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i Distributed Aggregation

= SELECT count(*) FROM tableR




i Cost of Aggregation

= Bottleneck is normally

network

communication o I
= Query requires 1 » — n

network message —> =

(partial state record) _ ~

per node jml

= g unique queries =
requires g messages per 7 -
node? = L1
= No, it can be done in fewer
than g messages!

Goal of this Work

= Share network communication for multiple
aggregation 3ueries that have varying

selection predicates
»« SELECT agg(a) FROM tableR WHERE <predicate>

= Paper shows how technique applies to
= Multiple aggregation functions
« Queries w/ GROUP BY clauses
= Continuous queries w/ varying windows

= Outline
Example and Intuition

Architecture
Techniques
Evaluation




i Example

= 5 queries: SELECT count(*) FROM tableR
= WHERE noDNS = TRUE
= WHERE suspicious = TRUE
= WHERE noDNS = TRUE OR suspicious = TRUE
= WHERE onSpamlList = TRUE
= WHERE onSpamlList = TRUE AND suspicious = TRUE
= Options:
= Run each independently
= Statically analyze predicates for containment
=« Dynamically analyze queries AND the data

i Fragments

= Build on Krishnamurthy’s [SIGMOD 06]
centralized scheme: examine which queries
each tuple satisfies:

= Some tuples satisfy queries 1 and 3 only
= Some tuples satisfy queries 2 and 3 only
= Some tuples satisfy query 4 only

Etc...

= These are called fragments

= The set of fragments formed by the data and
queries can be represented as a matrix, F
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i Challenge

= Find a reduced A’ which has empty entries,
but still produces the correct answers
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Independence

= The optimal size for A’ is equal to the number
of independent vectors in F

= The notion of independence varies based on
the aggregation function

Linear

SUM, COUNT,
AVERAGE

Duplicate MIN, MAX

Spectral Independence defined
Bloom Filters using logical OR

E> Linear Independence

= Other aggregates (such as k-MAX/MIN) define
independence using a 3-valued logic function

Architecture
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Linear Aggregates

Queries: SELECT count(*) FROM tableR WHERE <predicate>
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i Linear Aggregates

= Use rank revealing
decomposition algorithms
from the numerical
computing literature

= LU, QR, SVD are the most

common

= Theory: All have ~O(n3)
running time, find optimal
answer

= Practice: LU is non-optimal
due to rounding errors in F.
computation, running times
vary by order of magnitude
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Duplicate Insensitive
Aggregates

Queries: SELECT max(*) FROM tableR WHERE <predicate>
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Duplicate Insensitive
i Aggregates

= Given F, find an F’ with fewer rows such that
every vector in F can be composed by OR’ing
vectors in F = F'is the Set Basis of F

01 1 1 1]
10010 10010
F=|0 01 01 01011
11111 00101
01011

= Proven NP-Hard in 1975, No good

approximations (both in theory and practice)
= Except in very specific cases which don't apply here

Heuristic Approach

= Start with F’ as the identity matrix
= This is equivalent to a no-sharing solution
= Apply transformations to F/

= Simplest transformations
= OR two vectors in F
= Remove a vector from F’

= Exhaustive search takes 0(:2")

= We apply two constraints for each OR
transformation
= At least one vector must be removed
= F' must be always valid set-basis solution

= This significantly reduces the search space,
but may eliminate the optimal answers
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i Example
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lo 0 0 10 I exhaustively
[0 0 0 0 1]
Optimizations

= The order the transformations are applied
effects effectiveness and runtime
= We developed 12 strategies and evaluated them

= For 100 queries ~O(minutes), 50% optimal

= Optimization: Add each query incrementally
» Start with 2 queries, optimize fully

= Add another query
« Add the identity vector for the new query to F’

= Optimize but only consider transformations that involve
new vectors

= Repeat adding one query at a time
= Each “mini” optimization can use any of the 12
strategies for determining order
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i Evaluation

Random Generator

= Evaluate a wide range of possible workloads
= Control the degree of possible sharing/gain

= Know the optimal answer
Implementation

= Java on dual 3.06GHz Pentium 4 Xeon

show 1 standard deviation
Complete results in the paper

Data is averaged over 10 runs, error bars

i Duplicate Insensitive
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i Duplicate Insensitive
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i Conclusion

= Analyzing data and queries enables sharing

= Type of aggregate function determines
optimization technique
= Linear = Rank-revealing numerical algorithms
= Duplicate Insensitive =» Set-basis, heuristic
approach
= Very effective and modest runtimes up to
= 500 queries with linear aggregates
= 100 queries with duplicate insensitive aggregates
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