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Towards Decentralized Detection

Today: Distributed Monitoring & Centralized
Computation

o Stream-based data collection

o Periodically evaluate detection function over collected data
o Doesn't scale well in network size or timescale

Our contribution: Decentralized Detection

o Continuously evaluate detection function in a decentr. way

o Low-overhead, rapid response, accurate and scalable

o Detection accuracy controllable by a “tuning knob”
Provable guarantees on detection error (false alarm rate)
Flexible tradeoff between overhead and accuracy




‘ Detection Problems in Enterprise Network
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For efficient and scalable detection, push data processing to the
edge of network!

Detection of Network-wide Anomalies

= Avolume anomaly is a sudden change in
an Origin-Destination flow (i.e., point to point
traffic)

= Given link traffic measurements, detect the
volume anomalies

The backbone network

Regional network 1




‘ An Hlustration
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Finding anomalies

in high-dimensional,
noisy data is difficult !
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The Subspace Method (Lakhina’04)

An approach to separate normal from anomalous
traffic based on Principal Component Analysis (PCA)

Normal Subspace &: space spanned by the top k
principal components

Anomalous Subspace S: space spanned by the
remaining components

Then, decompose traffic on all links by projecting
onto § and S to obtain:

Y =Ynot+Yaub

Traffic vector of all / t
links at a particular

RN Normal traffic Residual traffic
pointin time

vector vector




Detection Illustration
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The Centralized Algorithm
The Network Data matrix Dat
W/@ 1) Each link produces a column of m data
over time.
Doesn’t scale well to large 3y at each
network or to smaller timescales
o The number of monitoring devices
may grow to thousands > Q,
lDatﬂ‘) , 0 The anomalies may occur on hreshold

1 second or sub-second time scales 0
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‘ Our In-Network Detection Framework

Distr. Monitors

user inputs: detection ’
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‘ The Communication and Etrror Tradeoff
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The coordinator computes a set of good 9,, ..., §,to manage this difference.

‘ Parameter Design and Error Control (I)

= Users specify an upper bound on false alarm rate, then
we determine the filtering parameters d's
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Eigen error: L, norm of the difference between the approximate eigenvalues and the actual ones




Parameter Design and Error Control (IT)

Detection Error p - Eigen-Error €
o Mont Carol simulation to find the mapping from € to U

o For the given |, using fast binary search to find an €
Eigen-Error € - Filtering parameters &'s
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Evaluation

Given user-specified false alarm rate,
evaluate the actual detection accuracy and
communication overhead

Experiment setup

o Abilene backbone network data

o Traffic matrices of size 1008 X 41

o Set uniform slack §; = 4 for all monitors




Performance

H Missed Detections False Alarms Data Reduction

Week 1 | Week 2 | Week 1 | Week 2 | Week 1 | Week 2

0.01 0 0 0 0 75% | 70%

0.03 0 1 1 0 82% | 76%

0.06 0 1 0 0 90% | 79%

\ error tolerance = upper bound on error

Data Used: Abilene traffic matrix, 2 weeks, 41 links.

Summary

A communication-efficient framework that
o detects anomalies at desired accuracy level
o with minimal communication cost

A distributed protocol for data processing

o local monitors decide when to update data to
coordinator

o coordinator makes global decision and feedback to
monitors

An algorithmic framework to guide the tradeoff

between communication overhead and

detection accuracy




‘ Questions
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Traditional Distributed Monitoring

= Large-scale network monitoring and detection systems
o Distributed and collaborative monitoring boxes
o Continuously generating time series data Netwark 2

= EXxisting research focuses on data

streaming

o Centrally collect, store and
aggregate network state =~ (D )

o Well suited to answering .
approximate queries and Wt
continuously recording
system state

o Incur high overhead! Monitor 3

Monitor 2

Monitor 1

Local
Network 1

— .. Operation
Center

Bandwidth o
Bottleneck!

‘ Our Distributed Processing Approach

= A coordinator
o Is aggregation, correlation and detection center

= A set of distributed monitors

Each produces a time series signals

o Processes data locally, only sends needed info. to coordinator
o No communication among monitors

o Coordinator tells monitors the level of accuracy for signal
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Principal Component Analysis (PCA)

S : minor components . S : principal components

Principal components are
top eigenvectors of
covariance matrix. They
form the subspace projection
matrices C,, and C,,

Yoo = Cnoy
Yab = Caby

Traffic on Link 2

Traffic on Link 1
Anomalous traffic usually results in a large value of Yab




