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57 ABSTRACT

A method of estimating set-expression cardinalities over data
streams with guaranteed small maintenance time per data-
element update. The method only examines each data ele-
ment once and uses a limited amount of memory. The time-
efficient stream synopsis extends 2-level hash-sketches by
randomly, but uniformly, pre-hashing data-elements prior to
logarithmically hashing them to a first-level hash-table. This
generates a set of independent 2-level hash-sketches. The
set-union cardinality can be estimated by determining the
smallest hash-bucket index j at which only a predetermined
fraction of the b hash-buckets has a non-empty union |AUBI.
Once a set-union cardinality is estimated, general set-expres-
sion cardinalities may be estimated by counting witness ele-
ments for the set-expression, i.e., those first-level hash-buck-
ets that are both a singleton for the set-expression and a
set-union singleton. The set-expression cardinality is the set-
union cardinality times the number of witness elements
divided by the number of hash-buckets.

17 Claims, 4 Drawing Sheets
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TRACKING SET-EXPRESSION
CARDINALITIES OVER CONTINUOUS
UPDATE STREAMS

FIELD OF THE INVENTION

The present invention relates to methods of estimating set
queries, and more particularly to estimating set-expression
cardinalities on multiple data-streams.

BACKGROUND OF THE INVENTION

Traditional database management systems (DBMS) deal
with persistent data sets that are reliably stored and may be
accessed multiple times during any query. In several impor-
tant application domains, however, data arrives continuously
and needs to be processed in a single pass. Such continuous
data-streams arise naturally in a number of applications
including telecommunication networks, retail chain transac-
tions and banking automated teller machine (ATM) transac-
tions.

In order to monitor these data-streams and detect patterns
that may, for instance, indicate fraudulent use, equipment
malfunction or non-optimal configuration, it is necessary to
query these data-streams in real time using algorithms that
only have access to each data element in the stream once, in
the arbitrary order in which the data element appears in the
data-stream. Because of the limitations of the computers
doing the monitoring it is also necessary that these algorithms
use only a relatively small amount of memory. Moreover, the
need for real-time answers means that the time for processing
each element must also be small.

Estimating the cardinality of set expressions is one of the
most fundamental classes of queries. Such set expressions are
an integral part of standard structured query language (SQL)
queries, which supports UNION, INTERSECT and EXCEPT
queries. (The SQL EXCEPT query is a set-difference query).

In order to calculate set-expression cardinality, standard
SQL programs make multiple passes over complete sets of
stored data. Such algorithms are not capable of providing
answers to such queries when the data arrives in the form of
streaming data, without storing all the data.

SUMMARY OF THE INVENTION

Briefly described, the present invention is a method of
efficiently providing estimates of set-expression cardinalities
over a number of input data-streams in a way that guarantees
a small, logarithmic maintenance time per data-element
update. The method is capable of processing the cardinality of
all the SQL standard set queries, i.e., set-union, set-intersec-
tion and set-difference, only examines each data element in
the data-stream once, uses a limited amount of computer
memory, is effective on large volumes of data and can be used
on streams of updates, i.e., data-streams having both inser-
tions and deletions.

In a preferred embodiment of the present invention, a novel
optimized, time-efficient stream synopsis extends 2-level
hash-sketch methods by randomly, but uniformly, pre-hash-
ing the data-elements to a random hash-table prior to loga-
rithmically hashing them to a first-level hash-table. The ran-
dom pre-hashing allows a set of 2-level hash-sketches on
parts of the input data-streams to be generated in a way that
simplifies their maintenance, so that, upon the arrival of each
new data-element, only one hash-sketch needs to be updated.
This guarantees logarithmic maintenance time per update,
making the method applicable for rapid-rate data streams.
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A set-expression can be evaluated using the time-efficient
stream synopsis by first obtaining an estimate for the set-
union cardinality of the sets involved in the set-expression.

The set-union cardinality can be estimated using the inde-
pendent 2-level hash sketches because the probability p that
one or other of a first-level hash-bucket pair of index j contain
a distinct element after u distinct trials is given by p=1-(1-
1/R)*, where Rj:2j *1. Substituting and rearranging yields
u=log(1-p)/log(1-1/R).

An estimate of the probability p can be obtained by deter-
mining the smallest first-level hash-bucket index j at which
only a predetermined fraction of the b hash-buckets has a
non-empty union |IAUBI. This number ¢ of non-empty hash-
buckets can be used to estimate probability p as c/b. The
estimate for the set-union cardinality IAUBI is then log(1-c/
b)/log(1-1/2+4).

Once a robust estimate for a set-union cardinality is calcu-
lated, that estimate can be used to obtain an approximate
answer to general set-expression cardinalities by counting
appropriate witness elements for the set-expression in the
time-efficient stream synopsis.

A witness element is a first-level hash-bucket that is both a
non-empty singleton for the set-expression being estimated
and is also a singleton for the union of the sets involved in the
set-expression. If |E| represents the cardinality of a set-ex-
pression E, and |Ul| represents the cardinality of the union of
sets involved in E, then the probability p of finding a witness
of the set-expression among the singletons for the set-union
can be shown to be p=IEI/IUI.

An estimate for p, can be obtained by counting the number
of witness elements s' as a proportion of the total number of
hash buckets s that are singleton for a union over the corre-
sponding first-level sketches at an appropriate hash index.

The estimate of the set-expression cardinality |E| is then
given by IUI. s'/s.

These and other features of the invention will be more fully
understood by references to the following drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of an update stream
processing architecture.

FIG. 2 is a schematic representation of a basic 2-level hash
sketch synopsis data structure.

FIG. 3 is a schematic representation of a time-efficient
hash-sketch stream synopsis.

FIGS. 4a-c show experimental results giving the average
relative error in estimating a) set-intersection cardinality, b)
set-difference cardinality and c) in evaluating the set-expres-
sion cardinality for the set-expression [(A-B)NCI.

DETAILED DESCRIPTION

The present invention relates to methods of efficiently pro-
viding estimated answers to set-expression cardinalities over
multiple data-streams in a way that guarantees a small, loga-
rithmic maintenance time per data update. Furthermore, the
methods are space efficient, deal with full fledged set-expres-
sions, including the SQL standard UNION, INTERSEC-
TION and DIFFERENCE queries, and operate on general
data-streams, including update streams having deletion and
insertion operations. As with all effective data-stream meth-
ods, the methods only need to examine each data element
once and may provide the estimate in real time using limited
computer memory.

Estimating the cardinality of set expressions is one of the
most fundamental classes of query, and it is highly desirable
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to be able to answer this class of queries defined over several,
distributed updatable data-streams. Questions of interest
include queries such as, but not limited to, “what is the num-
ber of distinct Internet Protocol (IP) source addresses seen in
passing packets of information from two routers R1 and R2
but not from a third router R3?”

It is, therefore, highly desirable to be able to estimate the
cardinality of such set expressions over a number of input
data-streams and provide reasonably accurate approximate
answers to the queries when the data is arriving in a data-
stream and each data element can only be examined once. The
processing algorithms need to be capable of dealing with all
forms of set-expression queries, including set-expressions
comprising one or more set union, set intersection and set
difference operators, and the answer needs to be provided in
real time using limited computer memory.

Furthermore, it is highly desirable that the time to process
each data-element as it arrives is small, as in a rapid-rate
update data environment, the limiting resource may not be the
computer memory available to store data required for the
estimate but may be the time required to update the stored
data

In the present invention, a 2-level hash sketch synopsis data
structure is used to provide low-error (¢€), high confidence ()
estimates for set-expression cardinalities, including set-
union, set-intersection and set-difference cardinalities, over
continuous update streams, i.e., data-streams having both
insertions and deletions of data-elements, in a single pass as
described in detail, in for instance, the article written by S.
Ganguly et al. entitled “Processing Set Expressions over Con-
tinuous Update Streams” published in the “Proceedings of the
2003 ACM SIGMOD International Conference on Manage-
ment of Data, San Diego, Calif., USA, Jun. 9-12, 2003”,
edited by A. Halevy et al. and published by Association for
Computing Machinery (ACM), New York, N.Y. 2003, ISBN
1-58113-634-X, pp 265-276, the contents of which are
hereby incorporated by reference, and hereinafter referred to
as “Ganguly et al. I”.

A practical problem with the methods detailed in Ganguly
etal. Iisthat all the independent 2-level hash sketch structures
have to be updated for each new data-element that arrives.
The time required to maintain the synopsis is, therefore,
essentially proportional to the number of sketches. As the
accuracy of the estimation is also dependent on the number of
independent 2-level hash sketches, there are a significant
number of them and the maintenance time per update is
significant.

Having a synopsis that takes a significant time to update is
aproblem in a rapid-rate update data environment, where the
limiting resource may not be the computer memory available
for storing sketches but may instead be the synopsis update
time. In a preferred embodiment of the present invention, a
novel optimized, time-efficient stream synopsis that extends
the 2-level hash sketches of Ganguly et al [ is used to provide
estimated set-expression cardinalities with strong accuracy
space guarantees, while requiring only logarithmic mainte-
nance time per update, making it applicable for rapid-rate
data streams. This novel optimized, time-efficient stream syn-
opsis is described in detail in, for instance, the article by S.
Ganguly et al, entitled “Tracking set-expression cardinalities
over continuous update streams”, published in The VLDB
Journal: The International Journal on Very Large Databases,
Vol. 13, No. 4, December 2004, pp. 354-369, published by
Springer-Verlag, Heidelberg, 2004, the entire contents of
which are hereby incorporated by reference, and which is
hereinafter referred to as Ganguly et al II.
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Before describing this preferred embodiment, an exem-
plary embodiment that illuminates the basic concepts used in
estimating set-expression cardinalities with sketch synopses
will be described in detail by reference to the accompanying
figures in which, as far as possible, like numbers represent
like elements.

FIG. 1 is a schematic representation of an update stream
processing architecture 10, comprising data-streams 12, a
synopsis maintenance algorithm 14, a synopsis 16 for each
data-stream 12, a computer memory 18, a set-expression
cardinality query 20, a set-expression estimator 22 and an
estimated answer 24 to the query. The synopsis 16 is stored on
the computer memory 18.

TheA, , data-streams 12 are all unordered sequences of
elements. The element values may themselves be vectors or
have vectors associated with them. These vectors may include
values that indicate if the data elements are to be inserted or
deleted from the respective data-streams.

In contrast to conventional database management systems
(DBMS), the synopsis maintenance algorithm 14 only sees
each data element in streams 12 once and in the fixed order in
which the elements happen to arrive. The order of element
arrival in each stream is arbitrary, and elements with duplicate
values can occur anywhere over the duration of the stream.

The computer memory 18 is small compared to the number
of data elements in the data-streams and is used to maintain a
concise and accurate synopsis of each data-stream 12. The
main constraints on each synopsis are (1) that it is much
smaller than the total number of data elements (also known as
“tuples”) in the data stream, in particular that its size is loga-
rithmic or poly-logarithmic with respect to the size of the
data-stream, (2) that the synopsis can be computed in a single
pass over the tuples in the data-stream, in any, arbitrary order
of'their arrival and (3) that the time to update each synopsis is
small. Furthermore, at any point in time, the set-expression
estimator 22 must be able to combine the maintained synop-
ses to produce an approximate answer to a set-expression
cardinality query 20.

FIG. 2 shows a schematic representation of a 2-level hash-
sketch 28, described in detail in Ganguly, comprising a first-
level hash-table 38 having hash-buckets 30 and a counter
array 32 for each hash-bucket 30. The counter array 32 com-
prises a total element count 34 and one or more bit location
counts 36. A data-element e from data-stream 12 is hashed to
a hash-bucket 30 using a hash function h. The mapping to
hash-buckets may operate on the least significant bits of the
hash function h,, image, i.e. on the least significant bit of the
result ofthe data-element e after it has been operated on by the
hash function. Hash-table 38 has O(log M) hash-buckets 30,
where M is the size of the domain of the data-elements e. Hash
function h is chosen so that the probability of hashing to a
particular hash-bucket 30 decreases exponentially with the
index of the hash-bucket 30, as detailed in, for instance,
Ganguly etal. [ & 1.

For the collection of elements mapping to a particular
hash-bucket 30, a counter array 32 is maintained. The counter
array 32 comprises a total element count 34, which tracks the
net total number of data-elements e that map into that bucket,
and log(M) bit location counts 36. The bit location count 36
records the total number of “1” bits for each particular bit in
the binary representations of the data-elements e that map
into the bucket.

The algorithm for maintaining a 2-level hash-sketch 28
synopsis over a stream of updates is fairly simple. The sketch
structure is first initialized to all zeros and, for each incoming
update <i, e, *_v>, (i.e., data element in stream i having
domain value e being either an insertion or deletion of value
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v), the element counters at the appropriate locations of the
sketch are updated, as detailed in, for instance, Ganguly et al.
1&1L

The set-expression estimator 22 relies on checking certain
elementary properties of the 2-level hash sketch 28, including
if a bucket is empty, if the bucket contains a singleton, i.e., if
only one distinct element has been mapped to the bucket, as
well as checking properties between two sketch synopses on
different data-streams, such as checking if corresponding
hash-buckets for the two data-streams are identical singleton
buckets, or if the union of the corresponding hash-buckets is
a singleton. Exemplary algorithms for obtaining these
elementary properties will now be described in detail by
reference to the following procedures.

TABLE 1

Procedure EmptyBucket

procedure EmptyBucket( 5, i )
Input: 2-level hash sketch y, first-level bucket index i.
Output: true iff i bucket of y is empty.

begin

1. if (y[i, 0] = 0) return(true)
2. else return(false)

end

Procedure EmptyBucket simply examines the i th hash-
bucket of a 2-level hash-sketch y and, if the total element
count 34 is zero, reports that the bucket is empty.

TABLE 2

Procedure SingletonBucket

procedure SingletonBucket( 3, i )
Input: 2-level hash sketch ¥, first-level bucket index i.
Output: true iff i bucket of y is a singleton.

begin

1. if (EmptyBucket(y,, 1)) return(false) // bucket is empty

2 unique := true; j =1

3 while (unique and j = log M ) do

4. if ([i,j] > 0 and y[i, 0] > %[i, j] ) then

5. unique := false // at least two elements in bucket
6 j=j+1

7 endwhile

8. return(unique)

end

Table 2 shows the steps of the procedure SingletonBucket
which checks to see if a particular first-level hash-bucket 30 is
a singleton. A singleton hash-bucket is one that contains only
one distinct element, i.e., one or more occurrences of the same
data-element e.

In line 1, procedure SingletonBucket first uses procedure
EmptyBucket to check that the hash-bucket 30 is not empty. If
the hash-bucket 30 is not empty, procedure SingletonBucket
continues by checking the counter array 32 associated with
the hash-bucket 30. The total element count 34 is represented
by x[i, 0] and the log(M) bit location counts 36 are repre-
sented by ¥[i, 1] . . . ¥[i, log(M)] where i is the hash-bucket
index. In steps 3-7, procedure SingletonBucket loops through
the bit location counts 36. If all the bit location counts 36 are
either zero or equal to the total element count 34, then the
hash-bucket 30 contains a singleton, i.e., it contains one or
more instances of a single, distinct data-element e.
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TABLE 3

Procedure IdenticalSingletonBucket

procedure IdenticalSingletonBucket( %4, %z, 1)
Input: 2-level hash sketches 34, %z, first-level bucket index i.
Output: true iff the i buckets in %, and ) contain the

same singleton element.

begin
1. if (not Singleton Bucket(y4, i)) or
(not SingletonBucket(yz, 1)) then
2. return(false)
3. same := true; j := 1
4. while ( same and j = log M ) do
5. if ( (5ll, J]1 > 0) = (a[l, j] > 0) ) then
6. same := false // differ in at least one bit-location
7. j=j+1
8. endwhile
9. return(same)
end

Table 3 shows the steps of the procedure IdenticalSingle-
tonBucket. This procedure checks a pair of corresponding
hash-buckets 30 in two 2-level hash-sketches, built over two
distinct data-streams 12 to see if they contain identical single-
tons. In step 1, the procedure first uses procedure Singleton-
Bucket to check that both hash-buckets 30 contain singletons.
In step 4-7, procedure IdenticalSingletonBucket loops
through the two counters 32 contained in the corresponding
pair of hash-buckets 30 and checks that each of the corre-
sponding bit-location counts 36 is identical, and reports an
identical singleton if this condition is satisfied.

TABLE 4

Procedure SingletonUnionBucket

procedure SingletonUnionBucket( %4 %z, 1 )
Input: 2-level hash sketches y 4, %, first-level bucket index i.
Output: true iff the union of i buckets in %, and yz is a

singleton.

begin

1. if ( (SingletonBucket(y,4, i) and EmptyBucket(yz, i))
or (SingletonBucket (), 1) and EmptyBucket(y4, 1)) )
then

2. return(true) // one singleton and one empty bucket

3. else return(IdenticalSingletonBucket(y 4, %z, 1))

end

Table 4 shows the steps of procedure SingletonUnion-
Bucket which checks a pair of corresponding hash-buckets 30
in two 2-level hash-sketches built over two distinct data-
streams 12 to see if the union of the two hash-buckets is a
singleton. This can occur either if one of the hash-buckets
contains a singleton and the other is empty, which is checked
for in lines 1, or if the two hash-buckets both contain the same
singleton, which is checked for in line 3 using the procedure
IdenticalSingletonBucket.

These elementary property checks can be used as basic
steps in estimating set-expression cardinalities over data-
streams, such as the set-union cardinality. The set-union car-
dinality IAUBI of sets A and B may be defined as the number
of distinct elements with positive net frequency in either A or
B.

An estimate of the set-union cardinality of data-streams A
and B can be obtained using 2-level hash-sketch synopses y ,
and y 5, with an error € and a confidence 0 by considering the
following analysis, which is proved in Ganguly.

First, build a family of r independent 2-level hash-sketch
pairs in parallel over A and B, each using independently
chosen hash functions h, and in which each parallel pair uses
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the same hash function. Then determine the smallest first-
level index of hash-bucket 30 at which only a predetermined
fraction of the r hash-buckets has a non-empty union |AUBI.
This number of non-empty hash-buckets can be used to esti-
mate the set-union cardinality.

The estimate is possible because for any given hash-bucket
of'index j in the hash-table 38, the hash function h has been
selected so that the probability of an element hashing to that
bucket is 1/27*!. Or if we use the substitution R;=2*', the
probability may be represented as 1/R;. The probability that
any element does not hash to a given hash-bucket of index i is
therefore 1-1/R. After u distinct elements have been hashed,
the probability that none has hashed to a particular bucket,
ie., that the bucket is empty is (1-1/R)“. Therefore, the
probability that a particular bucket is non-empty, i.e., that it
contains at least one distinct element, is 1-(1-1/R )*.

Therefore, the probability p that one or the other hash-
bucket of a hash-bucket pair of index j is non-empty after u
distinct trials, where u is the number of distinct elements in
the sets A and B, i.e., u=|AUBI, is given by p=1-(1-1/R )",
where R, =2 *+1 Substituting and rearranging yields u=log(1-
p)/log(1-1/R).

An estimate of the probability p that one or the other of a
hash-bucket pair of index j is non-empty can be obtained by
counting the number ¢ of non-empty hash-buckets at a par-
ticular index level j, and dividing by the number of indepen-
dent hash-sketches r that have been used, i.e., p=c/r. By mak-
ing the number of independent hash-sketches r=0((log(1/8)/
€), and selecting the lowest indexed hash-level at which the
number of non-empty bucket counts is less than or equal to
(14€)r/8, an estimate with error € and confidence d can be
obtained, as detailed in, for instance, Ganguly.

TABLE §

Procedure SetUnionEstimator.

procedure SetUnionEstimator( {X"A, Xig i=1, ..., €)

Input r independen2-level hash sketch pairs {XiA, X‘g} for

streams A and B, relative accuracy parameter €.
Output: Estimate for [A U BI.

begin

1. f:=(1+ey/8

2. index:=0

3. while (true ) do
4. count =0

5. fori:=1tordo
6.

if ( not EmptyBucke(XiA, index) ) or
( not EmptyBucket(X‘g, index) ) then

7. count := count +1
8. endfor
9. if (count = f) then break // first index s.t. count = f
10. else index := index +1
11. endwhile
12. p:=count/r;R := 2index+l
B ( log(1 —p) ]
return el —1/B)
end

Table 5 shows the steps of procedure SetUnionEsimator.
Procedure SetUnionEstimator estimates the set-union over a
pair of data-streams A and B by taking r independent 2-level
hash-sketch pairs built in parallel for both data-streams A and
B. In step 1, the procedure calculates a pre-determined count
limit f based on the required error € and the number of inde-
pendent hash-sketches r. The procedure then starts with the
lowest indexed hash-buckets and counts the number of cor-
responding pairs of hash-buckets over data-stream A and B
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for which either of the hash-buckets is not empty. The counter
count is incremented each time this condition is satisfied. In
step 9, the procedure checks to see if count is less than or
equal to f. If not, the procedure increments the hash index and
repeats the process at the next level of hash buckets. If count
is of the right size, then in step 12, the procedure estimates the
probability as p=count/r and sets R=2"%**! 1In step 13, the
procedure then returns an estimate of the set-union cardinal-
ity, i.e., estimated as |AUBI=log(1-p)/log(1-1/R).

As described in detail in for instance, Ganguly, once a
robust estimate for a set-union cardinality is calculated, that
estimate can be used to estimate general set-expression car-
dinalities by counting appropriate witness elements for the
set-expression in the hash-sketch synopses. A witness ele-
ment is a hash-bucket that is both a non-empty singleton for
the set-expression being estimated and is also a singleton for
the union of the sets involved in the set-expression.

If IEI represents the cardinality of a set-expression E, and
[Ul represents the cardinality of the union of sets involved in
E, then the probability p. of finding a witness of the set-
expression among the singletons for the set-union can be
shown to be p~IEl/IUl, as detailed in, for instance, Ganguly.

Having found an estimate for the set-union cardinality |Ul,
an appropriate hash index level j at which to count witness
elements in the r independent 2-level hash-sketches can be
shown to be given by the expression j=[log((f.u)/(1e))],
where [ is a constant that is greater than one and u is the
estimate of [Ul.

TABLE 6

Procedure AtomicDiffEstimator.

procedure AtomicDiffEstimatof X’ iA, X }a, 1, €e)

begin
Lo Bt 4 4
index := [log T— // B is constant > | (see analysis)
if ( not SingletonUnionBucket( XiA, X‘ﬁ, index) ) then

3. return( noEstimate)
4. estimate := 0
5

if ( SingletonBucke(XiA, index) and
EmptyBucket(X] ig, index) ) then

6. estimate := 1 // found witness of A - B
7. return( estimate )
end

Table 6 shows the steps in procedure AtomicDiffEstimator
that examines two 2-level hash-sketch synopses y, and ¥z,
for witness elements for the set-difference cardinality |A-BI,
i.e., the number of distinct element values whose net fre-
quency is positive in set A and zero in set B. The witness
element for this set-expression cardinality are the corre-
sponding pairs of hash-bins which are both singletons for the
union of A and B and singletons for the difference of A and B,
i.e., singletons for A and empty for B.

Inline 1 of AtomicDiftEstimator an appropriate index level
at which to examine the corresponding first-level hash buck-
ets is calculated.

In line 2, the procedure SingletonUnionBucket is used to
check that the pair of hash-buckets selected is singleton for
the union of A and B. If this condition is satisfied, then the
data-stream A hash-sketch synopsis is examined to see if it is
a singleton, while the data-stream B hash-sketch synopsis is
examined to seeifit is empty. Ifthis condition is also satisfied,
then this pair of hash-buckets is indicated as being a witness
element for the set-difference of the data-streams.



US 7,596,544 B2

9

TABLE 7

Procedure SetDifferenceEstimator

procedure SetDifferenceEstimator({y /, %z :i=1,..,1},1,€)

Input: r independent 2-level hash sketch pairs {3/, %5’} for
streams A and B, set-union cardinality estimate 1, relative
accuracy parameter €.

Output: Estimate for [A - BI.

begin

1. sum := count := 0

2. fori:=1tordo

3. atomicEstimate := AtomicDiffEstimator( 3/, %z, U, €)
4. if ( atomicEstimate = noEstimate) then

5. sum := sum + atomicEstimate; count := count + 1
6. endif

7. endfor

8. return{ sum x U / count )

end

Table 7 shows the steps of procedure SetDifferenceFsti-
mator which estimates the cardinality of the set-difference of
data-streams A and B, given r independent 2-level hash-
sketch pairs for the streams, a set-union cardinality estimate
and a required relative accuracy parameter.

In steps 2-7, procedure SetDifferenceEstimator loops
through the r independent hash-sketch pairs, and uses proce-
dure AtomicDiffEstimator to count witness events for the
set-difference at the appropriate hash index level.

In step 8, an estimate of the set-difference cardinality is
returned as the calculated probability of witness events, i.e.,
the number of witness events found divided by the number of
discovered singletons for the set-union of A and B, multiplied
by the set-union estimate for the two data-streams.

A similar procedure can be used for other set-expressions
by selecting the appropriate witness conditions. For instance,
to estimate the set-intersection cardinality of the data-streams
A and B, only step 5 of the procedure AtomicDiffEstimator
needs to be altered to read: “if (SingletonBucket(y,) and
SingletonBucket(y;)) then” to obtain a procedure for an
atomic set-intersection estimation algorithm, which may be
called AtomiclnstersectEstimator.

The estimation procedure described above can, in fact, be
generalized to formulate estimations for the cardinality of
general set-expressions over a collection of update streams
Ai, I=1, ..., n. Such set expressions are of the generic form
B:=(((A0p,Az)op,As) - . . A,), where the connectives op;
denote the standard set operators, namely, union, intersection
and set difference.

The general set-expression estimator is similar to the set-
difference and set-intersection algorithms. First, a robust esti-
mate of the set-union cardinality over all the streams partici-
pating in the set-expression E to be estimated, is obtained.
This estimate of set-union cardinality is used to select an
appropriate first-level hash bucket index to use. The general
set-expression estimation then discards all parallel 2-level
hash sketch collections for which the bucket is not singleton
over the set-union. As detailed in Ganguley et al 1 and 11, the
set expression is then transposed into a Boolean condition
B(E) using the following definitions, in which B(E) is true if
the bucket to which it refers is non-empty:

E=E,UE,: Define B(E):=B(E,)VB(E,) (i.e., the disjunc-
tion of the sub-expressions B(E, ) and B(E,);

E=E,NE,: Define B(E):=B(E,)AB(E,) (i.e., the conjunc-
tion of the sub-expressions B(E,) and B(E,); and

E=E,-E,: Define B(E):=B(E,)ANOT(B(E,)) (i.e., must
satisfy B(E,) but not B(E,,).

The Boolean condition B(E) essentially corresponds to the
witness condition described above.
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The cardinality of the expression |E| can then be estimated,
because, as proved in Ganguley et al 1 and 11, the probability
Pz that the witness condition is true is given, at a given hash
index level, by the ratio of the probability of a bucket being a
non-empty singleton for the set-expression over all the data-
streams over the probability of the bucket being a set-union
singleton over al the data-streams, which in turn can be shown
to be equal to the set-expression cardinality over the set-union
cardinality, i.e., [EI/IUl. As, using algorithms essentially simi-
lar to those detailed above, the first-level hash functions can
be used to find an estimate for p,, and [Ul can also be esti-
mated in a similar fashion, |E| can be estimated.

A problem with the methods discussed so far, all of which
employ a collection of 2-level hash sketches for set-expres-
sion estimates over update streams, is that the time required to
maintain the stream synopsis for each arriving update is
essentially proportional to the number r of independent
2-level hash sketches. This is due to all the independent
2-level hash sketch structures having to be updated on the
arrival of each data-element.

Reducing the time taken to update the synopsis for each
new data-element is particularly important in rapid-rate data-
stream processing environments and when estimates are
required in real-time.

In a preferred embodiment of the present invention, a time
efficient hash-sketch stream synopsis, in which the data-ele-
ments are randomly pre-hashed, is used to provide estimates
to set-expression cardinalities. The random pre-hashing
allows the necessary set of 2-level hash-sketches on parts of
the input stream to be generated in a way that their mainte-
nance is simplified, so that on the arrival of each new data-
element, only one hash-sketch needs to be updated.

FIG. 3 is a schematic representation of the time efficient
hash-sketch stream synopsis 40, comprising a random hash-
table 42, having b random hash-buckets 44, and b associated
2-level hash-sketches 28. A hash function g maps the data-
elements e randomly to one of the b random hash-buckets 44.

A 2-level hash-sketch 28 is maintained for each of the b
random hash-buckets 44. Data-elements that hash to each
random-hash bucket 44 are then hashed to the corresponding
2-level hash-sketch 28 using a hash function h. The mapping
to hash-buckets may operate on the least significant bits of the
hash function h,, image, i.e. on the least significant bit of the
result ofthe data-element e after it has been operated on by the
hash function. Hash-table 38 has O(log M) hash-buckets 30,
where M is the size of the domain of data-elements e. Hash
function h is chosen so that the probability of hashing to a
particular hash-bucket 30 decreases exponentially with the
index of the hash-bucket 30.

For the collection of elements mapping to a particular
hash-bucket 30, a counter array 32 is maintained. The counter
array 32 comprises a total element count 34, which tracks the
net total number of data-elements e that map into that bucket,
and log(M) bit location counts 36. The bit location counters
count the total number of a particular bit of a binary repre-
sentation of the data-element e that maps into the bucket.

The algorithm for maintaining the time efficient hash-
sketch stream synopsis 40 requires that only one 2-level hash-
sketch has to be updated for each arriving data element. Thus,
even though the synopsis may still comprise a large number of
2-level hash sketches, spread across the b hash-buckets, only
one sketch needs to be updated for each arriving data-cle-
ment, guaranteeing a small, logarithmic update time.

The set-expressions can be evaluated in a manner similar to
that described before, except that now the algorithms iterate



US 7,596,544 B2

11

over sketches built over the b randomly generated portions of
the data-streams, rather than the r independent sketches built
over the entire data-streams.

To obtain an estimate of the set-union cardinality, the algo-
rithm SetUnionEstimator in table 5 may be used, but with the
lower bound in step 1 calculated using b rather thanr, and with
the iteration in step 5 being over the b randomly generated
2-level hash-sketches rather than over the r independently
replicated hash-sketches. Similarly in step 12, the probability
is then the count divided by b.

TABLE 8

Procedure BucketDiffEstimator.

procedure BucketDiffEstimatorf X o[i], Xg[il, G, € )

begin
1. dexoe 1 ( 2.4 ]
index:= |log TR

2. if ( not SingletonUnionBucketX a[i], X's[i], index) )then

3. return( noEstimate)

4. estimate :=0

5. if ( SingletonBucke(X 4 [i], index) and
EmptyBucketXg[i], index) ) then

6. estimate := 1 // found witness of A - B

7.  return( estimate )

end

Table 8 shows the steps of procedure BucketDiftEstimator.
The main difference between procedure BucketDiffEstima-
tor and the related procedure AtomicDiffEstimator, is in line
1. in which the index of the hash-buckets to examine is cal-
culated. As detailed in Ganguly, this difference is due, in part,
to the fact that the various portions of the set-union cardinality
u, mapping to each hash bucket i over the time-efficient hash
sketch synopsis are, due to the randomizing properties of the
g hash function, themselves random variables, leading to
different requirements on the number of independent hash-
sketches b required to satisfy the error and confidence
requirement of the cardinality estimate. These differences
result in the index choice shown in line 1 of procedure Buck-
etDiffEstimator, as detailed in Ganguly et al. II.

TABLE 9

Procedure HashDifferenceEstimator

procedure HashDifferenceEstimator( y4, %z, U, € )

Input: Time-efficient hash-sketch synopses pair 4, %z(each
comprising b buckets) for streams A and B, set-union
cardinality estimate 1, relative accuracy parameter €.

Output: Estimate for [A - BI.

begin

1. sum := count := 0

2 fori:=1tobdo

3 bucketEstimate := BucketDiffEstimator(y,4[i], %z[i], U, €)
4 if ( bucketEstimate = noEstimate) then

5. sum := sum + bucketEstimate; count := count +1

6 endif

7 endfor

8. return( sum x U/ count )

end

Table 9 shows the steps of procedure HashDifferenceEsti-
mator. This procedure takes two time-efficient hash-sketch
synopses pairs, each having b random hash-buckets, a set-
union cardinality estimate for the two data-streams and a
required relative accuracy parameter. Using the procedure
BucketDiffEstimator, HashDifferenceEstimator counts the
number of witness elements for the set-difference condition at
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the appropriate hash-bucket index level. In line 8, the estimate
of the set-difference cardinality is returned as being equal to
the set-union estimate multiplied by the number of witness
elements found and divided by the number of discovered
elements at are singleton for set-union in the b hash buckets.

Similar procedures allow the time-efficient hash-sketch
synopses to be used for estimating general set-expression
cardinalities, including set-intersection cardinalities by mak-
ing sure that line 5 of BucketDiffEstimator is changed to
reflect the set-expression being estimated. For instance, in the
case of a set-intersection cardinality, line 5 of procedure
BucketDiffEstimator should be changed to read: “if(Single-
tonBucket y ,[i] and SingletonBucket y 5[] to reflect locat-
ing a singleton in the set-intersection of the hash-bin pairs,
and therefore, as the union of the two buckets has already
been determined to be a singleton in line 2, is a witness
element for the set-intersection cardinality.

The hash based method can be generalized to obtain esti-
mates for cardinalities of generalized set-expressions as
detailed above. The general method for estimating a set-
expression cardinality over one or more update streams
essentially begins by randomly hashing one or more data
elements from said update streams to on or more random hash
tables having random hash buckets. The data elements are
then logarithmically hashed from the random hash buckets to
a logarithmic hash table. A probability of the corresponding
logarithmic hash bins being singleton union at a selected
logarithmic hash table index level is then measured.

Using this probability of corresponding logarithmic hash
bins being singleton union and the selected index level, an
estimate of the set-union cardinality over the data-streams can
be made, as detailed above. Then, by measuring the probabil-
ity of corresponding hash bins being singleton set-expres-
sions and singleton union at a second selected logarithmic
hash table index level, an estimate of the set-expression car-
dinality over the data-streams can be made using said prob-
ability of the corresponding hash bins being singleton set-
expression and singleton union and the estimated set-union
cardinality, as detailed above and in Gangule et al. II.

For two data streams, the method consists essentially of cre-
ating a two hash-sketch synopsis each of which has a random
hash-table and a first-level hash table for each hash-bucket of
the random hash-tables. These hash-sketch synopsis may be
maintained by using the data elements from their respective
data-streams. By obtaining a set-expression singleton count
over both hash-sketches, and estimate of the set-expression
cardinality can be made.

As described above, creating the hash-sketch synopsis
includes creating a 2-level hash sketch for each of the random
hash-tables, the 2-level hash sketch essentially being the first-
level hash-table, and a counter array for each hash-bucket of
the first-level hash-table. The sketch maintenance comprises
randomly hashing data elements from the data-element
domain, or data-stream, to the random hash-buckets, and then
logarithmically hashing the data-element from the random
hash-bucket to the first-level hash-buckets. The logarithmic
hash functions are selected so that the probability of logarith-
mically hashing a data-elements to a first-level hash-bucket
decreases exponentially with the index of'the first-level hash-
bucket. The logarithmic hashing may comprise mapping to a
logarithmic hash-bucket using a least significant bit of a
binary representation of a logarithmic hash image of the
data-element, as detailed in Ganguley et al. I1.

FIG. 4a shows experimental results of using the 2-level
hash-sketches to estimate set-intersection cardinality IANBI
between two data streams. The graph shows the relative error
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of the estimate plotted against the space used to store
sketches, measured in sketches, for three different expression
sizes. The relative error decreases with both increased expres-
sion size and with the number of sketches used. With 250
sketches, the relative error is around 20% or less. With 500
sketches, the relative error is less than 10%.

FIG. 4b shows experimental results of using the 2-level
hash-sketches to estimate set-difference cardinality |A-BlI
between two data streams. The graph shows the relative error
of the estimate plotted against the space used to store
sketches, measured in sketches, for three different expression
sizes.

FIG. 4b shows experimental results of using the 2-level
hash-sketches to estimate set-expression cardinality
I[(A-B)NCI between three data streams.

The above-described steps can be implemented using stan-
dard well-known programming techmques. Software pro-
gramming code which embodies the present invention is typi-
cally stored in permanent memory of some type, such as
permanent storage of a workstation located at Bell Labs of
Lucent Technologies in Murry Hill, N.J. In a client/server
environment, such software programming code may be
stored in memory associated with a server. The software
programming code may be embodied on any of a variety of
known media for use with a data processing system, such as a
diskette, or hard drive, or CD-ROM. The code may be dis-
tributed on such media, or may be distributed to users from
the memory or storage of one computer system over a net-
work of some type to other computer systems for use by users
of such other systems. The techniques and methods for
embodying software program code on physical media and/or
distributing software code via networks are well known and
will not be further discussed herein.

It will be understood that each element of the illustrations,
and combinations of elements in the illustrations, can be
implemented by general and/or special purpose hardware-
based systems that perform the specified functions or steps, or
by combinations of general and/or special-purpose hardware
and computer instructions.

These program instructions may be provided to a processor
to produce a machine, such that the instructions that execute
on the processor create means for implementing the functions
specified in the illustrations. The computer program instruc-
tions may be executed by a processor to cause a series of
operational steps to be performed by the processor to produce
a computer-implemented process such that the instructions
that execute on the processor provide steps for implementing
the functions specified in the illustrations. Accordingly, the
figures support combinations of means for performing the
specified functions, combinations of steps for performing the
specified functions, and program instruction means for per-
forming the specified functions.

Although the invention has been described in language
specific to structural features and/or methodological acts, it is
to be understood that the invention defined in the appended
claims is not necessarily limited to the specific features or acts
described. Rather, the specific features and acts are disclosed
as exemplary forms of implementing the claimed invention.

What is claimed is:

1. A method of obtaining an estimate of a set-expression
cardinality relating to at least a first and second data-stream,
the method comprising the steps of:

using a database management system comprising a com-

puter for:

creating a first hash-sketch synopsis for the first data
stream and a second hash-sketch synopsis for the
second data stream, each hash-sketch synopsis com-

20

25

30

35

40

45

50

55

60

65

14

prising a random hash-table and a 2-level hash sketch
for each hash-bucket of said random hash-tables, said
2-level hash sketch comprising a first-level hash-table
and a counter away for each hash-bucket of said first-
level hash-table;
pre-hashing said first and second data-streams into said
first and second random hash tables, respectively;
hashing individual buckets of said random hashing
tables to the corresponding 2-level hash sketch for
each of those buckets;
maintaining said first and said second hash-sketch syn-
opsis using one or more data elements from said first
and second data-streams respectively;
obtaining a set-expression singleton count over said first
and second hash-sketch; and
estimating said set-expression cardinality estimate
using said set-expression singleton count.
2. The method of claim 1 wherein said maintaining said
step of first and second hash-sketch synopsis comprises the
steps of:
randomly hashing said data element from the data-element
domain to said random hash-bucket; and

logarithmically hashing said data-element from said ran-
dom hash-bucket to said first-level hash-bucket, and
wherein the probability of logarithmically hashing said
data-elements to said first-level hash-bucket decreases
exponentially with the index of said first-level hash-
bucket.

3. The method of claim 2 wherein said step of logarithmi-
cally hashing comprises mapping to a logarithmic hash-
bucket using a least significant bit of a binary representation
of a logarithmic hash image of said data-element.

4. The method of claim 3 wherein said 2-level hash struc-
ture counter allay comprises a total element count and one or
more bit-location counts.

5. The method of claim 4 wherein said step of obtaining a
set-expression singleton count over said first and second
hash-sketch comprises the steps of:

determining if said first-level hash bucket contains a

singleton by comparing said total element count to one
or more of said bit-location counts.

6. The method of claim 5 wherein said determining if said
first level hash bucket contains a singleton further comprises
checking if all of said bit-location counts are either zero or
equal to said total element count.

7. The method of claim 2 wherein said set expression is a
union of said first and second data-streams; and wherein said
step of obtaining a set-expression singleton count over said
first and second hash-sketch comprises the steps of:

determining a smallest first-level hash-bucket index i at

which the number of non-empty hash-buckets is less
than or equal to a predetermined value; and

generating a set-union cardinality estimate of said first and

second data-streams using said index i and said number
of none empty hash buckets.

8. The method of claim 7 wherein said number of non-
empty hash-buckets is given by a count ¢ of corresponding
pairs of said first-level hash-buckets in which either hash-
bucket is non-empty.

9. The method of claim 8 wherein said predetermined value
is (1+€)b/8, where € represents a relative error guarantee, b is
the number of hash buckets in the random hash table; and
wherein said estimate of cardinality of said union is log(1-c/
b)log(1-1/2i1).

10. The method of claim 2 further comprises the step of:

calculating an estimate of set-union cardinality over said

first and second data-streams;
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selecting an hash index level of said first-level hash-table
using said estimate of set-union cardinality;

discovering a first number of said first-level hash-buckets
at said hash index level which are singletons for set-
union over said first and second data-streams;

counting a second number of said first-level hash-buckets

at said hash index level which are set-union singletons
and which are also set-expression witness elements for
said first and second data streams; and

using said set-union cardinality estimate and said first and

second number of first-level hash-buckets to provide
said set-expression cardinality estimate.

11. The method of claim 10 wherein said set-expression
cardinality estimate is provided by said number of said set-
union cardinality estimate multiplied by said second number
of first-level hash buckets and divided by said first number of
hash buckets.

12. The method of claim 11 wherein said set-expression
witness elements are selected from said first-level hash-buck-
ets having an index higher than the log of said set-union
cardinality estimate; and wherein said corresponding pair of
first-level hash-buckets are singleton-union and singleton set-
expression hash-buckets.

13. The method of claim 12 wherein said set-expression is
one of a set-difference and a set-intersection.

14. The method of claim 13 wherein said set-expression is
a set-difference; and wherein said corresponding pair of first-
level hash-buckets is a set-difference singleton by virtue of
said first-level hash-bucket of said first data-stream being a
singleton hash-bucket while said first-level hash-bucket of
said second data stream is an empty hash-bucket.

15. The method of claim 13 wherein said set-expression is
a set-intersection; and wherein said corresponding pair of
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first-level hash-buckets is a set-intersection singleton by vir-
tue of both being a singleton hash-bucket.

16. The method of claim 2 wherein said first and second
data-streams are update streams having data elements
inserted and deleted.

17. A computer program product recorded on computer-
readable storage medium for obtaining an estimate of a set-
expression cardinality relating to two or more data-streams,
comprising instructions for:

computer-readable means for creating a first hash-sketch

synopsis for the first data stream and a second hash-
sketch synopsis for the second data stream, each hash-
sketch synopsis comprising a random hash-table and a
2-level hash sketch for each hash-bucket of said random
hash-tables, said 2-level hash sketch comprising a first-
level hash-table and a counter array for each hash-bucket
of said first-level hash-table;

computer-readable means for pre-hashing said first and

second data-streams into said first and second random
hash tables, respectively;
computer-readable means for hashing individual buckets
of said random hashing tables to the corresponding
2-level hash sketch for each of for those buckets;

computer-readable means for maintaining said first and
said second hash-sketch synopsis using one or more data
elements from said first and second data-streams respec-
tively;

computer-readable means for obtaining a set-expression

singleton count over said first and second hash-sketch;
and

computer-readable means for estimating said set-expres-

sion cardinality estimate using said set-expression
singleton count.



