Sharing Aggregate
Computation for
Distributed Queries

Ryan Huebsch, UC Berkeley
Minos Garofalakis, Yahoo! Research’
Joe Hellerstein, UC Berkeley
Ion Stoica, UC Berkeley

T Work done at Intel Research Berkeley
SIGMOD 6/13/07

i Distributed Aggregation

= SELECT count(*) FROM tableR

i Cost of Aggregation

= Bottleneck is normally

network

communication o I
= Query requires 1 » — n

network message —> =

(partial state record) _ ~

per node jml

= g unique queries =
requires g messages per 7 -
node? = L1
= No, it can be done in fewer
than g messages!

Goal of this Work

= Share network communication for multiple
aggregation 3ueries that have varying

selection predicates
»« SELECT agg(a) FROM tableR WHERE <predicate>

= Paper shows how technique applies to
= Multiple aggregation functions
« Queries w/ GROUP BY clauses
= Continuous queries w/ varying windows

= Outline
Example and Intuition

Architecture
Techniques
Evaluation

i Example

= 5 queries: SELECT count(*) FROM tableR
= WHERE noDNS = TRUE
= WHERE suspicious = TRUE
= WHERE noDNS = TRUE OR suspicious = TRUE
= WHERE onSpamlList = TRUE
= WHERE onSpamlList = TRUE AND suspicious = TRUE
= Options:
= Run each independently
= Statically analyze predicates for containment
=« Dynamically analyze queries AND the data

i Fragments

= Build on Krishnamurthy’s [SIGMOD 06]
centralized scheme: examine which queries
each tuple satisfies:

= Some tuples satisfy queries 1 and 3 only
= Some tuples satisfy queries 2 and 3 only
= Some tuples satisfy query 4 only

Etc...

= These are called fragments

= The set of fragments formed by the data and
queries can be represented as a matrix, F

Frag ment Matrix 18+109+13=140

Queries PSRs
Ql Q2 Q3 Q4 Q5
1 0 1 0|— [23]

—_— | 43
18
—p | 109

Fragments

O r O O Bk

P O O Bk
P P O R
P O O O

—_— || 13

F A

A" xF = Query Answers

[~ - » 0o ©

i Challenge

= Find a reduced A’ which has empty entries,
but still produces the correct answers

[T 0 1]0] 0 (231109 = 132]
01 10| o0 43 | 43
F=[0_0 0[1] 0]|~/A =|18+109=127
10 1(10 10909 - ¢
0 1 111 [13]13 -@

AT xF = Query Answers

Independence

= The optimal size for A’ is equal to the number
of independent vectors in F

= The notion of independence varies based on
the aggregation function

Linear

SUM, COUNT,
AVERAGE

Duplicate MIN, MAX

Spectral Independence defined
Bloom Filters using logical OR

E> Linear Independence

= Other aggregates (such as k-MAX/MIN) define
independence using a 3-valued logic function

Architecture
Phase 1: Phase 2: Phase 3:
Fragmentation Decompose Global Aggregation
Tuples Queries Fragments

l 1F A

B RO R R

—
c P oo
P ocopP o

—
coP ocop
P oopP o

Phase 2:
Decompose

ragments

F A
010 0[[X:
1100[Y:
0010y
0110Y.
1111)Ys
ragments

F A
0100[[X:
1100[>:
0010
0110 Y
1111)Ys

Architecture

Phase 3:
Global Aggregation

Phase 4:
Reconstruct

F

01
Akl
00
01
Ak

———————
O P O O P

P P P OO
P O O O O

l Query Answers

%}-@-Ezzm

Linear Aggregates

Queries: SELECT count(*) FROM tableR WHERE <predicate>

110

Entries in F’
can be any

scalar

omposel

o O -
|
[EY

1
N

o O O

12

12

5

54
24
78
32

[177 |

-30
37
26

[177 147 110 123 13

177+(-30)-37+(.5)26
ATxF'=Q=
[177 147 110 123 13

i Linear Aggregates

= Use rank revealing
decomposition algorithms
from the numerical
computing literature

= LU, QR, SVD are the most

common

= Theory: All have ~O(n3)
running time, find optimal
answer

= Practice: LU is non-optimal
due to rounding errors in F.
computation, running times
vary by order of magnitude

Runtime (ms)

P.

140000

120000

100000

80000

80000

40000

20000

0

T
Q 200 400 600 800 1000 12
Number of Queries

Lv

Duplicate Insensitive
Aggregates

Queries: SELECT max(*) FROM tableR WHERE <predicate>

01 1|11 [25|

1 0 0(|1])0 55
F=/0 0 1|0 |1 A=|79

11 1|11 33

_O 1 0|1 1] | 14 |

Decomposel

1 0 0l1)0 55
F'=10 1 0|]1]1 A=|33

00 1/0(1 79

max(25,55,33,14)
ATxF=Q=
[55 33 79 55 79

A\'TXF':Q:
[55 33 79 55 79

Duplicate Insensitive
i Aggregates

= Given F, find an F’ with fewer rows such that
every vector in F can be composed by OR’ing
vectors in F = F'is the Set Basis of F

01 1 1 1]
10010 10010
F=|0 01 01 01011
11111 00101
01011

= Proven NP-Hard in 1975, No good

approximations (both in theory and practice)
= Except in very specific cases which don't apply here

Heuristic Approach

= Start with F’ as the identity matrix
= This is equivalent to a no-sharing solution
= Apply transformations to F/

= Simplest transformations
= OR two vectors in F
= Remove a vector from F’

= Exhaustive search takes 0(:2")

= We apply two constraints for each OR
transformation
= At least one vector must be removed
= F' must be always valid set-basis solution

= This significantly reduces the search space,
but may eliminate the optimal answers

© 0 © 0 © 0
[7)] 4+ U 4+ U
X 88 X B8 X B8
=Z QO =Z QO Z
O o0 od ocoocooo dooo o -
OO 40 OO0 O d0 00O «dAO
O H OO OO0 40000 A0 O
4 OO0 0 dHd0 000 dooo
4000 40000 ddH0O0O0
T T T
L L s L
L L 32
c OC
= 5o
Tla =0
am.m
x E =
o?2%
) 2 — N
=Y '@ o d d -+ |ollolo o 4
m 4 4 O 4 d |olloclo 4 o
(qe) - O 4 4 O |Oo|Jlold o o
_X__ — 0 0 d d |o|ldlo o o
© + o d o |d|o|o o o
|; T I
L L

T n T .0 © u
X B8 SN T2 X B8
=Z Qa > Qq =Z Qa
O oo d ocooodoo oo«
4 0O 00 dO0O O 40 000 do
OO0 40 OO0 dOOOoOOoOAOo o
O 4 OO0 OdO0OO0OO0 O A0 o0 O
4 0O 00 40000 d00do
T T T
L L oS L
L 232
amm
XS o
= Q
= c
-mmp oro
am.m
X & c
co?2%
Q 2 — —
o '@ o d d d|olo oo 4’
m A4 4 0 d d |olo ol|ld| o
(o] - O 4 +d4 O |ojJo d|0o| o
_X__ a4 0 o0 d d|old o|lo| o
© < o d o |do o|ofo
o S A
w L

i Example
(0 1 1 1 1]
) 1 0010 OR and 10010
B P o T RN
11111 “lo o100
101 01 1] 0000 1
1 0 0 @ O]
| 01000 |
F=loo100 Continue applying
transformations
lo 0 0 10 I exhaustively
[0 0 0 0 1]
Optimizations

= The order the transformations are applied
effects effectiveness and runtime
= We developed 12 strategies and evaluated them

= For 100 queries ~O(minutes), 50% optimal

= Optimization: Add each query incrementally
» Start with 2 queries, optimize fully

= Add another query
« Add the identity vector for the new query to F’

= Optimize but only consider transformations that involve
new vectors

= Repeat adding one query at a time
= Each “mini” optimization can use any of the 12
strategies for determining order

10

i Evaluation

Random Generator

= Evaluate a wide range of possible workloads
= Control the degree of possible sharing/gain

= Know the optimal answer
Implementation

= Java on dual 3.06GHz Pentium 4 Xeon

show 1 standard deviation
Complete results in the paper

Data is averaged over 10 runs, error bars

i Duplicate Insensitive

20 I
4]
§ 100
§ i Yo
g_ ‘a)
g e e, |
3 g, Basic.
| . ‘.... "Tegy) | {
g e vy . | Basic
| R Algorithm
8 40 X
| .
0 1 B
2 2 r =
o Incremental
0 I | | | AIgOflthm
0 20 40 60 80 100

Total Gain Achievable in Workload (%)

11

i Duplicate Insensitive

100000 .
90000 - -
80000 - .
70000 - -
)
£ 60000 - -
g2 50000 - Initial
é 40000 - _g;?slc_h
30000 - [Algorithm
20000 [%0 0 A Best
10000 - Incremental
0 \Algorithm
0 20 40 60 80 100
Total Gain Achievable in Workload (%)
2.5e+06 T T
1]
20406
T e i | Initial
1S De+ r iy .
= » Bas:c_
E £ | Algorithm
é 1e+06 , 8
P Best
500000 - Increr_nental
o Algorithm
0 —
0 50 100 150 200 250

Number of Queries

12

i Conclusion

= Analyzing data and queries enables sharing

= Type of aggregate function determines
optimization technique
= Linear = Rank-revealing numerical algorithms
= Duplicate Insensitive =» Set-basis, heuristic
approach
= Very effective and modest runtimes up to
= 500 queries with linear aggregates
= 100 queries with duplicate insensitive aggregates

13

