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FIG. 2
The Greedy CaRT Selection Algorithm

procedure Greedy  (T(X) , &, G, 0)

Input:  n—-attribute table T and n-vector of error tolerances e;
Bayesian network G on the set of attributes X and
threshold 6 on the relative benefit for selecting a
CaRT predictor.

Output: A set of materialized (predicted) attributes Xmgat (X pred
= X = Xmqt) and a CaRT predictor for each X € Xpreq-

begin

1. Xmat = Xpred := @

2. let < Xy, X9,...X, > be the attributes in X sorted in
topological order of G

3. fori :=1,..,n

4, if TT(X;) = & then Xpgt :=Xmat Y $X;} /* X; must be
moterialized if it has no parents in G */

5. else

6. M := BuildCaRT (Xmat — X;. €;)

7. if (MaterCost (X;) / PredCost (Xmgt — X;) > 8) then Xpred :=

Xpred Y it
8. else Xmat = Xmat V $Xi}
9. end
10. end

end
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FIG. 4
The MaxIndependentSet CaRT Selection Algorithm

procedure MaxindependentSet (T(X) , &, G, neighborhood() )
Input: n-attribute table T and n-vector of error tolerances é&;

Bayesian network G on the set of attributes X and function
neighborhood () defining the ‘predictive neighborhood” of a

node X; in G (e.g., I1 (X1) or B (X;))-
Output: A set of materialized (predicted) attributes Xmqt (Xpred = X -
i Xmat ) and a CaRT predictor PRED (X;)—=X; for each X; € X preg-
i

. Xmat = X Xpred = @
2. PRED (X;) := & for all X;€ X, improve := true
3. while (improve # false) do
4. for each X; € Xpat
5. mater_neighbors (Xj) :=

(Xmat N neighborhood(X; ) U {PRED (X) : X € neighborhood

(Xi) , X € Xpred}-{Xi$

6. M := BuildCaRT (Mater_neighbors (X;)-=X;, e;)
. let PRED (X;) < mater_neighbors (X;) be the set of
' predictor attributes used in M
8. cost_change :=0
9, for each Xj € Xpreg such that X; € PRED (X;)
10, NEW_PRED; (X;) = PRED(X;)-{X;} UPRED (X;)
1. M :=BuildCaRT (NEW_PRED; (Xj)—»Xj, e
12, set NEW_PRED; (X;) to the (sub) set of
predictor attributes used in M
13, cost_change; := cost_change; + (PredCost (PRED

(X§)-=X;) = PredCost (NEW_PRED; (Xj)—=X;))

14, end
15. end
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FIG. 4 (cont)

16. build an undirected, node-weighted graph Gyemp = (Xmats
Etemp) on the current set of materialized

17. attributes Xy qt, Where:

18. (a) E temp = § (X,Y) : for all pairs X, Y €Xpred§ v

19. §(X;, Y) : for all Y€ X gt}

20. (b) weight (X;) := MaterCost (X;) -PredCost (PRED(X;)
— Xi) +cost_change; for each Xj € Xmaqt

21. S := FindWMIS (Gtemp) J* select (approximate) maximum

weight independent set in Gemp
22. as ‘maximum-benefit’ subset of
predicted attributes */

23. if (Zycg weight (X) < 0) then improve := false

24, else/* update Xt Xpred’ and the chosen CaRT predictors */

25. for each X i € Xpred

26. if (PRED (Xj) n'S = {X;}) then PRED (Xj) :=

NEW_PRED; (X;)

2]. end

28. Xmat:= Xmat = S Xpred = Xpred U S

29. end

30. end /* while */
end
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FIG. 5

Algorithm for Estimating Lower Bound on Subtree Cost

procedure LowerBound (N, ej, b)
Input:  Leaf N for which lower bound on subtree cost is to be

computed; error tolerance e; for attribute X;; bound b
on the maximum number of internal nodes in subtree

rooted at N.
Output: Lower bound L(N) on cost of subtree rooted at N.
begin
{. fori:=tor
minOut [i, 0] :=i
for J:=1tob + 1
minOut [0, j] :=0
1 :=0
fori:==1tor
while Xj = X141~ 28i
1:=1 =1
forj:=1tob +1
10. minOut [i,j] := min {minOutfi - 1,j] + 1, minOut [1,j-1]
11. end
12, LN) = w
13, for J:=0tob
14, L(N) :=min §L(N) , 2j + 1 + j log (Xi]) + (j + 1 + minOut
(r, j+1)) log (/dom(X;)|)
15. L(N) := min {L(Ng , 20+ 3+ (b+1)log (Xi]) + (b +2) log
(Idom(X;) 1) §
16. return L (N)
end

W NSO~
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SYSTEM AND METHOD FOR
COMPRESSING A DATA TABLE USING
MODELS

TECHNICAL FIELD OF THE INVENTION

The present invention is directed, in general, to data
compression and, more specifically, to a system and method
for compressing an arbitrary data table using models.

BACKGROUND OF THE INVENTION

Effective analysis and compression of massive, high-
dimensional tables of alphanumeric data is an ubiquitous
requirement for a variety of application environments. For
instance, massive tables of both network-traffic data and
“Call-Detail Records” (CDR) of telecommunications data
are continuously explored and analyzed to produce certain
information that enables various key network-management
tasks, including application and user profiling, proactive and
reactive resource management, traffic engineering, and
capacity planning, as well as providing and verifying Qual-
ity-of-Service guarantees for end users. Effective querying
of these massive data tables help to continue to ensure
efficient and reliable service.

Traditionally, data compression issues arise naturally in
applications dealing with massive data sets, and effective
solutions are crucial for optimizing the usage of critical
system resources, like storage space and I/O bandwidth (for
storing and accessing the data) and network bandwidth (for
transferring the data across sites). In mobile-computing
applications, for instance, clients are usually disconnected
and, therefore, often need to download data for offline use.

Thus, for efficient data transfer and client-side resource
conservation, the relevant data needs to be compressed.
Several statistical and dictionary-based compression meth-
ods have been proposed for text corpora and multimedia
data, some of which (e.g., Lempel-Ziv or Huffman) yield
provably optimal asymptotic performance in terms of certain
ergodic properties of the data source. These methods, how-
ever, fail to provide adequate solutions for compressing a
massive data table, as they view the table as a large byte
string and do not account for the complex dependency
patterns in the table.

Existing compression techniques are “syntactic” in the
sense that they operate at the level of consecutive bytes of
data. As explained above, such syntactic methods typically
fail to provide adequate solutions for table-data compres-
sion, since they essentially view the data as a large byte
string and do not exploit the complex dependency patterns
in the data structure. Popular compression programs (e.g.,
gzip, compress) employ the Lempel-Ziv algorithm which
treats the input data as a byte string and performs lossless
compression on the input. Thus, these compression routines,
when applied to massive tables, do not exploit data seman-
tics or permit guaranteed error lossy compression of data.

Attributes (i.e., a “column”) with a discrete, unordered
value domain are referred to as “categorical,” whereas those
with ordered value domains are referred to as “numeric.”
Lossless compression schemes are primarily used on
numeric attributes and do not exploit correlations between
attributes. For instance, in certain page level algorithm
compression schemes, each numeric attribute, its minimum
value occurring in tuples (i.e., in “rows”) in the page, is
stored separately once for the entire page. Further, instead of
storing the original value for the attribute in a tuple, the
difference between the original value and the minimum is
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2

stored in the tuple. Thus, since storing the difference con-
sumes fewer bits, the storage space overhead of the table is
reduced. Tuple Differential Coding (TDC) is a compression
method that also achieves space savings by storing differ-
ences instead of actual values for attributes. However, for
each attribute value in a tuple, the stored difference is
relative to the attribute value in the preceding tuple.

Other lossless compression schemes have been derived
that essentially partitions the set of attributes of a table T into
groups of correlated attributes that compress well (by exam-
ining a small amount of training material) and then simply
using gzip to compress the projection of T on each group.
Another approach for lossless compression first constructs a
Bayesian network on the attributes of the table and then
rearranges the table’s attributes in an order that is consistent
with a topological sort of the Bayesian network graph. A key
intuition is that reordering the data (using the Bayesian
network) results in correlated attributes being stored in close
proximity; consequently, tools like gzip yield better com-
pression ratios for the reordered table.

Another instance of a lossless compression algorithm for
categorical attributes is one that uses data mining technmques
(e.g., classification trees, frequent item sets) to find sets of
categorical attribute values that occur frequently in the table.
The frequent sets are stored separately (as rules) and occur-
rences of each frequent set in the table are replaced by the
rule identifier for the set.

However, compared to these conventional compression
methods for text or multimedia data, effectively compress-
ing massive data tables presents a host of novel challenges
due to several distinct characteristics of table data sets and
their analysis. Due to the exploratory nature of many data-
analysis applications, there are several scenarios in which an
exact answer may not be required, and analysts may in fact
prefer a fast, approximate answer, as long as the system can
guarantee an upper bound on the error of the approximation.
For example, during a drill-down query sequence in ad-hoc
data mining, initial queries in the sequence frequently have
the sole purposes of determining the truly interesting queries
and regions of the data table. Providing (reasonably accu-
rate) approximate answers to these initial queries gives
analysts the ability to focus their explorations quickly and
effectively, without consuming inordinate amounts of valu-
able system resources.

Thus, in contrast to traditional lossless data compression,
the compression of massive tables can often afford to be
lossy, as long as some (user-defined or application-defined)
upper bounds on the compression error are guaranteed by
the compression algorithm. This is obviously an important
differentiation, as even small error tolerances can help
achieve better compression ratios.

Effective table compression mandates, therefore, using
compression procedures and techniques that are semantic in
nature, in the sense that they account for and exploit both (1)
the meanings and dynamic ranges of individual attributes
(e.g., by taking advantage of the specified error tolerances);
and, (2) existing data dependencies and correlations among
attributes in the table.

Accordingly, what is needed in the art is a system and
method that takes advantage of attribute semantics and
data-mining models to perform guaranteed error lossy com-
pression of massive data tables.

SUMMARY OF THE INVENTION

To address the above-discussed deficiencies of the prior
art, the present invention provides a system for, and method
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of compressing a data table and a database management
system incorporating the system or the method. In one
embodiment, the system includes: (1) a table modeller that
discovers data mining models with guaranteed error bounds
of at least one attribute in the data table in terms of other
attributes in the data table and (2) a model selector, associ-
ated with the table modeller, that selects a subset of the at
least one model to form a basis upon which to compress the
data table.

The present invention therefore introduces the broad
concept of effectively compressing data tables by taking
advantage of attribute semantics and data mining models to
perform lossy compression of massive data tables containing
a guaranteed error.

In one embodiment of the present invention, the table
modeller employs classification and regression tree data
mining models to model the at least one attribute. The tree
in each such model is called a “CaRT.” CaRTs are by
themselves conventional, but have not until now been
employed for compressing data tables.

In one embodiment of the present invention, the model
selector employs a Bayesian network built on the at least one
attribute to select relevant models for table compression.
Those skilled in the pertinent art are familiar with Bayesian
networks. Such networks find their first use in guaranteed
error lossy compression of data tables.

In one embodiment of the present invention, the table
modeller employs a selected one of a constraint-based and a
scoring-based method to generate the at least one model.
Such models will be set forth in detail in the Description that
follows.

In one embodiment of the present invention, the model
selector selects the subset based upon a compression ratio
and an error bound. Thus, a compression technique that
offers maximum compression, without exceeding error tol-
erance, is advantageously selected. However, those skilled
in the pertinent art will understand that the subset may be
selected on other or further bases.

In one embodiment of the present invention, the process
by which the model selector selects the subset is NP-hard.
Alternatively, two novel algorithms will be hereinafter
described that allow subset selection to occur faster, at some
cost.

In one embodiment of the present invention, the model
selector selects the subset using a model built on attributes
of the data table by a selected one of: (1) repeated calls to
a maximum independent set solution algorithm and (2) a
greedy search algorithm. These techniques will be set forth
in the Detailed Description that follows.

The foregoing has outlined, rather broadly, preferred and
alternative features of the present invention so that those
skilled in the art may better understand the detailed descrip-
tion of the invention that follows. Additional features of the
invention will be described hereinafter that form the subject
of the claims of the invention. Those skilled in the art should
appreciate that they can readily use the disclosed conception
and specific embodiment as a basis for designing or modi-
fying other structures for carrying out the same purposes of
the present invention. Those skilled in the art should also
realize that such equivalent constructions do not depart from
the spirit and scope of the invention in its broadest form.
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4
BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion, reference is now made to the following descriptions
taken in conjunction with the accompanying drawings, in
which:

FIG. 1 illustrates an exemplary system for compressing a
data table;

FIG. 2 illustrates one embodiment of the procedure
greedy ( ), a CaRT-selection algorithm, which may be
implemented within the CaRTSelector 120;

FIGS. 3A-3D illustrates a Bayesian network graph
defined over attributes X, . . ., X3

FIG. 4 illustrates one embodiment of a procedure Max-
IndependentSet ( ) CaRT-selection algorithm which allevi-
ates some drawbacks of the greedy algorithm;

FIG. 5 illustrates one embodiment of a procedure Low-
erBound (), an algorithm for computing L.(N) for each “still
to be expanded” leaf N in a partial tree R;

FIG. 6 illustrates diagrams for compression ratios for
gzip, fascicles and the table compressor 100 for three data
sets; and

FIGS. 7A-C illustrate diagrams showing the effect of an
error threshold and sample size on compression ratio/run-
ning time.

DETAILED DESCRIPTION

Referring initially to FIG. 1, illustrated is a table com-
pressor 100, an embodiment of an exemplary system for
compressing a data table according to the principles of the
present invention. The table compressor 100 takes advan-
tage of attribute semantics and data-mining models to per-
form lossy compression of massive data tables. The table
compressor 100 is based in part upon a novel idea of
exploiting data correlations and user-specified “loss’/error
tolerances for individual attributes to construct concise and
accurate “Classification and Regression Tree (CaRT)” mod-
els for entire columns of a table.

More precisely, the table compressor 100 generally
selects a certain subset of attributes (referred to as “pre-
dicted” attributes) for which no values are explicitly stored
in the compressed table; instead, concise CaRTs that predict
these values (within the prescribed error bounds) are main-
tained. Thus, for a predicted attribute X that is strongly
correlated with other attributes in the table, the table com-
pression system 100 is typically able to obtain a very
succinct CaRT predictor for the values of X, which can then
be used to completely eliminate the column for X in the
compressed table. Clearly, storing a compact CaRT model in
lieu of millions or billions of actual attribute values can
result in substantial savings in storage. In addition, allowing
for errors in the attribute values predicted by a CaRT model
only serves to reduce the size of the model even further and,
thus, improve the quality of compression; this is because, as
is well known to those skilled in the art, the size of a CaRT
model is typically inversely correlated to the accuracy with
which it models a given set of values.

Generally, the table compressor 100 focuses upon opti-
mizing the compression ratio, that is, achieving the maxi-
mum possible reduction in the size of the data within the
acceptable levels of error defined by the user. This choice is
mainly driven by the massive, long-lived data sets that are
characteristic of target data warehousing applications and
the observation that the computational cost of effective
compression can be amortized over the numerous physical
operations (e.g., transmissions over a low-bandwidth link)
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that will take place during the lifetime of the data. Also, the
table compressor 100 can tune compression throughput
performance through control of the size of the data sample
used by the table compressor’s 100 model-construction
algorithms and procedures, as will be described in more
detail below. Setting the sample size based on the amount of
main memory available in the system can help ensure high
compression speeds.

A framework for the semantic compression of tables is
based upon two technical ideas. First, the (user-specified or
application-specified) error bounds on individual attributes
are exploited in conjunction with data mining techniques to
efficiently build accurate models of the data. Second, the
input table is compressed using a select subset of the models
built. This select subset of data-mining models is carefully
chosen to capture large portions of the input table within the
specified error bounds.

More formally, the model-based, compressed version of
the input table T may be defined as a pair T ,=<T", {M,, . . .,
M, }> where (1) T' is a small (possibly empty) subset of the
data values in T that are retained accurately in T ; and, (2)
My, ..., M.} is a select set of data-mining models,
carefully built with the purpose of maximizing the degree of
compression achieved for T while obeying the specified
error-tolerance constraints.

Abstractly, the role of the set T" is to capture values (tuples
or sub-tuples) of the original table that cannot be effectively
“summarized away” in a compact data-mining model within
the specified error tolerances. (Some of these values may in
fact be needed as input to the selected models.) The attribute
values in T' can either be retained as uncompressed data or
be compressed using a conventional lossless algorithm.

A definition of the general model-based semantic com-
pression problem can now be stated as follows.

Model-Based Semantic Compression (MBSC)

Given a massive, multi-attribute table T and a vector of
(per-attribute) error tolerances e, find a collection of models
IM,, ..., M,,} and a compression scheme for T based on
these models T .=<T', {M,, . .., M, }> such that the specified
error bound e are not exceeded and the storage requirements
[T of the compressed table are minimized.

An input to the table compressor 100 may consist of a
n-attribute table T, comprising a large number of tuples
(rows). X={X, . . ., X,,} denotes the set of n attributes of
T and dom (X,) represent the domain of attribute X,.
Attributes with a discrete, unordered value domain are
referred to as “categorical,” whereas those with ordered
value domains are referred to as “numeric.” T, is used to
denote the compressed version of table T, and ITI (IT)) to
denote the storage-space requirements for T (T,) in bytes.

One important input parameter to the semantic compres-
sion algorithms of the table compressor 100 is a (user-
specified or application-specified) n-dimensional vector of
error tolerances e=[e,, . . . e,] that defines the per-attribute
acceptable degree of information loss when compressing T.
(Per-attribute error bounds are also employed in a fascicles
framework, to be described in more detail below.) Intu-
itively, the i” entry of the tolerance vector e, specifies an
upper bound on the error by which any (approximate) value
of X, in the compressed table T, can differ from its original
value in T. Error tolerance semantics can differ across
categorical and numeric attributes, due to the very different
nature of the two attribute classes.

1. For a numeric attribute X,, the tolerance e,, defines an
upper bound on the absolute difference between the
actual value of X, in T and the corresponding (approxi-
mate) value in the compressed table T.. That is, if x, x'
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denote the accurate and approximate value (respec-
tively) of attribute X, for any tuple of T, then the
compressor guarantees that X is in [x'-e,, X'+¢;].

2. For a categorical attribute X,, the tolerance e, defines an
upper bound on the probability that the (approximate)
value of X, in T, is different from the actual value in T.
More formally, if x, X' denote the accurate and approxi-
mate value (respectively) of attribute X, for any type of
T, then the compressor guarantees that P[x=x']=1-e,.

For numeric attributes, the error tolerance could very well
be specified in terms of quantiles of the overall range of
values rather than absolute, constant values. Similarly, for
categorical attributes the probability of error could be speci-
fied separately for each individual attribute class (i.e., value)
rather than an overall measure. (Note that such an extension
would, in a sense, make the error bounds for categorical
attributes more “local,” similar to the numeric case.) The
model-based compression framework and algorithms of the
present invention can be readily extended to handle these
scenarios, so the specific definitions of error tolerance are
not central to the present invention. However, for the sake of
clarity, the definitions outlined above are used for the two
attribute classes. (Note that the error-tolerance semantics can
also easily capture lossless compression as a special case, by
setting e,=0 for all i.)

One algorithmic issue faced by the table compressor 100
is that of computing an optimal set of CaRT models for the
input table such that (a) the overall storage requirements of
the compressed table are minimized, and (b) all predicted
attribute values are within the user-specified error bounds.
This can be a very challenging optimization problem since,
not only is there an exponential number of possible CaRT-
based models to choose from, but also building CaRTs (to
estimate their compression benefits) is a computation-inten-
sive task, typically requiring multiple passes over the data.
As a consequence, the table compressor 100 employs a
number of sophisticated techniques from the areas of knowl-
edge discovery and combinatorial optimization in order to
efficiently discover a “good” (sub)set of predicted attributes
and construct the corresponding CaRT models.

In some practical cases, the use of fascicles can effectively
exploit the specified error tolerances to achieve high com-
pression ratios. As alluded to above, a fascicle basically
represents a collection of tuples that have approximately
matching values for some (but not necessarily all) attributes,
where the degree of approximation is specified by user-
provided compactness parameters. Essentially, fascicles can
be seen as a specific form of data-mining models, i.e.,
clusters in subspaces of the full attribute space, where the
notion of a cluster is based on the acceptable degree of loss
during data compression. As stated above, a key idea of
fascicle-based semantic compression is to exploit the given
error bounds to allow for aggressive grouping and “summa-
rization” of values by clustering multiple rows of the table
along several columns (i.e., the dimensionality of the clus-
ter).

There are however, several scenarios for which a more
general, model-based compression approach is in order.
Fascicles only try to detect “row-wise” patterns, where sets
of rows have similar values for several attributes. Such
“row-wise” patterns within the given error-bounds can be
impossible to find when strong “column-wise” patterns/
dependencies (e.g., functional dependencies) exist across
attributes of the table. On the other hand, different classes of
data-mining models (like Classification and Regression
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Trees (CaRTs)) can accurately capture and model such
correlations and, thereby, attain much better semantic com-
pression in such scenarios.

There is a need for a semantic compression methodology
that is more general than simple fascicle-based row cluster-
ing in that it can account for and exploit strong dependencies
among the attributes of the input table. Data mining, such as
the data mining employed by the table compressor 100,
offers models (i.e., CaRTs) that can accurately capture such
dependencies with very concise data structures. Thus, in
contrast to fascicles, the general model-based semantic
compression paradigm can accommodate such scenarios.

As alluded to above, row-wise pattern discovery and
clustering for semantic compression have been explored in
the context of fascicles. In contrast, the table compressor
100 focuses primarily on the novel problems arising from
the need to effectively detect and exploit (column-wise)
attribute dependencies for the purposes of semantic table
compression. One principle underlying the table compressor
100 is that, in many cases, a small classification (regression)
tree structure can be used to accurately predict the values of
a categorical (resp., numeric) attribute (based on the values
of other attributes) for a very large fraction of table rows.
This means that for such cases, compression algorithms can
completely eliminate the predicted column in favor of a
compact predictor (i.e., a classification or regression tree
model) and a small set of outlier column values. More
formally, the design and architecture of the table compressor
100 focuses mainly on the following concrete MBSC prob-
lem.

MBSC Problem Definition: Given a massive, multi-at-
tribute table T with a set of categorical and/or numeric
attributes X, and a vector of (per-attribute) error tolerances
¢, find a subset {X,, . . ., X} of X and a collection of
corresponding CaRT models {MI, ..., M,} such that: (1)
model M, is a predictor for the values of attribute X, based
solely on attributes in X" {X1, ..., X }, foreach I=1, . . .,
p; (2) the specified error bounds € are not exceeded; and (3)
the storage requirements [T.] of the compressed table
T=<T', {M,, ..., M,> are minimized.

Abstractly, the semantic compression algorithms seek to
partition the set of input attributes X into a set of predicted
attributes {X,, . . ., X,} and a set of predictor attributes
X-{X,, . .., X,} such that the values of each predicted
attribute can be obtained within the specified error bounds
based on (a subset of) the predictor attributes through a small
classification or regression tree (except perhaps for a small
set of outlier values). (The notation X,—X, is used to denote
a CaRT predictor for attribute X, using the set of predictor
attributes X,~{X,, . . ., X, }.) Note that we do not allow a
predicted attribute X, to also be a predictor for a different
attribute. This restriction is important since predicted values
of X, can contain errors, and these errors can cascade further
if the erroneous predicated values are used as predictors,
ultimately causing error constraints to be violated. The final
goal, of course, is to minimize the overall storage cost of the
compressed table. This storage cost [T,] is the sum of two
basic components:

1. Materialization cost, i.e., the cost of storing the values
for all predictor attributes X—{X,, ..., X,}. This cost
is represented in the T* component of the compressed
table, which is basically the projection of T onto the set
of predictor attributes. (The storage cost of materializ-
ing attribute X, is denoted by a procedure MaterCost
X))

2. Prediction Cost, i.e. the cost of storing the CaRT
models used for prediction plus (possibly) a small set of
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outlier values of the predicted attribute for each model.
(The storage cost of predicting attribute X, through the
CaRT predictor X,—X, is denoted by a procedure
PredCost (X,—X,); note that this does not include the
cost of materializing the predictor attributes in X,.)

Metrics

The basic metric used to compare the performance of
different compression algorithms and the table compressor
100 is the well-known compression ratio, defined as the ratio
of the size of the compressed data representation produced
by the algorithm and the size of the original (uncompressed)
input. A secondary performance metric is the compression
throughput that, intuitively, corresponds to the rate at which
a compression algorithm can process data from its input; this
is typically defined as the size of the uncompressed input
divided by the total compression time.

Turning once again to FIG. 1, disclosed is one embodi-
ment of the table compressor 100 that includes four major
functional blocks: a DependencyFinder 110, a CaRTSelector
120, a CaRTBuilder 130 and a RowAggregator 140. In the
following paragraphs, a brief overview of each functional
block is provided; a more detailed description of each
functional block and the relevant algorithms are discussed
more fully below.

Generally, the DependencyFinder 110 produces a math-
ematical model, also known as an interaction model, using
attributes of a data table 112. The data output of the
interaction model are then used to guide CaRT building
algorithms, such as those used by the CaRTSelector 120 and
the CaRTBuilder 130. The DependencyFinder 110 builds
this interaction model in part because there are an exponen-
tial number of possibilities for building CaRT-based
attribute predictors, and therefore a concise model that
identifies the strongest correlations and “predictive” rela-
tionships in input data is needed. To help determine these
correlations and “predictive” relationships in input data, an
approach used by the DependencyFinder 110 is to construct
a Bayesian network 115 model that captures the statistical
interaction of an underlying set of attributes X.

A Bayesian network is a DAG whose edges reflect strong
predictive correlations between nodes of the graph. Thus, a
Bayesian network 115 on the table’s attributes can be used
to dramatically reduce the search space of potential CaRT
models since, for any attribute, the most promising CaRT
predictors are the ones that involve attributes in its “neigh-
borhood” in the network. An implementation employed by
the DependencyFinder 110 uses a constraint-based Bayesian
network builder based on recently proposed algorithms for
efficiently inferring the Bayesian network 115 from data. To
control the computational overhead, the Bayesian network
115 may be built using a reasonably small random sample of
the input table. Thus, intuitively, a set of nodes in the
“neighborhood” of X, in G (e.g., X,’s parents) captures the
attributes that are strongly correlated to X, and, therefore,
show promise as possible predictor attributes for X,.

After the Bayesian network 115, has been built, the
CaRTSelector 120 will then be executed. Given the input
table T 112 and error tolerances e, 123, (as well as the
Bayesian network 115 on the attributes of T built by the
DependencyFinder 110,) the CaRTSelector 120 is generally
responsible for selecting a collection of predicted attributes
and the corresponding CaRT-based predictors such that a
final overall storage cost is minimized (within the given
error bounds). The CaRTSelector 120 employs the Bayesian
network 115 built on X to intelligently guide a search
through the huge space of possible attribute prediction
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strategies. Clearly, this search involves repeated interactions
with CaRTBuilder 130 which is responsible for actually
building the CaRT-models for the predictors.

However, even in the simple case where the set of nodes
that is used to predict an attribute node in the Bayesian
network 115, is fixed, the problem of selecting a set of
predictors by the CaRTSelector 120 that minimizes the
combination of materialization and prediction cost naturally
maps to the Weighted Maximum Independent Set (WMIS)
problem, which is known to be NP-hard and therefore
notoriously difficult to approximate.

Based on this observation, a specific CaRT-model selec-
tion strategy is therefore employed by the CaRTSelector
120. This selection strategy starts out with an initial solution
obtained from a near-optimal heuristic for WMIS and then
tries to incrementally improve it by small perturbations
based on unique characteristics of the given variables. In an
alternative embodiment of the present invention, a proce-
dure “greedy” ( ) model-selection algorithm used by the
CaRTSelector 120 chooses its set of predictors using a
simple local condition during a single “roots-to-leaves”
traversal of the Bayesian network 115, also referred to in the
present application as a Bayesian network G. During the
execution of the CaRTSelector 120, the CaRTBuilder 130 is
repeatedly invoked and executed to build CaRT models for
the predictors.

A significant portion of the table compressor 100 execu-
tion time is spent in building CaRT models. This is mainly
because the table compressor 100 needs to actually construct
many promising CaRTs in order to estimate their prediction
cost, and CaRT construction is a computationally-intensive
process. To reduce CaRT-building times and speed up sys-
tem performance, the table compressor 100 employs the
following three optimizations: (1) CaRTs may be built using
random samples instead of the entire data set, (2) leaves may
not be expanded if values of tuples in them can be predicted
with acceptable accuracy, and (3) pruning is integrated into
the tree growing phase using novel algorithms that exploit
the prescribed error tolerance for the predicted attribute.
These optimizations will be explained in more detail, below.

Given a collection of predicted and (corresponding) pre-
dictor attributes X,—X,, one goal of the CaRTBuilder 130 is
to efficiently construct CaRT-based models for each X, in
terms of X, for the purposes of semantic compression.
Induction of various CaRT-based models by the CaRT-
Builder 130 is typically a computation-intensive process that
requires multiple passes over the input data. As is demon-
strated, however, the CaRT-construction algorithms of the
CaRTBuilder 130 can take advantage of compression
semantics and can exploit the user-defined error-tolerances
to effectively prune computation. In addition, by building
CaRTs using data samples instead of the entire data set, the
CaRTBuilder 130 is able to further speed up model con-
struction.

The CaRTBuilder 130 exploits the inferred Bayesian
network structure G by using it to intelligently guide the
selection of CaRT models that minimize the overall storage
requirement, based on the prediction and materialization
costs for each attribute. Intuitively, the goal is to minimize
the sum of the prediction costs (for predicted attributes) and
materialization costs (for attributes used in the CaRTs). This
model-selection problem is a strict generalization of the
Weighted Maximum Independent Set (WMIS) problem
which is known by those skilled in the art to be NP-hard. By
employing a novel algorithm (detailed below) that effec-
tively exploits the discovered Bayesian structure in conjunc-
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tion with efficient, near optimal WMIS heuristics, the CaRT-
Builder 130 is able to obtain a good set of CaRT models for
compressing the table.

Once the CaRTSelector 120 has finalized a “good” solu-
tion to the CaRT-based semantic compression problem
based off of computations performed by the CaRTBuilder
130, the CaRTSelector 120 then hands off its solution to the
RowAggregator 140. The RowAggregator 140 tries to fur-
ther improve a compression ratio through row-wise cluster-
ing. Briefly, the RowAggregator 140 uses a fascicle-based
algorithm to compress the predictor attributes while ensur-
ing (based on the CaRT models built) that errors in the
predictor attribute values are not propagated through the
CaRTs in a way that causes error tolerances (for predicted
attributes) to be exceeded.

One important point here is that, since the entries of T, are
used as inputs to (approximate) CaRT models for other
attributes, care must be taken to ensure that errors introduced
in the compression of T' do not compound over the CaRT
models in a way that causes error guarantees to be violated.
The issues involved in combining the CaRT-based compres-
sion methodology with row-wise clustering techmques are
addressed in more detail below.

The CaRT-based compression methodology of the table
compressor 100 is essentially orthogonal to techniques
based on row-wise clustering, such as fascicles. It is entirely
possible to combine the two techmques for an even more
effective model-based semantic compression mechanism.
As an example, the predictor attribute table T* derived by the
“column-wise” techniques can be compressed using a fas-
cicle-based algorithm. (In fact, this is exactly the strategy
used in the table compressor 100 implementation; however,
other methods for combining the two are also possible.)

To reiterate, the essence of the CaRT-based semantic
compression problem of the table compressor 100 of FIG. 1
lies in discovering a collection of “strong” predictive cor-
relations among the attributes of an arbitrary table. The
search space for this problem is obviously exponential:
given any attribute X,, any subset of X-{X,} could poten-
tially be used to construct a predictor for X,. Furthermore,
verifying the quality of a predictor for the purposes of
semantic compression is typically a computation-intensive
task, since it involves actually building the corresponding
classification or regression tree on the given subset of
attributes. Since building an exponentially large number of
CaRTs is clearly impractical, a methodology is disclosed for
producing a concise interaction model that identifies the
strongest predictive correlations among the input attributes.
This model can then be used to restrict the search to
interesting regions of the prediction space, limiting CaRT
construction to truly promising predictors. Building such an
interaction model is one main purpose of the Dependency-
Finder 110.

As stated previously, the specific class of attribute inter-
action models used in the table compressor 100 may be that
of Bayesian networks. To reiterate, a Bayesian network is a
combination of a probability distribution and a structural
model in the form of a DAG over the attributes in which
edges represent direct probabilistic dependence. In effect, a
Bayesian network is a graphical specification of a joint
probability distribution that is believed to have generated the
observed data. Bayesian networks may be an essential tool
for capturing causal and/or predictive correlations in obser-
vational data; such interpretations are typically based on the
following dependence semantics of the Bayesian network
structure:
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Parental Markov Condition: Given a Bayesian network G
over a set of attributes X, and node X,eX is independent of
all its non-descendant nodes given its parent nodes in G
(denoted by I1(X))).

Markov Blanket Condition: Given a Bayesian network G
over a set of attributes X, the Markov blanket of X,eX
(denoted by B(X,)) is defined as the union of X;s children,
and the parents of X,’s children in G. Any node X, €X is
independent of all other nodes given its Markov blanket in
G.

Based on the above conditions, a Bayesian network over
the attributes of the input table can provide definite guidance
on the search for promising CaRT predictors for semantic
compression. More specifically, it is clear that predictors of
the form I1(X,)—=X,; or p(X,)—=X, should be considered as
prime candidates for CaRT-based semantic compression.

Construction Algorithm

Learning the structure of Bayesian networks from data is
a difficult problem that has seen growing research interest in
recent years. There are two general approaches to discov-
ering Bayesian structure: (1) Constraint-based methods try
to discover conditional independence properties between
data attributes using appropriate statistical measures (e.g.,
X or mutual information) and then build a network that
exhibits the observed correlations and independencies. (2)
Scoring-based (or Bayesian) methods are based on defining
a statistically-motivated score function (e.g., Bayesian or
MDL-based) that describes the fitness of a probabilistic
network structure to the observed data; the goal then is to
find a structure that maximizes the score. (In general, this is
a hard optimization problem that is typically NP-hard.)

The methods have different advantages. Given the intrac-
tability of scoring-based network generation, several heu-
ristic search methods with reasonable time complexities
have been proposed. Many of these scoring-based methods,
however, assume an ordering for the input attributes and can
give drastically different networks for different attribute
orders. Further, due to their heuristic nature, such heuristic
methods may not find the best structure for the data.

On the other hand, constraint-based methods have been
shown to be asymptotically correct under certain assump-
tions about the data, but, typically, introduce edges in the
network based on Conditional Independence (CI) tests that
become increasingly expensive and unreliable as the size of
the conditioning set increases. Also, several constraint-based
methods have very high computational complexity, requir-
ing, in the worst case, an exponential number of CI tests.

The DependencyFinder 110

The DependencyFinder 110 may implement a constrain-
ing-based Bayesian network builder, such as one based upon
the algorithm of Cheng et al. in “Learning Belief Networks
from Data: An Information Theory Based Approach” pub-
lished in the November 1997 issue of the Proceedings of the
Sixth International Conference on Information and Knowl-
edge Management which in hereby incorporated by refer-
ence in its entirety. Unlike earlier constraint-based methods,
the algorithm of Cheng, et al., explicitly tries to avoid
complex CI tests with large conditioning sets and, by using
CI tests based on mutual information divergence, eliminates
the need for an exponential number of Cl tests. In fact, given
an n-attribute data set, the Bayesian network builder of the
table compressor 100 requires at most O(n*)CI tests, which,
in the present implementation, translates to at most O(n*)
passes over the input tuples. Recall that the Dependency-
Finder 110 uses only a small random sample of the input
table to discover the attribute interactions; the size of this
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sample can be adjusted according to the amount of main
memory available, so that no I/O is incurred (other than that
required to produce the sample).

Also, note that the DependencyFinder 110 is, in a sense,
out of the “critical path” of the data compression process,
since such attribute interactions are an intrinsic characteris-
tic of the data semantics that only needs to be discovered
once for each input table. The DependencyFinder 110 adds
several enhancements to the basic Cheng et al. algorithm,
such as the use of Bayesian-scoring methods for appropri-
ately orienting the edges in the final network.

The CaRTSelector 120

The CaRTSelector 120 is an integral part of the table
compressor 100 model-based semantic compression engine.
Given the input data table and error tolerances, as well as the
Bayesian network capturing the attribute interactions, a goal
of'the CaRTSelector 120 is to select (a) a subset of attributes
to be predicted and (2) the corresponding CaRT-based
predictors, such that the overall storage cost is minimized
within the specified error bounds. As discussed above, the
total storage cost T, is the sum of the materialization costs
(of predictor attributes) and prediction costs (of the CaRTs
for predicted attributes). In essence, the CaRTSelector 120
implements the core algorithmic strategies for solving the
CaRT-based semantic compression problem. Deciding on a
storage-optimal set of predicted attributes and correspond-
ing predictors poses a hard combinatorial optimization prob-
lem; as the following theorem shows, the problem is NP-
hard even in the simple case where the set of predictor
attributes to be used for each attribute is fixed, as expressed
in the following theorem.

Theorem 1: Consider a given set of n predictors {X,—X,:
for all X, € X, where X, = X}. Choosing a storage-optimal
subset of attributes X,,., & X to be predicted using
attributes in X-X,,,,; is NP-hard.

Interestingly, the simple instance of the CaRT-based
semantic compression problem of the table compressor 100
described in the above theorem can be shown to be equiva-
lent to the Weighted Maximum Independent Set (WMIS)
problem, which is known to be NP-hard. The WMIS prob-
lem can be stated as follows: “Given a node-weighted,
undirected graph G=(V,E), find a subset of nodes V' = V
such that no two vertices in V' are joined by an edge in E and
the total weight of nodes in V' is maximized.” Abstractly, the
partitioning of the nodes into V' and V-V' corresponds
exactly to the partitioning of attributes into “predicted” and
“materialized” with the edges of G capturing the “predicted
by” relation. Further, the constraint that no two vertices in V'
are adjacent in G ensures that all the (predictor) attributes for
a predicted attribute (in V') are materialized, which is a
requirement of the compression problem of the table com-
pressor 100. Also, the weight of each node corresponds to
the “storage benefit” (materialization cost—prediction cost)
of predicting the corresponding attribute. Thus, maximizing
the storage benefit of the predicted attributes has the same
effect as minimizing the overall storage cost of the com-
pressed table.

Even though WMIS is known to be NP-hard and notori-
ously difficult to approximate for general graphs, several
recent approximation algorithms have been proposed with
guaranteed worst-case performance bounds for bounded-
degree graphs. The optimization problem faced by the
CaRTSelector 120 is obviously much harder than simple
WMIS, since the CaRTSelector 120 is essentially free to
decide on the set of predictor attributes for each CaRT.
Further, the CaRTSelector 120 also has to invoke the CaRT-
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Builder 130 to actually build potentially useful CaRTs, and
this construction is itself a computation-intensive task.

Given the inherent difficulty of the CaRT-based semantic
compression problem, the CaRTSelector 120 implements
two distinct heuristic search strategies that employ the
Bayesian network model of T built by the Dependency-
Finder 110 to intelligently guide the search through the huge
space of possible attribute prediction alternatives. The first
strategy is a simple “greedy” selection algorithm that
chooses CaRT predictors greedily based on their storage
benefits during a single “roots-to-leaves” traversal of the
Bayesian graph. The second, more complex strategy takes a
less myopic approach that exploits the similarities between
the CaRT-selection problem and WMIS; a key idea here is
to determine the set of predicted attributes (and the corre-
sponding CaRTs) by obtaining (approximate) solutions to a
number of WMIS instances created based on the Bayesian
model of T.

The Greedy CaRT Selector

Turning now to FIG. 2, illustrated is one embodiment of
the procedure greedy ( ), a CaRT-selection algorithm, which
may be implemented within the CaRTSelector 120. Briefly,
the greedy algorithm visits the set of attributes X in the
topological-sort order imposed by the constructed Bayesian
network model G and tries to build a CaRT predictor for
each attribute based on its predecessors. Thus, for each
attribute X, visited, there are two possible scenarios.

1. If X, has no parent nodes in G (i.e., node X, is a root of
(3) then Greedy concludes that X, cannot be predicted
and, consequently, places X, directly in the subset of
materialized attributes X,,,,,, (Step 4).

2. Otherwise (i.e., IT (X,) is not empty in G), the CaRT-
Builder 130 component is invoked to construct a CaRT-
based predictor for X, (within the specified error toler-
ance e¢,) using the set of attributes chosen for
materialization thus far X, (Step 6). (Note that pos-
sibly irrelevant attributes in X, ,, will be filtered out by
the CaRT construction algorithm in CaRTBuilder 130.)
Once the CaRT for X, is built, the relative cost of
predicting X, is estimated and X, chosen (Steps 7-8).

The greedy algorithm provides a simple, low-complexity
solution to the CaRT-based semantic compression problem
of the table compressor 100. Given an attribute table and
Bayesian network G, it is easy to see that greedy always
constructs at most (n—1) CaRT predictors during its traversal
of G. This simplicity, however, comes at a price.

More specifically, greedy CaRT selection suffers from two
shortcomings. First, selecting an attribute X, to be predicted
based solely on its “localized” prediction benefit (through its
predecessors in () is a very myopic strategy, since it ignores
the potential benefits from using X itself as a (materialized)
predictor attribute for its descendants in G. Such very
localized decisions can obviously result in poor overall
predictor selections. Second, the value of the “benefit thresh-
0ld” parameter 6 can adversely impact the performance of
the compression engine and selecting a reasonable value for
0 is not a simple task. A high 6 value may mean that very few
or no predictors are chosen, whereas a low 0 value may
cause low-benefit predictors to be chosen early in the search
thus excluding some high-benefit predictors at lower layers
of the Bayesian network.

EXAMPLE 1

Turning now to FIGS. 3A-3D, consider the Bayesian
network graph defined over attributes X, . . ., X,. Let the
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materialization cost of each attribute be 125. Further, let the
prediction costs of CaRT predictors be as follows:

PredCost({X, }—=X5)=75 PredCost({X,}—=X3)=80
PredCost({X, }—=X,)=125 PredCost({X5}—=X3)=15

PredCost({X;}—X,)=80 PredCost({X3}—=X,)=75

Suppose that 6=1.5. Since X, has no parents, it is initially
added to X, ,, (Step 4). In the next two iterations, since
MaterCost (X,)/PredCost ({X,}—=X,)=1.67>1.5 and Mater-
Cost (X;3)/PredCost ({X,}—=X;)=1.56>1.5, X, and X; are
added to X,,,..; (Step 7). Finally, X, is added to X,,,, since
MaterCost (X,)/PredCost ({X;}—=X,)=1<1.5. Thus, the
overall storage cost of materializing X, and X,, and pre-
dicting X, and X; is 125+75+80+125=405.

The MaxIndependentSet CaRT Selector

Turning now to FIG. 4, depicted is one embodiment of a
procedure MaxIndependentSet ( ) CaRT-selection algorithm
which alleviates some drawbacks of the greedy algorithm
mentioned above. Intuitively, the MaxIndependentSet algo-
rithm starts out by assuming all attributes to the material-
ized, ie., X,,,,=X (Step 1), and then works by iteratively
solving WMIS instances that try to improve the overall
storage cost by moving the nodes in the (approximate)
WMIS solution to the subset of predicted attributes X,,,..,.

Consider the first iteration of a main while-loop (Steps
3-30). The algorithm MaxIndependentSet starts out by
building CaRT-based predictors for each attribute X, in X
based on X,’s “predictive neighborhood” in the constructed
Bayesian network G (Steps 5-7); this neighborhood function
is an input parameter to the algorithm and can be set to either
X,’s parents or its Markov blanket in G. Then, based on the
“predicted-by” relations observed in the constructed CaRTs,
the algorithm MaxIndependentSet builds a node-weighted,
undirected graph G, on X with (a) all edges (X, Y), where
Y is used in the CaRT predictor for X, and (b) waits for each
node X, set equal to the storage cost-benefit of predicting X,.
(Steps 16-20). Finally, the algorithm MaxIndependentSet
finds a (near-optimal) WMIS of G,,,,,,, and the corresponding
nodes/attributes are moved to the predicted set X, , with the
appropriate CaRT predictors (assuming the total benefit of
the WMIS is positive) (Steps 21-29).

Note that in Step 5, it is possible for mater neighbors (X))
to be ¢. This could happen, for instance, if X, is a root of G
and X,’s neighborhood comprises of its parents. In this case,
the model M returned by a subprogram BuildCaRT is empty
and it does not make sense for X, to be in the predicted set
X, ,ea- X, should always stays in X,,,, by setting PredCost
(PRED(X,)—X,) to o if PRED (X,)=¢, which causes X,’s
weight to become - in Step 20.

The WMIS solution calculated after this first iteration of
the Algorithm MaxIndependentSet can be further optimized,
since it makes the rather restrictive assumption that an
attribute can only be predicted based on its direct neighbor-
hood in G. For example, consider a scenario where G
contains the directed chain {X,Y}—=Z—W, and the attribute
pair {X,Y} provides a very good predictor for Z, which itself
is a good predictor for the value of W. Then, the initial
WMIS solution can obviously select only one of these
predictors. On the other hand, the above scenario means that
(by “transitivity”) it is very likely that {X,Y} can also
provide a good predictor for W (i.e., only X and Y need to
be materialized).

Later iterations of the algorithm MaxIndependentSet’s
main while-loop try to further optimize the initial WMIS
solution based on the above observation. This is accom-
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plished by repeatedly moving attributes from the remaining
set of materialized attributes X, ,, to the predicted attributes
X, ,0q- For each materialized attribute X,, MaxIndependent-
Set finds its “materialized neighborhood” in the Bayesian
model G, that comprises for each node X in the neighbor-
hood of X,: (1) X itself, if X € X, ,, and (2) the (materialized)
attributes currently used to predict X, if X € X, (Step 5).
A CaRT predictor for X, based on its materialized neighbors
is then constructed (Step 6). Now, since X, may already be
used in a number of predictors for attributes in X,,,,,;, the
change in storage cost for these predictors needs to be
accounted for when X, is replaced by its materialized neigh-
bors used to predict it; this change (denoted by cost change;)
is estimated in Steps 8-14.

The node-weighted, undirected graph G,
on X, . with the weight for each node X, set equal to the
overall storage benefit of predicting X,, including
cost_change (Steps 16-20). (Note that this benefit may very
well be negétive.) Finally, a (near-optimal) WMIS of G,,,,,
is chosen and added to the set of predicted attributes X,,,,.,
with the appropriate updates to the set of CaRT predictors.
Note that, since the MaxIndependentSet algorithm considers
the “transitive effects” of predicting each materialized node
X, in isolation, some additional care has to be taken to ensure
that at most one predictor attribute from each already
selected CaRT in X,,,., is chosen at each iteration. This is
accomplished by ensuring that all attributes belonging to a
predictor set PRED (X ) for some X, € X, form a clique in
the construction of G, (Step 18). Then, by its definition,
the WMIS solution can contain at most one node from each
such set PRED (X)). MaxIndependentSet’s while-loop con-
tinues until no further improvements on the overall storage
cost are possible (Step 23).

remp 18 then built

EXAMPLE 2

Turning back to FIGS. 3A-3D, consider the Bayesian
network graph shown in FIG. 3A and let prediction costs for
attributes be as described earlier in Example 3.1. Further,
suppose the neighborhood function for a node X, is its
parents. In the first iteration, PRED (X,)=¢, PRED (X,)=X,,
PRED (X;)=X, and PRED (X,)=X;. Further, since X ,_ =9,
cost_change, =0 for each X, € X, .. As a result, the graph
G,y and weights for the nodes are set as shown in FIG. 3B.
Note that node X, is assigned a weight of —co because PRED
(X,)=¢. The optimal WMIS of G,,,,,,, is {X5} since its weight
is greater than the sum of the weights of X, and X,. Thus,
after the first iteration X, ~{X,}.

In the second iteration, PRED (X,) is set to X, in Steps
5-7 since neighborhood (X,)=X; and X; € X,,,.., with PRED
(X;)=X,. Further, PRED(X, )=¢ and PRED (X,)=X,. Also,
since X, € PRED(X,), in Steps 8-14, NEW_PRED, (X;)
={X,} and cost change,=PredCost ({X,}—=X;) PredCost
({X,}—=X,)=—65. In addition, since X, and X, are not
predictors for a predicted attribute,
cost_change, =cost_change,=0. Thus, the graph G, and
weights for the nodes are set as shown in FIG. 3C. The
weight for X, is essentially MaterCost (X,)-PredCost
({X,}—=X,)+cost_change,=125-75-65 and the weight for
X, is MaterCost (X,)-PredCost ({X,}—=X,)+cost+
change,=125-80+0. The optimal WMIS of G, is {X,}
and thus X,,,,,~{X;, X,} after the second iteration.

Finally, FIG. 3D illustrates G, during the third itera-
tion—node X, has a weight of —60 since PRED (X,)={X,}
and X, is used to predict both X; and X,. Thus, while
predicting (instead of materializing) X, results in a decrease
of'50 in the cost of X, the cost of predicting X; and X, using
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X, (instead of X,) increases by 110, thus resulting in a net
increase in cost of 60. The algorithm terminates since weight
of every node in G,,,,, is negative. The end result is a total
storage cost of only 345, which is, in fact, the optimal
solution for this instance.

Complexity of Algorithm MaxIndependentSet

Analyzing the execution of algorithm MaxIndependent-
Set, it can be shown that, in the worst case, it requires at
most O(n) invocations of the WMIS solution heuristic, such
as a subprocedure “FindWMIS” disclosed within FIG. 4,
and constructs at most pn/2 CaRT predictors, where n is the
number of attributes in X and p is an upper bound on the
number of predictor attributes used for any attribute in X,,,.. ;.

These upper bounds on the execution-time complexity of
algorithm MaxIndependentSet are very pessimistic, since
they are based on the assumption that only a single attribute
is moved from X, ,, to X,,., during each iteration of the
main while-loop (Steps 3—30). That is, the maximum weight
independent set S computed in Step 21 always contains just
one node of G,,,,,-

A perhaps more realistic situation is to assume that each
independent set found by the procedure FindWMIS repre-
sents (on the average) a constant fraction (e.g., 20%) of the
nodes in G,,,,,,,. Under this assumption, it can be shown that
the MaxIndependentSet algorithm only needs to solve O(
log n) WMIS instances and build O (pn log n) CaRT
predictors. Finally, in practice, the actual running time of the
MaxIndependentSet algorithm can be further reduced by
requiring that the storage cost improvement attained during
each while-loop (i.e., the weight( ) of the WMIS found) be
above a certain threshold.

The CaRTBuilder 130

The CaRTBuilder 130 constructs a CaRT predictor X —X,
for the attribute X, with X, as the predictor attributes. An
objective of the CaRTBuilder 130 is to construct the smallest
(in terms of storage space) CaRT model such that each
predicted value (of a tuple’s value for attribute X,) deviates
from the actual value by at most e,, the error tolerance for
attribute X,.

If the predicted attribute X, is categorical, then the CaRT-
Builder 130 builds a compact classification tree with values
of X, serving as class labels. The CaRTBuilder 130 employs
classification tree construction algorithms, such as those
described in “PUBLIC: A Decision Tree Classifier that
Interates Building and Pruning” by Rastogi, et al., published
by Proceedings of the 24th International Conference on Very
Large Data Bases, New York, 1998, and “SPRINT: A
Scalable Parallel Classifier for Data Mining” by Shafer et
al., published by Proceedings of the 22nd International
Conference on Very Large Data Bases, Bombay, India, 1996
which are both hereby incorporated by reference in their
entirety. These or analogous algorithms are first used to
construct a low storage cost tree and then explicitly stores
sufficient number of outliers such that the fraction of mis-
classified records is less than the specified error bound e,.
Thus, the CaRTBuilder 130 guarantees that the fraction of
attributes X,’s values that are incorrectly predicted is less
than e,.

Storage Cost of Regression Trees

A regression tree consists of two types of nodes—internal
nodes and leaves. Each internal node is labeled with a
splitting condition involving attribute X; € X,—this condi-
tion is of the form X >x if X, is a numeric attribute and X,
e {x, x', ... } if X, is categorical. Each leaf is labeled with
a numeric value x which is the predicted value for X, for all
tuples in table T that belong to the leaf (a tuple belongs to
a leaf if it satisfies the sequence of splitting conditions on the
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path from the root to the leaf). Thus, for a tuple t belonging
to a leaf with label x, the predicted value of t on attribute X,
t[X,] satisfies the error bounds if t[X,] € [x—e,;x+e,]. Tuples
tin the leaf for whom t[X,] lies outside the range [x—e,,x+¢;]
are outliers since their predicted values differ from their
actual values by more than the tolerance limit.

The storage cost of a regression tree R for predicting X,
thus may consist of (1) the cost of encoding nodes of the tree
and their associated labels, and (2) the cost of encoding
outliers. The cost of encoding an internal node N of the tree
is 1+loglX,+C,,,;(N), where 1 bit is needed to specify the
type of node (internal or leaf), loglX,| is the number of bits
to specify the splitting attribute and C,,,,(N) is the cost of
encoding the split value for node N. If v is the number of
distinct values for the splitting attribute X, at node N, then
CoprdN)=log(v-1) if X, is numeric and =log(2"-2) if X is
categorical.

Next, the cost of encoding a leaf with label x is computed.
Due to Shannon’s theorem, in general, the number of bits
required to store m values of attribute X, is m times the
entropy of X,. Since X, is a numeric attribute, logldom(X,)|
is a good approximation for the entropy of X,. Thus, to
encode a leaf node N, 1+log(ldom(X,)) bits are needed,
where 1 bit is needed to encode the node type for the leaf and
log(ldom(X,)) bits are used to encode the label. Finally, if the
leaf contains m outliers, then these need to be encoded
separately at a total cost of approximately m log(ldom(X,)l).
Efficient algorithms for computing a low-cost regression tree
that predicts X, are presented below.

Regression Tree Construction with Separate Building and
Pruning

A low-cost regression tree in two phases is constructed in
two phases—a tree building phase followed by a tree
pruning phase. At the start of the building phase, the tree
contains a single root node containing all the tuples in T. The
tree building procedure continues to split each leaf N in the
tree until for tuples t in the leaf, the difference between the
maximum and minimum values of t[X,] is less than or equal
to 2e,. The splitting condition for a node N containing a set
of tuples S is chosen such that the mean square error of the
two sets of tuples due to the split is minimized. Thus, if the
split partitions S into two sets of tuples S; and S,, then
TESLX,]-0,)? 42 16 (1[X,]-1,)? is minimized, where u, and
u, are the means of t[X,] for tuples t in S, and S,, respec-
tively.

At the end of the tree building phase, for each leaf N of
the constructed tree R, the label x is set to (t,,,,[X,]+,,..
[X,])/2, where t,,,, and t,,. are the tuples in N with the
minimum and maximum values for X,. Thus, R contains no
outliers since (t,,,,[X,]-t,...[X;]=2e, and as a result, the
error in the predicted values of attribute X, are within the
permissible limit. However, the cost of R may not be
minimum—specifically, deleting nodes from R may actually
result in a tree with smaller storage cost. This is because
while pruning an entire subtree from R may introduce
outliers whose values need to be stored explicitly, the cost of
explicitly encoding outliers may be much smaller than the
cost of the deleted subtree.

Thus, one goal of the pruning phase is to find the subtree
of R (with the same root as R) with the minimum cost.
Consider an internal node N in R and let S be the set of
tuples in N. Let R, be the subtree of R rooted at node N with
cost C(R,) (the cost of encoding nodes and outliers in R,)).
Thus, C(R,) is essentially the reduction in the cost of R if
N’s children are deleted from R. Now, deletion of N’s
children from R causes N to become a leaf whose new cost
is as follows. Suppose that x is the label value for N that
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minimizes the number, say m, of outliers. Then the new cost
ofleaf N, C(N)=1+log(ldom(X, ))+m log(ldom(X,)I). Thus, if
C(N)=C(R) for node N, then deleting N’s children from R
causes R’s cost to decrease.

The overall pruning algorithm for computing the mini-
mum cost subtree of R considers the nodes N in R in
decreasing order of their distance from the root of R. If, for
a node N, C(N)=C(R,), then its children are deleted from
R.

One issue that needs to be resolved when computing C(N)
for a node N is determining the label x for N that minimizes
the number, m, of outliers. However, this resolution can
easily be achieved by maintaining for each node N, a sorted
list containing the X, values of tuples in N. Then, in a single
pass over the list, for each value x' in the list, it is possible
to compute the number of elements (in the list) that fall in
the window. [x, x'+2e] If x' is the value for which the
window [X', X'+2¢,] contains the maximum number of ele-
ments, then the label x for node N is set to x'+e, (since this
would minimize the number of outliers).

Regression Tree Construction with Integrated Building
and Pruning

In the tree construction algorithm presented in the previ-
ous subsection, portions of tree R are pruned only after R is
completely built. Consequently, the algorithm may expend
substantial effort on building portions of the tree that are
subsequently pruned. In this subsection, an algorithm is
presented that, during the growing phase, first determines if
a node will be pruned during the following pruning phase,
and subsequently stops expanding such nodes. Thus, inte-
grating the pruning phase into the building phase enables the
algorithm to reduce the number of expanded tree nodes and
improve performance. Although Rastogi et al., in the prior
art, presented integrated algorithms for classification trees,
the algorithms presented in this subsection are novel since in
this case, regression trees are of primary interest and
bounded errors are allowed in predicted values.

Recall that for a completely built regression tree R, for a
non-leaf node N in R, N’s children are pruned if, C(IN)=C
(Ry) where C(R,,) and C(N) are the costs of encoding the
subtree R,, and node N (considering it to be a leaf), respec-
tively. However, if R is a partially built regression tree, then
R, may still contain some leaves that are eligible for
expansion.

As aresult, C(R,), the cost of the partial subtree R, may
be greater than the cost of the fully expanded subtree rooted
at N (after “still to be expanded” leaves in R, are completely
expanded). This overestimation by C(R,,) of the cost of the
fully expanded subtree rooted at N can result in N’s children
being wrongly pruned (assuming that N’s children are
pruned if CIN)=C(R,).

Instead, suppose that for a “still to be expanded leaf” N.
L(N) could be computed, a lower bound on the cost of any
fully expanded subtree rooted at N. Further, suppose for a
non-leaf node N, define L(R,,) is defined to be the sum of (1)
for each internal node N'in Ry, 1+log(IX,)+C,,,,(N'"), (2) for
each “still to be expanded” leaf node N' in R,,, L(N") and (3)
for leaf nodes N' in R, that do not need to be expanded
further and containing m outliers 1+(m+1)log(ldom(X,)!).

It is relatively straightforward to observe that L(R,,) is
indeed a lower bound on the cost of any fully expanded
subtree rooted at node N. As a consequence, if CIN)=L(R,),
then N’s children can safely be pruned from R since C(N)
would be less than or equal to the cost of the fully expanded
subtree rooted at N and as a result, N’s children would be
pruned from R during the pruning phase anyway.
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Thus, a lower bound L(N) simply needs to be estimated
on the cost of any fully expanded subtree rooted at a “still
to be expanded” leaf N. A simple estimate for the lower
bound L(N) is 1+min{log(X,)), log(idom(X,)))}. However, in
the following, a better estimate for I(N) is shown:

Letx,, X,, . . ., X, be the values of attribute X, for tuples
in node N in sorted order. Suppose one is permitted to use
k intervals of width 2e, to cover values in the sorted list.
Further, suppose one is interested in choosing the intervals
such that the number of values covered is maximized, or
alternately, the number of uncovered values (or outliers) is
minimized. Let minOut (i,k) denote this minimum number
of outliers when k intervals are used to cover values in x,,
Xy, - - - » X;. The following dynamic programming relation-
ship holds for minOut (i.,k). (In the third equation below, 1=0
is the smallest index for which x,-x,,,=2,,.)

0 if i=0
minOut (ik) = i if k=0

min{minOut(i-1, k)+1, minOut(l,k-1)} otherwise

The second condition essentially states that with O inter-
vals, the number of outliers in x,, . . ., X, is at least i. The
final condition corresponds to the two cases for x;: (1) x,
does not belong to any of the k intervals (and is thus an
outlier), and (2) x, belongs to one of the k intervals. The
following theorem lays the groundwork to compute a good
estimate for L(N) in terms of minOut defined above:

Theorem 2: For a leaf N that still remains to be expanded,
a lower bound on the cost of a fully expanded subtree with
k splits and rooted at N is at least 2k+1+k log(X,)+(k+1+
minOut(r.k+1))log(dom(X))).

Turning now to FIG. 5, disclosed is one embodiment of a
procedure LowerBound ( ), an algorithm for computing
L(N) for each “still to be expanded” leaf N in the partial tree
R. The LowerBound algorithm repeatedly applies Theorem
2 to compute lower bounds on the cost of subtrees contain-
ing O to b splits (for a fixed, user-specified constant b), and
then returns the minimum from among them. In Steps 1-11,
the procedure computes minOut values for 1 to b+1 intervals
using the dynamic-programming relationship for minOut
presented earlier. Then, the LowerBound algorithm sets
L(N) to be the minimum cost from among subtrees contain-
ing at most b splits (Steps 13—14) and greater than b splits
(Step 15). Note that 2b+3+(b+1)log(X,)+(b+2)log(dom(X,)
is a lower bound on the cost of any subtree containing more
than b splits.

It is straightforward to observe that the time complexity of
LowerBound algorithm is O(rb). This is due to the two for
loops in Steps 6 and 9 of the algorithm. Further, the
algorithm scales for large values of r since it makes a single
pass over all the values in node N. The algorithm also has
very low memory requirements since for computing minOut
for each i (Step 10), it only needs to store in memory minOut
values for i-1 and L.

The RowAggregator 140

The CaRTSelector 120 of the table compressor 100 com-
putes the set of attributes {X,, . . ., X} to predict and the
CaRT models {M,, . .., M,} for predicting them. These
models are stored in the compressed version T, of the table
along with T', the projection of table T on predictor
attributes. Obviously, by compressing T' one could reduce
the storage overhead of T, even further. However, while
lossless compression algorithms can be used to compress T
without any problems, when applying lossy compression
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algorithms to T' one needs to be more careful. This is
because, with lossy compression, the value of a predictor
attribute X, in T' may be different from its original value that
was initially used to build the CaRT models. As a result, it
is possible for errors that exceed the specified bounds, to be
introduced into the values of predicted attributes.

The RowAggregator 140 of the table compressor 100 may
use a fascicle-based algorithm, such as those disclosed in
“Semantic Compression and Pattern Extraction with Fas-
cicles” by Jagadish et al., in Proceedings of the 25th
International Conference on Very Large Data Bases, pub-
lished in Scotland in September 1999, and is hereby incor-
porated by reference in its entirety, to further compress the
table T' of predictor attributes. Since fascicle-based com-
pression is lossy, in the following, it is shown how the above
mentioned scenario can be avoided when compressing
numeric attributes using fascicles.

For a numeric predictor attribute X, define value v to be
a split value for X, if X, >v is a split condition in some CaRT
M, in T,. Also, in a fascicle (set of records), an attribute X,
may be said to be compact if the range [x',x"] of X,-values
in the fascicle, in addition to having width at most 2e,, also
satisfies the property that for every split value v, either x'>v
or Xx"=v.

In the fascicle-based compression algorithm of the table
compressor 100, for each compact attribute X,, by using
(x'+x")/2 as the representative for X, values in the fascicle,
it can be ensured that the error bounds for both predictor as
well as predicted attributes are respected. In fact, it can be
shown that the values for predicted attributes are identical
prior to and after T' is compressed using fascicles. This is
because for each tuple t in T', the original and compressed
tuple traverse the same path in every CaRT M,.

For instance, suppose that X,>v is a split condition in
some CaRT and t[X, ] is different after compression. Then if
t[X,]>v, it must be the case that for the fascicle containing t,
for the X,-value range [x',x"], x">v. Thus, the compressed
value for t[X,]((x'+x")/2) must also be greater than v. In a
similar fashion, it can be shown that when t[X,]=v, the
compressed value of t[X,] is also less that or equal to v. Thus,
a more strict definition of compact attributes prevents errors
in predictor attributes from rippling through the predicted
attributes. Further, the fascicle computation algorithms can
be extended in a straightforward manner to compute fas-
cicles containing k compact attributes (according to the new
definition).

Experimental Study

The results of an extensive empirical study are presented.
The objective of this empirical study was to compare the
quality of compression model-based approach of the table
compressor 100 with the existing syntactic (gzip) and
semantic (fascicles) compression techniques. A wide range
of experiments were conducted with three very diverse
real-life data sets in which were measured both compression
ratios as well as running times for the table compressor 100.
The major findings of the study can be summarized as
follows.

Better Compression Ratios

On all data sets, the table compressor 100 produced
smaller compressed tables compared to gzip and fascicles.
The compression due to the table compressor 100 was more
effective for tables containing mostly numeric attributes, at
times outperforming gzip and fascicles by a factor of 3 (for
error tolerances of 5-10%). Even for error tolerances as low
as 1% the compression due to the table compressor 100, on
an average, was 20-30% better than existing schemes.

Small Sample Sizes are Effective
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For the data sets, even with samples as small as 50 KB
(0.06% of one data set), the table compressor 100 was able
to compute a good set of CaRT models that result in
excellent compression ratios. Thus, using samples to build
the Bayesian network and CaRT models can speed up the
table compressor 100 significantly.

Best Algorithms for Table Compressor 100 Functional
Blocks

The MaxIndependentSet CaRT-selection algorithm com-
pressed the data more effectively than the Greedy algorithm.
Further, since the table compressor 100 spent most of its
time building CaRT’s (between 50% and 75% depending on
the data set), the integrated pruning and building of CaRTs
resulted in significant speedups to the table compressor
100’s execution times.

These following experimental results validate the hypoth-
esis that the table compressor 100 is a viable and effective
system for compressing massive tables. All experiments
reported in this section were performed on multi-processor
(4 700 MHz Pentium processors) Linux server with a 1 GB
of main memory.

Experimental Testbed and Methodology

Compression Algorithms

Three compression algorithms were considered in the
above study:

Gzip. Gzip is a widely used lossless compression tool
based on the Lempel-Ziv dictionary-based technique. The
table is compressed row-wise using gzip after doing a
lexicographic sort of the table. The lexicographic sort sig-
nificantly outperformed the cases in which gzip was applied
to a row-wise expansion of the table without the lexico-
graphic sort.

Fascicles. Jagadish, et al. describe two algorithms,
Single-k and Multi-k, for compressing a table using fas-
cicles. They recommend the Multi-k algorithm for small
values of k (the number of compact attributes in the fas-
cicle), but the Single-k algorithm otherwise. In one embodi-
ment of the table compressor 100, the Single-k algorithm is
used. The two main input parameters to the algorithm are the
number of compact attributes, k, and the maximum number
of fascicles to be built for compression, P. In the above-
referenced experiments, for each individual data set, values
of k and P were used that resulted in the best compression
due to the fascicle algorithm.

The Single-k algorithm was found to be relatively insen-
sitive to P and P was chosen to be 500 for all three data sets.
However, the sizes of the compressed tables output by
Single-k did vary for different values of k and so for the
Corel, Forest-cover and Census data sets (described below),
k was set to 6, 36 and 9, respectively. Note that these large
values of k justify the use of the Single-k algorithm. The
minimum size m of a fascicle was set to 0.01% of the data
set size. For each numeric attribute, the compactness toler-
ance was set to twice the input error tolerance for that
attribute. However, since for categorical attributes, the the
fascicle error semantics can differ from the fascicle error
semantics of the table compressor 100, a compactness
tolerance of “0” was used for every categorical attribute.

The Table Compressor 100

Various embodiments of the table compressor 100 system
were implemented as described above. For the Greedy
CaRT-selection algorithm, a value of 2 was used for the
relative benefit parameter 0. In the MaxIndependentSet
CaRT-selection algorithm, for finding the WMIS of the
node-weighted graph G,,,,,, the QUALEX? software pack-
age was used, although those skilled in the art would
understand that other software or hardware solutions might
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be implemented within the scope of the present invention.
This software implements an algorithm based on a quadratic
programming formulation of the maximum weighted clique
problem. The running time is O(n*) (where n is the number
of vertices in the graph).

In all of the experiments that were run, QUALEX always
found the optimal solution and accounted for a negligible
fraction of the overall execution time. The integrated build-
ing and pruning algorithm was also implemented in the
BuildCaRT component, and a simple lower bound of
1+min{log(IX,!), log(ldom(X,))} was used for every “yet to
be expanded” leaf node. Finally, in the Row Aggregator
component, the Single-k fascicle algorithm was employed,
with P set to 500 and k equal to two-thirds of the number of
attributes in T'. When comparing the table compressor 100
results with the use of fascicles, the error tolerance was set
for the categorical attributes to always be 0.

Real-Life Data Sets

The following real-life data sets were used with every
different characteristics in the experiments:

1. Census. This data set was taken from the Current
Population Survey (CPS) data, which is a monthly
survey of about 50,000 households conducted by the
Bureau of the Census for the Bureau of Labor Statistics.
Each month’s data contains about 135,000 tuples with
361 attributes, of which 7 categorical attributes were
used (e.g., age, hourly pay rate). In the final data set,
data for 5 months was used (June through October
2000) that contained a total of 676,000 tuples and
occupied 28.6 MB of storage.

2. Corel. This data set contains image features extracted
from a Corel image collection. A 10.5 MB subset of the
data set was used which contains the color histogram
features of 68,040 photo images. This data set consists
of 32 numerical attributes and contains 68,040 tuples.

3. Forest-cover. This data set contains the forest cover
type for 30x30 meter cells obtained from US Forest
Service (USFS) Region 2 Resource Information Sys-
tem (RIS) data. The 75.2 MB data set contains 581,000
tuples, and 10 numeric and 44 categorical attributes
that describe the elevation, slope, soil type, etc. of the
cells.

Default Parameter Settings

A critical input parameter to the compression algorithms
is the error tolerance for numeric attribute X, is specified as
a percentage of the width of the range of X;-values in the
table. Another important parameter to the table compressor
100 is the size of the sample that is used to select the CaRT
models in the final compressed table. For these two param-
eters, the default values of 1% (for error tolerance) and 50
KB (for sample size), respectively, are used in all of the
referenced experiments. Note that 50 KB corresponds to
0.065% to 0.475% and 0.174% of the total size of the
Forest-cover, Corel and Census data sets, respectively.
Finally, unless stated otherwise, the table compressor 100
always uses MaxIndependentSet for CaRT-selection and the
integrated pruning and building algorithm for constructing
regression trees.

Experimental Results

Effect of Error Threshold on Compression Ratio

Turning now to FIG. 6, illustrated are graphs of compres-
sion ratios for gzip, fascicles and the table compressor 100
for the above three data sets. From FIG. 6, it is clear that the
table compressor 100 outperforms both gzip and fascicles,
on an average, by 20-30% on all data sets, even for a low
error threshold value of 1%. The compression due to the
table compressor 100 is especially striking for the Corel data
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set that contains only numeric attributes. For high error
tolerances (e.g., 5-10%), the table compressor 100 produces
a compressed Corel table that is almost a factor of 3 smaller
than the compressed tables generated by gzip and fascicles,
and a factor of 10 smaller than the uncompressed Corel
table. Even for the Census data set, which contains an equal
number of numeric and categorical attributes, the table
compressor 100 compresses better than fascicles for smaller
and moderate error threshold values (e.g., 0.5% to 5%); only
for larger error bounds (e.g., 10%) do fascicles perform
slightly better than the table compressor 100.

One reason why gzip does not compress the data sets as
well as the other two compression schemes is that, unlike
fascicles and the table compressor 100, gzip treats the table
simply as a sequence of bytes and is completely oblivious of
the error bounds for attributes. In contrast, both fascicles and
the table compressor 100 exploit data dependencies between
attributes and also the semantics of error tolerances for
attributes. Further, compared to fascicles which simply
cluster tuples with approximately equal attribute values,
CaRTs are much more sophisticated at capturing dependen-
cies between attribute columns. This is especially true when
tables contain numeric attributes since CaRTs employ
semantically rich split conditions for numeric attributes like
X'>v.

Another crucial difference between fascicle and CaRT-
based compression is that, when fascicles are used for
compression, each tuple and as a consequence, every
attribute value of a tuple is assigned to a single fascicle.
However, in the table compressor 100, a predictor attribute
and thus a predictor attribute value (belonging to a specific
tuple) can be used in a number of different CaRTs to infer
values for multiple different predicted attributes. Thus,
CaRTs offer a more powerful and flexible model for cap-
turing attribute correlations than fascicles.

As aresult, a set of CaRT predictors are able to summarize
complex data dependencies between attributes much more
succinctly than a set of fascicles. For an error constraint of
1%, the final Corel table compressor 100-compressed table
contains 20 CaRTs that along with outliers, consume only
1.98 MB or 18.8% of the uncompressed table size. Similarly,
for the Forest-cover data set, the number of predicted
attributes in the compressed table is 21 (8 numeric and 13
categorical) and the CaRT storage overhead (with outliers)
is a measly 4.77 MB or 6.25% of the uncompressed table.

The compression ratios for the table compressor 100 are
even more impressive for larger values of error tolerance
(e.g., 10%) since the storage overhead of CARTs+outliers is
even smaller at these higher error values. For example, at
10% error, in the compressed Corel data set, CaRTs con-
sumer only 0.6 MB or 5.73% of the original table size.
Similarly, for Forest-cover, the CaRT storage overhead
reduces to 2.84 MB or 3.72% of the uncompressed table.
The only exception is the Census data set where the decrease
in storage overhead is much steeper for fascicles than for
CaRTs. One possible reason for the preceding is because of
the small attribute domains in the Census data that cause
each fascicle to cover a large number of tuples at higher error
threshold values.

Effect of Random Sample Size on Compression Ratio

Turning now to FIGS. 7A—C, illustrated are graphs of the
effect of an error threshold and sample size on compression
ratio/running time. FIG. 7A illustrates the effect on com-
pression ratio as the sample size is increased from 25 KB to
200 KB for the Forest-cover data set. Interestingly, even
with a 25 KB sample, which is about 0.04% of the total data
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set size, the table compressor 100 is able to obtain a
compression ratio of approximately 0.1, which is about 25%
better than the compression ratio for gzip and fascicles.
Further, note that increasing the sample size beyond 50 KB
does not result in significant improvements in compression
quality. The implication here is that it is possible to infer a
good set of models even with a small random sample of the
data set. This is significant since using a small sample
instead of the entire data set for CaRT model construction
can significantly improve the running time of the table
compressor 100. The running time experiments are
described below.

Effect of CaRT Selection Algorithm on Compression
Ratio/Running Time

In Table 1, shown below, the compression ratios and
running times of the CaRT-selection algorithms of the table
compressor 100 are shown for the three data sets. Three
CaRT—selection algorithms—Greedy, MaxIndependent-
Set—were considered. The neighborhood for a node of the
CaRT-selection algorithms was set to it parents and Max-
IndependentSet with the neighborhood for a node set to it
Markov blanket (in the Bayesian graph). From the Table 1,
it follows that the MaxIndependentSet algorithms generally
compress better than the Greedy algorithm. This is because
the Greedy algorithm follows a very “local” prediction
strategy for each attribute, basing the decision on whether or
not to predict an attribute solely on how well it is predicted
by its materialized ancestors in the Bayesian network graph.

In contrast, the MaxIndependentSet algorithm adopts a
more “global” view when making a decision on whether to
predict or materialize an attribute—specifically, it not only
takes into account how well an attribute is predicted by
attributes in its neighborhood, but also how well it predicts
other attributes in its neighborhood. Observe that, in general,
the version of MaxIndependentSet with the Markov blanket
as a node’s neighborhood performs slightly better than
MaxIndependentSet with parents as the neighborhood.

With respect to running times, it was found that, in
general, the MaxIndependentSet with parents performs quite
well across all the data sets. This may be because the
MaxIndependentSet constructs few CaRTs (118 for Census,
32 for Corel, and 46 for Forest-cover) and since it restricts
the neighborhood for each attribute to only its parents, each
CaRT contains few predictor attributes. While greedy does
build the fewest CaRTS in most cases (10 for Census, 16 for
Corel, and 19 for Forest-cover), all the materialized ances-
tors of an attribute are used as predictor attributes when
building the CaRT for the attribute. As a result, since close
to 50% attributes are materialized for the data sets, each
CaRT is built using a large number of attributes, thus hurting
greedy’s performance.

Finally, the performance of MaxIndependentSet with
Markov blanket suffers since it, in some cases, constructs a
large number of CaRTs (56 for Census, 17 for Corel, and 138
for Forest-cover). Further, since the Markov blanket for a
node contains more attributes than simply its parents, the
number of predictor attributes used in each CaRT for
Markov blanket is typically much larger. As a result, CaRT
construction times for Markov blanket are higher and overall
execution times for Markov blanket are less competitive.
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TABLE 1

Effect of CaRT Selection Algorithm on Compression
Ratio/Running Time.

Compression Ratio Running Time (sec)

Data WMIS WMIS WMIS  WMIS
Set Greedy (Parent) (Markov)  Greedy (Parent) (Markov)
Corel 0352 0.292 0.287 148.25 9744 80.73
Forest- 0.131  0.106 0.1 932 670 1693
cover

Census 0.18 0.148 0.157 205.77 153 453.35

Effect of Error Threshold and Sample Size on Running
Time

In FIGS. 7B and 7C, the running times for the table
compressor 100 for a range of error threshold values and
sample sizes is plotted. Two trends in the FIGURES that are
straightforward to observe are that the running time of the
table compressor 100 decreases for increasing error bounds,
and increases for larger sample sizes. One reason for the
decrease in execution time when the error tolerance is
increased is that for larger thresholds, CaRTs contain fewer
nodes and so CaRT construction times are smaller. For
instance, CaRT construction times (which constitute
approximately 50-75% of the table compressor’s 100 total
execution time) reduce by approximately 25% as the error
bound increases from 0.5% to 10%. Note the low running
times for the table compressor 100 on the Corel data set.

In FIG. 7C, the running time of the table compressor 100
is plotted against the random sample size instead of the data
set size. This plot is included in the experimental results in
part because the DependencyFinder 110 and CaRTBuilder
130 of the table compressor 100 account for most of the
running time of the table compressor 100 (on an average,
20% and 75%, respectively) use the sample for model
construction. The table compressor 100 makes very few
passes over the entire data set (e.g., for sampling, for
identifying outliers in the data set for each selected CaRT
and for compressing T' using fascicles), the overhead of
which is negligible compared to the overhead of CaRT
model selection. Observe that the performance of the table
compressor 100 scales almost linearly with respect to the
sample size.

Finally, in experiments with building regression trees on
the data sets, the integrating the pruning and building phases
can result in significant reductions in the running times of
the table compressor 100. This may be because integrating
the pruning and building phases causes fewer regression tree
nodes to be expanded (since nodes that are going to be
pruned later are not expanded), and thus improves CaRT
building times by as much as 25%.

Although the present invention has been described in
detail, those skilled in the art should understand that they can
make various changes, substitutions and alterations herein
without departing from the spirit and scope of the invention
in its broadest form.

What is claimed is:

1. A data table compressor, comprising:

a table modeller that discovers at least one model of data
mining models with guaranteed error bounds of at least
one attribute in a data table in terms of other attributes
in different columns of said data table;

a model selector, associated with said table modeller, that
selects a subset of said at least one model to form a
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basis upon which to compress said data table to form a
compressed data table; and

a row aggregator that employs said selected subset from

said model selector to improve a compression ratio of
said compressed data table via row-wise clustering.

2. The data table compressor as recited in claim 1 wherein
said table modeller employs classification and regression
tree data mining models to model said at least one attribute.

3. The data table compressor as recited in claim 2 wherein
construction of said models uses integrated building and
pruning to exploit specified error bounds and decrease
model construction time.

4. The data table compressor as recited in claim 2 wherein
values for said at least one attribute are represented in said
compressed data table by at least one of said classification
and regression tree data mining models and are not explicitly
stored therein.

5. The data table compressor as recited in claim 1 wherein
said model selector employs a Bayesian network built on
said at least one attribute to select relevant models for table
compression.

6. The data table compressor as recited in claim 1 wherein
said table modeller employs a selected one of a constraint-
based and a scoring-based method to generate said at least
one model.

7. The data table compressor as recited in claim 1 wherein
said model selector selects said subset based upon a com-
pression ratio and an error bound specific for each attribute
of said data table.

8. The data table compressor as recited in claim 1 wherein
said model selector selects said subset using a model built on
attributes of said data table by a selected one of:

repeated calls to a maximum independent set solution

algorithm, and

a greedy search algorithm.

9. A method of compressing a data table, comprising:

discovering at least one model of data mining models with

guaranteed error bounds of at least one attribute in said
data table in terms of other attributes in different
columns of said data table;
selecting a subset of said at least one model to form a basis
upon which to compress said data table; and

employing said selected subset to improve a compression
ratio of said compressed data table via row-wise clus-
tering.

10. The method as recited in claim 9 wherein said
discovering comprises employing classification and regres-
sion tree data mining models to model said at least one
attribute.

11. The method as recited in claim 10 further comprising
using integrated building and pruning to exploit specified
error bounds and decrease model construction time.

12. The method as recited in claim 9 wherein said
discovering comprises employing a Bayesian network built
on said at least one attribute to select relevant models for
table compression.

13. The method as recited in claim 9 wherein said
discovering comprises employing a selected one of a con-
straint-based and a scoring-based method to generate said at
least one model.

14. The method as recited in claim 9 wherein said
selecting comprises selecting said subset based upon a
compression ratio and an error bound specific for each
attribute of said data table.

15. The method as recited in claim 9 wherein said
selecting is NP-hard.
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16. The method as recited in claim 9 wherein said
selecting comprises selecting said subset using a model built
on attributes of said data table by a selected one of:

repeated calls to a maximum independent set solution

algorithm, and

a greedy search algorithm.

17. A database management system, comprising:

a data structure having at least one data table therein;

a database controller for allowing data to be provided to

and extracted from said data structure; and

a system for compressing said at least one data table,

including:

a table modeller that discovers at least one model of
data mining models with guaranteed error bounds of
at least one attribute in said data table in terms of
other attributes in different columns of said data
table,

a model selector, associated with said table modeller,
that selects a subset of said at least one model to form
a basis upon which to compress said data table to
form a compressed data table, and

a row aggregator that employs said selected subset
from said model selector to improve a compression
ratio of said compressed data table via row-wise
clustering.
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18. The system as recited in claim 17 wherein said table
modeller employs classification and regression tree data
mining models to model said at least one attribute.

19. The system as recited in claim 18 wherein construc-
tion of said models uses integrated building and pruning to
exploit specified error bounds and decrease model construc-
tion time.

20. The system as recited in claim 17 wherein said model
selector employs a Bayesian network built on said at least
one attribute to select relevant models for table compression.

21. The system as recited in claim 17 wherein said table
modeller employs a selected one of a constraint-based and a
scoring-based method to generate said at least one model.

22. The system as recited in claim 17 wherein said model
selector selects said subset based upon a compression ratio
and an error bound specific for each attribute of said data
table.

23. The system as recited in claim 17 wherein said model
selector selects said subset using a model built on attributes
of said data table by a selected one of:

repeated calls to a maximum independent set solution

algorithm, and

a greedy search algorithm.



