Estimating Join-Distinct Aggregates over Update Streams

Minos Garofalakis

Bell Labs, Lucent Technologies

(Joint work with Sumit Ganguly, Amit Kumar, Rajeev Rastogi)

- SNMP/RMON/NetFlow data records arrive 24x7 from different parts of the network
- Truly massive streams arriving at rapid rates
 - AT&T collects 600-800 GigaBytes of NetFlow data each day!
- Typically shipped to a back-end data warehouse for off-line analysis

- Need ability to process/analyze network-data streams in real-time
 - As records stream in: look at records only once in arrival order!
 - Within resource (CPU, memory) limitations of the NOC
 - Different classes of analysis queries: top-k, quantiles, joins, ...
- Our focus: Join-Distinct (JD) aggregate queries
 - Estimating cardinality of duplicate-eliminating projection over a join
- Critical to important NM tasks
 - Denial-of-Service attacks, SLA violations, real-time traffic engineering,...

Talk Outline

- Introduction & Motivation
- Data Stream Computation Model
- Key Prior Work
 - FM sketches for distinct counting
 - 2-level hash sketches for set-expression cardinalities
- Our Solution: *JD-Sketch Synopses*
 - The basic structure
 - JD-sketch composition algorithm & JD estimator
 - Extensions
- Experimental Results
- Conclusions

Existing Synopses for Relational Streams? Lucent Technologies

- Conventional data summaries fall short
 - Samples (e.g., using Reservoir Sampling)
 - · Bad for joins and DISTINCT counting, cannot handle deletions
 - Multi-d histograms/wavelets
 - · Construction requires multiple passes, not useful for DISTINCT clauses
- Combine existing stream-sketching solutions?
 - Hash (aka FM) sketches for distinct-value counting
 - AMS sketches for join-size estimation
 - Fundamentally different: Hashing vs. Random linear projections
 - · Effective combination seems difficult
- Our Solution: JD-Sketch stream synopses
 - Novel, hash-based, log-sized stream summaries
 - Built independently over R, S streams, then composed to give JD estimate
 - Strong probabilistic accuracy guarantees

Hash (aka FM) Sketches for Distinct Value Counting [FM85] • Problem: Estimate the number of distinct items in a stream of values from [0,..., M-1] Data stream: 3 0 5 3 0 1 7 5 1 0 3 7 Number of distinct values: 5 • Assume a hash function h(x) that maps incoming values x in [0,..., M-1]uniformly across $[0,..., 2^L-1]$, where L = O(log M)• Let Isb(y) denote the position of the least-significant 1 bit in the binary representation of y - A value x is mapped to lsb(h(x))• Maintain FM Sketch = BITMAP array of L bits, initialized to 0 - For each incoming value x, set BITMAP[lsb(h(x))] = 1 **BITMAP** → h(x) = 101100 — lsb(h(x)) = 2

2-Level Hash Sketches for Set Expression Cardinalities [GGR03]

- Estimate cardinality of *general set expressions* over streams of updates
 - E.g., number of distinct (source, dest) pairs seen at both R1 and R2? IR1∩R2I
- 2-Level Hash-Sketch (2LHS) stream synopsis: Generalizes FM sketch
 - First level: $\Theta(\log M)$ buckets with exponentially-decreasing probabilities (using lsb(h(x)), as in FM)
 - Second level: Count-signature array (logM+1 counters)
 - · One "total count" for elements in first-level bucket
 - · logM "bit-location counts" for 1-bits of incoming elements

Processing Set Expressions over Update Streams: Key Ideas

• Build several independent 2LHS, fix a level I, and look for singleton first-level buckets at that level I

• Singleton buckets and singleton element (in the bucket) are easily identified using the count signature

Singleton bucket count signature

- Singletons discovered form a distinct-value sample from the union of the streams
 - Frequency-independent, each value sampled with probability $\frac{1}{2^{l+1}}$
- Determine the fraction of "witnesses" for the set expression E in the sample, and scale-up to find the estimate for |E|

Our JD Estimator: Composing JD-Sketch Synopses

- Input: Pair of (independently-built) parallel JD-sketches on the R(A,B) and S(B,C) streams
 - Same hash functions for corresponding 2LHS pairs
- Output: FM-like summary (bitmap) for estimating the number of distinct joining (A,C) pairs
- Key Technical Challenges
 - Want only (A,C) pairs that join to make it to our bitmap
 - Idea: Use 2LHS in the A- and C-buckets to determine (approximately) if the corresponding B-multisets intersect
 - A- and C-values are observed independently and in arbitrary order in their respective streams
 - Cannot directly hash arriving (A,C) pairs to a bitmap (traditional FM) -- all that we have are the JD-sketches for R, S!
 - Idea: Employ novel, composable hash functions ha(), ha(), and a sketch-composition algorithm that quarantees FM-like properties

- (A,C)-pairs map to final bitmap levels with exponentially-decreasing probabilities ($\approx 4^{-(l+1)}$)
- (A,C)-pair mappings are pairwise-independent
- Both facts are crucial for our analysis...

13

- Build and maintain s2 independent, parallel JD-sketch pairs over the R(A,B) and S(B,C) streams
- At estimation time
 - Compose each parallel JD-sketch pair, to obtain s2 "FM-like" bitmaps for joining (A,C) pairs
 - Find a level 1 in the composed bitmaps s.t. the fraction f of 1-bits lies in a certain range -- use f to estimate jd x Prob[level=1]
 - Return $jd \approx f \times 4^{l+1}$

Our JD Estimator: Estimation Algorithm & Analysis

• <u>Theorem:</u> Our JD estimator returns an (ε, δ) -estimate of JD cardinality using JD-sketches with a total space requirement of

$$O(\frac{U}{T} \frac{\log^2(1/\delta)}{\epsilon^4} \log^3 M \log N)$$

- U/T \approx |B-value neighborhood|/ no. of joining B-values for randomly-chosen (A,C) pairs
 - · JDs with low "support" are harder to estimate
- Lower bound based on information-theoretic arguments and Yao's lemma
 - Our space requirements are within constant and log factors of best possible

15

Extensions

Lucent Technologies

- Other forms of JD-cardinality queries are easy to handle with JD-sketches - for instance,
 - One-sided (semi)joins (e.g., $|\pi_{A,B}(R(A,B) \bowtie S(B,C))|$)
 - "Full-projection" joins (e.g., $|\pi_{A,B,C}(R(A,B) \bowtie S(B,C))|$)
 - Just choose the right stream attributes to hash on at the two levels of the JD-sketch
- Other JD-aggregates e.g., estimating predicate selectivities over a JD operation
 - Key observation: Can use the JD-sketch to obtain a distinct-value sample of the JD result
- For cases where |B| is small, we propose a different, $\Theta(|B|)$ -space JD synopsis and estimator
 - Based on simpler FM sketches built with composable hash functions
 - Conceptually simpler & easier to analyze, BUT requires at least linear space!

Experimental Results: JD-Sketches on Random-Graph Data

17

Conclusions

Lucent Technologies

- First space-efficient algorithmic techniques for estimating JD aggregates in the streaming model
- Novel, hash-based sketch synopses
 - Log-sized, delete-proof (general update streams)
 - Independently built over individual streams
 - Effectively *composed* at estimation time to provide approximate answers with strong probabilistic accuracy guarantees
- Verified effectiveness through preliminary experiments
- One key technical idea: Composable Hash Functions
 - Build hash-based sketches on individual attributes that can be composed into a sketch for attribute combinations
 - Powerful idea that could have applications in other streaming problems...

Experimental Results: Linear-Space JD-Estimator on Random-Graph Data

