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Big Data Challenges: The Four V's —and one D

« Volume: Scaling from Terabytes to Exa/Zettabytes
« Velocity: Processing massive amounts of streaming data

 Variety: Managing the complexity of multiple relational and
non-relational data types and schemas

« Veracity: Handling inherent uncertainty and noise in the data

« Distribution: Dealing with massively distributed information

« Qur focus: Volume, Velocity, Distribution
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Velocity: Continuous Stream Querying

There are many scenarios where we need to monitor/
track events over streaming data:

« Network health monitoring within a large ISP

 Collecting and monitoring environmental data with
Sensors

« Observing usage and abuse of large-scale data centers
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Stream Processing Model

(PetaBytes)
Continuous Data Streams

Stream Synopses
(in memory)

A

R1
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Stream
a Processing
- / Engine
Rk : f
Query f

(MegaBytes)

Approximate Answer

with Error Guarantees
"Within 2% of exact
answer whp”

« Approximate answers often suffice, e.g., trends, anomalies

« Stream synopses: single-pass, small-space, small-time, ...
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Model of a Relational Stream

* Relation “signal”: Large array v¢[1...N] with values v¢[i] initially zero
—Frequency-distribution array of S
—Multi-dimensional arrays as well (e.g., row-major)

* Relation implicitly rendered via a stream of updates

— Update <Xx, c> implyin
P ! Py g No. of active connections
* V¢[X] :=vg[X] + ¢ (c can be >0, <0) (10.1.3.4, 128.11.10,1)

(sourcelP, destinationlIP) > N= 264

» Goal: Compute queries (functions) on such dynamic vectors
in “small” space and time (<< N) 4 @«




Velocity & Distribution: Continuous Distributed Streaming
Monitor f(S4,...,S.)

Coordinator

seen at each

local stream(s) }

m sites .
site

S S

= =

 Other structures possible (e.g., hierarchical, P2P)
« Goal: Continuously track (global) query over streams at
coordinator
— Using small space, time, and communication
— Example queries:
- Join aggregates, Variance, Entropy, Information Gain, ...
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Tracking Complex Aggregate Queries

Monitor [RxS/
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« (lass of gueries: Generalized inner products of streams
IRxS| = fr - fg = 2, fr[V] fs[V]

R

— Join/multi-join aggregates, range queries, heavy hitters,
histograms, wavelets, ...

RRRRRRRRR




Example: LEADS Elastic pClouds Architecture
(http.//leads-project.eu)
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Continuous Distributed Streaming

« But... local site streams continuously change! New readings/data...

 Classes of monitoring problems
— Threshold Crossing: Identify when f(S)>T
— Approximate Tracking: f(S) within guaranteed accuracy bound 6

» Tradeoff accuracy and communication / processing cost

 Naive solutions must continuously centralize all data
— Enormous communication overhead!

« Instead, /n-situ stream processing using /ocal constraints

Monitor f(S,,...,S,,)
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Communication-Efficient Monitoring

« Key Idea: "Push-based” in-situ processing
— Local filters installed at sites process local streaming updates

 Offer bounds on local-stream behavior (at coordinator)
— "Push” information to coordinator only when filter is violated
— "Safe”! Coordinator sets/adjusts local filters to guarantee

accuracy
D
Filters ——=d . e e gt 2.

— Easy for linear functions! Exploit additivity...
— Non-linear f() ...?2?
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Outline

Introduction: Continuous Distributed Streaming

The Geometric Method (GM)

GM + Sketches, GM + Prediction Models

Towards Convex Safe Zones (5Zs)

Future Directions & Conclusions
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Monitoring General, Non-linear Functions

Query: f(S4,...,5,)>1 ?

S, Sy

« For general, non-linear f(), problem is a lot harder!
— E.g., information gain over global data distribution

* Non-trivial to decompose the global threshold into “safe”
local site constraints

 E.g., consider N=(N,+N,)/2 and f(N) = 6N — N2 > 1
Tricky to break into thresholds for f(N;) and f(N,)
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The Geometric Method
« A general purpose geometric approach [SIGMOD'06]

— Monitor function domain rather than the range of values!

Each site tracks a local statistics vector v; (e.qg., data
distribution)

Global condition is f(v) > t, where v=>Xxv, (A =1)
— E.g.,, v = average of local statistics vectors

All sites share estimate e = > A; v; of v
based on latest update v, from site i

Each site i tracks its drift from its most recent update Av; = vi-i’

_7 (€

EEEEEEEEEEEE
RRRRRRRR




Covering the Convex Hull

- Key observation: Vv = > A.-(e+Av)
(a convex combination of “translated” local drifts)

v lies in the convex hull of
the (e+Av;) vectors

Convex hull is completely
covered by spheres with
radii ||Avi/2||, centered at
e+Av,/2

Each such sphere can be
constructed independently




Monochromatic Regions

« Monochromatic Region: For all points x in the region f(x) is
on the same side of the threshold (f(x) > t or f(x) < 1)

« Each site independently checks its sphere is monochromatic
— Find max and min for f() in local sphere region (may be costly)
— Send updated value of v; if not monochrome




Restoring Monochromicity




Restoring Monochromicity

« After update, ||Avi||, = 0 = Sphere atiis
monochromatic
— Global estimate e is updated, may cause more site updates

 Coordinator case. Can allocate local slack vectors to sites
for “localized” resolutions




Outline

Introduction: Continuous Distributed Streaming

The Geometric Method (GM)

GM + Sketches, GM + Prediction Models

Towards Convex Safe Zones (5Zs)

Future Directions & Conclusions
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Geometric Query Tracking using
AMS Sketches [VLDB'13]

» Continuous approximate monitoring

— Track value of a function to within
specified accuracy bound 6

 Too much local info = Local AMS sketch
summaries

— Bounding regions for the lower-dimensional sketching space
— Account for sketching error €

* Key Problems. (1) Minimize data exchange
volume (2) Deal with highly-nonfinear AMS
estimator




Monitored Function...?
AMS Estimator function for Self-Join

£(sk(v)) = median,, (Y k()i /T'} = median,, | sk()[i] )
mS m

1 .
—  copies
2
€
X X] 8 @ @ @ x] PAverage > Y
|og(1/6) o o ) 0
© o o o
copies X X| 8 @ @ m x] Pverage > |Y —— median
© o o o
o o o o
X X] @ @ @ @ x] Pverage > |Y

* Theorem(AMS96): Sketching approximates v ||§ to within an error

2 . - .
of =*e||[v]; with probability =1-8 using o(g%|09(1/5)) counte
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Geometric Query Monitoring using AMS Sketches
[VLDB'13]

« Efficiently deciding ball monochromicity for median

— Fast greedy algorithm for determining the distance to
the inadmissible region

« (Non-trivial!) extension to general join aggregates

« Minimizing volume of data exchanges

— Sketches can still get pretty large!
— Can reduce to monitoring in O(log(1/0)) dimensions
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Exploiting Shared Prediction Models

« Naive "static”prediction: Local stream assumed
“unchanged” since last update

— No update from site = last update (“predicted” value) is
unchanged = global estimate vector unchanged

« Dynamic prediction models of site behavior
— Built locally at sites and shared with coordinator

— Model complex stream patterns, reduce number of updates
— But... more complex to maintain and communicate

“push” update /

Monitor

23



Adopting Local Prediction Models

[VLDB’05, TODS’08]
Model Predicted v,

€
Linear Growth Vip (t) = t_Vi (ts)

S

Velocity/ Acceleration vi (1) = vi(ts) + (t — tg)vel; + (t — t,)acc;
. Equivalent

satc | whetas| i@ =wits)

Predicted Global Vector: ep(t)=2 }\i Vip (t)




Prediction-based Geometric Monitoring
[SIGMOD'12, TODS'14]

i " Stricter local constraints if local
predictions remain accurate

* Keep up with v(t) movement




Outline

Introduction: Continuous Distributed Streaming

The Geometric Method (GM)

GM + Sketches, GM + Prediction Models

Towards Convex Safe Zones (SZ5s)

Future Directions & Conclusions
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From Bounding Spheres to Safe Zones (5Zs)

Safe Zone: Any convex subset of the Admissible
Region

— As long as translated drifts stay within SZ, we are “safe”
« By convexity

Aim for large SZs, far from
the boundary




Safe Zone defined by GM




Safe Zone
defined
by GM g >

N\, <

“

Repeat for
every point
on the
boundary




GM Safe Zones can be Far from Optimal!

« For instance, when
inadmissible region
IS convex

B

« Taking the intersection of
all half-spaces is overly
restrictive

» In this case, half-space
H(p,rl) is clearly the
optimal SZ!




SZs through Convex Decompositions [vibB'15]
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« Inadmissible region is
(can be covered by) a

union of convex sets 6
» Just intersect half- 5 -

spaces that separate ..
p from each set T~ )

— Avoid reaundancy!
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«« Provably better than
GM!

.* Application in sketches and  51(»),S5,(p) : "support vectors'
median monitoring
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A "Cookbook” for Distributed Stream Monitoring?

« GM/bounding spheres is a generic, off-the-shelf
technique

 Any function, but can be far from optimal

« SZs: much better performance but must be designed
for function/data at hand

— Some initial progress on automated SZ construction
(difficult optimization problem) [TKDE’14]

— Work on generic mechanisms for composing SZs
[working paper]
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Outline

Introduction: Continuous Distributed Streaming

The Geometric Method (GM)

GM + Sketches, GM + Prediction Models

Towards Convex Safe Zones (5Zs)

Future Directions & Conclusions
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Work in CD Streaming

* Much interest in these problems in TCS and DB areas

« Many functions of (global) data distribution studied:
— Set expressions [Das,Ganguly,G,Rastogi’‘04]
— Quantiles and heavy hitters [Cormode,G, Muthukrishnan, Rastogi'05]
— Number of distinct elements [Cormode et al.,06]
— Spectral properties of data matrix [Huang,G, et al."06]
— Anomaly detection in networks [Huang ,G, et al.'07]
— Samples [Cormode et al."10]
— Counts, frequencies, ranks [Yi et al.,'12]

« NII Shonan meeting on Large-Scale Distributed
Computation

http://www.nii.ac.jp/shonan/seminar011/
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Monitoring Systems

* Much theory developed, but less progress on deployment
Some empirical study in the lab, with recorded data

Still, applications abound: Online Games [Heffner, Malecha'09’
— Need to monitor many varying stats and bound communication
— Also, Distributed CEP systems (FERARI project)

Several steps to follow:

— Build libl =« | [0 D | NS
Frank hits Azuregos for 35 !
— EVO|Vet % 9 Bob hits Azuregos for 19 \‘ DUtEd DBMSS?)
Frank hits Azuregos for 40 &
. Severalqu f .
— What fu == specific?
— What ke = onitoring?

=% Carol shoots Azuregos for 50

Alice hits Azuregos for 4__J§ :

35 Azuregos bites Alice for 90




Theoretical Foundations

“Communication complexity” studies lower bounds of
distributed one-shot computations

« Lower bounds for various problems, e.g., count
distinct (via reduction to abstract problems)

* Need new theory for continuous computations

1

— Link to distributed source coding or network coding? ks
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NON-ACHIEVABLE REGION . Channel o

HXY) H® Rz Slepian-Wolf theorem [Slepian Wolf 1973]

year

g https://buffy.eecs.berkeley.edu/PHP/resabs/resabs.php?
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The General SZ Problem

ot
- Different SZs, per site S1 =

p3 S
— Minkowski sum must lie T X k
in admissible region
« Minimize the probability
of local violations

— NP-hard even in very
simple cases!

k

A=w[f()<T;

e Heuristics for automated SZ construction
« E.g., using hierarchical clustering of sites




Challenges, challenges, challenges...

« Distributed streaming versions of hard analytics functions
(e.g., PageRank)?

« Geometric monitoring for Distributed CEP hierarchies?

— Deal with uncertain events (“V” for Veracity)?

« Implementing GM ideas in scalable stream-processing
engines (e.g., Storm)?

« CD machine learning to dynamically adapt to
data/workload conditions?

— Communication just one of our concerns

 Scalable analytics tools for streaming &ime series?




Conclusions

=t Continuous querying of distributed streams is a natural model
" Interesting space/time/communication tradeoffs

" Captures several real-world applications

=t GM, SZs : Generic geometric tools for monitoring complex
qgueries

" Sketches [VLDB’13], dynamic prediction models [SIGMOD’12,
TODS'14], Skyline Monitoring [ICDE'14]

" Novel insights through Convex Geometry [TKDE'14,VLDB'15]

=« Much interesting algorithmic/systems work to be done!
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Thank you!

http://www.softnet.tuc.gr/~minos/
http://lift-eu.org , http://leads-project.eu
http://ferari-project.eu, http://qualimaster.eu
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http://www.softnet.tuc.gr/~minos/
http://lift-eu.org/
http://leads-project.eu/
http://ferari-project.eu
http://qualimaster.eu

Current Big Data Projects @SoftNet

1, ~LLLDS - (N ICT/STREP (2012-5)

LARGE-STALE S1 ASTIC ARCHITEC
/5/ Q/T/) FUR DA AS A SERVICE AP /leads-project.eu

Flexible Event Processing for Big Data Architectures
ICT STREP (2014-7)

F E R ARI http.//ferari-project.eu

o Configurable, Autonomously-Adaptive Real-time
Qua I I MaSter Data Processing

ICT STREP (2014-7)
http://qualimaster.eu
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Stream Processing Model

Stream Synopses
(PetaBytes) (in memory) (MegaBytes)

R1 Continuous Data Streams |
|
- \ ]
Stream _
o Processing Approximate Answer
o Engine with Error Guarantees
Rk "Within 2% of exact
[ T answer with high
Query f probability”

« Approximate answers often suffice, e.g., trends, anomalies
« Requirements for stream synopses
— Single Pass: Each record examined at most once, in arrival order
— Small Space: Log or polylog in data stream size
— Small Time. Per-record processing time must be low
— Also: Delete-proof, Composable, ...
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AMS Sketches 101

() _w Xi= Vil =
4 8426,+28, 48,46,
: in: Vg,

sk(v)= «_ " 2.

* Simple randomized linear projections of data distribution

— Easily computed over stream using logarithmic space

— Linear: Compose through simple vector addition
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CD Monitoring in Scalable Network Architectures

«" E.g.,, DHT-based P2P networks

=" Single query point

" “Unfolding” the network gives hierarchy
" But, single point of failure (i.e., root)

=" Decentralized monitoring
" Everyone participates in computation, all get the result
" Exploit epidemics? Latency might be problematic...
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Exploring the Prediction Model Space

=" The better we can capture and anticipate future stream direction,
the less communication is needed

=" So far, only look at predicting each stream alone
== Correlation/anti-correlation across streams should help?
" But then, checking validity of model is expensive!

=" Explore tradeoff-between power (expressiveness) of model and
complexity (number of parameters)
" Optimization via Minimum Description Length (MDL)?
[Rissanen 1978]




http://www.lift-eu.org/
http://www.softnet.tuc.gr/~minos/




Geometric Query Monitoring using AMS Sketches
[GKS VLDB'13]

Full Jodn—Diata comm. cost relative to OO method, « =001  Full Join-Total comm. cost @ laive to O method, « = 0.01
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Prediction-based Geometric Threshold Monitoring [GDG
SIGMOD’12, TODS'14]

48

Could we have
predicted that v(t)
has not crossed the

threshold?




Issues

=" Stricter local constraints do not guarantee less communication /
lower false positives

=" "Bad” scenarios may occur
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Towards Strong Geometric Monitoring Models

=" Containment of convex hulls: hard to maintain/verify in distributed
settings

=" Designed several algorithms that try to approximately ensure containment
with no/minimal information sharing

" Based on combining static and prediction-based bounding regions
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Some Experiments

«* Sliding Window
" Up to 600 times lower cost compared to the basic GM

Wind Peak - Signal to Noise Ratio Monitoring under
sliding window of 200 tuples varying #sites for 0.5
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40.000 -
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20.000 -

Number of Transmitted Messages
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-+« Model 1 (VA-50)
-e- CAA (VA-50)
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Solar Irradiance - Variance Monitoring under sliding
window of 200 tuples varying #sites for 50000 threshold
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Extensions: Transforms, Shifts, Safe Zones

« Subsequent developments [SKS TKDE'12]

— Same analysis of correctness holds K
when spheres are allowed to be ellipsoids 7

— Different reference vectors can be used
to increase radius when close to
threshold values

— Combining these observations
allows additional cost savings

« More general theory of "Safe Zones”
— Convex subsets of the admissible region




