hashing
– Suppose we want to sample from distinct items
– Then replace random tag with hash value on item name
– Result: uniform sample from set of present items

� Sample can be used for quantiles, frequent items etc. 
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� Bloom filters compactly encode set membership
– k hash functions map items to bit vector k times
– Set all k entries to 1 to indicate item is present
– Can lookup items, store set of size n in ~ 2n bits

� Bloom filters are ODI, and merge like FM sketches

item

1 1 1
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� Characterize all queries – can everything be made ODI 
with small summaries?

� How practical for different sensor systems?
– Few FM sketches are very small (10s of bytes)
– Sketch with FMs for counters grow large (100s of KBs)
– What about the computational cost for sensors?

� Amount of randomness required, and implicit 
coordination needed to agree hash functions etc.?

� Other implicit requirements: unique sensor IDs?

00 1 1 11

6    5    4    3    2     1
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� All methods so far have a single point of failure: if the 
base station (root) dies, everything collapses

� An alternative is Decentralized Computation
– Everyone participates in computation, all get the result
– Somewhat resilient to failures / departures

� Initially, assume anyone can talk to anyone else directly
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� “Uniform Gossiping” is a well-studied protocol for 
spreading information
– I know a secret, I tell two friends, who tell two friends …
– Formally, each round, everyone who knows the data 

sends it to one of the n participants chosen at random
– After O(log n) rounds, all n participants know the 

information (with high probability)  [Pittel 1987]
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� Naïve approach: use uniform gossip to share all the 
data, then everyone can compute the result. 
– Slightly different situation: gossiping to exchange n secrets
– Need to store all results so far to avoid double counting
– Messages grow large: end up sending whole input around
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� If we have an ODI summary, we can gossip with this.
– When new summary received, merge with current summary
– ODI properties ensure repeated merging stays accurate

� Number of messages required is same as uniform gossip
– After O(log n) rounds everyone knows the merged summary
– Message size and storage space is a single summary
– O(n log n) messages in total
– So works for FM, FM-based sketches, samples etc. 
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� ODI gossiping doesn’t always work
– May be too heavyweight for really restricted devices
– Summaries may be too large in some cases

� An alternate approach due to [Kempe et al. ’03]
– A novel way to avoid double counting: split up the counts 

and use “conservation of mass”. 
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� Setting: all n participants have a value, want to compute 
average

� Define “Push-Sum” protocol
– In round t, node i receives set of (sumj

t-1, countj
t-1) pairs

– Compute sumi
t = �j sumj

t-1, counti
t = �j countj

– Pick k uniformly from other nodes
– Send (½ sumi

t, ½counti
t) to k and to i (self)

� Round zero: send (value,1) to self

� Conservation of counts: �i sumi
t stays same

� Estimate avg = sumi
t/countit

i

x y

(x+y)/2

(x+y)/2
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8,1 8,1

8,18,1

10,1 8,1

2,112,1

6,1
9, 1

11,3/26, ½

11½,3/2 7½,1

5½,3/47½,3/4

8½,9/8 7½,7/8

8½,9/8
7½,7/8
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� Can show that after O(log n + log 1/ε + log 1/δ) rounds, 
the protocol converges within ε
– n = number of nodes

– ε = (relative) error

– δ = failure probability

� Correctness due in large part to conservation of counts
– Sum of values remains constant throughout

– (Assuming no loss or failure)
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� Some resilience comes for “free”
– If node detects message was not delivered, delay 1 round 

then choose a different target
– Can show that this only increases number of rounds by a 

small constant factor, even with many losses
– Deals with message loss, and “dead” nodes without error

� If a node fails during the protocol, some “mass” is lost, 
and count conservation does not hold
– If the mass lost is not too large, error is bounded…

i

x y
x+y lost from 
computation
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� Can run Push-Sum independently on each entry of vector

� More strongly, generalize to Push-Vector:

– Sum incoming vectors

– Split sum: half for self, half for randomly chosen target

– Can prove same conservation and convergence properties

� Generalize to sketches: a sketch is just a vector

– But ε error on a sketch may have different impact on result

– Require O(log n + log 1/ε + log 1/δ) rounds as before

– Only store O(1) sketches per site, send 1 per round
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� How realistic is complete connectivity assumption?

– In sensor nets, nodes only see a local subset

– Variations: spatial gossip ensures nodes hear about local 
events with high probability [Kempe, Kleinberg, Demers ’01]

� Can do better with more structured gossip, but impact of 
failure is higher [Kashyap et al.’06]

� Is it possible to do better when only a subset of nodes 
have relevant data and want to know the answer? 
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� Introduction, Motivation, Problem Setup

� One-Shot Distributed-Stream Querying

� Continuous Distributed-Stream Tracking

– Adaptive Slack Allocation

– Predictive Local-Stream Models

– Distributed Triggers

� Probabilistic Distributed Data Acquisition

� Future Directions & Open Problems

� Conclusions
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� Other structures possible (e.g., hierarchical)
� Could allow site-site communication, but mostly unneeded 

Goal:: Continuously track (global) query over streams at 
the coordinator
– Large-scale network-event monitoring,  real-time anomaly/ 

DDoS attack detection, power grid monitoring, …

Coordinator

m sites

local stream(s) 
seen at each 

site

S1 Sm

Track Q(S1,…,Sm)
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� But… local site streams continuously change!
– E.g., new readings are made, new data arrives
– Assumption: Changes are somewhat smooth and gradual

� Need to guarantee an answer at the coordinator that is 
always correct, within some guaranteed accuracy bound

� Naïve solutions must continuously centralize all data 
– Enormous communication overhead!

S1 Sm

Track Q(S1,…,Sm)
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� Monitoring is Continuous…
– Real-time tracking, rather than one-shot query/response

� …Distributed…
– Each remote site only observes part of the global stream(s)
– Communication constraints: must minimize monitoring burden

� …Streaming…
– Each site sees a high-speed local data stream and can be 

resource (CPU/memory) constrained

� …Holistic…
– Challenge is to monitor the complete global data distribution
– Simple aggregates (e.g., aggregate traffic) are easier
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� Sometimes periodic polling suffices for simple tasks

– E.g., SNMP polls total traffic at coarse granularity

� Still need to deal with holistic nature of aggregates

� Must balance polling frequency against communication 

– Very frequent polling causes high communication, 
excess battery use in sensor networks

– Infrequent polling means delays in observing events

� Need techniques to reduce communication 
while guaranteeing rapid response to events
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Filters
x

“ push”

Filters
x

adjust

� Exact answers are not needed
– Approximations with accuracy guarantees suffice
– Tradeoff accuracy and communication/ processing cost

� Key Insight: “Push-based” in-network processing

– Local filters installed at sites process local streaming updates

� Offer bounds on local-stream behavior (at coordinator)

– “Push” information to coordinator only when filter is violated

– Coordinator sets/adjusts local filters to guarantee accuracy 
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� A key idea is Slack Allocation

� Because we allow approximation, there is slack: the 
tolerance for error between computed answer and truth

– May be absolute: |Y - | ≤ ε: slack is ε

– Or relative: /Y ≤ (1±ε): slack is εY

� For a given aggregate, show that the slack can be 
divided between sites

� Will see different slack division heuristics



35

Streaming in a Connected World — Cormode & Garofalakis69

��#%�
" ��������	

� Influential work on monitoring [Babcock, Olston’03]
– Introduces some basic heuristics for dividing slack
– Use local offset parameters so that all local distributions 

look like the global distribution
– Attempt to fix local slack violations by negotiation with 

coordinator before a global readjustment
– Showed that message delay does not affect correctness

Top 100
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� Each site monitors n objects with local counts Vi,j

� Values change over time with updates seen at site j

� Global count Vi = �j Vi,j

� Want to find topk, an ε-approximation to true top-k set:
– OK provided i∈ topk, l ∉ topk, Vi + ε ≥ Vl

item i ∈ [n]
site j ∈ [m]

gives a little 
“wiggle room”
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� Define a set of ‘adjustment factors’, δi,j

– Make top-k of Vi,j + δi,j same as top-k of Vi

� Maintain invariants: 
67 For item i, adjustment factors sum to zero

87 δl,0 of non-topk item l ≤ δi,0 + ε of topk item i
– Invariants and local conditions used to prove correctness
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If any local condition violated at site j, resolution is triggered

� Local resolution: site j and coordinator only try to fix
– Try to “borrow” from δi,0 and δl,0 to restore condition

� Global resolution: if local resolution fails, contact all sites
– Collect all affected Vi,js, ie. topk plus violated counts

– Compute slacks for each count, and reallocate (next)

– Send new adjustment factors δ’i,j, continue

δi,j

Vi,j

i ∈ topk

≥≥≥≥ Vl,j

δl,j

l ∉ topk

Local Conditions:
At each site j check adjusted 
topk counts dominate non-topk
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� Define “slack” based on current counts and adjustments
� What fraction of slack to keep back for coordinator?

– δ
i,0

= 0: No slack left to fix local violations
– δi,0 = 100% of slack: Next violation will be soon
– Empirical setting: δi,0 = 50% of slack when ε very small 

δi,0 = 0 when ε is large (ε �
Vi/1000)

� How to divide remainder of slack?
– Uniform: 1/m fraction to each site
– Proportional: Vi,j/Vi fraction to site j for i

uniform

proportional
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� Result has many advantages:

– Guaranteed correctness within approximation bounds

– Can show convergence to correct results even with delays

– Communication reduced by 1 order magnitude 
(compared to sending Vi,j whenever it changes by ε/m)

� Disadvantages:
– Reallocation gets complex: must check O(km) conditions

– Need O(n) space at each site, O(mn) at coordinator

– Large ( � O(k)) messages

– Global resyncs are expensive: m messages to k sites
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� Problem 1: Single value tracking
Each site has one value vi, want to compute f(v), e.g., sum

� Allow small bound of uncertainty in answer
– Divide uncertainty (slack) between sites
– If new value is outside bounds, re-center on new value

� Naïve solution: allocate equal bounds to all sites
– Values change at different rates; queries may overlap

� Adaptive filters approach [Olston, Jiang, Widom ’03]
– Shrink all bounds and selectively grow others: 

moves slack from stable values to unstable ones
– Base growth on frequency of bounds violation, optimize
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� Problem 2: Set Expression Tracking
A � (B C) where A, B, C defined by distributed streams

� Key ideas [Das et al.’04]:

– Use semantics of set expression: if b arrives in set B, but b
already in set A, no need to send

– Use cardinalities: if many copies of b seen already, no 
need to send if new copy of b arrives or a copy is deleted

– Combine these to create a charging scheme for each 
update: if sum of charges is small, no need to send. 

– Optimizing charging is NP-hard, heuristics work well. 
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� Problem 3: ODI aggregates
e.g., count distinct in continuous distributed model

� Two important parameters emerge: 

– How to divide the slack

– What the site sends to coordinator

� In [Cormode et al.’06]:
– Share slack evenly: hard to do otherwise for this aggregate

– Sharing sketch of global distribution saves communication

– Better to be lazy: send sketch in reply, don’t broadcast

( �&��
!��������
( � 
�		��	����

Sk0, D0 = |Sk0|
Coordinator

site 1 site k

…
Ski

Ski
…

site i
Sk1 Skk

Sk0

Ski
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� Break a global (holistic) aggregate into “safe” local 
conditions, so local conditions � global correctness 

� Set local parameters to help the tracking
� Use the approximation to define slack, divide slack 

between sites (and the coordinator)
� Avoid global reconciliation as much as possible, try to 

patch things up locally
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� Slack allocation methods use simple “static” prediction
– Site value implicitly assumed constant since last update 
– No update from site � last update (“predicted” value) is within 

required slack bounds � global error bound

� Dynamic, more sophisticated prediction models for local 
site behavior?
– Model complex stream patterns, reduce number of updates         

to coordinator
– But... more complex to maintain and communicate (to 

coordinator)
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� Continuous distributed tracking of complex aggregate 
queries using AMS sketches and local prediction models          
[Cormode, Garofalakis’05]

� Class of queries: Generalized inner products of streams

|R�S| = fR ⋅ fS = �v fR[v] fS[v] (± ε ||fR||2 ||fS||2 )

– Join/multi-join aggregates, range queries, heavy hitters, 
histograms, wavelets, …

R S

Track |R�S|
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� Use (AMS) sketches to summarize local site distributions
– Synopsis=small collection of random linear projections sk(fR,i)
– Linear transform:  Simply add to get global stream sketch

� Minimize updates to coordinator through Sketch Prediction
– Try to predict how local-stream distributions (and their 

sketches) will evolve over time
– Concise sketch-prediction models, built locally at remote sites 

and communicated to coordinator
– Shared knowledge on expected stream behavior over time:

Achieve “stability”
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Predicted Distribution Predicted Sketch

True Sketch (at site)

Prediction used at 
coordinator for query 

answering

Prediction error 
tracked locally     
by sites  (local 

constraints) 

True Distribution (at site)

Rif

p
Rif

)(sk Rif

)(skp
Rif
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Tracking. At site j keep sketch of stream so far, sk(fR,i)
– Track local deviation between stream and prediction:

|| sk(fR,i) – skp(fR,i)||2 ���� θ/����k || sk(fR,i) ||2
– Send current sketch (and other info) if violated

Querying. At coordinator, query error ≤ (ε + 2θ)||fR||2 ||fS||2
– ε = local-sketch summarization error (at remote sites) 
– θ = upper bound on local-stream deviation from prediction

(“Lag” between remote-site and coordinator view)

� Key Insight: With local deviations bounded, the 
predicted sketches at coordinator are guaranteed accurate
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� Simple, concise models of local-stream behavior
– Sent to coordinator to keep site/coordinator “in-sync”
– Many possible alternatives

� Static model: No change in distribution since last update
– Naïve, “no change” assumption:
– No model info sent to coordinator, skp(f(t)) = sk(f(tprev))

)( prevtf )(tf p
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� Velocity model: Predict change through “velocity” vectors 
from recent local history (simple linear model)

– Velocity model: fp(t) = f(tprev) + ∆t • v

– By sketch linearity, skp(f(t)) = sk(f(tprev)) + ∆t • sk(v)

– Just need to communicate one extra sketch

– Can extend with acceleration component

)( prevtf vttftf prev
p ⋅∆+= )()(
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����Static

Predicted SketchInfoModel
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� 1 – 2 orders of magnitude savings over sending all data

)())(())(( vttftf prev sksksk p ⋅∆+=

))(())(( prevtftf sksk p =
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� Dynamic prediction models are a natural choice for 
continuous in-network processing
– Can capture complex temporal (and spatial) patterns to 

reduce communication

� Many model choices possible 
– Need to carefully balance power & conciseness
– Principled way for model selection?

� General-purpose solution (generality of AMS sketch)
– Better solutions for special queries

E.g., continuous quantiles [Cormode et al.’05]
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� Only interested in values of the “global query” above a 
certain threshold T
– Network anomaly detection (e.g., DDoS attacks)

� Total number of connections to a destination, “fire” when it 
exceeds a threshold

– Air / water quality monitoring, total number of cars on highway
� Fire when count/average exceeds a certain amount

� Introduced in HotNets paper [Jain, Hellerstein et al.’04]

S1 Sm

Query:  f(S1,…,Sm) > T  ?
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T

time
� Problem “easier” than approximate query tracking

– Only want accurate f() values when they’re close to threshold

– Exploit threshold for intelligent slack allocation to sites

� Push-based in-network operation even more relevant

– Optimize operation for “common case”

f(S1,…,Sm)
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� Monitor a distributed aggregate count
� Guarantee a user-specified accuracy only if the count 

exceeds a pre-specified threshold T [Kerlapura et al.’06]
– E.g.,  Ni = number of observed connections to 128.105.7.31 

and   N = �i Ni

N1 Nm

N̂
TNNNN

TNTN

�  when  ˆ)-1(

  when  ˆ0

<≤

<<≤

δ
“

�
-deficient counts”
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� Site i maintains a set of local thresholds  ti,j ,   j= 0, 1, 2, …

� Local filter at site i: ti,f(i)≤ Ni < ti,f(i)+1
– Local count between adjacent thresholds
– Contact coordinator with new “level” f(i)  when violated

� Global estimate at coordinator       = �i ti,f(i)

� For -deficient estimate, choose local threshold sequences 
ti,j such that

�i (ti,f(i)+1-ti,f(i)) < �i ti,f(i)     whenever    �i ti,f(i)+1 > T

N̂

�&���&����� ������
�##���&

“ large” to minimize communication!
“ small” to ensure global error bound!

N

N̂

UniformUniform

ProportionalProportional

T
N

N̂

T

1N 2N

1N

3N

2N
3N

N

N̂
3N

3N

N

N̂

m

Tδ

m

Tδ2

)1( δ+

0

0
1

2)1( δ+

Site 1

Site 1

Site 2

Site 2 Site 3

Site 3

Coordinator

CoordinatorBlended threshold assignment

MaxError = � T

MaxError = � N
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� Uniform: overly tight filters when N > T
� Proportional: overly tight filters when N � T
� Blended Assignment: combines best features of both:

ti,j+1 = (1+αδ)⋅ ti,j + (1-α)⋅δT/m    where α∈ [0,1]

– α = 0 � Uniform assignment
– α = 1 � Proportional assignment

� Optimal value of α exists for given N (expected or 
distribution) 
– Determined through, e.g.,  gradient descent
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� So far, static threshold sequences 

– Every site only has “local” view and just pushes updates to  
coordinator

� Coordinator has global view of current count estimate

– Can adaptively adjust the local site thresholds (based on 
estimate and T)

– E.g., dynamically switch from uniform to proportional
growth strategy as estimate approaches/exceeds T

adjust local thresholdspush “ level” change
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� For general, non-linear f(), the problem becomes a lot 
harder!
– E.g., information gain or entropy over global data distribution 

– Non-trivial  to decompose the global threshold into “safe”
local site constraints

� E.g., consider N=(N1+N2)/2 and   f(N) = 6N – N2 > 1
Impossible to break into thresholds for  f(N1) and  f(N2)

S1 Sm

Query:  f(S1,…,Sm) > T  ?
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� Interesting geometric approach  [Scharfman et al.’06]

� Each site tracks a local statistics vector vi (e.g., data 
distribution)

� Global condition is  f(v) > T, where  v = �iλi vi (�iλi = 1)

– v = convex combination of local statistics vectors

� All sites have an estimate e = �ιλi vi
’ of v based on latest 

update vi
’ from site i

� Each site i continuously tracks its drift from its most recent 
update vi = vi-vi

’
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� Key observation:   v = �iλi⋅(e+ vi)    
(a convex combination of “translated” local drifts)

e

�
v1

�
v2

�
v3

�
v4

�
v5

� v lies in the convex hull of 
the (e+ vi) vectors 

� Convex hull is completely 
covered  by the  balls 
with radii || vi/2||2
centered at e+ vi/2

� Each such ball can be 
constructed independently

Streaming in a Connected World — Cormode & Garofalakis100

" ��������	
+ ������
�&���&���
-�������

� Monochromatic Region:  For all points x in the region f(x)
is on the same side of the threshold (f(x) > T or f(x) ≤ T)

� Each site independently checks its ball is monochromatic 

– Find max and min for f() in local ball region (may be costly)

– Broadcast updated value of vi if not monochrome

e

�
v1

�
v2

�
v3

�
v4

�
v5

f(x) > T
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� After broadcast,  || vi||2 = 0 � Ball at i is monochromatic

e

�
v1

�
v2

�
v3

�
v4

�
v5

f(x) > T
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� After broadcast,  || vi||2 = 0 � Ball at i is monochromatic
– Global estimate e is updated, which may cause more site 

update broadcasts

� Coordinator case: Can allocate local slack vectors to sites 
to enable “localized” resolutions
– Drift (=radius) depends on slack (adjusted locally for subsets)

e

�
v1

�
v2

�
v3 = 0

�
v4

�
v5

f(x) > T
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� Threshold total energy of the low PCA coefficients of Y = 
Robust indicator of network-wide anomalies [Lakhina et al.’04]
– Non-linear matrix operator over combined time-series 

� Can combine local filtering ideas with stochastic matrix 
perturbation theory  [Huang et al.’06]

x11 x12 x13 . . .                          x1n

x21 x22 x23 . . .                          x2n

. . .              . . .                  . . .                 . . .
xm1  xm2 xm3 . . . xmn

Link Traffic Monitors
NOC

time
window

= Y
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� Key idea in trigger tracking: The threshold is your friend! 
– Exploit for more intelligent (looser, yet “safe”)  local filtering

� Also, optimize for the common case!
– Threshold violations are typically “outside the norm”
– “Push-based” model makes even more sense here
– Local filters eliminate most/all of the “normal” traffic

� Use richer, dynamic prediction models for triggers?
– Perhaps adapt depending on distance from threshold?

� More realistic network models?
� Geometric ideas for approximate query tracking?

– Connections to approximate join-tracking scheme?
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� Introduction, Motivation, Problem Setup

� One-Shot Distributed-Stream Querying

� Continuous Distributed-Stream Tracking

� Probabilistic Distributed Data Acquisition

� Future Directions & Open Problems

� Conclusions
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� Not only aggregates – Approximate, bounded-error 
acquisition of individual sensor values [Deshpande et al. ’04]
– (ε,δ)−approximate acquisition: |Y – | � ε with prob. > 1−δ

� Regular readings entails large amounts of data, noisy or 
incomplete data, inefficient, low battery life, …

� Intuition: Sensors give (noisy, incomplete) samples of 
real-world processes

� Use dynamic probabilistic model of real-world process to
– Robustly complement & interpret obtained readings
– Drive efficient acquisitional query processing
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Query Processor

Declarative Query
sel ect  nodeI D,  t emp
wher e nodeI D i n { 1. . 6}

Query Results
1, 22.73,
…
6, 22.1.

Observation Plan
{[temp, 1], [temp, 2],

… , [temp, 6]}

Data
1, temp = 22.73,
…
6, temp = 22.1.

USER

SENSOR
NETWORK

X1

X4

X6
X5

X2

X3

………

2210am2

2110am1

tempTimenodeID

Virtual Table seen
by the User
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Query Processor

Declarative Query
Sel ect  nodeI D,  
t emp ± . 1C,  conf ( . 95)
wher e nodeI D i n { 1. . 6}

Observation Plan
{[temp, 1], 
[voltage, 3],
[voltage, 6]}

Data
1, temp = 22.73,
3, voltage = 2.73
6, voltage = 2.65

USER

SENSOR
NETWORK

X1

X4

X6
X5

X2

X3

Probabilistic
Model

Query Results
1, 22.73, 100%
…
6, 22.1, 99%

A dynamic probabilistic model of how the data (or the 
underlying physical process) behaves
• Models the evolution over time
• Captures inter-attribute correlations
• Domain-dependent
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Probabilistic model captures the joint pdf p(X1,…, Xn)
� Spatial/temporal correlations

– Sensor-to-sensor
– Attribute-to-attribute

E.g., voltage & temperature

� Dynamic: pdf evolves over time
– BBQ: Time-varying multivariate

Gaussians

� Given user query Q and accuracy guarantees (ε, δ)
– Try to answer Q directly from the current model
– If not possible, use model to find efficient observation plan
– Observations update the model & generate (ε,δ) answer
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� Classes of probabilistic queries

– Range predicates: Is Xi � [ai, bi] with prob. > 1−δ

– Value estimates: Find X’i such that Pr[ |Xi – X’i| < ε] > 1 - δ

– Aggregate estimates: (ε,δ)-estimate avg/sum(Xi1, Xi2… Xik)

� Acquire readings if model cannot answer Q at δ conf. level

� Key model operations are

– Marginalization: p(Xi) =  � p(X1,…,Xn) dx

– Conditioning: p(X1,…, Xn | observations)

– Integration: �a
b p(X1,…,Xn) dx, also expectation X’i = E[Xi]

All significantly simplified for Gaussians!
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Joint pdf at time=t

p(Xt
1,…, Xt

n)

Probabilistic query
Value of X2±ε

with prob. > 1-δ below 1-δδδδ?

Is

Yes

Return µ2Must sense more data
Example: Observe X1=18

Incorporate into model

P(X2|X1=18)

Higher prob.,
can now 

answer query
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Joint pdf at time=t
p(Xt

1,…, Xt
n |Xt

1=18)

Use a (Markov)
Transition Model

Joint pdf at time=t
p(Xt+1

1,…, Xt+1
n |X

t
1=18)

� In general, a two-step process:

)|( ...1 tt obsXp )|( ...11+ tt obsXp )|( 1+...11+ tt obsXp
Trans. Model Condition

� Bayesian filtering (for Gaussians this yields Kalman filters)
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� Energy/communication-efficient observation plans
– Non-uniform data acquisition costs and network 

communication costs  
– Exploit data correlations and knowledge of topology

� Minimize Cost(obs) over all obs ���� {1,…, n} so expected 
confidence in query answer given obs (from model) > 1−δ

� NP-hard to optimize in general

1
2

63

4 5

cheaper?
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� Observation plans ignore the attribute values observed

– Attribute subset chosen is observed in its entirety
– The observed attribute values give a lot more information

� Conditional observation plans (outlined in [Deshpande et al.’05])
– Change the plan depending on observed attribute values 

(not necessarily in the query)
– Not yet explored for probabilistic  query answers

SELECT *  FROM sensor s WHERE l i ght <100Lux and t emp>20oC

Cost =11

Light < 
100 Lux

Temp >
20° C

Cost = 10
σ= .1

Cost = 10
σ = .9
Light < 
100 Lux

Temp > 
20° C

Cost = 10
σ = .1

Cost = 10
σ = .9

Time in 
[6pm, 6am]

N

Y

Cost = 15

Light < 
100 Lux

Temp > 
20° C

Cost = 10
σ = .5

Cost = 10
σ = .5

Cost = 15

Light < 
100 Lux

Temp > 
20° C

Cost = 10
σ = .5

Cost = 10
σ = .5
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Dynamic Replicated Prob Models (Ken)  
[Chu et al.’06]

� Model shared and sync’d across base-
station and sensornet

� Nodes continuously check & maintain 
model accuracy based on ground truth

– Push vs. Pull (BBQ)

� Problem: In-network model maintenance

– Exploit spatial data correlations

– Model updates decided in-network 
and sent to base-station

– Always keep model (ε,δ)-approximate

sel ect  nodeI D,  
t emp ± . 1C,  conf ( . 95)
wher e nodeI D i n { 1. . 6}
epoch 2 min

Query 
Processor

X1

X4
X6

X5

X2

X3

Probabilistic
Model

in-sync
model
updates

Probabilistic
Model
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� Mapping model maintenance 

onto network topology
– At each step, nodes check (ε,δ)

accuracy, send updates to base 

� Choice of model drastically 
affects communication cost
– Must centralize correlated data 

for model check/update 
– Can be expensive!

� Effect of degree of spatial correlations:

Single-node models Π p(Xi)
No spatial correlations
Cheap – check is local!

Full-network model p(X1,…,Xn)
Full spatial correlations
Expensive – centralize all data!

Query 
Processor

X1

X4

X6

X5

X2

X3

Probabilistic
Model

in-sync
model
updates

Probabilistic
Model
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� Problem: Find dynamic probabilistic model and in-network 
maintenance schedule to  minimize overall communication
– Map maintenance/update operations to network topology

� Key idea for “practical” in-network models
– Exploit  limited-radius spatial correlations of measurements
– Localize model checks/updates to small regions

BBQ 
[Deshpande et al. ’04]

Single-node Kalman filters 
[Jain et al.’04]

Single-node models Π p(Xi)
No spatial correlations
Cheap – check is local!

Full-network model p(X1,…,Xn)
Full spatial correlations
Expensive – centralize all data!
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� Idea: Partition joint pdf into a set of small, localized 
“cliques” of random variables
– Each clique maintained and updated independently at 

“clique root” nodes

Model   p(X1,…,X6) = 
p(X1,X2,X3) ⋅ p(X4,X5,X6) 

� Finding optimal DC model is NP-hard
– Natural analogy to  Facility Location
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� Main algorithmic idea in the tutorial:  Trade-off space/time 
and communication with approximation quality

� Unfortunately, approximate query processing tools are still 
not widely adopted in current Stream Processing engines
– Despite obvious relevance, especially for streaming data

� In the sensornet context
– Simple in-network aggregation techniques (e.g., for 

aver age, count , etc.) are widely used
E.g., TAG/TinyDB [Madden et al ’02]

– More complex tools for approximate                                           
in-network data processing/collection                              
have yet to gain wider acceptance
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� Telegraph/TelegraphCQ [Chandrasekaran et al.’03] ,  
Borealis/Medusa [Balazinska et al.’05],   P2 [Loo et al.’06]

� Query processing typically viewed as a large dataflow
– Network of connected, pipelined query operators

– Schedule a large dataflow over a distributed system
� Objectives: Load-balancing, availability, early results, …

Source
Union

Join

Select

Union

Other 
ops

Source

Source Other 
ops

Client

Node 1

Node 2

Node 3
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� Approximate answers and error guarantees not considered
– General relational queries, push/pull-ing tuples through the 

query network
– Load-shedding techniques to manage overload

� No hard error guarantees

� Network costs (bandwidth/latency) considered in some 
recent work [Pietzuch et al.’06]

Source Union

Join

Select

Union

Other 
ops

Source

Source Other 
ops

Client

Node 1

Node 2

Node 3
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� PIER – Scaling to large, dynamic site populations using 
DHTs [Huebsch et al.’03]
– See also the Seaweed paper  [Narayanan et al.’06]

� Gigascope – Streaming DB engine for large-scale 
network/ application monitoring
– Optimized for high-rate data streams (“line speeds”)
– Exploits approximate query processing tools (sampling,   

sketches, …) for tracking streams at endpoints
– Distribution issues not addressed  (yet…)
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� Introduction, Motivation, Problem Setup

� One-Shot Distributed-Stream Querying

� Continuous Distributed-Stream Tracking

� Probabilistic Distributed Data Acquisition

� Future Directions & Open Problems

� Conclusions



63

Streaming in a Connected World — Cormode & Garofalakis125

)1��������
*��
!8!
� ��� ����

� Much work focused on specifics of sensor and wired nets
� P2P and Grid computing present alternate models

– Structure of multi-hop overlay networks
– “Controlled failure” model: nodes explicitly leave and join

� Allows us to think beyond model of “highly resource 
constrained” sensors. 

� Implementations such as OpenDHT over PlanetLab
[Rhea et al.’05]
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� How to cope when connectivity is intermittent ? 

– Roaming devices, exploring outer and inner space, network 
infrastructure for emerging regions (e.g., rural India), …

– Round trip times may be very long and varying

� Radio to Mars is many minutes

� Connectivity to remote villages varies [Jain, Fall, Patra ’05]

� Goal is to minimize the number of communications and 
maximize timeliness

– Size of communication is secondary
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� Wide-area query processing

– Possible malicious aggregators

– Can suppress or add spurious 
information

� Authenticate query results at 
the querier?

– Perhaps, to within some 
approximation error

� Initial steps in [Garofalakis et al.’06]
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� Mostly talked about specific, well-defined aggregates

� What about set-valued  query answers?
– No principled, “universal” approximation error metric

� A general distributed query language (dist-streamSQL?)

– Define a language so a query optimizer can find a plan that 
guarantees good performance, small communication? 

� Other tasks, e.g., data mining, machine learning, over 
distributed streams? 

– ML/AI communities are already starting to consider 
communication-efficient distributed learning
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“Communication complexity” studies lower bounds of 
distributed one-shot computations

� Gives lower bounds for various problems,  e.g.,            
count di st i nct (via reduction to abstract problems)

� Need new theory for continuous computations
– Based on info. theory and models of how streams evolve?
– Link to distributed source coding or network coding?
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� The better we can capture and anticipate future stream 
direction, the less communication is needed

� So far, only look at predicting each stream alone

� Correlation/anti-correlation across streams should help?

– But then, checking validity of model is expensive!

� Explore tradeoff-between power (expressiveness) of 
model and complexity (number of parameters)

– Optimization via Minimum Description Length (MDL)?  
[Rissanen 1978]
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� Many new problems posed by developing technologies

� Common features of distributed streams allow for general 
techniques/principles instead of “point” solutions

– In-network query processing
Local filtering at sites, trading-off approximation with 
processing/network costs, …

– Models of “normal” operation
Static, dynamic (“predictive”), probabilistic, …

– Exploiting network locality and avoiding global resyncs

� Many new directions unstudied, more will emerge as new 
technologies arise

� Lots of exciting research to be done! �
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