US 20070058871A1

a2y Patent Application Publication (o) Pub. No.: US 2007/0058871 A1l

a9y United States

Deligiannakis et al.

43) Pub. Date: Mar. 15, 2007

PROBABILISTIC WAVELET SYNOPSES FOR
MULTIPLE MEASURES

(54)

(75) Inventors: Antonios Deligiannakis, Athens (GR);
Minos N. Garofalakis, Morristown, NJ
(US); Nick Roussopoulos, Silver

Spring, MD (US)

Correspondence Address:
PATTERSON & SHERIDAN, LLP/
LUCENT TECHNOLOGIES, INC
595 SHREWSBURY AVENUE
SHREWSBURY, NJ 07702 (US)

(73) Assignee: Lucent Technologies Inc. and Univer-

sity of Maryland

11/225,539

(21) Appl. No.:

(22) Filed: Sep. 13, 2005

Publication Classification

(51) Int. CL

GO6K 9/62 (2006.01)

GOG6F 17/30 (2006.01)
(52) US.Cl oo 382/224; 707/3
(57) ABSTRACT

A technique for building probabilistic wavelet synopses for
multi-measure data sets is provided. In the presence of
multiple measures, it is demonstrated that the problem of
exact probabilistic coeflicient thresholding becomes signifi-
cantly more complex. An algorithmic formulation for proba-
bilistic multi-measure wavelet thresholding based on the
idea of partial-order dynamic programming (PODP) is pro-
vided. A fast, greedy approximation algorithm for probabi-
listic multi-measure thresholding based on the idea of mar-
ginal error gains is provided. An empirical study with both
synthetic and real-life data sets validated the approach,
demonstrating that the algorithms outperform naive
approaches based on optimizing individual measures inde-
pendently and the greedy thresholding scheme provides
near-optimal and, at the same time, fast and scalable solu-
tions to the probabilistic wavelet synopsis construction
problem.

PODP Algorithm Flow Chart

Read NxM data values

|

coefficients C;

Calculate wavelet

J

|

solution_list = Compute R[0,B]

\

506

Return solution in solution_list with minimum

max,_s {R[0,B]|}

Patent Application Publication Mar. 15,2007 Sheet 1 of 18 US 2007/0058871 A1

Var(i, y) - [2,0.5]

Norm(2i)
R' gives a better solution
for space B at node i.

R[2i, B-y] = [2.5, 2]
R[2i, Byl = [1, 3]

FIG. 2

US 2007/0058871 Al

Patent Application Publication Mar. 15,2007 Sheet 2 of 18

[z ‘1] = @oedgiod

od
[91 ‘G1] =} ()
[‘2] = @2104D
:suleo) [eulbiey uo paseg | 8pON U0 uoIsId8(]
[z ‘v] = soedgiod ‘[9 ‘9] = w1 ‘[9L°21L] = 4 :€ 8210YyD
[1L ‘1] = soedgiod ‘[| ‘¢] = wa ‘[12Z'sL] = d ‘g @210yD

[1L ‘0] = ®@oedsiod ‘[2'0] = W@ ‘[0Z'8L] = d ‘1 ®210YD [oL _Na: ua
‘L] =8gqe (0]
| (WION [L ‘1] S)
[0 ‘0] =—————— J11 8pON uo sadl0y) Bunenjea
(L+A “1)Jep ‘8l]=9
Z 9Inseauw Joj 9a.)qns Y9| . (HwioN
‘| ainsesw Joj aanqns Jybu [z ‘0] ug

ybnoJy) pauleqo © Jo anjeA WnwWixep

Patent Application Publication Mar. 15,2007 Sheet 3 of 18 US 2007/0058871 A1

FIG. 4A

Compute Subroutine Flow Chart

Input is index i of node, space b to subtree /é\400
402

Yes

Already calculated
R[i,b}?

408

406 /’

Yes I RYib] = [0,....0]]

410

Check all
combinations of retention

prot;ab"iﬁes Yi1,Yi2,...YiM:

>, y; Smin{b,M}?
J=1

Yes

412

Check next eligible combination

414

Check all
space allotments
M

b<b —Z Yy to left subtree?
j=1

416
s

Consider next eligible allotment b, to left subtree
1 418
leftList = Compute R[2i,b,] M
rightList = Compute R[2i#1,6 -5, < b=, y. - b]
J=1

o ®

Patent Application Publication Mar. 15,2007 Sheet 4 of 18 US 2007/0058871 A1

FIG. 4B

®)

420

404
f

Return list of calculated results RJi,b

Check all pairs in
leftList, rightList?

422
I

Consider next eligible pair and
compute potential solution R[i,b]

424

Is new solution
dominated by other
calculated solutions?

Yes

- 426

Store solution in R[i,b]
and remove any stored dominated solutions

Patent Application Publication Mar. 15,2007 Sheet 5 of 18 US 2007/0058871 A1

FIG. 5

PODP Algorithm Flow Chart

Read NxM data values ~__ 500
Calculate wavelet ~__ 502

coefficients Cij

|
solution_list = Compute R[0,B] |~ 904

506
Return solution in solution_list with minimum
max,_y m{R[0,B]4}

Patent Application Publication Mar. 15,2007 Sheet 6 of 18 US 2007/0058871 A1

FIG. 6

GreedyRel Algorithm Flow Chart

Input is data values dij,quantization
parameter q and space constraint B 600

|

Calculate wavelet coefficients Cjj 602
i:=N-1 L~ 604
606
i<07? Yes
No
,—610
Ve {1,....M} calculate G[i..G pc,t[i,j],potSpace[i,j] and ch - Also set Y= 0
L ii=i-1
608
Set amount of not assigned space spaceleft equal to B -
614
No spaceLeft >0 ? -
Yes ,—618
Find measure j € {1,...,M} with maximum value of G[0,j]
/\620
OccupiedSpace = traverse(0,j,q,y,spaceleft)
622
Adjust remaining space: spaceleft = spaceleft - OccupiedSpace
616
Yes

OccupiedSpace > 07

No

{ Return array y of retention probabilities j\/

624

Patent Application Publication Mar. 15,2007 Sheet 7 of 18

US 2007/0058871 A1
FIG. 7
Traverse Subroutine Flow Chart

Input is index i of error tree node, measure j for

space allocation, quantization parameter g, retention
o e 700
probabilities array y and remaining space spaceleft
1
allocatedSpace : = 0 702

No
704

708
F

Set spaceNeeded to space needed to increase Yii by 1/q

710
Yes

spaceNeeded > spaceleft ?

allocateSpace = spaceNeeded]/\/ 716

718

[Find index k of subtree that determines the value of Gij] | ~—722

i
«—‘ allocatedSpace = traverse(k.j,q,y,spaceLeft) |/\/ 724

720
Find index k of subtree that determines the value of Gli.j]
Let 1 denote the index of the other subtree
‘ B
allocateSpace = traverse(k,j,g,y,.spaceLeft) 726

728

No spaceleft > allocatedSpace?

/\ 730

allocateSpace = allocateSpace + traverse(1,j,q,y,spaceLeft - allocateedSpace)

|12 714
Recompuite Gijl, G pot lpotSpacefi j] and chy 4.®tum a,,ocatedspa(@

Patent Application Publication Mar. 15,2007 Sheet 8 of 18 US 2007/0058871 A1

WEATHER DATA, 3 MEASURES

. l L |
4096 — o —_—
- -5 PODP
- 512 s GO Greedy Rel|
[&] Ve
] P
W 64 - ~ _
= -7
'L_,) 8 L¥—/ —
<
Z 11 -
-
4
0.125 -
0.01563 |- _ N R 4
§ T T T
10 20 30 40 50
SYNOPSIS SPACE (multiples of unit space)
FIG. 8 RUNNING TIME vs SPACE
WEATHER DATA, 3 MEASURES
1.75 1 | ,
a-& PODP |

1.5

G Greedy Rel

1.25

MAXIMUM RELATIVE ERROR

0.75 _
0.5 -
————— F—————5
0.25 ' ' '
10 20 30 40 50

SYNOPSIS SPACE (multiples of unit space)
FIG. 9 MAXIMUM RELATIVE ERROR

Patent Application Publication Mar. 15,2007 Sheet 9 of 18 US 2007/0058871 A1
WEATHER DATA, 3 MEASURES
o q l r [.
ax 0.5
4
% &-8 PODP 7]
m ©-© Greedy Rel | |
=
= _
<
|
w _
o
w
% _
i |
< _
------ S)
| | |
10 20 30 40 50
SYNOPSIS SPACE (multiples of unit space)
FIG. 10 AVERAGE RELATIVE ERROR
WEATHER DATA, 3 MEASURES, SPACE = 5% OF INPUT
I T
e
10000 ’//,,/’ -~ PODP
e ©-© Greedy Rel

1000 et
T 100 |
k23 - E
w -~ .
= 10 =
(o E 3
O C]
s ' 3
2 i]
x 01 ¢ m/’e—///%

0.01® @ 1

64 128 256 512

DOMAIN SIZE
FIG. 11 RUNNING TIME vs DOMAIN

Patent Application Publication Mar. 15,2007 Sheet 10 of 18 US 2007/0058871 A1

WEATHER DATA, DOMAIN SIZE = 128, SPACE = 5% OF INPUT

GO Greedy Rel

= / &5 PODP ;
- // I) d R —
100 . / Greedy Rel .
> i 1
8 10 = # E
w F s 3
= -]
= i
(U 1 3 // E
Z :// .
= X]
S 01 L -
(14 E 3
0.01 & I ¢ ® —$
1 2 3 4 5 6
FIG. 12 MEASURES
) RUNNING TIME vs MEASURES
WEATHER DATA, 6 MEASURES, SPACE = 5% OF INPUT
] T | 1 { T g
1000 =
100 =& IndDP _;

10

URRRLL AR S R L LR AL BRI
[

RUNNING TIME (sec)

oo 1ol

| . ! : I .
256 1024 4096 16384 65536 262144
DOMAIN SIZE

FIG. 13 RUNNING TIME vs DOMAIN SIZE

Patent Application Publication Mar. 15,2007 Sheet 11 of 18 US 2007/0058871 A1

OO T
8 & Qorow g ™ o - SSoco
fam (e]
| | ITT T T 1T | ~
[{e]
[Tp}
(qV]
"
8 F o
(%))
£ o
[41] >
£ oD
o | D$ 4 oo
0O T =
- 0
<
It
2 —_
- i~ 85
) w Ll
g g =
g % =
« R
< 7
o o =
RS S
a < X
N— — W U)CO
o
[%2]
c
Ke)
5
2 - <
=
7]
a
[
&
=3 -1 ™
N
©
1 1 oY I I | IlllollN
o N o~ OW<t
8 & Sor~ow s o N Cooocoo

HOdH3 3AILVYTIH WNNIXVIN

FIG. 14

US 2007/0058871 Al

Patent Application Publication Mar. 15,2007 Sheet 12 of 18

JWIRHONTIY., ‘L MIMS
(%) IOVdS SISAONAS

6 8 L 9 g 14 €

(rrrri T

[0y Apaln 3¢
dapu; =-£1

_ | | | _ | _

|

|

NRE

|

Ll |

9G¢ = 971S ulewo(q ‘padeys ,UISHON, ‘| = MeyS ‘suonnquisiq ueydiz 9

Gl Old

HOHH3 IAILYTIIH ANNIXVYIN

IVWHONTIV. 'L M3INS

US 2007/0058871 Al

9GZ = 8215 ulewo(‘padeys ,[ewloN, ‘| = 4diZ ‘suonnquysiq ueydiz 9

91 ©Old
(%) IDVJS SISdONAS
0l 6 8 L 9 g v £ Z
— _ [_ _ _ | _ 1 eo
% C -
y—
= — 1
< 1 .. =
w 1 ¢l wlm
3 1 ¢ &
S 1 gz =
S i m
< 1 ¢ 3
u . <
= 1% m
- Y
E 17 3
= 1 X
g - g
=
& |9y Apea1 -0 D g
5 - dapu| -8
E = G'S
S i N
= | | | |]] !
9
g
E
5
=W

Patent Application Publication Mar. 15,2007 Sheet 14 of 18 US 2007/0058871 A1

(<o)
w0
N —_—
I — [¢))
o 4
N -
£ oo
()]
EL- |25
E £6
0
5| 8d
(e
i —_ =
— X N0
~ o
wl
25
o =
L B C .
n ©
Eo
o =
- 20
n W

6 Zipfian Distributions of Different Shapes, Skew

[

| |

|

4
Coorwow s+ ™

HOHYHT ALV ANWIXVIN

FIG. 17

Patent Application Publication Mar. 15,2007 Sheet 15 of 18 US 2007/0058871 A1

o QMO T M N -
~ or~ow T ™ N OO O O o [an]
) Y [ew]
T T 1T 1T 1 | [TTTT T T 1 -~
[{e]
w
N
il
qN_; . -
0 D
k= @
(0]
£ g
S [o -
- O]
he)
8 =
8 g _E
= o -
o -~ X O
= ~ A
£ LLIJJ [e)
3 g =
o CL_I
o (DZEI
£ r 1° o=
. 2.
3 a <«
1] %O
= | _ <=
g ald o w
w X
s o
C
.0
;::'3 — —~ =
2
27
B
&
% — -1 ™
S
[{o]
L,lv I .] I T O Y | ~
o MO < O N -
—_ OO <+ ™M N ‘—OOOOOO S P

HOHY3 AAILYITH WNNIXYIA

FIG. 18

US 2007/0058871 Al

Patent Application Publication Mar. 15,2007 Sheet 16 of 18

JBULONTIV, ‘9°0 MINS

(%) 3DVdS SISAONAS
oL 6 8 l 9 g 1% £ r4
T T _ I I I ¢0

61 Old

HJOHY3 IAILVIFE ANNIXYIN

1oy Apea1n 3¢
- darul 39

| |] | | | |
96z = 82IS Utewo(‘padeys [BWION, ‘9'0 = Me)S ‘suonquisiq ueydiz 9

US 2007/0058871 Al

Patent Application Publication Mar. 15,2007 Sheet 17 of 18

13S V1vad d3H1VIM

(%) 3OVdS SISAONAS
0l 6 g . 9 G 14 € Z

184 Aps8ID 5o
= dapul =5

8y0Z = 9ZI1S uleWO(] ‘sainses|y 9 ‘189S eleq Jayieap

HOHY3 ALY 13H WNINIXVYIN

0¢ 'Old

Patent Application Publication Mar. 15,2007 Sheet 18 of 18 US 2007/0058871 A1

2100

SUPPORT
CIRCUITS
2120

PROCESSOR 2130

A
!

A

!
MEMORY 2140

OPERATING SYSTEM 2142

PROGRAMS 2144

DATA 2146

FIG. 21

US 2007/0058871 Al

PROBABILISTIC WAVELET SYNOPSES FOR
MULTIPLE MEASURES

FIELD OF THE INVENTION

[0001] The present invention relates generally to the field
of data management and, in particular, relates to approxi-
mation.

BACKGROUND OF THE INVENTION

[0002] There is a lot of interest in approximate query and
request processing over compact, precomputed data synop-
ses to address the problem of dealing with complex queries
over massive amounts of data in interactive decision-support
and data-exploration environments. For several of these
application scenarios, exact answers are not required and
users may, in fact, prefer fast, approximate answers to their
queries. Examples include the initial, exploratory drill-down
queries in ad-hoc data mining systems, where the goal is to
quickly identify the interesting regions of the underlying
database, or aggregation queries in decision-support sys-
tems, where the full precision of the exact answer is not
needed and the first few digits of precision suffice (e.g., the
leading digits of a total in the millions or the nearest
percentile of a percentage).

[0003] Haar wavelets are a mathematical tool for the
hierarchical decomposition of functions with several suc-
cessful applications in signal and image processing. A num-
ber of recent studies have also demonstrated the effective-
ness of the Haar wavelet decomposition as a data-reduction
tool for database problems, including selectivity estimation
and approximate query and request processing over massive
relational tables and data streams. Briefly, the decomposition
process is applied over an input data set along with a
thresholding procedure in order to obtain a compact data
synopsis comprising a selected small set of Haar wavelet
coeflicients. Several research studies have demonstrated that
fast and accurate approximate query and request processing
engines can be designed to operate solely over such pre-
computed compact wavelet synopses.

[0004] The Haar wavelet decomposition was originally
designed with the objective of minimizing the overall root-
mean-squared error (i.e., the L,-norm) in the data approxi-
mation. However, recent work on probabilistic wavelet
synopses also demonstrates their use for optimizing other
error metrics, including the maximum relative error in the
approximate reconstruction of individual data values, which
is a metric for query answers and enables meaningful,
non-trivial error guarantees for reconstructed values. While
the use of the traditional Haar wavelet decomposition gives
the user no knowledge on whether a particular answer is
highly-accurate or off by many orders of magnitude, the use
of probabilistic wavelet synopses provides the user with an
interval where the exact answer is guaranteed to lie into.

[0005] Despite the surge of interest in wavelet-based data
reduction and approximation in database systems, relatively
little attention has been paid to the application of wavelet
techniques to complex tabular data sets with multiple mea-
sures (multiple numeric entries for each table cell.) Such
massive, multi-measure tables arise naturally in several
application domains, including online analytical processing
(OLAP) environments and time-series analysis/correlation
systems. As an example, a corporate sales database may

Mar. 15, 2007

tabulate, for each available product, (1) the number of items
sold, (2) revenue and profit numbers for the product, and (3)
costs associated with the product, such as shipping and
storage costs. Similarly, a network-traffic monitoring system
takes readings on each time-tick from a number of distinct
elements, such as routers and switches, in the underlying
network and typically several measures of interest need to be
monitored (e.g., input/output traffic numbers for each router
or switch interface) even for a fixed-network element.. Both
of these types of applications may be characterized not only
by the potentially very large domain sizes for some dimen-
sions (e.g., several thousands of time ticks or different
products sold), but also by the huge amounts of collected
data.

[0006] Recently, the idea of extended-wavelet coefficients
was introduced as a flexible, space-efficient storage format
for extending conventional wavelet-based summaries to the
context of multi-measure data sets. However, the synopsis-
construction techniques can only be used to minimize (for a
given space budget) the weighted sum of the overall
L,-norm errors for each measure. Still, given the pitfalls and
shortcomings of L,-error-optimized wavelet synopses for
building effective approximate query processing engines,
there is a clear need for more sophisticated wavelet-based
summarization techniques for multi-measure data that can
be specifically optimized for different error metrics (such as
the relative error metric).

SUMMARY

[0007] Various deficiencies of the prior art are addressed
by various exemplary embodiments of the present invention
of probabilistic wavelet synopsis for multiple measures,
including algorithms for constructing effective probabilistic
wavelet-synopses over multi-measure data sets and tech-
niques that can accommodate a number of different error
metrics, including the relative-error metric, thus enabling
meaningful error guarantees on the accuracy of the approxi-
mation for individual measure values. By operating on all
measures simultaneously, exemplary embodiments judi-
ciously allocate the available space to all measures based on
the difficulty of accurately approximating each one, and
exploit storage dependencies among coefficient values to
achieve improved storage utilization and, therefore, improve
accuracy in data reconstruction over prior techniques that
operate on each measure individually.

[0008] One embodiment is a method for probabilistic
wavelet synopses for data sets with multiple measures. In
response to a request, a wavelet synopsis is constructed that
minimizes an error metric for a data domain having multiple
measures. The wavelet synopsis includes extended wavelet
coeflicients. Space is allocated by applying a probabilistic
thresholding technique that is based on unbiased randomized
rounding of the extended wavelet coefficients. The proba-
bilistic thresholding includes accounts for storage depen-
dencies among the extended wavelet coefficients and selects
rounding values such that the error metric is minimized,
while not exceeding a prescribed space limit for the proba-
bilistic wavelet synopsis. An approximation in response to
the request is provided.

[0009] Another embodiment is a method for probabilistic
wavelet synopses for multiple measures, where a synopsis
space is allocated to extended wavelet coeflicients in an error

US 2007/0058871 Al

tree based on marginal error gains by, at each step, attempt-
ing to allocate additional space to a subset of the extended
wavelet coefficients that results in a largest reduction in a
maximum normalized standard error (NSE?) per unit of
space used. Estimated current and potential maximum NSE?
values are calculated at a root coeflicient of the error tree for
each data measure and an approximation to the maximum
minimization problem for the extended wavelet coefficients
is provided.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The teachings of the present invention can be
readily understood by considering the following detailed
description in conjunction with the accompanying drawings,
in which:

[0011] FIG. 1 depicts an error tree for an exemplary array;
[0012] FIG. 2 depicts an example of partial-order pruning;

[0013] FIG. 3 depicts an example for an exemplary
embodiment of a greedy approximation (GreedyRel) algo-
rithm;

[0014] FIGS. 4A and 4B are a flow chart for an exemplary
embodiment of a compute subroutine;

[0015] FIG. 5 is a flow chart for an exemplary embodi-
ment of a partial order dynamic programming (PODP)
algorithm;

[0016] FIG. 6 is a flow chart for an exemplary embodi-
ment of a GreedyRel algorithm;

[0017] FIG. 7 is a flow chart of an exemplary embodiment
of a traverse subroutine, which is called in the GreedyRel
algorithm of FIG. 6;

[0018] FIGS. 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
and 20 are charts showing experimental results from a study
of exemplary embodiments of the present invention; and

[0019] FIG. 21 is a high-level block diagram showing a
computer. To facilitate understanding, identical reference
numerals have been used, where possible, to designate
identical elements that are common to the figures.

DETAILED DESCRIPTION OF THE
INVENTION

[0020] The invention will be primarily described within
the general context of an embodiment of wavelet synopses
for multiple measures, however, those skilled in the art and
informed by the teachings herein will realize that the inven-
tion is applicable to approximation, uncertainty, and proba-
bilistic databases, benchmarking and performance evalua-
tion, data cleaning, transformation, migration, and lineage,
data mining and knowledge discovery, data models, seman-
tics, and query languages, data privacy and security, data
stream and publish-subscribe systems, data warehousing and
OLAP, digital libraries, embedded, sensor, and mobile data-
bases, metadata management, middleware and workflow
management, multimedia databases, optimization, perfor-
mance, availability, and reliability, parallel, distributed, and
heterogeneous databases, peer-to-peer and networked data
management, personalized information systems, physical
database design, indexing, and tuning, replication, caching,
and view management, scientific, biological, and statistical
databases, spatial, temporal, and real-time databases, storage

Mar. 15, 2007

and transaction management, text databases and information
retrieval, user interfaces and data visualization, web infor-
mation and Web services, extensible markup language
(XML) and semi-structured databases and many different
kinds of data management.

Probabilistic Wavelets over Multiple Measures
Formulation and Exact PODP Solution

[0021] The problem of constructing probabilistic wavelet
synopses over multi-measure data sets using the space-
efficient extended wavelet coefficient format is formally
defined below. Utilizing this more involved storage format
for coefficients forces non-trivial dependencies between
thresholding decisions made across different measures, thus
significantly increasing the complexity of probabilistic coef-
ficient thresholding. More specifically, these dependencies
cause the principle of optimality based on a total ordering or
partial solutions that is required by the earlier single-mea-
sure dynamic programming (DP) solutions to be violated,
rendering these techniques inapplicable in the multi-mea-
sure setting. Thus, exemplary embodiments include a proba-
bilistic thresholding scheme for multi-measure data sets
based on the idea of an exact partial-order DP (PODP)
formulation. Briefly, the PODP solution generalizes earlier
single-measure DP schemes to data sets with M measures by
using an M-component vector objective and an M-compo-
nent less-than partial order to prune sub-problem solutions
that cannot possibly be part of an optimal solution.

Fast, Greedy Approximate Probabilistic-Thresholding Algo-
rithm

[0022] Given the very high space and time complexities of
exemplary embodiments of the PODP algorithm, an exem-
plary embodiment of a novel, greedy approximation algo-
rithm (GreedyRel) is used for probabilistic coeflicient
thresholding over multi-measure data. Briefly, the
GreedyRel heuristic exploits the error-tree structure for Haar
wavelet coefficients in greedily allocating the available
synopsis space based on the idea of marginal error gains.
More specifically, at each step, GreedyRel identifies for each
error subtree, the subset of wavelet coefficients that are
expected to give the largest per-space reduction in the error
metric, and allocates space to the best such subset overall
(i.e., in the entire tree). The time and space complexities of
the GreedyRel are only linear in the number of measures
involved and the data-set size and, in fact, are also signifi-
cantly lower than those of earlier DP algorithms for the
single-measure case. Note that the complexities of the earlier
DP algorithms are, even for the single-measure case, at least
quadratic to the domain size, thus yielding the GreedyRel
algorithms as a practical solution, even for the single-
measure case, for constructing accurate probabilistic wave-
let synopses over large data sets.

Experimental Results Verifying the Effectiveness of the
Approach

[0023] Results from an extensive experimental study of
exemplary embodiments are provided with both synthetic
and real-life data sets. The results validate the approach,
demonstrating that (1) the algorithms easily outperform
naive approaches based on optimizing individual measures
independently, typically producing errors that are up to a
factor of seven smaller than prior techniques; and (2) the
greedy thresholding scheme provides near-optimal and, at

US 2007/0058871 Al

the same time, very fast and scalable solutions to the
probabilistic wavelet synopsis construction problem.

The Haar Wavelet Transform

[0024] Wavelets are a useful mathematical tool for hier-
archically decomposing functions in ways that are both
efficient and theoretically sound. Broadly speaking, the
wavelet decomposition of a function consists of a coarse
overall approximation along with detail coefficients that
influence the function at various scales. Suppose the one-
dimensional data vector A is given with A containing the
N=8 data values A=[2,2,0,2,3,54,4]. The Haar wavelet
transform of A can be computed as follows. First, the values
are averaged together pairwise to get a new lower-resolution
representation of the data with the following average values
[2,1,4,4]. In other words, the average of the first two values
(that is, 2 and 2) is 2 that of the next two values (that is, 0
and 2) is 1, and so on. Some information has been lost in this
averaging process. To be able to restore the original values
of the data array, some detail coefficients are stored that
capture the missing information. In Haar wavelets, these
detail coefficients are simply the differences of the (second
of'the) averaged values from the computed pairwise average.
Thus, in the simple example, for the first pair of averaged
values, the detail coefficient is 0 since 2—2=0, for the second
we again need to store -1 since 1-2=-1. Note that no
information has been lost in this process—it is fairly simple
to reconstruct the eight values of the original data array from
the lower-resolution array containing the four averages and
the four detail coefficients. Recursively applying the above
pairwise averaging and differencing process on the lower-
resolution array containing the averages, the following full
decomposition is obtained.

Resolution Averages Detail Coefficients
3 [2,2,0,2,3,5,4,4] —
2 [2,1,4,4] [0,-1,-1,0]
1 [%2, 4] [¥2, 0]
0 [14] [-94]

[0025] The wavelet transform (also known as the wavelet
decomposition) of A is the single coefficient representing the
overall average of the data values followed by the detail
coeflicients in the order of increasing resolution. Thus, the
one-dimensional Haar wavelet transform of A is given by
W, =[11/4,-5/4,1/2,0,0,-1,-1,0]. Each entry in W , is called
a wavelet coefficient. The main advantage of using W,
instead of the original data vector A is that for vectors
containing similar values most of the detail coefficients tend
to have very small values. Thus, eliminating such small
coeflicients from the wavelet transform (i.e., treating them as
zeros) introduces only small error when reconstructing the
original data, resulting in a very effective form of lossy data
compression. Furthermore, the Haar wavelet decomposition
can also be extended to multi-dimensional data arrays
through natural generalizations of the one-dimensional
decomposition process described above. Multi-dimensional
Haar wavelets have been used in a wide variety of applica-
tions, including approximate query answering over complex
decision-support data sets.

Mar. 15, 2007

Error Tree and Conventional Wavelet Synopses

[0026] A helpful tool for exploring the properties of the
Haar wavelet decomposition is the error tree structure,
which is a hierarchical structure built based on the wavelet
transform process. FIG. 1 depicts the error tree for the
example data vector A. Each internal node ¢, (1 =0, ...,7)
is associated with a wavelet coefficient value and each leaf
d; (i=0,...,7)is associated with a value in the original data
array; in both cases, the index/coordinate i denotes the
positions in the data array or error tree. For example, ¢, 100
corresponds to the overall average of A. The resolution
levels I 102 for the coefficients (corresponding to levels in
the tree) are also depicted. The terms node and coefficient
are used interchangeably in what follows. Table 1 summa-
rizes some notational conventions. Additional notation is
introduced as necessary and detailed symbol definitions are
also provided at appropriate locations in the text.

TABLE 1
Notation

Description

ie{0,...,N-1}je{l,..., M},
Symbol j index/subscript is dropped for M = 1
N Number of data-array cells
D Data-array dimensionality
M Number of data-set measures
B Space budget for synopsis
A, W, Input data and wavelet transform arrays
dy Data values for i cell and j* measure of data array
dy Reconstructed data value for i cell and j measure
Cy Haar coefficient at coordinate i for the | measure
Vi Retention probability (i.e., fractional storage) for

Haar coefficient c;
Cy Random variable for Haar coefficient c;
EC; Extended wavelet coefficient at coordinate i
Norm(i, j) Normalization term for Haar coeflicient c;
q Integer quantization parameter
NSE(aij) Normalized term for Haar coefficient c;;
Var(cy, y;;) Variance of ¢ for a given space yj
path(u) All non-zero proper ancestors of u in the error tree

[0027] Given a node uin an error tree T, let path(u) denote
the set of all proper ancestors of uin T (i.e., the nodes on the
path from u to the root of T, including the root but not u) with
non-zero coefficients. A property of the Haar wavelet
decomposition is that the reconstruction of any data value d;
depends only on the values of coefficients on path(d,); more
specifically, di=zcj6path(d 5 dyc;, where 8;=+1 is in the left
child subtree of ¢; j=0, and 8;;=—1 otherwise. for example, for
d, 104 in FIG. 1,

11 5
d4:co_cl+66=Z_(_é_l)+(_l)=3'

The support region for a coefficient ¢, is defined as the set of
(contiguous) data values that c; is used to reconstruct; the
support region for a coefficient c, is uniquely identified by its
coordinate 1.

[0028] Given a limited amount of storage for building a
wavelet synopsis of the input data array A, a thresholding
procedure retains a certain number B<<N of the coefficients
as a highly-compressed approximate representation of the

US 2007/0058871 Al

original data (the remaining coeflicients are implicitly set to
0). Conventional coefficient thresholding is a deterministic
process that seeks to minimize the overall root-mean-
squared error (L, error norm) of the data approximation by
retaining the B largest wavelet coefficients in absolute
normalized value. L, coefficient thresholding has also been
the method of choice for the bulk of existing work on
Haar-wavelets applications in the data-reduction and
approximate query processing domains.

Probabilistic Wavelet Synopses

[0029] Unfortunately, wavelet synopses optimized for
overall L, error using the above-described process may not
always be the best choice for approximate query processing
systems. Such conventional wavelet synopses suffer from
several problems, including the introduction of severe bias
in the data reconstruction and wide variance in the quality of
the data approximation, as well as the lack of non-trivial
guarantees for individual approximate answers. A probabi-
listic wavelet synopsis addresses these shortcomings. This
approach constructs data summaries from wavelet-transform
arrays. In a nutshell, the idea is to apply a probabilistic
thresholding process based on randomized rounding that
randomly rounds coefficients either up to a larger rounding
value or down to zero, so that the value of each coefficient
is correct on expectation. More formally, each non-zero
wavelet coefficient c; is associated with a rounding value A
and a corresponding retention probability y,=c;/A; such that
O<y;=1 and the value of coefficient c; in the synopsis
becomes a random variable C;&{0, A}, where

C;={}; with probability y;,
0 with probability 1-y;}

In other words, a probabilistic wavelet synopsis essentially
rounds each non-zero wavelet coefficient ¢; independently to
either A, or zero by flipping a biased coin with success
probability y;. Note that the above rounding process is
unbiased; that is, the expected value of each rounded coef-
ficient is E[C,]=A, y; +0 -(1 -y,) =c,, i.e., the actual coeffi-
cient value, while its variance is

Var(i, y) = Var(C) = (s —ep)-cr = 22 o

and the expected size of the synopsis is simply

Efsynopsis] = Z i = Z i

A.
ile;£0 ilo;+0

Thus, since each data value can be reconstructed as a simple
linear combination of wavelet coefficients and, by linearity
of expectation, it is easy to see that probabilistic wavelet
synopses guarantee unbiased approximations of individual
data values as well as range-aggregated query answers.

[0030] There are several different algorithms for building
probabilistic wavelet synopses. The coefficient rounding
values {A;} need to be selected such that some desired error
metric for the data approximation is minimized, while not
exceeding a prescribed space limit B for the synopsis (i.e.,

Mar. 15, 2007

E[[synopsis]]=B). These strategies are based on formulat-
ing appropriate dynamic-programming (DP) recurrences
over the Haar error-tree that explicitly minimize either (a)
the maximum normalized standard error (MinRelVar) or (b)
the maximum normalized bias (MinRelBias) for each recon-
structed value in the data domain. The rationale for these
probabilistic error metrics is that they are directly related to
the maximum relative error (with an appropriate sanity
bound s, whose role is to ensure that relative-error numbers
are not unduly dominated by small data values in the
approximation of individual data values based on the syn-
opsis; that is, both the MinRelVar and MinRelBias schemes
try to (probabilistically) control the quantity

|d: - i
PN maxfldl, 5 [

where d; denotes the data value reconstructed based on the
wavelet synopsis. Note, of course, that d, is again a random
variable, defined as the +1 summation of all (independent)
coeflicient random variables on path(d). Bounding the maxi-
mum relative error in the approximation also allows for
meaningful error guarantees to be provided on reconstructed
data values.

[0031] To accomplish this, the DP algorithms seek to
minimize the maximum normalized standard error (NSE) in
the data reconstruction, defined as

 Var(d))

NSE(d;) =
maxNSE(d;) = max ol si

where Var((ﬂii)=2CjElDath @ var(,y;). The algorithms also natu-
rally extend to multi-dimensional data and wavelets, with a
running time of O(N_2"qB(qlog(qB)+D27)) (N, being the
number of nodes with at least one non-zero coefficient value,
N being the maximum domain size and D being the number
of dimensions), an overall space requirement of O(N_2PqB)
and an in-memory working-set size of O(2PqB log N). Note
that for synopsis spaces B=O(N,), the above running time
and space complexities are at least quadratic to the number
of tuples.

Extended Wavelet Coeflicients

[0032] The wavelet coefficients can be stored as tuples
with D+1 fields, where D is the dimensionality of the data
array. Each of these tuples contains the D coordinates of the
stored wavelet coefficient (one per dimension), which are
used to determine the coefficient’s support region, and the
stored coefficient value. In multi-measure data sets, storage
dependencies among different coefficient values may arise.
This occurs because two or more coefficient values for
different measures may correspond to the same coeflicient
coordinates, which results in duplicating the storage of these
coordinates. This storage duplication increases with the
number of the data set’s dimensions due to the increased size
of the coefficient coordinates.

[0033] To alleviate these shortcomings, the notion of an
extended wavelet coefficient is introduced. For a data set

US 2007/0058871 Al

comprising M measures, an extended wavelet coefficient is
a flexible, space-efficient storage format that can be used to
store any subset of up to M coefficient values for each
combination of coefficient coordinates. Briefly, this is
achieved through the use of a bitmap of size M, which helps
determine exactly the subset of coefficient values that has
been stored; thus, the i" bitmap bit is set if and only if the
coefficient for the i™ measure has been stored (1 =i =M).
More formally, each extended wavelet coefficient is defined
as atriplet (C,f, V) consisting of (1) the coordinates C of the
coeflicient; (2) a bitmap of size M, where the i bit denotes
the existence or absence of a coefficient value for the ith
measure; and (3) the set of stored coefficient values V. The
(coordinates, bitmap) pair is referred to as the coefficient’s
header for an extended wavelet coefficient.

Probabilistic Wavelets for Multiple Measures
Problem Formulation and Overview

[0034] 1t has been demonstrated that exploiting storage
dependencies among coefficient values can lead to better
storage utilization (i.e., store more useful coeflicient values
for the same space bound) and, therefore, improve accuracy
to queries. However, those algorithms can only be applied
towards minimizing the overall L, error of the approxima-
tion, not for minimizing other error metrics, such as the
maximum relative error, which is relevant for providing
approximate query answers. On the other hand, while the
known work utilized the notion of probabilistic wavelet
synopses to propose algorithms that minimize the maximum
relative error of the approximation, none of these algorithms
can exploit storage dependencies between coeflicient values
to construct effective probabilistic wavelet synopses for
multi-measure data sets.

[0035] In exemplary embodiments of the present inven-
tion, the notion of the extended wavelet coeflicients and the
probabilistic wavelet synopses are utilized as helpful tools to
develop algorithms that seek to minimize the maximum
relative error of the approximation in multi-measure data
sets. To simplify the exposition, this description first focuses
primarily on the one-dimensional case and then extensions
to multi-dimensional wavelets are described.

Expected Size of Extended Coefficients

[0036] The sharing of the common header space (i.e.,
coordinates+bitmap) among coefficient values introduces
non-trivial dependencies in the thresholding process across
coeflicients for different measures. To be more precise,
consider a data set with M measures and let c;; denote the
Haar coefficient value corresponding to the j™ measure at
coordinate i and let y;; denote the retention probability for c;;
in the synopsis. Also, let EC, be the extended wavelet
coeflicient at coordinate i and let H denote the space required
by an extended coefficient header. The unit of space is set
equal to the space required to store a single coefficient value
(e.g., size of a float) and all space requirements are
expressed in terms of this unit. The expected space require-
ment of the extended coefficient EC, is computed as:

Mar. 15, 2007

@

M
E[EG]=) vy +H><[l -[a —yij)]
J=1

Jleijz0

The first summand in the above formula captures the
expected space for all (non-zero) individual coefficient val-
ues at coordinate i. The second summand captures the
expected header overhead. To see this, note that if at least
one coeflicient value is stored, then a header space of H must
also be allotted. And, of course, the probability of storing =1
coeflicient values is just one minus the probability that none
of the coefficients is stored.

[0037] Equation (2) demonstrates that the sharing of
header space amongst the individual coefficient values c;; for
different measures creates a fairly complex dependency of
the overall extended-coefficient space requirement on the
individual retention probabilities y;;. Given a space budget B
for the wavelet synopsis, exploiting header-space sharing
and this storage dependency across different measures is
crucial for achieving effective storage utilization in the final
synopsis. This implies that the exemplary embodiments of
the probabilistic-thresholding strategies for allocating syn-
opsis space cannot operate on each measure individually;
instead, space allocation explicitly accounts for the storage
dependencies across groups of coefficient values (corre-
sponding to different measures). This significantly compli-
cates the design of probabilistic-thresholding algorithms for
extended wavelet coefficients.

Problem Statement and Approach

[0038] A goal is to minimize the maximum relative recon-
struction error for each individual data value; this also
allows exemplary embodiments to provide meaningful guar-
antees on the accuracy of each reconstructed value. More
formally, an aim is to produce estimates aij of the data values
d;, for each coordinate i and measure index j, such that |
d;-d;|=emax {|d;, s;}, for given per-measure sanity
bounds s;>0, where the error bound €>0 is minimized subject
to the given space budget for the synopsis. Since probabi-
listic thresholding implies that &ij is again a random variable,
and using an argument based on the Chebyshev bound, it is
easy to see that minimizing the overall NSE across all
measures (or equivalently, the maximum NSE?) guarantees
a maximum relative error bound that is satisfied with high
probability. Thus, the probability-thresholding problem may
be defined for extended wavelet coeflicients as follows.

Maximum NSE Minimization for Extended Coefficients

[0039] Find the retention probabilities y;; for coeflicients
<, that minimize the maximum NSE for each reconstructed
data value across all measures; that is,

i <3>

max{|d], s;}
minimize ie{0,... ,N -1}

jelo, ..., M}

US 2007/0058871 Al

subject to the constraints 0 <y;; =1 for all non-zero c;; and
E[[synopsis]]=2;]=B , where the expected size E[[EC,]Jof
each extended coefficient is given by equation (2).

[0040] The above maximum NSE minimization problem
for multi-measure data is addressed by exemplary embodi-
ments of the present invention. Exemplary embodiments of
algorithms exploit both the error-tree structure of the Haar
decomposition and the above-described storage dependen-
cies (equation (2)) for extended coefficients in order to
intelligently assign retention probabilities {y;} to non-zero
coeflicients within the overall space-budget constraint B.
The exemplary embodiments also rely on quantizing the
space allotments to integer multiples of 1/q, where q>1 is an
integer input parameter; that is, the constraint

0<y;jsltoy;je{$,§1,...,l}

is modified in the above problem formulation.

An Algorithm Formulation: Partial-Order Dynamic Pro-
gramming

[0041] Consider an input data set with M measures. An
exemplary embodiment of the present invention includes a
partial-order dynamic programming (PODP) algorithm that
processes the nodes in the error tree bottom-up and calcu-
lates for each node i and each space budget 0=B,=B to be
allocated to the extended wavelet coefficient values in the
node’s entire subtree, a collection of incomparable solutions.
Eacly, such solution R[i, B;] is an M-component vector of
NSE values corresponding to all M measures for the data
values in the subtree rooted at node i and assuming a total
space of B, allotted to extended coefficients in that subtree.
A goal of the PODP algorithm is, of course, to minimize the
maximum component of the vector R[root,B]; that is, mini-
mize max,_, miR[root,B] }.

[0042] A complication in the optimization problem is that,
for a given synopsis space budget, these M per-measure
NSE values are not independent and cannot be optimized
individually; this is, again, due to the intricate storage
dependencies that arise between the approximation at dif-
ferent measures because of the shared header space (equa-
tion (2)). As already described, the thresholding algorithm
exploits these dependencies to ensure effective synopsis-
space utilization. This implies that the thresholding schemes
need to treat these M-component NSE vectors as a unit
during the optimization process.

[0043] Letd,, denote the minimum absolute data value in
the subtree of node 2i and let Norm(21, j) =max {d*_,, ,S?
} denote a normalization term of the j™ measure for node’s
i left subtree, with the corresponding normalization term of
the right tree defined similarly. It can be proved that the ™
component of R[1,B] produced by the optimal assignment of
retention probabilities to the coefficient values in the subtree
of' node i is determined by the minimum absolute data value
of measure j in the subtree. This enables a simplification of
the minimization problem of equation (3) by utilizing at
each node the normalization terms of its subtrees. The j™
component of R[i,B] at node i for a given retention prob-
ability y;; of the c;; coefficient value and solutions R[2i,b,;]
and R[2i+1, b,+ lj from the node’s left and right subtrees,
can thus be calculated as

Mar. 15, 2007

Var(i, y;;)
Norm(2i, j)
max; . o Var(i, y;)
R[2i, by; _—
124, D111, Norm2i+ 1,]

R[2i+ 1, byt 1[]]

[0044] To ensure optimality, the bottom-up computation
of the DP recurrence cannot afford to maintain just the
locally-optimal partial solution for each subtree. In other
words, merely tabulating the R[i,B] vector with the mini-
mum maximum component for each internal tree node and
each possible space allotment is not sufficient—more infor-
mation needs to be maintained and explored during the
bottom-up computation. As a simple example, consider the
scenario depicted in FIG. 2 for the case M =2. Slightly
abusing notation, R[21,B —y]and R'[2i,B-y]denote two pos-
sible NSE? vectors for space B-y at node 2i. To simplify the
example, assume that the right child of node i also gives rise
to the exact same solution vectors R[Jand R'™1. In FIG. 2,
the normalized variance

Var(i, y;)
Norm(2i,)

of the coefficient values of node i are depicted when total
space y=y,, +y;, has been allocated to them and for the data
values in the left subtree of node i. It is easy to see that, in
this example, even though R'[2i,B-y] is locally-suboptimal
at node 2i (because its maximal component is larger than the
one of RJ), it gives a superior overall solution of [1+2,3+
0.5]=[3.3.5] at node i, when combined with i’s local vari-
ance vector.

[0045] In the exemplary embodiment of the PODP algo-
rithm, unlike most other DP solutions, the conventional
principle of optimality based on a total ordering of partial
solutions is no longer applicable. Thus, locally-suboptimal
R[i,B]’s (i.e., with large maximum component NSE?s) can-
not be safely pruned, because they may, in fact, be part of an
optimal solution higher up in the tree. However, there does
exist a safe pruning criterion based on a partial ordering of
the R[i,B] vectors defined through the M-component less-

than operator <=,,, which is defined over M-component
vectors u,v as follows:

u <=pif and only if u,;, Vi €{1, ... M}

For a given coordinate i and space allotment B, we say that
a partial solution RYi,B] is covered by another partial
solution R[1,B] if and only if R[i,B]<=,, R[i,B]. It is easy to
see that, in this case, R'[i,B] can be safely pruned from the
set of partial solutions for the (i,B) combination, because,
intuitively, R[1,B] can always be used in its place to give an
overall solution of at least as good quality.

[0046] In the exemplary embodiment of the partial-order
dynamic programming (PODP) solution to the maximum
NSE minimization problem for extended coefficients, the
partial, bottom-up computed solutions R[i,B] are M-com-
ponent vectors of per-measure NSE? values for coeflicient

US 2007/0058871 Al

subtrees and such partial solutions are only pruned based on

the <=, partial order. Thus, for each coordinate-space com-
bination (i,B), the exemplary embodiment of the PODP
algorithm tabulates a collection R[i,B] of incomparable

solutions, that represent the boundary points of <=,,,

R[i,B]={R[i,b]:for any other RTi,BJER[i,B]},
R[i,b]<=p\R[i,Bland R[LbI<=\R[i,B]

Of course, for each allotment of space B to the coeflicient
subtree rooted at node i, the exemplary embodiment of the
PODP algorithm needs to iterate over all partial solutions
computed in R[i,B] in order to compute the full set of
(incomparable) partial solutions for node i’s parent in the
tree. Similarly, at leaves or intermediate root nodes, all
possible space allotments {y;} to each individual measure
are considered and the overall space requirements of the
extended coefficient are estimated using equation (2). Using
an integer parameter q>1 to quantize possible space allot-
ments introduces some minor complications with respect to
the shared header space (e.g., some small space fragmenta-
tion) that the exemplary embodiment of the algorithm
handles.

[0047] The main drawback of the exemplary embodiment
of the PODP-based solution is the dramatic increase in time
and space complexity compared to the single-measure case.
PODP relies on a much stricter, partial-order criterion for
pruning suboptimal solutions that implies that the sets of
incomparable partial solutions R[i,B} that need to be stored
and explored during the bottom-up computation can become
very large. For instance, in the simple case of a leaf
coeflicient, it is easy to see that the number of options to
consider can be as high as O(q™), compared to only O(q) in
the single-measure case; furthermore, this number of pos-
sibilities can grow extremely fast (in the worst case, expo-
nentially) as partial solutions are combined up the error tree.

A Fast, Greedy, Approximation Algorithm

[0048] Given the very high running-time and space com-
plexities of the exemplary embodiment of the PODP-based
solution described above, an exemplary embodiment of an
effective approximation algorithm to the maximum NSE
minimization problem for extended coefficients is provided.
This exemplary embodiment is a very efficient, greedy,
heuristic algorithm (termed GreedyRel) for this optimization
problem. Briefly, GreedyRel tries to exploit some of the
properties of dynamic-programming solutions, but allocates
the synopsis space to extended coefficients greedily based on
the idea of marginal error gains. An idea is to try, at each
step, to allocate additional space to a subset of extended
wavelet coefficients in the error tree that results in the largest
reduction in the target error metric (i.e., maximum NSE?)
per unit of space used.

[0049] The exemplary embodiment of the GreedyRel
algorithm relies on three operations: (1) estimating the
maximum per-measure NSE? values at any node of the error
tree; (2) estimating the best marginal error gain for any
subtree by identifying the subset of coefficients in the
subtree that are expected to give the largest per-space
reduction in the maximum NSE?; and (3) allocating addi-
tional synopsis space to the best overall subset of extended
coeflicients (in the entire error tree). Let T;; denote the error
subtree (for the j™measure) rooted at o

Mar. 15, 2007

Estimating Maximum NSE? at Error-Tree Nodes

[0050] In order to determine the potential reduction in the
maximum squared NSE due to extra space, the exemplary
embodiment of GreedyRel first needs to obtain an estimate
for the current maximum NSE? at any error-tree node.
GreedyRel computes an estimated maximum NSE* G[i,j]
over any data value for the j™* measure in the T, subtree,
using the recurrence:

Gl) = {max{ i 25) . gpy g,

Norm(2i, j)
Var(cyj, yij)) N
Norm(2i + 1, j) +G2i+1, j]} if i<N,
0if i> N}_

[0051] The estimated maximum NSE? value is the maxi-
mum of two costs calculated for the node’s two child
subtrees, where each cost sums the estimated maximum
NSE’ of the subtree and the node’s variance divided by the
subtree normalization term. While one can easily show that
in the optimal solution the maximum NSE? in a subtree will
occur for the smallest data value (the proof is based on
similar arguments to the single-measure case), the above
recurrence is only meant to provide an easy-to-compute
estimate for a node’s maximum NSE? (under a given space
allotment) that GreedyRel can use.

Estimating the Best Marginal Error Gains for Subtrees

[0052] Given an error subtree T;; (for the jth measure), the
exemplary embodiment of the GreedyRel algorithm com-
putes a subset potSet[i,j] of coeflicient values in Tj;, which,
when allotted additional space, are estimated to provide the
largest per=space reduction of the maximum squared NSE
over all data values in the T, subtree. The exemplary
embodiments of the algorithms allocate the retention prob-
abilities in multiples of 1/q, where q>1. Let G[i,j] be the
current estimated maximum NSE? for T, (as described
above) and let G, [i,j] denote the potential estlmated maxi-
mum NSE? for T};, assuming that the retention probabilities
of all coefficient values in potSet[i,j] are increased by a
(minimal) additional amount of 1/q. Also, let potSpace[i,j]
denote the increase in the overall synopsis size, i.c., the
cumulative increase in the space for the corresponding
extended coefficients, when allocating the extra space to the
coeflicient values in potSet[i,j]. The exemplary embodiment
of the GreedyRel algorithm computes potSpace][i,j] and
estimates the best error-gain subsets potSet[i,j] through the
underlying error-tree structure.

[0053] Consider a coeflicient value C;EpotSet[i,j]. Based
on equation (2), it is easy to see that an increase of 9, 1n the
retention probability of c,; results in an 1ncrease % the
expected-space requirement E[[EC,]] of the corresponding
extended coefficient EC,. (and, thus, the overall expected
synopsis size) of:

S(ETEC, 6,,) = 3y, -(1 +Hx]_[(1 —ykp)]. Q)

pEj

US 2007/0058871 Al

The total extra space potSpace[i,j] for all coefficient values

in potSet[i,j] can be obtained by adding the results of

equation (4) for each of these values (with):

by =

potSpaceli, j] = Z 6j(E[[ECk]]> [11)

ckjeporSer[i,j]

The marginal error gain for potSet[i,j] is then simply esti-
mated as gain(potSet[i, j1)=(G[i, j]-G,[i, j])/ potSpace[i, j].

[0054] To estimate the potSet[i,j] sets and the correspond-
ing G,.[ij] (and gain()) values at each node, GreedyRel
performs a bottom-up computation over the error-tree struc-
ture. For a leaf coeflicient cy;, the only possible choice is
potSet[i,jl={c;}, which can result in a reduction in the
maximum NSE? if ¢;; #0 and y;;<1 (otherwise, the variance
of the coefficient is already 0 and can be safely ignored). In
this case, the new maximum NSE? at c;; is simply

l
Var(c;j, yij + 5]

Gporli, j1= Normii J)

For a non-leaf coeflicient c;;, GreedyRel considers three
distinct cases of forming potSet[i,j] and selects the one
resulting in the largest marginal error gain estimate: (1)
potSet[ij]={c;} (i.e. select only c;; for additional storage);
(2) potSet[i,j]=potSet[k,j], where k €{2i,2i+1} is such that
Gli,j]=GlkjJ+Var(c;;, y;)/Norm(k,j) (i.e., select the potSet
form the child subtree whose estimated maximum NSE?
determines the current maximum NSE? estimate at ¢;;); and
(3) potSet[ij]=potSet[21j]UpotSet[2i+1,j] (i.e., select the
union of the potSets from both child subtrees). Among the
above three choices, GreedyRel selects the one resulting in
the largest value for gain(potSet[i,j]) and records the choice
made for coeflicient ¢;; (1, 2, or 3) in a variable chy;. In order
to estimate gain(potSet[i,j]) for each choice, GreedyRel uses
the following estimates for the new maximum NSE?> (G ER]
at ¢;] at ¢; (index k is defined as in case (2) above and
1={21,2i+1}-{k}):

1
Var(c;., yij + —]
. / q .
Gporliy j] = ymaxy —=———— + G[2i, j],

Norm(2i,)
1
Var(c; o Vi —)
T 4 i 1)k = 1
Norm(Zi + 1, J) Hyehi =
Var(cy, yij) .
max{m + Gpotlk, jl,
Var(cy, yi)
R Gl ek =2
Norm(l)+ O DJehs

Mar. 15, 2007

-continued

Var(cy, yy) .
max{m + Gpor[2i,],
Var(cy;, yi;)

T ik L, ek =3
Nomix 1,) T Oril2it - ek l

[0055] As an example, consider the scenario depicted in
FIG. 3 for M =2. FIG. 3 shows, for each of the children of
node i, the computed G, G, and potSpace values, along
with the value of G and the current normalized variance for
node i (assume for simplicity that Norm(2i, j) =Norm(2i
+1,))¥})). The three cases of forming potSet for each measure
at node i are enumerated, the corresponding potential reduc-
tions (Diff) in the estimated maximum NSE? value for each
measure are calculated, and the choice that results in the
largest per-space reduction is selected for each measure.
FIG. 3 also depicts why it is important to simultaneously
increase the retention probabilities of more than one coef-
ficient values. At any node i, where the calculated G values
through its children are the same, or differ only slightly, for
some measure j (as is the case with measure 2 in the
example), then any individual assignment of additional
space to a coefficient value of that measure below node i
would only result in either zero, or very small marginal
gains, and would, therefore, not be selected, independently
of how much it would reduce the maximum NSE?> value
through its subtree. This happens because the estimated
value of G[i,j] through the other subtree would remain the
same. In single-measure data sets the value for G through
both subtrees is the same in the optimal solution, thus
implying that the above situation is expected to occur very
frequently.

[0056] Note that GreedyRel does not need to store the
coeflicient sets potSet[i,j] at each error-tree node. These sets
can be reconstructed on the fly, by traversing the error-tree
structure, examining the value of the ch;; variable at each
node c;;, and continuing along the appropriate subtrees of the

node, until reaching nodes with ch;=1.
Distributing the Available Synopsis Space

[0057] After completing the above described steps, the
exemplary embodiment of the GreedyRel algorithm has
computed the estimated current and potential maximum
NSE values G[0,j]and G,,.[0,j] (along with the correspond-
ing potSet and potSpace) at the root coeflicient (node 0) of
the error tree, for each data measure j. Because one objective
is to minimize the maximum squared NSE among all
measures over the entire domain, GreedyRel selects, at each
step, the measure j___with the maximum estimated NSE>
value at the root node (i.e., jp.=arg max;{G[0,]]}), and
proceeds to allocate additional space of potSpace[0,j,,,,,.] to
the coefficients in potSet[0,j,,...]. This is done in a recursive,
top-down traversal of the error tree, starting from the root
node and proceeding as follows (i denotes the current node
index): (1) ch;,..=1, set

ijmax

US 2007/0058871 Al

1

YVijmax ‘= Yijmax + ;1 >

(2) if chyjy,,, =2, then recurse to the child subtree T, k €{2i,
2i+1} through which the maximum NSE? estimate G[i,j,,,...]
is computed at node i, and (3) if ch;;,, ., =3, then recurse to
both child subtrees T,;and T,,,,. Furthermore, after each of
the above steps, compute the new G, G, potSpace and ch
values at node i. These quantities need to be evaluated for all
measures, because the space dependencies among the coef-
ficient values, the increase of the coeflicient value for

measure J . may alter the ch values for the other measures.
Time and Space Complexity

[0058] For each of the N error-tree nodes, the exemplary
embodiment of GreedyRel maintains the variables G[i,j],
G, 1], potSpace[ij], and chy. .Thu.s, the space require-
ments per node are O(M), resulting in a total space com-
plexity of O(NM).

[0059]

[0060] In the bottom-up initialization phase (steps 1-6),
GreedyRel computes, for each error-tree node, the values of
the G[1,j], G,.{i,j], potSpace[i,j], and ch;; variables (for each
measure j). Each of these O(M) calculations can be done in
O(1) time, making the total cost of the initialization phase
O(NM). Then, note that each time GreedyRel allocates
space to a set of K coefficients, the allocated space is ZK
x1/q (see equation (4)). To reach these K coefficients,
GreedyRel traverses exactly K paths of maximum length
O(log N). For each visited node, the new values of G, G,
potSpace, and ch are computed, which requires O(M) time.
Finding the measure j,,,, with the maximum estimated NSE>
value at the root requires time O(log M) when using a heap
structure to store just the G[0,j] values. Thus, GreedyRel
distributes space =Kx1 /q in time O(KM log N+log M),
making the amortized time per-space-quantum 1 /q equal to
OM log N+log M/K)=O(M log N). Because the total
number of such quanta that are distributed is Bq, the overall
running time complexity of GreedyRel is O(NM+BMq log
N).

[0061] Finally, exemplary embodiments of the GreedyRel
algorithm naturally extend to multiple dimensions with a
modest increase of Dx2" in its running time complexity.
These extensions, along with the extensions of PODP to
multiple dimensions are described below. Because the num-
ber of non-zero coefficients values in multi-dimensional data
sets may be significantly larger than the number of tuples, a
thresholding step limits the space needed by the algorithm.
This thresholding step can, of course, also be used in the
one-dimensional case to further reduce the running time and
space requirements of the exemplary embodiment of the
GreedyRel algorithm. This step can e performed without
introducing any reconstruction bias. Table 2 contains a
synopsis of the running time and space complexities of the
exemplary embodiment of the GreedyRel algorithm and the
MinRelVar algorithm, where N, denotes the number of
error-tree nodes containing at least one non-zero coeflicient
value and maxD denotes the maximum domain size among
all dimensions.

Mar. 15, 2007

TABLE 2

GreedyRel and MinRelVar complexities.

Algorithm Space Running Time
GreedyRel O(N,M) O(D2P x (N,M + BMq log max D))
MinRelVar O(N,MB2Pq) O(N,BM2P q(q log(qB) + D2P))

Flow Charts of Exemplary Embodiments

[0062] FIGS. 4A and 4B are a flow chart for an exemplary
embodiment of a compute subroutine. Input is index i of
node, space b to subtree at 400. It is determined whether
R[i,b] is already calculated at 402. If so, the list of calculated
results R[i,b] is returned at 404. Otherwise, it is determined
whether i>N at 406. If so, R[i,b]=[0,0] and the list of
calculated results R[i,b] is returned at 404. Otherwise, it is
determined whether all combinations of retention probabili-
ties

M
Yils Yizs ee yiM:Z yij < min{b, M}
=

have been checked at 410. If so, the list of calculated results
R[i,b] is returned at 404. Otherwise, the next eligible com-
bination is checked at 412. It is determined whether all space
allotments

M
bLSb—Z YVij
=

to the left subtree have been checked at 414. If not, the next
eligible allotment b; to left subtree is considered at 416 and
leftList and rightList are computed, i.e., leftList=ComputeR
[2i,b;] and

M
rightList = ComputeR|2i+ 1, b— by < b— Z yij—br
1

at 418. Then, at 420, it is determined whether all pairs in
leftList, rightList have been checked. If so, then the list of
calculated results R[i,b] is returned at 404. Otherwise, the
next eligible pair is considered and the potential solution
R[i,b] is computed at 422. Then, it is determined whether the
new solution is dominated by other calculated solutions. If
so, then control flows back to 420. Otherwise, the solution
is stored in R[i,b] and any stored dominated solutions are
removed at 426.

[0063] FIG. 5 is a flow chart for an exemplary embodi-
ment of a partial order dynamic programming (PODP)
algorithm. NxM data values, d;;, are read at 500. Then,
wavelet coefficients c;; are calculated at 502. A solution
list=Compute R[0,B] at 504 and the solution in the solution
list is return that has the minimum max,_, M 1R[0, B],
} at 506.

US 2007/0058871 Al

[0064] FIG. 6 is a flow chart for an exemplary embodi-
ment of a GreedyRel algorithm. Input data includes data
values d;;, quantization parameter q and space constraint B
at 600. Wavelet coefficients are calculated at 602. Initializa-
tioni:=N-1 is performed at 604. A loop at 606 is performed
until i<0, when the amount of not assigned space spaceleft
is set equal to B at 608. Inside the loop at 610, Vj €{1, . .
. » M} calculate G[i,j], G,.{ij], potSpace[ij], and ch;; and
set y;; to zero. Then, decrement i at 612.

[0065] After 608, another loop at 614 is performed until
spacelLeft >0, when, if the OccupiedSpace =0 at 616, the
array y of retention probabilities is returned at 624. Inside
the loop at 618, the measure j {1, . . ., M} is found with
a maximum value of G[0j] Then, OccupiedSpace=
traverse(0, j,q.y.spaceleft) at 620. (See FIG. 7 for the
traverse subroutine). The remaining space is adjusted at 622,
i.e., spaceleft=spacel.eft-OccupiedSpace. If the Occupied-
Space =0 at 616, the array y of retention probabilities is
returned at 624. Otherwise, control flows to the top of the
loop at 614.

[0066] FIG. 7 is a flow chart of an exemplary embodiment
of a traverse subroutine, which is called in the GreedyRel
algorithm of FIG. 6. Input to the traverse subroutine at 700
includes index i of the error tree node, the measure j for
space allocation, the quantization parameter q, the retention
probabilities array y and the remaining space spaceleft.
AllocatedSpace is initialized to zero at 702. At 704, it is
determined whether ch;=1. If not, control flows to 706;
otherwise, if ch;;=1, control flows to 708. At 708, space-
Needed is set to the space needed to increase y;; by 1/q. It is
determined whether the spaceNeeded>spaceleft at 710. If
so, control flows to 712 where G[i, j], G, j], potSpacel[i,
j] and ch; are recomputed and allocatedSpace is returned at
714. Otherwise, allocatedSpace=spaceNeeded at 716 and
¥ii=Y;+1/q at 718 and control flows to 712.

[0067] At 706, it is determined whether ch;;=2. If not,
control flows to 720, where index k of the subtree that
determines the value of G[i,j] is found and 1 denotes the
index of the other subtree. Otherwise, at 722 index k of the
subtree that determines the value of G[i,j] is found and at
724 allocatedSpace=traverse(k,i,q,y,spaceleft) and, then,
control flows to 712.

[0068] After 720, where index k of the subtree that deter-
mines the value of G[i,j] is found and I denotes the index of
the other subtree, allocatedSpace=traverse(k,i,q,y,spaceleft)
at 726. Then, it is determined whether
spacelLeft>allocatedSpace at 728. If not, control flows to
712. Otherwise, allocatedSpace =allocatedSpace+traverse(l,
1,9-y,spaceLeft-allocatedSpace) at 730 and, then, control
flows to 712

[0069] At 712, G[i, j], G, {1 j], potSpace[i, j] and ch; are

recomputed and allocatedSpace is returned at 714.
Experimental Study

[0070] An extensive experimental study was conducted of
exemplary embodiments of algorithms for constructing
probabilistic synopses over data sets with multiple mea-
sures. One objective in the study was to evaluate both the
scalability and the obtained accuracy of the exemplary
embodiment of the GreedyRel algorithm for a large variety
of both real-life and synthetic data sets containing multiple
measures.

Mar. 15, 2007

[0071] The study demonstrated that an exemplary embodi-
ment of the GreedyRel algorithm is a highly scalable solu-
tion that provides near optimal results and improved accu-
racy to individual reconstructed answers. This exemplary
embodiment of the GreedyRel algorithm provided a fast and
highly-scalable solution for constructing probabilistic syn-
opses over large multi-measure data sets. Unlike earlier
schemes, such as PODP, this GreedyRel algorithm scales
linearly with the domain size, making it a viable solution for
large real-life data sets. This GreedyRel algorithm consis-
tently provided near-optimal solutions when compared to
PODP, demonstrating that it constitutes an effective tech-
nique for constructing accurate probabilistic synopses over
large multi-measure data sets. Compared to earlier
approaches that operate on each measure individually, this
GreedyRel algorithm significantly reduced the maximum
relative error of the approximation and, thus, was able to
offer significantly tighter error guarantees. These improve-
ments were typically of a factor two, but, in many cases, up
to 7 times smaller maximum relative errors were observed.

Experimental Techmques and Parameter Setttings

[0072] The experimental study compared an exemplary
embodiment of the GreedyRel algorithm and a PODP algo-
rithm for constructing probabilistic data synopses over
multi-measure data sets, along with a techmque called
IndDP that partitioned the available space equally over the
measures and, then, operated on each measure individually
by utilizing a dynamic programming MinRelVar algorithm.
To provide a more fair comparison to the IndDP algorithm,
the majority of the experiments included data sets where all
the measured quantities exhibited similar characteristics,
thus yielding a uniform partitioning of the synopsis space
over all the measures as the appropriate space allocation
technique. Experiments were also performed with a
Greedyl.2 algorithm, which is designed to minimize the
average sum squared error in multi-measure data sets. How-
ever, the GreedyL.2 algorithm consistently exhibited signifi-
cantly larger errors than the exemplary embodiments. A
parameter in the exemplary embodiments of the algorithms
was the quantization parameter q, which was assigned a
value of 10 for the GreedyRel and IndDP algorithms and a
smaller value of 4 for the PODP algorithm to reduce its
running time. Moreover, the sanity bound of each measure
was set to the 5%-quantile value for the measure’s data
values.

Experimental Data Sets

[0073] Several one-dimensional synthetic multi-measure
data sets were used in experiments. A Zipfian data generator
was used to produce Zipfian distributions of various skews,
such as a low skew of about 0.5 to a high skew of about 1.5,
with the sum of values for each measure set at about
200,000. Each Zipfian distribution was assigned one of three
possible shapes: NoPerm, Normal, or PipeOrgan. NoPerm
was the typical Zipfian distribution, where smaller domain
values were assigned higher values for the measured quan-
tities. Normal resembled a bell-shaped normal distribution,
with higher (lower) values at the center (endpoints) of the
domain. PipeOrgan assigned higher (lower) data values to
the endpoints (middle) of the domain. In all cases, the
centers of the M distributions were shifted and placed in
random points of the domain. Also considered were several
different combinations of used Zipfian distributions. In an

US 2007/0058871 Al

AllNoPerm combination, all M of the Zipfian distributions
had the NoPerm shape. Similarly, in an AllNormal combi-
nation, all M of the Zipfian distributions had the Normal
shape. Finally, in a Mixed combination, ¥5 of the M distri-
butions had the NoPerm shape, %45 had the Normal shape, and
the remaining %5 had the PipeOrgan shape. The results
presented are indicative of the multiple possible combina-
tions of the parameters.

[0074] In the experimental study, a real-life data set was
also used. A weather data set contained meteorological
measurements obtained by a station at the University of
Washington. This was a one-dimensional data set for which
the following six quantities were extracted: wind speed,
wind peak, solar irradiance, relative humidity, air tempera-
ture, and dewpoint temperature.

Approximation Error Metric

[0075] In all cases, the study focused on the maximum
relative error of the approximation, because it provided
guaranteed error-bounds for the reconstruction of any indi-
vidual data value and was the error metric that the exemplary
embodiments of the algorithms tried to minimize.

Comparing PODP and GreedyRel

[0076] The accuracy and running time of the exemplary
embodiment of the GreedyRel algorithm was compared to
the PODP algorithm. In FIGS. 8, 9, and 10 the running time
and maximum and average relative errors are plotted, cor-
respondingly for the two algorithms and for the weather data
set, when the synopsis space was varied from 10 to 50 units
of space. The unit of space was the size of each data value,
i.e., sizeof(float). In this experiment, only the three most
difficult to approximate measures were used. The domain
size of the data set was set to 128. In the plots depicting the
running time of algorithms, the Y axis is logarithmic. The
running time of the PODP algorithm did not scale well with
the size of the data synopsis, even for a small data set. For
example, for a synopsis size of 50 space units, the PODP
algorithm required more than 2 hours to complete, while the
GreedyRel algorithm provided near-optimal solutions in all
cases.

[0077] FIG. 11 presents the corresponding running times
for both algorithms, as the domain size is increased from 64
to 512. From the weather data set, just three measures were
extracted and the synopsis space was always set to be 5% of
the size of the input. Again, the running time performance of
PODP was disappointing. For a domain size of 512, its
running time exceeded 14 hours. Finally, as FIG. 12 dem-
onstrates, the running time of PODP increased exponentially
with the number of the data set measures. For data sets with
four or more measures, the PODP did not terminate within
one day. It is easy to see that the PODP algorithm cannot be
used but for toy-like data sets. On the other hand, the
GreedyRel algorithm provided near-optimal solutions in all
tested cases, while exhibiting small running times.

Running Time Comparison of GreedyRel and IndDP

[0078] FIG. 13 is a plot of the running times of the
exemplary embodiment of the GreedyRel algorithm and the
IndDP algorithm for the weather data set (all 6 measures
were included) as the domain size is increased from 128 to
524288. The synopsis size was always set to 5% of the input
data. The IndDP algorithm was considerably slower than the

Mar. 15, 2007

GreedyRel algorithm (3 orders of magnitude slower for
domain size 131,072) with the difference increasing rapidly
with the increase of the domain size. While the GreedyRel
algorithm scales linearly with the increase in the domain size
(i.e., doubling the domain size doubles the running time), the
IndDP algorithm grows much faster every time the domain
size is doubled. This, of course, is consistent with the
running time complexity of the IndDP algorithm, because
when the domain size is doubled, the synopsis space is
doubled as well. Moreover, the large memory requirements
(O(NBq)) of the IndDP algorithm prevented it from termi-
nating for domain sizes larger than 131,072 (the main
memory of the testing machine was 512MB). Thus, the
linear scalability of the GreedyRel algorithm to the domain
size, in terms of both its running time and its memory
requirements, constitutes it as a viable techmque for pro-
viding tight error guarantees, not only on multi-measure data
sets, but also on single-measure data sets, because both the
GreedyRel and the IndDP algorithms scale in a similar way
for such data sets. Moreover, the GreedyRel algorithm,
which utilizes the extended wavelet coefficients to store the
selected coeflicient values, also outperformed the IndDP
algorithm in terms of the obtained accuracy of the data
synopsis. The improved accuracy was attributed to the
improved storage utilization achieved by using extended
wavelet coefficients and the ability of the GreedyRel algo-
rithm to exploit the underlying storage dependencies.

Accuracy Comparison of GreedyRel and IndDP in Synthetic
Data Sets.

[0079] For the synthetic data sets, a domain size of 256
was used. The obtained accuracy in terms of the maximum
error of the approximation for the GreedyRel and the IndDP
algorithms and six representative combinations of synthetic
data sets is presented. These size combinations arise from
considering Zipfian distributions with skew 0.6 and 1, along
with the other possible combinations of the used Zipfian
distributions (i.e., AllNoPerm, AllNormal, and Mixed). The
synthetic data sets in this section contain six measures/
distributions.

[0080] Consider the six possible combinations arising
from distributions having skew equal to 1. In FIGS. 14, 15,
and 16, the maximum relative errors are plotted for the
GreedyRel and IndDP algorithms, as the synopsis space is
varied from 2% to 10% of the input data size and for the
Mixed, AllNoPerm, and AllNormal (in the specific order)
selection of Zipfian distribution shapes. The Y axis for the
AllNoPerm and Mixed cases is logarithmic, due to the large
maximum errors observed in this case, mainly by the IndDP
algorithm. Intuitively, this occurs because the shifting of
some distribution centers in this case resulted in the largest
values of the data set being adjacent to the smallest values,
thus requiring several coefficient values to capture this large
difference of the values. As shown, the GreedyRel algorithm
provided more accurate results than the IndDP algorithm,
with the differences more significant in the AllNoPerm and
Mixed cases (Y axis is logarithmic in these two cases). Even
though none of the techniques provided right error bounds
for such a large data skew value and for small data synopses,
the improvements achieved by the GreedyRel algorithm
were very significant in each combination of used Zipfian
distributions. For each combination, GreedyRel produced,
correspondingly up to 6.1, 5.7, and 3.5 times smaller maxi-
mum relative errors than IndDP.

US 2007/0058871 Al

[0081] Similar results were also observed for the six
combinations of synthetic data sets, arising from setting the
skew of the distributions to 0.6. In FIGS. 17, 18, and 19, the
corresponding results for the Mixed, AllNoPerm, and
AllNormal combinations of used data distributions (loga-
rithmic Y axis in the AllNoPerm and Mixed cases). The
maximum relative errors in this case were significantly
smaller for all methods. However, the GreedyRel algorithm
was still able to provide substantially more tight error
bounds, up to 6.9, 2.7, and 2.3 times smaller than IndDP.

Accuracy Comparison of GreedyRel and IndDP in Real Data
Sets

[0082] InFIG. 20, the maximum relative errors are plotted
for the weather data set, as the size of the synopsis was
varied and for domain sizes of 2048 and 1024 respectively.
As shown, the benefits of the GreedyRel algorithm contin-
ued to be significant in all cases. In the weather data set, the
GreedyRel algorithm provided up to 3.5 times tighter error
bounds than the IndDP algorithm (and commonly at least a
two-fold improvement).

[0083] In summary, exemplary embodiments of effective
techniques for building wavelet synopses over multi-mea-
sure data sets are provided. These techniques seek to mini-
mize, given a storage constraint, the maximum relative error
of reconstructing any data value among all measures. The
difficulty of the problem compared to the single measure
case is demonstrated and a partial-order dynamic program-
ming (PODP) solution is provided. Given the high time and
space complexities of PODP, a fast and scalable approxi-
mate algorithm is provided that greedily allocates synopsis
space based on the idea of marginal error gains. Experimen-
tal evaluation demonstrated that the GreedyRel algorithm
exhibited near-optimal solutions, while, at the same time,
outperformed prior techniques based on optimizing each
measure independently. GreedyRel is a viable solution, even
in the single-measure case, for constructing accurate proba-
bilistic wavelet synopses over large data sets.

Pseudo Code for GreedyRel Algorithm

[0084] Table 1 below shows pseudo code for an exemplary
embodiment of the GreedyRel algorithm. In the later steps
of this algorithm, the available synopsis space may become
smaller than potSpace[i, j...J; in this case, rather than
recursing on both child subtrees of a node (when ch;;,,,,,=2),
this algorithm first recurses on the child causing the maxi-
mum estimated squared NSE, and then recurses on the other

child with any remaining space (steps 12-16 of traverse).

TABLE 1

Pseudo Code for GreedyRel Algorithm

procedure GreedyRel(W 4,B,q,s)
Input: N x M array W, of Haar wavelet coeflicients; space constraint B;
quantization parameter q > 1; vector of per-measure sanity bounds s.
Output: Array y of retention probabilities yij for all N x M coefficients.
begin
1. for i :=N - 1 downto 0 do // traverse error tree bottom-up
forj:=1toMdo

2

3 yy=0

4. Compute G[i,j], Gpod i,i], potSpace[i,j], and ch;;
5. endfor

6. endfor

7. spacelLeft = B

8. while (spaceleft > 0) do

Mar. 15, 2007

TABLE 1-continued

Pseudo Code for GreedyRel Algorithm

9. Jmax = arg max;{G[0,j[}

10. occupiedSpace := traverse(0, j,... 4, ¥, spaceLeft)

11. spaceleft := spaceLeft — occupiedSpace

12. if (occupiedSpace = 0) then return(y) // not enough space

13. endwhile

14. return(y)

end

procedure traverse(i, j, q, y, spaceLeft)

Input: Index i of error-tree node; measure j chosen for space allocation;
quantization parameter q; array y of current retention probabilities;
maximum synopsis space to allocate (spaceLeft).

Output: Space allocated to the Tj; subtree at this step.

begin

1. allocatedSpace = 0

2. if (chy = 1) then

3. neededSpace := &(E[EC;],1/q) // see equation (4)

4. if (neededSpace = spaceLeft) then

5. yy=yy+ Ug

6

7

8

allocatedSpace := neededSpace

. endif

- else if (chy = 2) then
9. Find index k of child subtree through which G[i,j] occurs
10. allocatedSpace := traverse(k, j, q, v, spaceLeft)
11. else
12. Find index k of child subtree through which G[i,j] occurs
13. Let I be the index of the other subtree
14. allocatedSpace := traverse(k, j, q, v, spaceLeft)
15. if (spaceleft > allocatedSpace) then
16. allocatedSpace <= traverse(l, j, q, v, spaceLeft-allocatedSpace)
17. endif
18. Recompute the node’s G, G,
19. return(allocatedSpace)
end

potSpace, and ch values

Extensions to Multi-Dimensionsal Wavelets

[0085] Exemplary embodiments of the present invention
extend to multi-dimensional data. For a D-dimensional data
set, the error-tree structure becomes significantly more com-
plex. Each node in the error tree (besides the root node)
corresponds to a set of (at most) 2P-1 wavelet coefficients
with the same support region, but different signed contribu-
tions for each region quadrant. Furthermore, each error-tree
node i (besides the root node) may have up to 2° children,
corresponding to the quadrants of the common support
region for all coefficients in i.

Extending PODP

[0086] Exemplary embodiments of the PODP algorithm
for multi-dimensional data sets generalize the corresponding
multi-dimensional MinRelVar strategy in a way analogous
to the one-dimensional case. PODP needs to consider, at
each internal node of the error tree, the optimal allocation of
space to the <2P-1 wavelet coefficients of the node and its
<2P child subtrees. The extension of PODP to multi-dimen-
sional data sets is therefore a fairly simple adaptation of the
multi-dimensional MinRelVar algorithm. However, PODP
needs to maintain, for each node i and each possible space
allotment B, a collection R[i,B] of incomparable solutions.
This, once again, makes the time/space requirements of
PODP significantly higher than those of MinRelVar.

Extending GreedyRel

[0087] The first modification involved in extending an
exemplary embodiment of the GreedyRel algorithm to
multi-dimensional data sets has to do with the computation

US 2007/0058871 Al

of G[i,j], which now involves examining the estimated NSE>
values over <2 child subtrees and maintaining the maxi-
mum such estimate. Let S(i) denote the set of the <2”-1
coeflicients of nod i and let i;, . . . ,i, be the indexes of i’s
child nodes in the error tree. Then,

V; i .
Gli, j] = {max{ D %f“yk;; + Glir, 1,

cpeS)

Var(cy;, yy
<Ny Vartey ¥) |, gp; . j],}O,izN}

50 Norm(zp, D

[0088] Another modification involves the estimation of
marginal error gains at each node. A total of three possible
choices for forming potSet[i,j] for each (node, measure)
combination were described above. Each node has up to 2°
child subtrees, resulting in a total of ,D+1 possible choices
of forming potSetOi,j]. The first choice is to increase the
retention probability for measure j of one of the <2”-1
coeflicients in node i. In this case, include in potSet[i,j] the
coeflicient in node i that is expected to exhibit the largest
marginal gain for measure j. For each of the remaining 2°
possible choices of forming potSet[i,j], the k™ choice
(1<k<2P) considers the marginal gain of increasing the
retention probabilities in the child subtrees through which
the k maximum NSE? values occur, as estimated in the
right-hand side of the above equation for G[ij]. At each
node, the computation of G, [1,j], potSpace[i,j], and ch;,
incurs a worst-case time cost of O(Dx2") due to the possible
ways of forming potSet[i,j] and the sorting operation of 27
quantities. Let N denote the total number of cells in the
multi-dimensional data array and maxD denote the maxi-
mum domain size of any dimension. Then, the running time
complexity of GreedyRel becomes O(Dx2Px(NM+BM-
qlogmax D)). Of course, in most real-life scenarios using
wavelet-based data reduction, the number of dimensions is
typically a small constant (e.g., 4-6) and the number of
tuples can be exponential (O(N™)) to the maximum domain
size N.

Improving the Complexity of GreedyRel

[0089] In the wavelet decomposition process of a multi-
dimensional data set, the number of non-zero coefficients
produced may be significantly larger than the number N, of
non-zero data values. One adaptive coefficient thresholding
procedure retains at most N, wavelet coefficients without
introducing any reconstruction bias. Using this procedure,
the MinRelVar algorithm can be modified so that its running
time and space complexity have a dependency on N, and not
on N (i.e., the total number of cells in the multi-dimensional
data array). It is thus be desirable if to modify the GreedyRel
algorithm in a similar way, in order to decrease its running
time and space requirements.

[0090] Let N, denote the number of error tree nodes that
contain non-zero coefficient values, possibly after the afore-
mentioned thresholding process. For any node in the error
tree containing zero coefficient values that was at most one
node in its subtree and does not contain non-zero coefficient
values, no computation is needed. Equivalently, exemplary
embodiments of the algorithm computes G, G, values in:
nodes containing non-zero coefficient values or nodes that

Mar. 15, 2007

contain zero coefficient values, but which are the least
common ancestor of at least two non-zero tree nodes
beneath it in the error tree.

[0091] Let k be a node that is the only node in its subtree
with non-zero coeflicient values. The G, G, values in the
descendant nodes of k do not need to be considered, because
they will be zero. An observation is that for any ancestor of
k that contains just a single, non-zero error tree beneath it
(which is certainly the subtree of node k), no computation is
necessary, because the G, G, values of k can be used
instead. An additional computation is needed in any node n
with zero-coefficients that has at least two non-zero error
tree nodes beneath them in the error tree (in different
subtrees). In this case, the G, G, values of node n needs to
be calculated, using as input the G, G, values of its
non-zero descendant tree nodes. It is easy to demonstrate
that at most N_-1 such nodes may exist. Thus, the
GreedyRel algorithm needs to calculate the G, G, values in
at most 0(2N_-1)=0O(N,) nodes, thus yielding running time
and space complexities of O(Dx2Dx(N,M+BMgqlogmaxD))
and O(N,M) respectively. In order to implement the algo-
rithm as described, the N, coefficients needs to be sorted
based on their postorder numbering in the error tree. This
requires an additional O(Nz log Nz) time for the sorting
process. However, this running time is often significantly
smaller than the benefits of having running time and space
dependencies based on N, rather than on N.

[0092] FIG. 21 is a high-level block diagram showing a
computer. The computer 2100 may be employed to imple-
ment embodiments of the present invention. The computer
2100 comprises a processor 2130 as well as memory 2140
for storing various programs 2144 and data 2146. The
memory 2140 may also store an operating system 2142
supporting the programs 2144.

[0093] The processor 2130 cooperates with conventional
support circuitry such as power supplies, clock circuits,
cache memory and the like as well as circuits that assist in
executing the software routines stored in the memory 2140.
As such, it is contemplated that some of the steps discussed
herein as software methods may be implemented within
hardware, for example, as circuitry that cooperates with the
processor 2130 to perform various method steps. The com-
puter 2100 also contains input/output (I/O) circuitry that
forms an interface between the various functional elements
communicating with the computer 2100.

[0094] Although the computer 2100 is depicted as a gen-
eral purpose computer that is programmed to perform vari-
ous functions in accordance with the present invention, the
invention can be implemented in hardware as, for example,
an application specific integrated circuit (ASIC) or field
programmable gate array (FPGA). As such, the process steps
described herein are intended to be broadly interpreted as
being equivalently performed by software, hardware, or a
combination thereof.

[0095] The present invention may be implemented as a
computer program product wherein computer instructions,
when processed by a computer, adapt the operation of the
computer such that the methods and/or techniques of the
present invention are invoked or otherwise provided.
Instructions for invoking the inventive methods may be
stored in fixed or removable media, transmitted via a data
stream in a broadcast media or other signal bearing medium,

US 2007/0058871 Al

and/or stored within a working memory within a computing
device operating according to the instructions.

[0096] While the foregoing is directed to various embodi-
ments of the present invention, other and further embodi-
ments of the invention may be devised without departing
from the basic scope thereof. As such, the appropriate scope
of the invention is to be determined according to the claims,
which follow.

What is claimed is:

1. A method for probabilistic wavelet synopses for data
sets with multiple measures, comprising:

constructing, in response to a request, a wavelet synopsis
that minimizes an error metric for a data domain having
multiple measures, the wavelet synopsis including
extended wavelet coefficients;

allocating space by applying a probabilistic thresholding
technique that is based on unbiased randomized round-
ing of the extended wavelet coefficients, the probabi-
listic thresholding including accounting for storage
dependencies among the extended wavelet coefficients
and selecting rounding values such that the error metric
is minimized, while not exceeding a prescribed space
limit for the probabilistic wavelet synopsis; and

providing an approximation in response to the request.

2. The method of claim 1, wherein the approximation
includes estimates of all individual data values.

3. The method of claim 1, wherein the error metric is a
maximum relative error.

4. The method of claim 3, wherein the maximum relative
error is bound to provide an error guarantee on each recon-
structed data value.

5. The method of claim 1, further comprising:

formulating dynamic-programming recurrences over a
Haar error tree to minimize the error metric.

Mar. 15, 2007

6. The method of claim 5, further comprising:

assigning retention probabilities to non-zero coeflicients
within the prescribed space limit by exploiting the error
tree structure of a Haar decomposition and the storage
dependencies among the extended wavelet coefficients.
7. The method of claim 1, further comprising:

quantizing the space allotments.
8. A method for probabilistic wavelet synopses for mul-
tiple measures, comprising:

allocating a synopsis space to extended wavelet coeffi-
cients in an error tree based on marginal error gains by,
at each step, attempting to allocate additional space to
a subset of the extended wavelet coeflicients that results
in a reduction in a maximum normalized standard error
(NSE?) per unit of space used;

computing estimated current and potential maximum
NSE values at a root coeflicient of the error tree for
each data measure; and

providing an approximation to a maximum minimization
problem for the extended wavelet coefficients.
9. The method of claim 8, wherein allocating further
comprises:

estimating the maximum NSE? per-unit space values at
any node of the error tree;

estimating a best marginal error gain for any subtree by
identifying a subset of extended wavelet coefficients
that are expected to give a largest per-unit space
reduction in the maximum NSE?; and

allocating additional synopsis space to a best overall
subset of extended coeflicients in the error tree.
10. The method of claim 8, further comprising:

performing a recursive, top-down traversal of the error
tree.

