Communication-Efficient Online Detection of Network-Wide Anomalies

Ling Huang* XuanLong Nguyen*
Minos Garofalakis Joe Hellerstein*
Michael Jordan* Anthony Joseph* Nina Taft
*UC Berkeley Intel Research

Towards Decentralized Detection

- Today: Distributed Monitoring & Centralized Computation
 - Stream-based data collection
 - Periodically evaluate detection function over collected data
 - Doesn't scale well in network size or timescale
- Our contribution: Decentralized Detection
 - Continuously evaluate detection function in a decentr. way
 - Low-overhead, rapid response, accurate and scalable
 - Detection accuracy controllable by a "tuning knob"
 - Provable guarantees on detection error (false alarm rate)
 - Flexible tradeoff between overhead and accuracy

Detection of Network-wide Anomalies

- A volume anomaly is a sudden change in an Origin-Destination flow (i.e., point to point traffic)
- Given link traffic measurements, detect the volume anomalies

The Subspace Method (Lakhina'04)

- An approach to separate normal from anomalous traffic based on Principal Component Analysis (PCA)
- Normal Subspace S: space spanned by the top k principal components
- Anomalous Subspace \tilde{S} : space spanned by the remaining components
- Then, decompose traffic on all links by projecting onto $\mathcal S$ and $\tilde{\mathcal S}$ to obtain:

The coordinator computes a set of good $\delta_1, ..., \delta_n$ to manage this difference.

Parameter Design and Error Control (I)

 Users specify an upper bound on false alarm rate, then we determine the filtering parameters δ's

Eigen error: L₂ norm of the difference between the approximate eigenvalues and the actual ones

Parameter Design and Error Control (II)

- Detection Error μ → Eigen-Error ϵ
 - $\ \square$ Mont Carol simulation to find the mapping from ϵ to μ

- $_{\mbox{\scriptsize \square}}$ For the given $\mu,$ using fast binary search to find an ϵ
- Eigen-Error ε → Filtering parameters δ's

$$2\sqrt{\frac{\bar{\lambda}}{m}\cdot\sum_{i=1}^{n}\frac{\delta_{i}^{2}}{3}}+\sqrt{\left(\frac{1}{m}+\frac{1}{n}\right)\sum_{i=1}^{n}\frac{\delta_{i}^{4}}{9}}=\epsilon$$

Evaluation

- Given user-specified false alarm rate, evaluate the actual detection accuracy and communication overhead
- Experiment setup
 - Abilene backbone network data
 - □ Traffic matrices of size 1008 X 41
 - $\ \square$ Set uniform slack $\delta_i=\delta$ for all monitors

Performance

μ	Missed Detections		False Alarms		Data Reduction	
	Week 1	Week 2	Week 1	Week 2	Week 1	Week 2
0.01	0	0	0	0	75%	70%
0.03	0	1	1	0	82%	76%
0.06	0	1	0	0	90%	79%

error tolerance = upper bound on error

Data Used: Abilene traffic matrix, 2 weeks, 41 links.

Summary

- A communication-efficient framework that
 - detects anomalies at desired accuracy level
 - with minimal communication cost
- A distributed protocol for data processing
 - local monitors decide when to update data to coordinator
 - coordinator makes global decision and feedback to monitors
- An algorithmic framework to guide the tradeoff between communication overhead and detection accuracy

Questions

Reference

[Lakhina'04] *Diagnosing Network-Wide Traffic Anomalies*. A. Lakhina, M. Crovella and C. Diot. In SIGCOMM '04.

[Huang'06] *In-Network PCA and Anomaly Detection.* L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph and N. Taft. In NIPS 19, 2006.

[Huang'07] Communication-Efficient Online Detection of Network-Wide Anomalies. L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, M. Jordan, A. Joseph and N. Taft. To appear in INFOCOM'07.

Backup Slides

Our Distributed Processing Approach

- A coordinator
 - Is aggregation, correlation and detection center
- A set of distributed monitors
 - Each produces a time series signals
 - Processes data locally, only sends needed info. to coordinator
 - No communication among monitors
 - Coordinator tells monitors the level of accuracy for signal updates

