

Agenda

- TCP-SYN-flooding attack detection problem
- Distinct samples
- Distinct-Count sketches
- Experimental results
- Summary

2 | Presentation Title | May 2007

All Rights Reserved © Alcatel-Lucent 2007

Alcatel·Lucent 🐠

TCP-SYN-flooding attack: Salient characteristics

TCP-SYN-flooding attacks are different from flash crowds

	TCP-SYN-floods	Flash crowds
Traffic volume	low	high
# of half-open	high	low
connections		
# of distinct	high	high
connecting sources		

- \rightarrow Tracking top-k destinations with the highest traffic volume to detect attack victims won't work
 - Attack traffic may not be high
- → Right metric for robust attack detection:

Top-k destinations wrt number of distinct sources with half-open connections

4 | Presentation Title | May 2007

All Rights Reserved © Alcatel-Lucent 2007

Alcatel·Lucent 🍘

System model

Continuous stream of (src IP, dst IP, ±1) flow updates

- +1 for SYN packet from src to dst (insert)
- -1 for ACK packet from src to dst (delete)

Assumptions

- 32-bit IP addresses; 64-bit (src, dst) pairs
- Number of distinct (src, dst) pairs: U

Constraints

- Single pass over update stream
- Small space (logarithmic in U)
 - → Solutions that store state for U (src, dst) pairs won't work
- Small processing time per update
- Continuous tracking of attack metric (top-k destinations)

5 | Presentation Title | May 2007

⋆Top-k dst

Attack

Detector

Problem formulation

Distinct frequency f_v for dst v = number of distinct src's with unacknowledged SYN pkts (half-open connections) to v

$$f_{v} = |\{u : (\sum_{(u,v,\Delta)} \Delta) > 0\}|$$

Key observation: Attack victims will have high f, values

- \rightarrow To detect attack, track top-k f_v frequency values (f_{v1},...., f_{vk})
- ullet Exact tracking of f_v values requires $\Theta(U)$ space, and is thus impractical

Approximate top-k dst tracking problem: Track top-k frequencies with a small (ϵ) relative error; if \hat{f}_{v} is the estimate for top-k frequency value f_{v} then

$$|\hat{f}_{v} - f_{v}| \leq \varepsilon f_{v}$$

6 | Presentation Title | May 2007

All Rights Reserved © Alcatel-Lucent 2007

Alcatel·Lucent 1

Our contribution

Distinct-Count Sketch structure

- Enables tracking of top-k distinct frequencies with guaranteed accuracy
- Is resilient to deletes (necessary to ignore legitimate TCP connections)
- Low storage space overhead
- Low update processing time

7 | Presentation Title | May 2007

Related work

- Estan and Varghese [SIGCOMM 02]
 - Use samples and hash-based filtering to identify large flows
 - A half-opened TCP flow is not large because no packets are exchanged
- Kompella et al. [IMC 04], Gao et al. [ICDCS 04]
 - Maintain multiple hash tables, dst that hashes into buckets with large counters in all hash tables is potential attack victim
 - No provable guarantees
- Gibbons [VLDB 01], Cormode and Muthukrishnan [PODS 05]
 - Distinct samples, cascaded summaries for (distinct) frequency estimation
 - Cannot handle deletions in update stream
- Venkataraman et al. [NDSS 05]
 - For threshold k, k-superspreaders identify src's that connect to >k dst
 - Determining threshold k may be difficult in practice

8 | Presentation Title | May 2007

All Rights Reserved © Alcatel-Lucent 2007

Alcatel-Lucent 1

Revisiting the basics: Distinct samples [Gibbons, VLDB 01]

- Good for distinct frequency estimation, but cannot handle deletes
- Stream of (src, dst, +1) flow updates (inserts)

Hash function h maps (src, dst) pairs to buckets with exponentially decreasing probabilities

 $\Pr[h(u,v)=l] = \frac{1}{2^{l+1}}$

(src, dst) pairs that hash into buckets \geq b yield distinct sample of size U/2^b

U/2 (src, dst) pairs hash into bucket 0, U/4 into bucket 1, ...

9 | Presentation Title | May 2007

Alcatel-Lucent 🍘

Top-k frequency estimation procedure

Let $v_1, ..., v_k$ be dst with highest frequencies (say $f_{v1}^s, ..., f_{vk}^s$) in distinct sample from buckets $\geq b$

Return $(v_1, \hat{f}_{v_1} = 2^b f_{v_1}^s), ..., (v_k, \hat{f}_{v_k} = 2^b f_{v_k}^s)$

Key result: If distinct sample size > $\Theta(\frac{U\log U}{f_{\nu_{\mathbf{k}}} \mathcal{E}^2})$, then for each top-k distinct frequency $\mathbf{f_v}$ whp

$$|\hat{f}_v - f_v| \leq \mathcal{E}_v$$

10 | Presentation Title | May 2007

All Rights Reserved © Alcatel-Lucent 2007

Alcatel·Lucent 1

Extracting (src, dst) pair from second-level bucket

If for all i=1 to 64, exactly one of count0; or count1; is non-zero /* no collision */ Then (src, dst) = sequence of bit values with non-zero counts Return (src, dst) Else /* collision */ Return "empty (src, dst)"

Example (extracting (src, dst) pair):

13 | Presentation Title | May 2007

Alcatel-Lucent 🍘

Top-k frequency estimation procedure

Let DS₁ be (src, dst) pairs from (second-level buckets of) first-level buckets $\geq l$ Let b be the largest first-level bucket such that size of distinct sample $DS_b > \Theta(s)$ Let $v_1, ..., v_k$ be dst with highest frequencies (say $f_{v_1}^s, ..., f_{v_k}^s$) in distinct sample DS_b Return $(v_1, \hat{f}_{v_1} = 2^b f_{v_1}^s), ..., (v_k, \hat{f}_{v_k} = 2^b f_{v_k}^s)$

14 | Presentation Title | May 2007

All Rights Reserved © Alcatel-Lucent 2007

Alcatel-Lucent 🐠

Distinct-Count Sketch: Key result

Key result: If $r > \Theta(\log \text{streamsize})$ and $s > \Theta(\frac{U \log U}{f_{v_k} \mathcal{E}^2})$, then for each top-k distinct frequency f_v whp

$$|\hat{f}_{v} - f_{v}| \leq \mathcal{E} f_{v}$$

Intuition: Consider first-level bucket with $\Theta(s)$ (src, dst) pairs

- With $r = \Theta(\log \text{ streamsize})$ second-level hash tables with s buckets each, every pair occurs without collisions in some second-level bucket whp
- Thus, possible to obtain a distinct sample of size $\Theta(s) = \Theta(\frac{U \log U}{f_{y_s} \varepsilon^2})$

15 | Presentation Title | May 2007

Alcatel-Lucent 🀠

Experimental results

Synthetic data generator used to produce stream of (src, dst) pair updates

- Number of distinct (src, dst) pairs (U): 8 million
- Number of distinct dst: 50K
- Dst IP addresses follow Zipf distribution
 - Zipf parameter varied between 1 and 2.5 to control skew

Distinct-Count Sketch

- r=3 second-level hash tables with s=5 buckets each
- Size = 4.5 MB
 - → over an order of magnitude space savings
 - Space to maintain counts for 8 million (src, dst) pairs = 96 MB
- Processing time per stream update = 40-60 microsec on 1GHz Pentium-III

16 | Presentation Title | May 2007

All Rights Reserved © Alcatel-Lucent 2007

Alcatel-Lucent 🐠

Top-k recall

8M Distinct Pairs, 50K Distinct Destinations, r = 3, s = 128

- Recall for top-5 dst is almost always 100% (for all skew values z)
- For z < 2, recall is >86% and >73% for top-10 and top-15 dst, respectively

17 | Presentation Title | May 2007

Alcatel·Lucent 🍘

Estimate relative errors

8M Distinct Pairs, 50K Distinct Destinations, r = 3, s = 128

- Relative error is < 17% for top-5 dst (for all skew values z)
- For z<2, relative error is < 25% and < 35% for top-10 and top-15 dst, respectively

18 | Presentation Title | May 2007

All Rights Reserved © Alcatel-Lucent 2007

Alcatel·Lucent 🐠

Summary

Robust, real-time TCP-SYN-flooding attack detection requires the ability to track top-k destinations wrt $\,$

- Number of distinct connecting sources (as opposed to traffic volumes)
- Number of half-open connections (to distinguish from flash crowds)

Our proposed Distinct-Count Sketch

- Enables tracking of top-k distinct frequencies with guaranteed accuracy
- Is resilient to deletes (necessary to ignore legitimate TCP connections)

Experimental results indicate that Distinct-Count Sketches can accurately track top-k frequent destinations $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$

- Low storage space overhead
- Low update processing time
- Low errors

19 | Presentation Title | May 2007

ll Rights Reserved © Alcatel-Lucent 200

Alcatel-Lucent 🐠