Estimating Join-Distinct Aggregates
over Update Streams

Minos Garofalakis
Bell Labs, Lucent Technologies @

Lucent Technologi
Bell Labs |mw?‘:,:

(Joint work with Sumit Ganguly,
Amit Kumar, Rajeev Rastogi)

Motivation: Massive Network-Data Streanig === 0

NetFlow r‘ecor:ds Caiir (U2 Example NetFlow IP Session Data

Source | Destination | Duration Bytes |Protocol
10.1.0.2 16.2.3.7 12 20K http
18.6.7.1 12.4.0.3 16 24K http
13.9.4.3 11.6.8.2 15 20K http
15229 17.1.2.1 19 40K http
12438 14.8.7.4 26 58K http
10.5.1.3 13.0.0.1 27 100K ftp
11.1.0.6 10.3.4.5 32 300K ftp
19.7.1.2 16.5.5.8 18 80K ftp

Enterprise PSTN

Networks

- FR, ATM IP VPN DSL/Cable * Broadband + Voice over IP
. .

Networks Internet Access
« SNMP/RMON/NetFlow data records arrive 24x7 from different parts
of the network
* Truly massive streams arriving at rapid rates
- AT&T collects 600-800 GigaBytes of NetFlow data each day!
« Typically shipped o a back-end data warehouse for off-line analysis

Real-Time Data-Stream Querying - 0

How many distinct (source,dest) pairs are seen
by R1 where "source” is also seen by R2?

Off-line analysis - D
access is slow, expensive SELECT COUNT DISTINCT (R1.source,R1.dest)
FROM R1(source,dest), R2(source,dest)
WHERE R1.source = R2.source

Converged IP/MPLS
Network

Enterprise
Networks PSTN

* Need ability to process/analyze network-data streams in real-time
- As records stream in: look at records only once in arrival order!
- Within resource (CPU, memory) limitations of the NOC
- Different classes of analysis queries: fop-k, quantiles, joins, ...
* Our focus: Join-Distinct (JD) aggregate gqueries
- Estimating cardinality of duplicate-eliminating projection over a join
* Critical to important NM tasks
- Denial-of-Service attacks, SLA violations, real-time traffic engineering,...

Talk Outline LucntTehmloies 0

¢ Introduction & Motivation
* Data Stream Computation Model
* Key Prior Work
- FM sketches for distinct counting
- 2-level hash sketches for set-expression cardinalities
* Our Solution: JD-Sketch Synopses
- The basic structure
- JD-sketch composition algorithm & JD estimator
- Extensions
* Experimental Results

« Conclusions

Data-Stream Processing Model e e @

(GigaBytes) | R(A.,B) | S(B.0) I(KiIoBy‘res)
synopsis) synopsis

Data Stream R(A,B)

[Memory
\ Approximate Answer
Data Stream S(B,C) Stream with Error Guarantees
[}———— Processing (—— "Within 2% of exact
Engine answer with high
]‘ probability”

» Approximate answers often suffice, e.g., trend analysis, anomaly detection
- Exact solution requires linear space (SET-DISJTOINTNESS)

* Requirements for stream synopses
- Single Pass: Each record is examined at most once, in (fixed) arrival order
- Small Space: Log or polylog in data stream size
- Real-time: Per-record processing time (to maintain synopses) must be low
- Delete-Proof: Can handle record deletions as well as insertions
- Composable: Built in a distributed fashion and combined later

Existing Synopses for Relational Streams?" &=z O

« Conventional data summaries fall short

- Samples (e.g., using Reservoir Sampling)
+ Bad for joins and DISTINCT counting, cannot handle deletions
- Multi-d histograms/wavelets
+ Construction requires multiple passes, not useful for DISTINCT clauses
+ Combine existing stream-sketching solutions?
- Hash (aka FM) sketches for distinct-value counting
- AMS sketches for join-size estimation
- Fundamentally different: Hashing vs. Random linear projections
+ Effective combination seems difficult

» Our Solution: JD-Sketch stream synopses
- Novel, hash-based, log-sized stream summaries
- Built /ndependently over R, S streams, then composed+to give JD estimate
- Strong probabilistic accuracy guarantees

Hash (aka FM) Sketches for Distinct e O
Value Counting [FM85]
2R e

» Problem: Estimate the number of distinct items in a stream of values

from [O,..., M-1]
Dm‘as‘rream:|3 05301751037

Number of distinct values: 5

+ Assume a hash function h(x) that maps incoming values x in [O,..., M-1]
uniformly across [O,.., 2°L-1], where L = O(logM)

* Let Isb(y) denote the position of the least-significant 1 bit in the binary
representation of y

- A value x is mapped to Isb(h(x))
* Maintain FM Sketch= BITMAP array of L bits, initialized to O

- For each incoming value x, set BITMAP[Isb(h(x))]=1 BITMAP

5 4 3 2 1 0
x =5 = h(x) = 101100— Isb(h(x)) = 2 ofojoj]1]j0]o0

Hash (aka FM) Sketches for Distinct o
Value Counting [FM85]

« By uniformity through h(x): Prob[BLITMAP[k]=1]= Prob[10¥] =

2k+]
- Assuming d distinct values: expect d/2 to map to BITMAP[O],
d/4 to map to BITMAP[1], ... BITMAP
L-1 0
oOl0jo|O0fo]o JTjOoj1gofp1 | |11 1l1]1]1
- ~ J e — ~ _/

* Let R = position of rightmost zero in BITMAP
- Use as indicator of log(d)
- Estimate d=2%/@

- Average several iid instances (different hash functions) to reduce
estimator variance

2-Level Hash Sketches for Set i 0
Expression Cardinalities [6GR03]

« Estimate cardinality of general set expressions over streams of updates

- E.g., number of distinct (source,dest) pairs seen at both R1 and R2?
IRINR2|

o 2-Level Hash-Sketch (Z2LHS) stream synopsis: Generalizes FM sketch

- First level: ©(logM) buckets with exponentially-decreasing
probabilities (using Isb(h(x)), as in FM)

- Second level: Count-signature array (logM+1 counters)
+ One “total count” for elements in first-level bucket

+ logM "bit-location counts” for 1-bits of incoming elements

insert(17) — lsb(h|(17))

1

f +1 +1 +1

| TotCount | count7 | counté | count5 | count4 | count3 | count2 | countl | countO |
17 = 0 0 0 1 0 0 0 15

Processing Set Expressions over et ()

Update Streams: ey Ideas

 Build several indepeﬁden‘r 2LHS, fix a level |, and look for singleton
first-level buckets at that level |

level /

+ Singleton buckets and singleton element (in the bucket) are easily
identified using the count signature

Singleton bucket count signature
[Tota=11 [0[0Jo0Jo0[ti]o [1i]o] mmmp Singleton element = 1010,= 10

* Singletons discovered form a distinct-value sample from the union of
the streams

- Frequency-independent, each value sampled with probability %m

» Determine the fraction of "witnesses” for the set expression E in the
sample, and scale-up to find the estimate for |E|

The JD-Sketch Synopsis: e |

Basic Structure e
BT —————

* First level of hashin§ (hash fn+lsb) on the ,bﬁojecfeo’ stream attribute

 Second level of hashing (collection of independent 2LHS) on the join
stream attribute

* Maintenance: straightforward (based on 2LHS)

- Composable, delete-proof, ... Q- |7?AlC(R(A,B)|><15(B,C))|

@7’ b) Isb(ha(a)) JD-sketch for R(A,B)

o <4

0 B . S R O(logM,)

51 independent 2—level hash sketches on B—valhé\s‘\\\

/b | oo Ob‘

I
:
I
Lo O logMp) O logMp)
I
I
I
I
I
I
I

count 5 |count ;| & @ @ count o (count ;| & @ @

count | ggy

count | gy

Our JD Estimator: Composing N @

JD-Sketch SznoEses

 Input: Pair of (indébendenﬂy—BuilT) par'a//z;/' JD-sketches on the R(A,B)
and S(B,C) streams

- Same hash functions for corresponding 2LHS pairs

* Output: FM-like summary (bitmap) for estimating the number of
distinct joining (A,C) pairs

» Key Technical Challenges
- Want only (A,C) pairs that join to make it to our bitmap

+ Idea: Use 2LHS in the A- and C-buckets to determine
(approximately) if the corresponding B-multisets /ntersect

- A- and C-values are observed independently and in arbitrary order
in their respective streams

+ Cannot directly hash arriving (A,C) pairs to a bitmap (traditional
FM) -- all that we have are the JD-sketches for R, S!

+ Idea: Employ novel, composable hash functions h(), h(), and a
sketch-composition algorithm that guarantees FM-like properties

2

Our JD Estimator: Composing e
JD-Sketch Sznoeses
L& e |:| ¢ —
R(AB) [TTTTTTRO ,\,5\ Nm
ID-sketch "~

|BValueIntersect(k,m)|>=1 ?

=" 5L independent 2-level hash sketches on B:v'a‘h]'e‘sn\,\
(OO e oo IO
b o o ey |

S(BC 0 . LI .
oSN s it
A - -+ ODEOID ! 1/
“EESE3 “EEISE3. Final, composed "FM-like” bitmap
""""""""""""""""""""""""""""""""""" for joining (A,C) pairs

» Theorem: Using novel, composable linear hash functions, the above
composition algorithm guarantees that

- (A,C)-pairs map to final bitmap levels with exponentially-decreasing
probabilities (=47"*")

- (A.C)-pair mappings are pairwise-independent
 Both facts are crucial for our analysis...

Our JD Estimator: Estimation o @
Algorithm & Analzsis |

* Build and maintain s2 independent, parallel JD-sketch pairs over the
R(A,B) and S(B,C) streams

» At estimation time

- Compose each parallel JD-sketch pair, to obtain s2 "FM-like"
bitmaps for joining (A,C) pairs

- Find alevel | inthe composed bitmaps s.t. the fraction f of 1-bits
lies in a certain range -- use f tfo estimate jd x Prob[level=I]

* Return jd=f x 4"

count(l's) _ Jd

Our JD Estimator: Estimation ootz (O

Algorithm & Analysis

« Theorem: Our JD estimator returns an €,0)-estimate of JD cardinality
using JD-sketches with a total space requirement of

2
O(_l‘{bsasgl/a)log3MlogN)

- U/T = |B-value neighborhood|/ no. of joining B-values for
randomly-chosen (A,C) pairs

+ JDs with low "support” are harder to estimate

* Lower bound based on information-theoretic arguments and Yao's lemma

- Our space requirements are within constant and log factors of
best possible

Lucent Technologies @
Bell Labs Innovations.

» Other forms of JD-cardinality queries are easy to handle with
JD-sketches - for instance,

- One-sided (semi)joins (e.g., |74 g(R(ABPIS(B.O)))
- “Full-projection” joins (e.g., 1714 g c(R(ABI}IS(B.C))|)

- Just choose the right stream attributes to hash on at the two
levels of the JD-sketch

» Other JD-aggregates - e.g., estimating predicate selectivities over a
JD operation

- Key observation: Can use the JD-sketch to obtain a distinct-value
sample of the JD result

Extensions

* For cases where /B/ is small, we propose a different, ©(IBl)-space JD
synopsis and estimator

- Based on simpler FM sketches built with composable hash functions

- Conceptually simpler & easier to analyze, BUT requires at least linear
space!

16

Experimental Results: JD-Sketches on ... @

Random-Gr‘aEh Data

JDEstimator Errors, n = 1000
0.9 : ;

0.8 |
0.7 t
06 |
05t
0.4 f
03 f
02t
01t 1
0

Average Relative Error

No. of JD Sketches

Conclusions
T =

* First space-efficient algorithmic techniques for estimating JD
aggregates in the streaming model

* Novel, hash-based sketch synopses
- Log-sized, delete-proof (general update streams)
- Independently built over individual streams

- Effectively composed at estimation time to provide approximate
answers with strong probabilistic accuracy guarantees

* Verified effectiveness through preliminary experiments

* One key technical idea: Composable Hash Functions

- Build hash-based sketches on individual attributes that can be
composed into a sketch for attribute combinations

- Powerful idea that could have applications in other streaming
problems...

Lucent Technologies 0
Bell Labs Innovations.

Experimental Results: Linear-Space

Lucent Technologies 0
Bell Labs Innovations.

JD-Estimator on Random-6raph Data

Average Relative Error

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

LinearJDEstimator Errors, n = 1000

No. of FM Sketches

20

10

