US005845279A

United States Patent [(1] Patent Number: 5,845,279
Garofalakis et al. 451 Date of Patent: Dec. 1, 1998
[54] SCHEDULING RESOURCES FOR 5,521,630 571996 Chen et al. ovooocooeeereeresessesssen 34877
CONTINUOUS MEDIA DATABASES 5,537,534 7/1996 Voight et al. ...ooovovvvcor. 395/182.04
5,712,976 1/1998 Falcon, Ir. et al.cc....n. 395/200.49

[75] Inventors: Minos N. Garofalakis, Madison, Wis.; 5,721,956 2/1998 Martin et al.ooceeveerverrereennene 395/872

Banu Ozden; Abraham Silberschatz,
both of Summit, N.J.

[73] Assignee: Lucent Technologies Inc., Murray Hill,
Del.

[21] Appl. No.: 883,993

[22] Filed: Jun. 27, 1997

[51] It CLE oo GO6F 17/30

[52] US. Cle oeccnecrecrerrereccrecereceeen 707/7; 348/7

[58] Field of Searchcccccccovvvenevcnncnnne 707/7; 348/7

[56] References Cited

U.S. PATENT DOCUMENTS

5,361,262 11/1994 Cheung 370/440

10
/

Primary Examiner—Paul R. Lintz
Assistant Examiner—Ella A. Colbert

[57] ABSTRACT

Various systems and methods of scheduling media segments
of varying display rate, length and/or periodicity on at least
one clustered, vertically-striped or horizontally-striped con-
tinuous media database volume. With respect to the at least
one horizontally-striped database volume, one method
includes the steps of: (1) associating a display value with
each of the media segments, (2) sorting the media segments
in a non-increasing order of value density to obtain an
ordered list thereof and (3) building a scheduling tree of the
media segments, the scheduling tree having a structure that
increases a total display value of the media segments.

39 Claims, 11 Drawing Sheets

/100

CMOD SERVER
s
IFSOFTWARE “;
) [ASSOCIATOR |-~ 132
i | |
SUELEE Iy SLE R L T S
| l |
| |
DATABASE | | DATABASE | | DATABASE :LORGANIZER 196
_____________ i
1207‘—/ Y e
MEDIA MEDIA MEDIA
RECEIVER RECEIVER RECEIVER
1407 407 140/

U.S. Patent Dec. 1, 1998 Sheet 1 of 11 5,845,279
FIG. 1
100
/110 /
CHOD SERVER
_rts
:FSOFTWARE 7;
- { [ASSOCIATOR |-~ 132
l [I
C— C 5 | [SORTER - 134
B |
| L~ |
DATABASE | | DATABASE | | DATABASE | | ORGANIZER 135J:
1207\'/ 1207‘_') wl
MEDIA MEDIA MEDIA
RECEIVER RECEIVER RECEIVER
1407 10t 140/

U.S. Patent Dec. 1, 1998 Sheet 2 of 11 5,845,279
FIG. 24 200
e

200 coL1 coL2 COL3 cCOL4 COLS

DISPLAY
PHASES
220/<—T‘—>
= PERIOD Ti g
FIG. 2B
CoL 1 coL 2 % C
230/
FIG. 3

300
START e

SORT MEDIA SEGMENTS |- 310
INITIALIZt VALUES 320
DESIGNATE I;IN (VOLUME) 330
LOAD SEGMENTS — 340
OPTIMIZEJ PACKING |- 350

END

5,845,279

Sheet 3 of 11

Dec. 1, 1998

U.S. Patent

NOISSINSNYYL 1S¥I4

.« .. G

7 Y10

NOISSIASNVYL 1S¥14

I ‘ON_ ONAO ST NN 2 T ST
| M_ZSN_ m_38_ | LZOL | Imu‘_%_ .._. _%_%
0S¥ 08y 0S¥ 0 ¥SI0 NO OV o:_ 03 57100 0t~ 7709 0N
| ¥SI 0 XSI 7 ¥sIa I ¥SI oy O
08 e N
05 ~8 10 [
077~ 100 | _
0lr=—1 100 C
<> ok < C
200% q00¢ DQOY
00z /" 6100 ¥7100 €100 Z 100 | 109
dt 914 Vt 914

U.S. Patent Dec. 1, 1998 Sheet 4 of 11 5,845,279

SLOTS CONGRUENT TO
(0 + e1 w0) (MOD (w0 w1))

SLOTS CONGRUENT T0 €0 (MOD w0)

U.S. Patent Dec. 1, 1998 Sheet 5 of 11 5,845,279

FIG. 64

FIG. 6B

U.S. Patent

Dec. 1, 1998 Sheet 6 of 11

FIG. 7

START e 700

SORT MEDIA SEGMENTS _—— 710
ESTABLISH CAItDIDATE NODES }— 720
BUILD TREE tJNDER NODES |—730
PLACE n; UNDER ‘CANDIDATE NODES |—— 74
UPDATE CAN[?IDATE NODES ~ |— 750

END

5,845,279

U.S. Patent Dec. 1, 1998 Sheet 7 of 11 5,845,279

800

FIG. 8D

800

FIG. 8C

FIG. 8B

FIG. 84
800

U.S. Patent Dec. 1, 1998 Sheet 8 of 11 5,845,279

FIG. 94

900

FIG. 10 __~ 1000

SORT MEDIA SEGMENTS }——1010
SELECT CAND‘IDATE NODES |—— 1020
SPLIT IF*w(n)]ni — 1030
SCHEDULE*SUBTASKS —~ 1040
SET EDGE *DISTANCES 1050

END

U.S. Patent Dec. 1, 1998 Sheet 9 of 11 5,845,279

11C

FIG.

1120

/1B

FIG.

114

FIG.

U.S. Patent

SCHEDULED DISK BANDWIDTH (Mbps)

SCHEDULED DISK BANDWIDTH (Mbps)

Dec. 1, 1998 Sheet 10 of 11 5,845,279

FIG. 124

—~— HORIZONTAL (SCHED. TREES)
===+ CLUSTERING (PACKCLIPS)
+&3 VERTICAL

430

400 r
350 |

300
250 -
200

150
100 F

30t

— 1200

350
300
250
200
130
100

30

NO. OF DISKS

FIG. 12B
—A— HORIZONTAL (SCHED. TREES)

==#-- CLUSTERING (PACKCLIPS)
+ 23 VERTICAL

1210

NO. OF DISKS

U.S. Patent Dec. 1, 1998 Sheet 11 of 11 5,845,279

FIG. 134 —o— HORIZONTAL (SCHED. TREES)

...... +00: CLUSTERING (PACKCLIPS)
ce------- VERTICAL

~~1300

[l

o

o
T

150

T

100

SCHEDULED DISK BANDWIDTH (Mbps)

o
o
T

NO. OF DISKS

FIG. 13B —o— HORIZONTAL (SCHED. TREES)

...... +o0- CLUSTERING (PACKCLIPS)
cenm-h---- VERTICAL

1310

.

o

o
T

350

300
250

SCHEDULED DISK BANDWIDTH (Mbps)

200}
50— ' : ' ' |

NO. OF DISKS

5,845,279

1

SCHEDULING RESOURCES FOR
CONTINUOUS MEDIA DATABASES

TECHNICAL FIELD OF THE INVENTION

The present invention is directed, in general, to
continuous-media-on-demand (“CMOD”) services and,
more specifically, to systems and methods for increasing the
performance of databases that provide CMOD services
(so-called “continuous media databases”).

BACKGROUND OF THE INVENTION

In recent years, significant advances in both networking
technology and technologies involving the digitization and
compression of continuous media data (e.g., video and audio
data) have taken place. For example, it is now possible to
transmit several gigabytes of data per second over fiber optic
networks. With compression standards such as Motion Pic-
ture Experts Group (“MPEG”)-1, the bandwidth required for
transmitting video has become relatively low. These
advances have resulted in a host of new applications involv-
ing the transmission of media over communications and
networks, such as Enhanced Pay-Per-View (“EPPV”),
video-on-demand (“VOD”), on-line tutorials and interactive
television. Continuous-media-on-demand (“CMOD”) serv-
ers are one of the key components necessary to provide the
above applications. Depending on the application, the con-
tinuous media servers may be required to store hundreds of
media segment programs and concurrently transmit continu-
ous media data to a few hundred clients. The transmission
rate for such data is typically a given rate contingent upon
the media type and the compression technique employed by
the continuous media server. For example, the transmission
rate for MPEG-1 is approximately 1.5 Mbps.

Continuous media (“CM”) data segments, for example
movies and other on-demand programming, are transmitted
from random access memory (“RAM”) in the CM server to
the clients. However, due to the voluminous nature of media
segment data (e.g., 100 minute long MPEG-1 video requires
approximately 1.125 GB of storage space) and the relatively
high cost of RAM, storing media segments in RAM is
prohibitively expensive. A cost effective alternative manner
for storing media segments on a CM server involves using
magnetic or optical disks instead of RAM. The media
segments stored on disks, however, needs to be retrieved
into RAM before it can be transmitted to clients by the CM
server. Modern magnetic and optical disks, however, have
limited storage capacity, e.g. 1 GB to 9 GB, and relatively
low transfer rates for retrieving data from these disks to
RAM, e.g. 30 Mbps to 60 Mbps. This limited storage
capacity affects the number of individual media segments
that can be stored on the CM server and, along with the low
transfer rates, affects the number of clients that can be
concurrently serviced. A naive storage scheme in which an
entire media segment is stored on an arbitrarily-chosen disk
could result in disks with popular media programming being
over-burdened with more requests that can be supported,
while other disks with less popular programs remain idle.
Such a scheme results in an ineffective utilization of disk
bandwidth, the term “disk bandwidth” referring to an
amount of data which can be retrieved from a disk over a
period of time. When data is not being retrieved from a disk,
such as when the disk is idle or when a disk head is being
positioned, disk bandwidth is not being utilized, and is thus
considered wasted. Ineffective utilization of disk bandwidth
adversely affects the number of streams a CM server can
support at the same time.

10

15

20

25

30

35

40

45

50

55

60

65

2

To utilize disk bandwidth more effectively, various
schemes have been devised where the work load is distrib-
uted uniformly across multiple disks, i.e., media segments
are laid out on more than one disk. One popular method for
storing media segments across a plurality of disks is disk
striping, a well known technique in which consecutive
logical data units are distributed across a plurality of indi-
vidually accessible disks in a round-robin fashion. Disk
striping, in addition to distributing the work load uniformly
across disks, also enables multiple concurrent streams of a
media segment to be supported without having to replicate
the media segment. Disk striping has two general variations:
vertical striping and horizontal striping; these will be
explained in greater detail below.

Outstanding requests for media segments are generally
serviced by the CM server in the order in which they were
received, i.e., first-in first-out (“FIFO”). Where the number
of concurrent requests is less than or not much greater than
the number of concurrent streams that can be supported by
the server, overall response times to all outstanding requests
are possible. In VOD environments, however, where the
number of concurrent requests typically far exceeds the
number of concurrent streams that can be supported by the
server, good overall response times are not possible for all
outstanding requests using FIFO. To provide better overall
response times, VOD environments, such as cable and
broadcasting companies, have adopted a paradigm known as
enhanced pay-per-view (“EPPV”). Using the enhanced pay-
per-view paradigm, CM servers retrieve and transmit media
segment streams to clients at fixed intervals or periods.

The average response time to fulfill a client’s request is
half of the fixed interval, and the worst case response time
to fulfill a request is the fixed interval. For example, if a
media segment is to begin every 3 minutes, the average time
to fulfill a client’s request is 1% minutes; the worst case
response time is 3 minutes.

Furthermore, by retrieving popular media segments more
frequently, and less popular media segment less frequently,
better overall average response times could be achieved.
Finally, clients can be informed about the periods and the
exact times at which media segments are offered, therefore
predictable overall response times can be provided.

Although a set of media segments is schedulable on a CM
server employing the EPPV paradigm, determining an exact
schedule for periodic display of media segments can be
difficult, particularly when the display periods, media seg-
ment lengths and transfer rates, i.e. time required to transmit
a media segment or segment, differ. The goal is to schedule
the set of media segments such that the number of streams
scheduled to be transmitted concurrently does not exceed the
maximum number of concurrent streams supportable by the
CM server. The complexity of scheduling media segments in
an EPPV paradigm increases dramatically as the number of
media segments being scheduled and the number of server
resources by which the media segments are transmitted
increases. Accordingly, there is a need for a method and
apparatus that can effectively schedule media segments
periodically on a CM server employing the EPPV paradigm.
More specifically, there is a need in the art for a method and
apparatus that can effectively schedule media segments of
different popularity and length.

SUMMARY OF THE INVENTION

To address the above-discussed deficiencies of the prior
art, the present invention provides various systems and
methods of scheduling media segments of varying display

5,845,279

3

rate, length and/or retrieval period on at least one clustered,
vertically-striped or horizontally-striped CM database vol-
ume. With respect to the at least one clustered database
volume or the at least one vertically-striped database
volume, one method includes the steps of: (1) associating a
display value and a normalized bandwidth consumption with
each of the media segments, (2) sorting the media segments
in a non-increasing order of value density (which may be,
but is not limited to, a ratio of the display value to the
normalized bandwidth consumption) to obtain an ordered
list thereof and (3) organizing the media segments into the
at least one database volume in a particular order. This
determined particular order advantageously increases the
total display value of the media segments, increasing the
ability of the database volume to provide media segments to
more clients based on the segments’ popularity and within
bandwidth constraints.

With respect to the at least one horizontally-striped data-
base volume, one method includes the steps of: (1) associ-
ating a display value with each of the media segments, (2)
sorting the media segments in a non-increasing order of
display value to obtain an ordered list thereof and (3)
building a scheduling tree of the media segments, the
scheduling tree having a particular structure. The particular
structure advantageously increases a total display value of
the media segments, increasing, as above, the overall effec-
tiveness of the database volume.

For purposes of the present invention, a “volume” is
defined as a logical storage unit. The “volume” may be all
or part of a single physical disk drive, a cluster of disk
drives, a stripe set or some other arrangement treated as a
logical storage unit.

The foregoing has outlined, rather broadly, embodiments
of the present invention so that those skilled in the art may
better understand the detailed description of the invention
that follows. Additional embodiments of the invention will
be described hereinafter that form the subject of the claims
of the invention. Those skilled in the art should appreciate
that they can readily use the disclosed conception and
embodiments as a basis for designing or modifying other
structures for carrying out the same purposes of the present
invention. Those skilled in the art should also realize that
such equivalent constructions do not depart from the spirit
and scope of the invention in its broadest form.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present
invention, reference is now made to the following descrip-
tions taken in conjunction with the accompanying drawings,
in which:

FIG. 1 illustrates an EPPV system containing the sched-
uling systems and methods of the present invention;

FIGS. 2A and 2B illustrate schematic diagrams of a
representative media segment matrix and a layout of the
representative segment matrix on a disk;

FIG. 3 illustrates a flow diagram of a method of organiz-
ing media segments on a disk;

FIGS. 4A and 4B illustrate schematic diagrams of vertical
striping and horizontal striping;

FIGS. 5A, 5B, 6A and 6B illustrate a generalized sched-
uling tree structures for simple periodic tasks according to
the present invention and a particular scheduling tree struc-
ture for an exemplary set of tasks;

FIG. 7 illustrates a flow diagram of a method of building
a scheduling tree; FIGS. 8A through 8D illustrate an exem-

10

15

20

25

30

35

45

50

55

60

65

4

plary scheduling tree being built according to the method
illustrated in FIG. 7,

FIGS. 9A and 9B illustrate an exemplary scheduling tree
before and after a split therein;

FIG. 10 illustrates a flow diagram of a method of building
a scheduling tree having equidistant subtasks;

FIGS. 11A through 11C illustrate an exemplary schedul-
ing tree with equidistant subtasks being built according to
the method illustrated in FIG. 9,

FIGS. 12A and 12B illustrate graphical representations of
workloads under simulated conditions for the resource
scheduling systems and methods of the present invention;
and

FIGS. 13A and 13B illustrate further graphical represen-
tations of workloads under simulated conditions for the
resource scheduling systems and methods of the present
invention.

DETAILED DESCRIPTION

Referring initially to FIG. 1, illustrated is an EPPV system
containing the scheduling systems and methods of the
present invention. The system, generally designated 100,
comprises a CMOD server 110 having at least one database
volume 120 associated therewith. Media segments (not
shown) are stored on and retrieved from the database
volume 120 by scheduling and control circuitry or software
130 that includes an associator 132, a sorter 134 and an
organizer 136 therein for associating values with media
segments, sorting the media segments according to methods
that will be set forth hereinafter and organizing the database
volume 120 or building one or more scheduling trees,
respectively and as appropriate.

The associator 132, sorter 134 and organizer 136 may be
embodied as a sequence of instructions executable within
general purpose data processing and storage circuitry (not
shown) within the CMOD server 110. In alternate advanta-
geous embodiments, the associator 132, sorter 134 and
organizer 136, in whole or in part, may be replaced by, or
combined with, any suitable processing configuration,
including programmable logic devices, such as program-
mable array logic (“PALs”) and programmable logic arrays
(“PLAs”), digital signal processors (“DSPs”), field-
programmable gate arrays (“FPGAs”), application-specific
integrated circuits (“ASICs”), large scale integrated circuits
(“LSIs”), very large scale integrated circuits (“VLSIs”) or
the like, to form the various types of circuitry described and
claimed herein.

FIG. 1 further illustrates a plurality of media receivers 140
(such as personal computers or television sets) that are
coupled to the CMOD server 110. The plurality of media
receivers 140 receive selected ones of the media segments
from the CMOD server 110 and perform (show or play) the
media segments for the benefit of a client. Intermediate
devices, such as routers or the Public Switched Telephone
Network (“PSTN”) (not shown) may be interposed between
the CMOD server 110 and the plurality of media receivers
140 to assist in distributing the media segments.

Turning now to FIGS. 2A and 2B, illustrated are sche-
matic diagrams of a representative media segment matrix
and a layout of the representative matrix on a disk. The
EPPV service model associates with each segment C; a
retrieval period T, that is the reciprocal of its display
frequency. The retrieval period of media segments are
multiples of the round length T, and data for streams are
retrieved from volumes into memory in rounds of length T.

5,845,279

5

Each media segment C; also has a length 1, (in units of time)
and a per stream disk bandwidth requirement r; (known as
display rate). The display frequency is determined as a
function or characteristic of the popularity of the respective
media segments at a given point in time or over a given
period of time. As one would expect, segment popularity
tends to change over time, as, for example, new movies are
introduced and older ones attract less attention.

The matrix-based allocation scheme illustrated in FIG. 2A
increases the number of clients that can be serviced under
the EPPV service model by laying data based on the
knowledge of retrieval periods. The basic idea is to
distribute, for each segment C,, the starting points for the
concurrent display phases (retrieval of the media segment
starting at a given rate) of C; uniformly across its length.
Each such display phase corresponds to a different stream
servicing (possibly) multiple clients. Conceptually, each
segment C,; is viewed as a matrix 200 consisting of elements
of length T (in units of time) arranged in columns 210 and
rows 220. The numbers of columns 210 and rows 220 of the
matrix 200 depend upon the length 1, of the media segment
C; and its retrieval period T,. The number of columns 210 is

[+

The first T units of time of the media segment correspond to
the matrix element in the first row 220 and first column 210,
the second T units of time of the media segment correspond
to the matrix element in the first row 220 and second column
210, and so on.

The matrix 200 is stored on the volume in column-major
form such that each column is stored contiguously on the
volume. Furthermore, the retrieval of a media segment is
performed on columns (i.e., one column per round) with
each column element provided to a different display phase.

In a clustered CMOD server, each disk is viewed as an
independent unit. Entire media segments are stored on, and
retrieved from, a single disk; multiple segments can be
clustered on a single disk. Turning now to FIG. 3, illustrated
is a flow diagram of a method of organizing media segments
on the disks of a clustered CMOD server according to the
present invention. Each media segment C; is assigned a

value
i
(e.g., ’(7_‘ i) .

Furthermore,each media segment has a two dimensional size
vector as described below. Each media segment is associated
with a value density p;,. The value density p, for media
segment C; is defined as the ratio of value of C; to the
maximum component of the size vector.

The method, generally designated 300, begins in a sorting
step 310 wherein segments in C are sorted in non-increasing
order of value density to obtain a list L=<C, . . ., C,> where
P, (the value density of C,) is greater than or equal to P, ;.
Next, in a step 320, load (B)) and value (B;) are initialized
to zero. Further, B; is initialized to an empty set for each bin
(ie., volume or disk) B, j=1, ..., N.

Next, in steps 330 and 340, an iterative process is under-
taken wherein B; is designated as the first bin (i.e., volume)
such that load (B)) plus size (C,) is less than or equal to 1.
“Size (C))” is a two dimensional vector having a first

10

15

20

25

30

35

40

45

50

55

60

65

6

component defined in terms of the normalized contribution
of C; to the length of a round or, equivalently, C,’s normal-
ized bandwidth consumption and a second component
defined in terms of C,’s normalized storage capacity.

Next, the load (B;) is made equal to the load (B))+size
(C)), the value (B,) is made equal to the value (B)) plus value
(C)) (defined in terms of the bandwidth C, effectively utilizes
during a round), B, is made equal to B,J{C;} and L is made
equal to L-{C;}. Finally, in a step 35(‘, B_.,I=1,...,04,
is made to represent the bins corresponding to the n,,
largest of values in the final organizing.

The method may be embodied as a procedure termed
“PACKSEGMENTS” set forth in Table I below:

TABLE 1

“PACKSEGMENTS”

Input: A collection of CM segments C = {Cy, . . . ,Cy} and a number
of disks Ny

Output: C' C C and a packing of C' in ngy, unit capacity bins.
(Goal: Maximize 2C; € C' value (Cp).)

1. Sort the segments in C in non-increasing order of value to
obtain a list L =< C,, . . . ,Cy > where p; = p;,,. Initialize

load (By) = value(B;) = 0, By) = § for each bin

(ie., disk) By, j=1, . . . ,N.

2. For each segment C; in L (in that order):

2.1 Let B; be the first bin (i.e., disk) such that load (B;) +
size(C)= 1.

2.2 Set load(B;) = load(By) + size(Cy), value(B;) = value(B;) +
value(Cy), B; = B{U{C;}, and L = L{C;}.

3. Let B_;., I=1, . . . ;ngq be the bins corresponding to the ny;g
largest values in the final packing. Return C' = U™k, B_. . (The
packing of C' is defined by the B_.'s).

Turning now to FIGS. 4A and 4B, illustrated are sche-
matic diagrams of vertical striping and horizontal striping.
In vertical striping (FIG. 5A), each column 410, 420, 430 of
a given segment matrix is declustered across all disks 400A,
400B, 400C of a given CMOD server. This scheme is similar
to fine-grained striping or RAID-3 data organization, since
each column of each segment has to be retrieved in parallel
from all disks (as a unit). “PACKSEGMENTS” is able to
operate with vertical striping. In this case, the size vector for
each media segment is one-dimensional and consists of the
normalized bandwidth requirement (or consumption) for the
media segment.

In horizontal striping (FIG. 4B) the columns 450, 460,
470, 480, 490 of a given segment matrix are mapped to
individual disks 440A, 440B, 440C in a round-robin manner.
Consequently, the retrieval of data for a transmission of C,
proceeds in a round-robin fashion along the disk array.
During each round, a single disk is used to read a column of
C; and consecutive rounds employ consecutive disks.

Consider the periodic retrieval of C, from a specific disk.
By virtue of the round-robin placement during each trans-
mission of C,, a column of C; must be retrieved from that
disk periodically at intervals of n;, , rounds. Furthermore, to
support EPPV service, the transmissions of C; are them-
selves periodic, with a period T;=n, T. Thus, the retrieval of
C; from a specific disk is a collection of periodic real time
tasks with period T; (i.e., the media segment’s transmission),
where each task consists of a collection of subtasks that are
Ny T time units apart (ie., column retrievals within a
transmission). A simplified version of this problem occurs
when, for each media segment C,, 1;=n; T holds. In this
case, periodic retrieval of a media segment consists of a
simple periodic task.

Turning now to FIGS. 5A and 5B, illustrated are a
generalized scheduling tree structure 500 for simple periodic
tasks, where this task model is applicable to media segments

5,845,279

7

for which 1,=n,,, T holds, according to the present inven-
tion and a particular scheduling tree structure for an exem-
plary set of tasks for which 1,=n ;. T (containing nodes 540,
550, 560, 570, 580, 590 and edges 542, 544, 552, 554, 562,
582). FIGS. 5A and 5B are presented primarily for the
purpose of providing an overview of the scheduling tree
structure concept of the present invention. A scheduling tree
(of the present invention and as described below) determines
a “conflict-free” schedule for the periodic retrieval of media
segments that are part of the scheduling tree. That is, the
retrieval of these media segments will not collide in a round.

One fundamental concept of the present invention is that
all tasks in a subtree rooted at some edge 512, 522 emanating
from node n (such as a node 510) at level 1 uses time slot
numbers that are congruent to I(mod m; (n)) where I is a
unique number between 0 and m; (n)-1. Satisfying this
invariant recursively at every internal node 520, 530 ensures
the avoidance of conflicts.

An internal node n at level 1 is candidate for period n;

(n,=T,/T) if and only if w,_,(0)|n; and ged
Wi ni > w(n)
(T) R

A period n, can be scheduled under any candidate node n in
a scheduling tree. Two possible cases exist:

If T, (n)|n, then the condition above guarantees that n (in
a tree having a node 600 and edges 610a, 6105, 610c¢)
has at least one free edge 6104 at which n; can be
placed.

If m,(n) f n, then, to accommodate n, under node n (in a
tree having a node 600 and edges 620a, 6205, 620c,
620d, 630a, 630b, 630c), n must be split so that the
defining properties of the scheduling tree structure are
kept intact. This may be done as follows. Let

d=gcd(w(n),%li(n)).

Node n is split into a parent node with weight d and child
nodes with weight

)

i

with the original children of n divided among the new child
nodes; that is, the first batch of

w(n
d

children of n are placed under the first child node, and so on.
It is apparent that this splitting maintains the properties of
the structure. Furthermore, the condition set forth above
guarantees that the newly created parent node will have at
least one free edge for scheduling n;.

The set of candidate nodes for each period to be scheduled
can be maintained efficiently, in an incremental manner. The
observation here is that when a new period n, is scheduled,
all remaining periods advantageously only have to check a
maximum of three nodes, namely the two closest ancestors
of the leaf for n, and, if a split occurred, the last child node
created in the split, for possible inclusion or exclusion from
their candidate sets.

As above, cach task is assumed to be associated with a
value and that improving the cumulative value of a schedule

10

15

20

25

30

35

40

45

50

55

60

65

8

is the objective. The basic idea of the heuristic of one aspect
of the present invention (termed BUILDTREE) is to build the
scheduling tree incrementally in a greedy fashion, scanning
the tasks in non-increasing order of value and placing each
period n; in that candidate node M that implies the minimum
value loss among all possible candidates. This loss is cal-
culated as the total value of all periods whose candidate sets
become empty after the placement of n; under M. Ties are
always broken in favor of those candidate nodes that are
located at higher levels (i.e., closer to the leaves), while ties
at the same level are broken using the postorder node
numbers (i.e., left-to-right order). When a period is sched-
uled in I, the candidate node sets for all remaining periods
are undated (in an incremental fashion) and the method
continues with the next task/period (with at least one can-
didate in 1").

FIG. 6 illustrates a flow diagram of a method 600 of
building a scheduling tree for a limited segment model
wherein 1,=T. The method 600 may be embodied as a
procedure termed “BUILDTREE” set forth in Table II below:

TABLE II
“BUILDTREE”
1. Input: A set of simple periodic tasks C = {C,, ... ,Cy} and 1; =
N T With corresponding periods P = {n,, . . . ,nn}, and a

value () function assigning a value to each C;.

Output: A scheduling tree T" for a subset C' of C. (Goal: Maximize
2C; € C value (C).)

1. Sort the tasks in C in non-increasing order of value to obtain
alist L= <C,,C,, . . . ,Cy», where value (C)) 2 value (Cy,).
Initially, I consists of a root node with a weight equal to n,.

2. For each periodic task C; in L (in that order):

2.1 Let cand(n;, I') be the set of candidate nodes for n;, in

. (Note that this set is maintained incrementally as the tree is built.)
2.2 For each n € cand(n, I'), let T'U{n;},, denote the tree that
results when n; is placed under node n in 64 . Let loss(n) -

{G;, € L-{Ci}| cand(TU{ni},) = 0}

and value loss(n)) =

ZCietoss(n) vatue(ci)-
2.3 Place n; under the candidate node M such that value

(loss (M) = MiNpecang i, nivalue(loss (n)) }. (Ties are broken in
favor of nodes at higher levels.) If necessary, node M is split.
2.4 Set T' = TU{n; },;, L=L-loss(M).

2.5 For each task G, € L, update the candidate node set

cand(n;, T).

With reference to FIG. 6, the method begins in a step 610
wherein media segments (tasks) are sorted in a non-
increasing order of value to obtain a list L=<C,, C,, . . .,
Cy>. Next, for each periodic task in order, a candidate set of
nodes is developed (in a step 620, a tree is built iteratively
(in a step 630), where n; is placed under a selected candidate
node (in a step 640) and candidate nodes are updated for
remaining periods (in a step 650).

Let N be the number of tasks in C. The number of internal
nodes in a scheduling tree is always going to be O(N). To see
this, note that an internal node will always have at least two
children, with the only possible exception being the right-
most one or two new nodes created during the insertion of
a new period. Since the number of insertions is at most N,
it follows that the number of internal nodes is O(N). Based
on this fact, it is easy to show that BUILDTREE runs in time
O(N3).

Example 2: Consider the list of periods<n,=2, n,=12,
n,=30>(sorted in non-increasing order of value). Turning
now to FIGS. 7A through 7D, illustrated is the step-by-step
construction of the scheduling tree (comprising nodes 700,
710, 720, 710a, 710b, 730a, 730b) using BUILDTREE. Note
that period n; splits the node with weight 6 into two nodes
with weights 3 and 2 (the node 720 splits into nodes 7204,
720b).

5,845,279

9

In the general case, when the lengths of the media
segments are not restricted, periodic media segment retrieval
under horizontal striping was defined above as a periodic
real-time task C; with period

~|

n;=

(in rounds) that consists of a collection of

¢
Hdisk

subtasks (c; being the number of columns in the matrix for
media segment C,) that need to be scheduled ng;,, rounds
apart. The basic observation here is that all the subtasks of
C; are themselves periodic with period n;, so the techniques
of the previous section can be used for each individual
subtask. However, the scheduling method also needs to
ensure that all the subtasks are scheduled together, using
time slots (i.e., rounds) placed regularly at intervals of n ;.
Heuristic methods for building a scheduling tree in this
generalized setting will now be set forth in detail.

An important requirement of this more general task model
is that the insertion of new periods cannot be allowed to
distort the relative placement of subtasks already in the tree.
The splitting mechanism described in the previous section
for simple periodic tasks does not satisfy this requirement,
since it can alter the starting time slots for all subtasks
located under the split node. Instead, the present invention
employs a different method for “batching™ the children of
the node being split, so that the starting time slots for all leaf
nodes remain unchanged. This new splitting rule is as
follows: if the node n is split to give a new parent node with
weight d, then place at edge I of the new node (I=0, . . . ,d-1)
all the children of the old node n whose parent edge weight
was congruent to I(mod d).

Turning now to FIGS. 8A and 8B, illustrated are an
exemplary scheduling tree (having nodes 800, 8104, 810b)
before and after a split therein using the above-described
splitting rule of the present invention (and adding a node
810c¢). Example 3: FIG. 8A illustrates a scheduling tree with
two tasks with periods n,=6, n,=6 assigned to slots 0 and 1.
FIG. 8B depicts the scheduling tree after a third task with
period n;=15 is inserted. Although there is enough capacity
for both n; and n, in the subtree connected to the root with
edge 0, the splitting rule of the present invention forces n,
to be placed in the subtree connected to the root with edge
1.

In this setting, the notion of a candidate node is defined as
follows: an internal node n at level 1 is candidate for period
n, if and only if m,_,(n)|n, and there exists an I /{0, ..., d-1}
such that all edges of n with weights congruent to I (mod d)
are free, where

d=gcd(w(n),%li(n)).

However, under the generalized model of periodic tasks
of the present invention, a candidate node for n, can only
accommodate a subtask of C,. This is clearly not sufficient
for the entire task. The temporal dependency among the
subtasks of C; means that the scheduling tree method of the
present invention should make sure that all the subtasks of
C, are placed in the tree at distances of n ;.

One way to deal with this situation is to maintain candi-
date nodes for subtasks and use a simple predicate based on

10

15

20

[N
W

50

55

60

65

10

the equation:

!
u; = ancestor_edge(n;) + X ancestor_edge;(n;) - IL_(m).
=2

for checking the availability of specific time slots in the
scheduling tree. The scheduling of C; can then be handled as
follows. Select a candidate node for n; and a time slot u, for
n; under this candidate. Place the first subtask of C; in u; and
call the predicate repeatedly to check if n, can be scheduled

in slot u;
1 i
IR Hisk

If the predicate succeeds for all j, then C; is scheduled
starting at u,. Otherwise, the method can try another poten-
tial starting slot u,.

A problem with the approach outline above is that even if
the number of starting slots tried for C, is restricted to a
constant, scheduling each subtask individually yields
pseudo-polynomial time complexity. This is because the
number of scheduling operations in a trial will be

Ci
0 >
sk

where

. (li)
Ci = min iy —
T

is part of the problem input.

The present invention provides a polynomial time heu-
ristic method for the problem. To simplify the presentation,
it is assumed that every period n; is a multiple of n .
Although it is possible to extend the heuristic described
herein to handle general periods, it is believed that this
assumption is not very restrictive in practice. This is because
round lengths T are typically expected to be in the area of a
few seconds and periods T; are typically multiples of some
number of minutes (e.g., 5, 10, 30 or 60 minutes). Therefore,
it is realistic to assume the smallest period in the system can
be selected to be a multiple of n,,. The objective is to
devise a method that ensures that if the first subtask of a task
C, does not collide with the first subtask of any other task in
the tree, then no other combination of subtasks can cause a
collision to occur. This means that once the first subtask of
C, is placed in the scheduling tree there is no need to check
the rest of C,;’s subtasks individually.

The method of the present invention sets the weight of the
root of the scheduling tree to n ;. (This is possible since the
n,’s are multiples of ndisk.) This implies that consecutive
subtasks of a task will require consecutive edges emanating
from nodes at the first level (direct descendents of the root),
which are first-level ancestors of the leaf nodes where the
subtasks are placed. When the first subtask of a task is placed
at a leaf node, at least some of the consecutive edges of the
first-level ancestor node of that leaf are disabled, so that the
slots under those edges cannot be used by the first subtask
of any future task. By the previous observation,

5,845,279

11

Ci
si—1= -1
Rdisk

consecutive edges of the first-level ancestor of the leaf for n;
must be disabled, starting with the right neighbor of the edge
under which that leaf resides. (s; is the number of subtasks
of C;) This “edge disabling” is implemented by maintaining
an integer distance for each edge e¢ emanating from a
first-level node that is equal to the number of consecutive
neighbors of edge e that have been disabled. The placement
method of the present invention should maintain two invari-
ants. First, the distance of an edge ¢ of a first-level node is
always equal to maxcl{si}—l, where the max is taken over
all tasks placed under e in the tree. Second, the sum of the
weight of an edge ¢ of a first-level node n and its distance
is always less than the weight of n (so that the defining
properties of the tree are maintained). Based on the above
method, the notion of a candidate node can be defined as
follows: let n be an internal node at level 1. Let n; be a period
and define

d=gcd(w(n),%li(n)).

Node n is candidate for period n; if and only if ,_;(n)|n; and
the following conditions hold:

1. If n is the root node, n has a free edge.

2.1f level(n)=1, there exists an I €{0, . . ., d-1} such that
all (non-disabled) edges of n whose sum of weight plus
distance is congruent to (I+j) (mod d), for 0=j<s;, are
free.

3. If level(n)=2,

3.1 there exists an I €{0, . . ., d-1} such that all edges
of n with weight congruent to I (mod d) are free; and,
3.2 s,-1—ancestor__edge, (n)<ancestor-node,; (n) and
s;+ancestor__edge, (n) is less than or equal to the
weight of the (non-disabled) edge following
ancestor__edge, (n), if there is such an edge.
Note that clause 2 ensures that edge distances are maintained
when the first-level nodes are split.

Turning now to FIG. 9, illustrated is a flow diagram of a
method 900 of building a scheduling tree for periodic tasks
having equidistant subtasks. The method 900 may be
embodied as a procedure termed “BUILDEQUIDTREE” set
forth in Table III below:

TABLE III

“BUILDEQUIDTREE”

Input: A set of periodic tasks C = {C,, . .., Cy} with
corresponding periods P = {n,, . . ., ny} and a value () function
assigning a value to each C;. Each task consists of subtasks
placed at intervals of ny;y.

Output: A scheduling tree T" for a subset C' of C. (Goal: Maximize
2, C value (Cy).)

1. Sort the tasks in C in non-increasing order of value to obtain
alist L=<C,,C,,...,Cy>, where value (C) =

value (Cy,,). Initially, " consists of a root node with a weight equal to
Ngisk-

2. For each task C; in L (in that order):

2.1 Select a candidate node n for n, in T". (Ties are broken

in favor of nodes at higher levels).

2.2 If w(n)|/ni, split n.

2.3 Schedule the first subtask of C; under n. (Ties are

broken in favor of edges with smaller weights).

10

15

20

25

30

35

40

45

50

55

60

65

12

TABLE III-continued

“BUILDEQUIDTREE”

2.4 Let d be the distance of the ancestor edge at the first
level of the leaf corresponding to n;. Set the distance of
this edge to max{d, s; - 1}.

BuildEquidTree can be used to construct a scheduling tree
in polynomial time. With reference to FIG. 9, the method
900 begins in a step 910 wherein the tasks are sorted in a
non-increasing order of value to obtain a list L.=<C,, C,, ...,
Cy>. Next, for each periodic task in order, a candidate node
n is selected (in a step 920), n is split if w(n) f n, (in a step
930), the first subtask of the task is scheduled under n (in a
step 940) and edge distances are set (in a step 950).

Turning now to FIGS. 10A through 10C, illustrated are an
exemplary scheduling tree (variations of which are desig-
nated 1000, 1010, 1020) with equidistant subtasks being
built according to the method illustrated in FIG. 10.
Example 4: Consider three tasks C,, C,, C; with s, 8,, $5=2,
1,3 and n,, n,, n;=12,18, 10 and n 4, ,=2. FIGS. 10A through
10C 1illustrate the three states of scheduling tree after place-
ment of C,, C, and Cj;, respectively.

An interesting property of the scheduling tree formulation
is that it can easily be extended to handle time slots that can
fit more than one subtask (i.e., can allow for some tasks to
collide). As set forth above, this is exactly the case for the
rounds of EPPV retrieval under horizontal striping. The
subtasks of C; can be thought of as items of size (C)) =1 (i.c.,
the fraction of disk bandwidth required for retrieving one
column of media segment C,) that are placed in unit capacity
time slots. In this more general setting, a time slot can
accommodate multiple tasks as long as their total size does
not exceed one.

The problem can be visualized as a collection of unit
capacity bins (i.e., time slots) located at the leaves of a
scheduling tree, whose structure determines the eligible bins
for each task’s subtasks (based on their period). With respect
to the previous model of tasks, the main difference is that
since slots can now accommodate multiple retrievals it is
possible for a leaf node that is already occupied to be a
candidate for a period. Hence, the basic idea for extending
the methods of the present invention to this case is to keep
track of the available slot space at each leaf node and allow
leaf nodes to be shared by tasks. Thus, the notion of
candidate nodes can simply be extended as follows: let n be
a leaf node of a scheduling tree r corresponding to period p.
Also let S(n) denote the collection of tasks (with period p)
mapped to n. The load of leaf n is defined as:
load(n)=2 5y 5i2e(C)).

Anode n at level 1 is candidate for a task of C, (with period
n,) if and only if:

1. n is internal, conditions in the previous definition of

candidate node hold, or

2. n is external (leaf node) corresponding to n; (i.e., 7,

(n)=n,), and load(n)+size (C,)=1.
With these extensions, it is easy to see that the Build-
EquidTree method can be used without modification to
produce a scheduling tree for the multi-task capacity case.

To construct forests of multiple non-colliding scheduling
trees, trees already built can be used to restrict task place-
ment in the tree under, construction. By the Generalized
Chinese Remainder Theorem, the scheduling method needs
to ensure that each subtask of task C; is assigned a slot u;
such that u;Zu; (mod ged (n;, n;)) for any subtask of any task
C, that is scheduled in slot u; in a previous tree within the

5,845,279

13

same forest. A general packing-based method set forth
below can be used for combining independently built sched-
uling forests. Of course, a forest can always consist of a
single tree. The objective is to improve to the utilization of
scheduling slots that can accommodate multiple tasks.

Given a collection of tasks, scheduling forests are con-
structed until each task is assigned a time slot. No pair of
tasks within a forest will collide at any slot except for tasks
with the same period that are assigned to the same leaf node
as described in Section 5.3. A simple conservative approach
is to assume a worst-case collision across forests. That is, the
size of a forest F; is defined as size (F;)=max,,qz £; (load (n,))
where n; is any leaf node in F;, and the load of a leaf node
is as given above. Further, a forest F; has a value: value
(Fi)=ZCJ_€Fi value (C);. Thus, under the assumption of a
worst-case collision, the problem of maximizing the total
scheduled value for a collection of forests is a traditional 0/1
knapsack optimization problem. A packing-based heuristic
as PACKSEGMENTS can be used to provide an approximate
solution.

In some cases, the worst-case collision assumption across
forests may be unnecessarily restrictive. For example, con-
sider two scheduling trees I'; and I', that are constructed to
be independently. Let ¢, be an edge emanating from the root
node n, of I'; and e, be an edge emanating from the root
node n, of I',. If e; mod (ged (n;, n,))=e, mod (ged (n, n,))
holds, then the tasks scheduled in the subtrees rooted at e,
and e, can never collide. Using such observations, more
sophisticated packing-based methods for combining forests
can be constructed.

Preliminary performance experimentation has been
undertaken to compare the average performance of the
methods introduced in by the present invention for support-
ing EPPV service. For the experiments, two basic workload
components were employed, modeling typical scenarios
encountered in today’s pay-per-view CMOD media segment
servers.

Workload #1 consisted of relatively long MPEG-1 com-
pressed media segments with a duration between 90
and 120 minutes (e.g., movie features). The display rate
for all these media segments was equal to r,=1.5 Mbps.
To model differences in media segment popularity, the
workload comprised two distinct regions: a “hot
region” with retrieval periods between 40 and 60
minutes and a “cold region” with periods between 150
and 180 minutes.

Workload #2 consisted of small media segment segments
with lengths between 2 and 10 minutes (e.g., commer-
cials or music media segments). The display rates for
these media segments varied between 2 and 4 Mbps
(ie., MPEG-1 and 2 compression. Again, segments
were divided between a “hot region” with periods
between 20 and 30 minutes and a “cold region” with
periods between 40 and 60 minutes.

Each component was executed in isolation and mixed
workloads consisting of mixtures of type #1 and type #2
workloads were also investigated. The basic performance
metric was the effectively scheduled disk bandwidth (in
Mbps) for each of the resource scheduling methods intro-
duced by the present invention. Scaleup experiments in
which the offered load (i.e., number of segments to be
scheduled) was proportionate to the system size (i.e., num-
ber of disks in the server) were concentrated upon. Further,
in all cases, the expected storage requirements of the offered
load were insured to be approximately equal to the total disk
capacity. This allowed the storage capacity constraint for the
striping-based methods to be ignored.

10

15

20

25

30

35

40

45

50

55

60

65

14

The results of the experiments, with type #1 workloads
with hot regions of 30% (a graph 1100) and 10% (a graph
1110) are shown in FIGS. 11A and 11B, respectively.
Clearly, the horizontal striping-based method outperforms
both clustering and vertical striping over the entire range of
values for the number of disks. Observe that for type #1
workloads, the maximum number of segments that can be
scheduled is limited by the aggregate disk storage.
Specifically, it is easy to see that the maximum number of
segments that can fit in a disk is 3.95 the average number of
concurrent streams for a segment is (0.3-3+0.7-1)=1.6. Thus
the maximum bandwidth that can be utilized on a single disk
for this mix of accesses is 1.6:3.95-1.5=9.48 Mbps. This
explains the low scheduled bandwidth output shown in
FIGS. 11A and 11B. Note that, in most cases, the scheduling
tree heuristics of the present invention were able to schedule
the entire offered workload of segments. On the other hand,
the performance of vertical striping methods quickly dete-
riorates as the size of the disk array increases.

The performance of the clustering method of the present
invention under Workload #1 suffers from the disk storage
fragmentation due to the large segment sizes. A deterioration
can also be observed in the performance of clustering as the
access skew increases (ic., the size of the hot region
becomes smaller). This can be explained as follows: PACK-
SEGMENTS first tries to organize the segments that give the
highest profit (i.e., the popular segments). Thus when the hot
region becomes smaller the relative value of the scheduled
subset (as compared to the total workload value) decreases.

The relative performance of the three methods for a type
#2 workload with a 50% hot region is depicted in FIG. 12A
(a graph 1200). Again, the horizontal striping-based method
outperforms both clustering and vertical striping over the
entire range of ny,. Note that, compared to type #1
workloads, the relative performance of clustering and ver-
tical striping methods under this workload of short segments
is significantly worse. This is because both these methods,
being unaware of the periodic nature of segment retrieval,
reserve a specific amount of bandwidth for every segment C;
during every round of length T. However, for segments
whose length is relatively small compared to their period,
this bandwidth is actually needed only for small fraction of
rounds. FIG. 12A clearly demonstrates the devastating
effects of this bandwidth wastage and the need for periodic
scheduling methods.

Finally, FIG. 12B depicts (in a graph 1210) the results
obtained for a mixed workload consisting of 30% type #1
segments and 70% type #2 segments. Horizontal striping is
once again consistently better than vertical striping and
clustering over the entire range of disk array sizes. Com-
pared to pure type #1 or #2 workloads, the clustering-based
method is able to exploit the non-uniformities in the mixed
workload to produce much better packings. This gives
clustering a clear win over vertical striping. Still, its waste-
fulness of disk bandwidth for short segments does not allow
it to perform at the level of horizontal striping.

In general, the period T, of a media segment C, may be
greater than its length 1,. The methods presented above for
clustering and vertical striping can be used to schedule such
media segments, however, they may be unnecessarily
restrictive.

If T>1,, then under clustering and vertical striping, the
retrieval of a media segment C; can be modeled as a
collection of periodic real-time tasks with period T,=n; T,
where each task consists of a collection of C; subtasks that
are T time units apart and have a computation time equal to
the column retrieval time. (C; is the number of columns in

5,845,279

15

C,.) Note that the only difference between this task model
and the one defined above is that the distance between
consecutive subtasks is only one time slot (rather than n ;).
The scheduling tree methods and packing-based methods of
the present invention for combining forests and trees can
easily be modified to deal with this case.

It has been assumed to this point that segments are stored
on disks using a matrix-based layout scheme. That is, each
column of a segment matrix is stored contiguously. A
column is nothing more than the total amount of data that
needs to be retrieved in a round for all concurrent display
times. Thus, the matrix-based layout provides the advanta-
geous property of reducing the disk latency overhead within
a round for all the concurrent phases to a single t,,,. On the
other hand, the scheduling and organizing methods of the
present invention can also handle conventional data layout
methods that do not exploit the knowledge of retrieval
periods during data layout.

In addition to supporting EPPV service, the tree-based
scheduling methods of the present invention can offer sup-
port for the Random Access service model described above,
which places resource reservations to allocate independent
physical channels to each individual CMOD client. Under
the Random Access service model, the maximum number of
streams that can be concurrently retrieved and, therefore, the
maximum number of concurrent clients that can be sup-
ported is limited by the available resources.

From the above, it is apparent that the present invention
provides various systems and methods of scheduling media
segments of varying display rate, length and/or retrieval
period on at least one clustered, vertically-striped or
horizontally-striped CM database volume. With respect to
the at least one clustered database volume or the at least one
vertically-striped database volume, one method includes the
steps of: (1) associating a display value and a normalized
bandwidth requirement with each of the media segments, (2)
sorting the media segments in a non-increasing order of
value density to obtain an ordered list thereof and (3)
organizing the media segments into the at least one database
volume in an order that increases a total display value of the
media segments. With respect to the at least one
horizontally-striped database volume, one method includes
the steps of: (1) associating a display value with each of the
media segments, (2) sorting the media segments in a non-
increasing order of value density to obtain an ordered list
thereof and (3) building a scheduling tree of the media
segments, the scheduling tree having a structure that
increases a total display value of the media segments.

Although the present invention has been described in
detail, those skilled in the art should understand that they can
make various changes, substitutions and alterations herein
without departing from the spirit and scope of the invention
in its broadest form.

What is claimed is:

1. A system for scheduling media segments of varying
display rate, length and retrieval period on at least one
continuous media database volume, comprising:

an associator that associates a display value and a nor-

malized bandwidth requirement with each of said
media segments;

asorter that sorts said media segments in a non-increasing

order of value density to obtain an ordered list thereof;
and

an organizer that organizes said media segments into said

at least one database volume in an order that increases
a total display value of said media segments.

2. The system as recited in claim 1 wherein said associator
further associates a normalized storage capacity with each of
said media segments.

16

3. The system as recited in claim 1 wherein said at least

one database volume is a set of clustered drives.

4. The system as recited in claim 1 wherein said at least

one database volume is a set of drives employing vertical
5 striping.

5. The system as recited in claim 2 wherein said at least
one database volume is a set of clustered drives.

6. A method of scheduling media segments of varying
display rate, length and retrieval period on at least one
continuous media database volume, comprising the steps of:

associating a display value and a normalized bandwidth
requirement with each of said media segments;

sorting said media segments in a non-increasing order of
value density to obtain an ordered list thereof; and

organizing said media segments into said at least one
database volume in an order that increases a total
display value of said media segments.

7. The method as recited in claim 6 wherein said step of
associating comprises the step of further associating a nor-
malized storage capacity with each of said media segments.

8. The method as recited in claim 6 wherein said at least
one database volume is a set of clustered drives.

9. The method as recited in claim 6 wherein said at least
one database volume is a set of drives employing vertical
striping.

10. The method as recited in claim 7 wherein said at least
one database volume is a set of clustered drives.

11. A continuous media system, comprising:

a continuous media-on-demand (CMOD) server having at

least one database volume associated therewith;

a system for scheduling media segments of varying dis-
play rate, length and retrieval period on said at least one
database volume, including:
an associator that associates a display value and a

normalized bandwidth requirement with each of said
media segments,

a sorter that sorts said media segments in a non-
increasing order of value density to obtain an ordered
list thereof, and

an organizer that organizes said media segments into
said at least one database volume in an order that
increases a total display value; and

a plurality of media receivers coupled to said CMOD
server that receive and perform selected ones of said

45 media segments.

12. The system as recited in claim 11 wherein said
associator further associates a normalized storage capacity
with each of said media segments.

13. The system as recited in claim 11 wherein said at least
one database volume is a set of clustered drives.

14. The system as recited in claim 11 wherein said at least
one database volume is a set of drives employing vertical
striping.

15. The system as recited in claim 12 wherein said at least
one database volume is a set of clustered drives.

16. A system for scheduling media segments of varying
display rate, length and retrieval period on at least one
horizontally-striped continuous media database volume,
comprising:

an associator that associates a display value with each of
said media segments;

a sorter that sorts said media segments in a non-increasing
order of display value to obtain an ordered list thereof;
and

an organizer that builds a scheduling tree of said media
segments, said scheduling tree having a structure that
increases a total display value of said media segments.

15

20

25

35

40

50

55

60

65

5,845,279

17

17. The system as recited in claim 16 wherein said
scheduling tree schedules simple periodic tasks when peri-
odic retrieval of each of said media segments consists of a
simple period task.

18. The system as recited in claim 16 wherein said
scheduling tree schedules equidistant periodic subtasks
when periodic retrieval of each of said media segments
consists of equidistant periodic subtasks.

19. The system as recited in claim 18 wherein consecutive
edges of a first-level ancestor node in said scheduling tree
are disabled.

20. The system as recited in claim 17 wherein said at least
one database volume is a set of drives employing horizontal
striping.

21. The system as recited in claim 18 wherein said at least
one database volume is a set of drives employing horizontal
striping.

22. The system as recited in claim 20 wherein said
organizer builds a plurality of scheduling trees of said media
segments.

23. The system as recited in claim 21 wherein said
organizer builds a plurality of scheduling trees of said media
segments.

24. A method of scheduling media segments of varying
display rate, length and retrieval period on at least one
horizontally-striped continuous media database volume,
comprising the steps of:

associating a display value with each of said media
segments;

sorting said media segments in a non-increasing order of
display value to obtain an ordered list thereof; and

building a scheduling tree of said media segments, said
scheduling tree having a structure that increases a total
display value of said media segments.

25. The system as recited in claim 24 wherein said
scheduling tree schedules simple periodic tasks when peri-
odic retrieval of each of said media segments consists of a
simple period task.

26. The system as recited in claim 24 wherein said
scheduling tree schedules equidistant periodic subtasks
when periodic retrieval of each of said media segments
consists of equidistant periodic subtasks.

27. The method as recited in claim 26 wherein consecu-
tive edges of a first-level ancestor node in said scheduling
tree are disabled.

28. The method as recited in claim 25 wherein said at least
one database volume is a set of drives employing horizontal
striping.

29. The method as recited in claim 26 wherein said at least
one database volume is a set of drives employing horizontal
striping.

10

15

25

30

35

45

18

30. The method as recited in claim 28 further comprising
the step of building a plurality of scheduling trees of said
media segments.

31. The method as recited in claim 29 further comprising
the step of building a plurality of scheduling trees of said
media segments.

32. A continuous media system, comprising:

a continuous media-on-demand (CMOD) server having at
least one horizontally-striped database volume associ-
ated therewith;

a system for scheduling media segments of varying dis-
play rate, length and retrieval period on said at least one
horizontally-striped database volume, including:
an associator that associates a display value with each

of said media segments,

a sorter that sorts said media segments in a non-
increasing order of display value to obtain an ordered
list thereof, and

an organizer that builds a scheduling tree of said media
segments, said scheduling tree having a structure that
increases a total display value of said media seg-
ments; and

a plurality of media receivers coupled to said CMOD
server that receive and perform selected ones of said
media segments.

33. The system as recited in claim 32 wherein said
scheduling tree schedules simple periodic tasks when peri-
odic retrieval of each of said media segments consists of a
simple period task.

34. The system as recited in claim 32 wherein said
scheduling tree schedules equidistant periodic subtasks
when periodic retrieval of each of said media segments
consists of equidistant periodic subtasks.

35. The system as recited in claim 34 wherein consecutive
edges of a first-level ancestor node in said scheduling tree
are disabled.

36. The system as recited in claim 33 wherein said at least
one database volume is a set of drives employing horizontal
striping.

37. The system as recited in claim 34 wherein said at least
one database volume is a set of drives employing horizontal
striping.

38. The system as recited in claim 36 wherein said
organizer builds a plurality of scheduling trees of said media
segments.

39. The system as recited in claim 37 wherein said
organizer builds a plurality of scheduling trees of said media
segments.

