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VERY LARGE DATABASES

A growing number of database applications require online,
interactive access to very large volumes of data to perform a
variety of data analysis tasks. As an example, large tele-
communication and Internet service providers typically col-
lect and store Gigabytes or Terabytes of detailed usage
information (Call Detail Records, SNMP/RMON packet
flow data, etc.) from the underlying network to satisfy the
requirements of various network management tasks, includ-
ing billing, fraud/anomaly detection, and strategic planning.
Such large datasets are typically represented either as mas-
sive alphanumeric data tables (in the relational data model)
or as massive labeled data graphs (in richer, semistructured
data models, such as extensible markup language (XML)). In
order to deal with the huge data volumes, high query com-
plexities, and interactive response time requirements char-
acterizing these modern data analysis applications, the idea
of effective, easy-to-compute approximations over precom-
puted, compact data synopses has recently emerged as a
viable solution. Due to the exploratory nature of most target
applications, there are a number of scenarios in which a
(reasonably accurate) fast approximate answer over a small-
footprint summary of the database is actually preferable over
an exact answer that takes hours or days to compute. For
example, during a drill-down query sequence in ad hoc data
mining, initial queries in the sequence frequently have the
sole purpose of determining the truly interesting queries and
regions of the database. Providing fast approximate answers
to these initial queries gives users the ability to focus their
explorationsquicklyandeffectively,withoutconsuming inor-
dinate amounts of valuable system resources. The key, of
course, behind such approximate techniques for dealing with
massive datasets lies in the use of appropriate data reduction
techniques for constructing compact data synopses that can
accurately approximate the important features of the under-
lying data distribution. In this article, we provide an over-
view of date reduction and approximation methods for
massive databases and discuss some of the issues that
develop from different types of data, large data volumes,
and applications-specific requirements.

APPROXIMATION TECHNIQUES FOR MASSIVE
RELATIONAL DATABASES

Consider a relational table R with d data attributes X1,
X2, . . . Xd. We can represent the information in R as a
d-dimensional array AR , whose jth dimension is indexed
by the values of attribute Xj and whose cells contain the
count of tuples in R having the corresponding combination
of attribute values. AR is essentially the joint frequency
distribution of all the data attributes of R. More formally,
let D ¼ fD1; D2; . . . ; Ddg denote the set of dimensions of
AR, where dimension Dj corresponds to the value domain of

attribute Xj . Without loss of generality, we assume that
each dimension Dj is indexed by the set of integers
f0; 1; . . . ; jDjj � 1g, where jDjj denotes the size of dimen-
sion Dj. We assume that the attributes {X1,. . .,Xd} are
ordinal in nature, that is, their domains are naturally
ordered, which captures all numeric attributes (e.g., age,
income) and some categorical attributes (e.g., education).
Such domains can always be mapped to the set of integers
mentioned above while preserving the natural domain
order and, hence, the locality of the distribution. It is
also possible to map unordered domains to integer values;
however, such mappings do not always preserve locality.
For example, mapping countries to integers using alpha-
betic ordering can destroy data locality. There may be
alternate mappings that are more locality preserving,
(e.g., assigning neighboring integers to neighboring coun-
tries). (Effective mapping techniques for unordered attri-
butes are an open research issue that lies beyond the scope
of this article.) The d-dimensional joint-frequency array AR

comprises N ¼ Pd
i¼1jDij cells with cell AR [i1, i2,. . ., id]

containing the count of tuples in R having Xj ¼ i j for
each attribute 1 � j � d.

The common goal of all relational data reduction tech-
niques is to produce compact synopsis data structures
that can effectively approximate the d-dimensional joint-
frequency distribution AR. In what follows, we give an
overview of a few key techniques for relational data reduc-
tion, and discuss some of their main strengths and weak-
nesses as well as recent developments in this area of
database research. More exhaustive and detailed surveys
can be found elsewhere; see, for example, Refs. 1 and 2.

Sampling-Based Techniques

Sampling methods are based on the notion that a large
dataset can be represented by a small uniform random
sample of data elements, an idea that dates back to the end
of the nineteenth century. In recent years, there has been
increasing interest in the application of sampling ideas as
a tool for data reduction and approximation in relational
database management systems (3–8). Sample synopses
can be either precomputed and incrementally maintained
(e.g., Refs. 4 and 9) or they can be obtained progressively
at run-time by accessing the base data using specialized
data access methods (e.g., Refs. 10 and 11). Appropriate
estimator functions can be applied over a random sample
of a data collection to provide approximate estimates for
quantitative characteristics of the entire collection (12).
The adequacy of sampling as a data-reduction mechanism
depends crucially on how the sample is to be used. Random
samples can typically provide accurate estimates for
aggregate quantities (e.g., COUNTs or AVERAGEs) of a
(sub)population (perhaps determined by some selection
predicate), as witnessed by the long history of successful
applications of random sampling in population surveys
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(12,13). An additional benefit of random samples is that
they can provide probabilistic guarantees (i.e., confidence
intervals) on the quality of the approximation (7,11). On
the other hand, as a query approximation tool, random
sampling is limited in its query processing scope, espe-
cially when it comes to the ‘‘workhorse’’ operator for
correlating data collections in relational database sys-
tems, the relational join. The key problem here is that a
join operator applied on two uniform random samples
results in a nonuniform sample of the join result that
typically contains very few tuples, even when the join
selectivity is fairly high (9). Furthermore, for nonaggre-
gate queries, execution over random samples of the data is
guaranteed to always produce a small subset of the exact
answer, which is often empty when joins are involved
(9,14). The recently proposed ‘‘join synopses’’ method (9)
provides a (limited) sampling-based solution for handling
foreign-key joins that are known beforehand (based on an
underlying ‘‘star’’ or ‘‘snowflake’’ database schema). Tech-
niques for appropriately biasing the base-relation sam-
ples for effective approximate join processing have also
been studied recently (3).

Histogram-Based Techniques

Histogramsynopses orapproximatingone-dimensional data
distributions have been extensively studied in the research
literature (15–19), and have been adopted by several com-
mercial database systems. Briefly, a histogram on an attri-
bute X is constructed by employing a partitioning rule to
partition thedatadistributionof X intoanumber of mutually
disjoint subsets (called buckets), and approximating the
frequencies and values in each bucket in some common
fashion. Several partitioning rules have been proposed for
the bucketization of data distribution points—some of the
most effective rules seem to be ones that explicitly try to
minimize the overall variance of the approximation in the
histogram buckets (17–19). The summary information
stored in each bucket typically comprises (1) the number
of distinct data values in the bucket, and (2) the average
frequency of values in the bucket, which are used to
approximate the actual bucket contents based on appropri-
ate uniformity assumptions about the spread of different
values in the bucket and their corresponding frequencies
(19).

One-dimensional histograms can also be used to approx-
imate a (multidimensional) joint-frequency distribution
AR through a mutual-independence assumption for the
data attributes {X1, . . ., Xd}. Mutual independence essen-
tially implies that the joint-frequency distribution can be
obtained as a product of the one-dimensional marginal
distributions of the individual attributes Xi. Unfortunately,
experience with real-life datasets offers overwhelming evi-
dence that this independence assumption is almost always
invalid and can lead to gross approximation errors in
practice (20,21). Rather than relying on heuristic indepen-
dence assumptions, multidimensional histograms [origin-
ally introduced by Muralikrishna and DeWitt (22)] try to
directly approximate the joint distribution of {X1,. . ., Xd}
by strategically partitioning the data space into d-dimen-
sional buckets in a way that captures the variation in data

frequencies and values. Similar to the one-dimensional
case, uniformity assumptions are made to approximate
the distribution of frequencies and values within each
bucket (21). Finding optimal histogram bucketizations is
a hard optimization problem that is typically NP-complete
even for two dimensions (23). Various greedy heuristics for
multidimensional histogram construction have been pro-
posed (21,22,24) and shown to perform reasonably well for
low to medium data dimensionalities (e.g., d ¼ 2�5).

Recent work has demonstrated the benefits of histogram
synopses (compared with random samples) as a tool for
providing fast, approximate answers to both aggregate and
nonaggregate (i.e., ‘‘set-valued’’) user queries over low-
dimensional data (14). Other studies have also considered
the problem of incrementally maintaining a histogram
synopsis over updates (25,26) or using query feedback
(27,28), and the effectiveness of random sampling for
approximate histogram construction (29). Unfortunately,
like most techniques that rely on space partitioning (includ-
ing the wavelet-based techniques of the next section),
multidimensional histograms also fall victim to the ‘‘curse
of dimensionality,’’ which renders them ineffective above
5–6 dimensions (24).

Wavelet-Based Techniques

Wavelets are a mathematical tool for the hierarchical
decomposition of functions with several successful appli-
cations in signal and image processing (30,31). Broadly
speaking, the wavelet decomposition of a function consists
of a coarse overall approximation along with detail coeffi-
cients that influence the function at various scales (31). A
number of recent studies have also demonstrated the
effectiveness of the wavelet decomposition (and Haar
wavelets, in particular) as a data reduction tool for data-
base problems, including selectivity estimation (32) and
approximate query processing over massive relational
tables (33–35).

Suppose we are given the one-dimensional data fre-
quency vector A containing the N ¼ 8 values A ¼ ½2; 2; 0;
2; 3; 5; 4; 4�. The Haar wavelet decomposition of A can be
computed as follows. We first average the values together
pairwise to get a new ‘‘lower-resolution’’ representation of
the data with the following average values [2,1,4,4]. In
other words, the average of the first two values (that is, 2
and 2) is 2, that of the next two values (that is, 0 and 2) is 1,
and so on. Obviously, some information has been lost in
this averaging process. To be able to restore the original
values of the frequency array, we need to store some detail
coefficients that capture the missing information. In Haar
wavelets, these detail coefficients are simply the differ-
ences of the (second of the) averaged values from the
computed pairwise average. Thus, in our simple example,
for the first pair of averaged values, the detail coefficient is
0 because 2� 2 ¼ 0; for the second sample, we again need
to store �1 because 1� 2 ¼ �1. Note that no information
has been lost in this process—it is fairly simple to recon-
struct the eight values of the original data frequency array
from the lower-resolution array containing the four
averages and the four detail coefficients. Recursively
applying the above pairwise averaging and differencing
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process on the lower-resolution array containing the
averages, we get the following full decomposition:

Resolution Averages Detail Coefficients

3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, �1, �1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [�5/4]

The Haar wavelet decomposition of A is the single
coefficient representing the overall average of the fre-
quency values followed by the detail coefficients in the
order of increasing resolution. Thus, the one-dimensional
Haar wavelet transform of A is given by WA ¼ ½11=4; �5=4;
1=2; 0; 0; �1; �1; 0�. Each entry in WA is called a wavelet
coefficient. The main advantage of using WA instead of the
original frequency vector A is that for vectors containing
similar values most of the detail coefficients tend to have
very small values. Thus, eliminating such small coefficients
from the wavelet transform (i.e., treating them as zeros)
introduces only small errors when reconstructing the ori-
ginal data, resulting in a very effective form of lossy data
compression (31). Furthermore, the Haar wavelet decom-
position can also be extended to multidimensional joint-
frequency distribution arrays through natural generaliza-
tions of the one-dimensional decomposition process
described above (33,35). Thus, the key idea is to apply
the decomposition process over an input dataset along
with a thresholding procedure in order to obtain a compact
data synopsis comprising of a selected small set of Haar
wavelet coefficients. The results of several research studies
(32–37) have demonstrated that fast and accurate approx-
imate query processing engines (for both aggregate and
nonaggregate queries) can be designed to operate solely
over such compact wavelet synopses.

Other recent work has proposed probabilistic counting
techniques for the efficient online maintenance of wavelet
synopses in the presence of updates (38), as well as time-
and space-efficient techniques for constructing wavelet
synopses for datasets with multiple measures (such as
those typically found in OLAP applications) (39). All the
above-mentioned studies rely on conventional schemes
for eliminating small wavelet coefficients in an effort to
minimize the overall sum-squared error (SSE). Garofalakis
and Gibbons (34,36) have shown that such conventional
wavelet synopses can suffer from several important pro-
blems, including the introduction of severe bias in the data
reconstruction and wide variance in the quality of the data
approximation, as well as the lack of nontrivial guarantees
for individual approximate answers. In contrast, their
proposed probabilistic wavelet synopses rely on a probabil-
istic thresholding process based on randomized rounding
that tries to probabilistically control the maximum relative
error in the synopsis by minimizing appropriate probabil-
istic metrics.

In more recent work, Garofalakis and Kumar (40) show
that the pitfalls of randomization can be avoided by intro-
ducing efficient schemes for deterministic wavelet thresh-
olding with the objective of optimizing a general class of
error metrics (e.g., maximum or mean relative error). Their

optimal and approximate thresholding algorithms are
based on novel Dynamic-Programming (DP) techniques
that take advantage of the coefficient-tree structure of the
Haar decomposition. This turns out to be a fairly powerful
idea for wavelet synopsis construction that can handle a
broad, natural class of distributive error metrics (which
includes several useful error measures for approximate
query answers, such as maximum or mean weighted rela-
tive error and weighted Lp-norm error) (40). The above
wavelet thresholding algorithms for non-SSE error metrics
consider only the restricted version of the problem, where
the algorithm is forced to select values for the synopsis from
the standard Haar coefficient values. As observed by Guha
and Harb (41), such a restriction makes little sense when
optimizing for non-SSE error, and can, in fact, lead to sub-
optimal synopses. Their work considers unrestricted Haar
wavelets, where the values retained in the synopsis are
specifically chosen to optimize a general (weighted) Lp-
norm error metric. Their proposed thresholding schemes
rely on a DP over the coefficient tree (similar to that in (40)
that also iterates over the range of possible values for each
coefficient. To keep time and space complexities manage-
able, techniques for bounding these coefficient-value
ranges are also discussed (41).

Advanced Techniques

Recent research has proposed several sophisticated
methods for effective data summarization in relational
database systems. Getoor et al. (42) discuss the applica-
tion of Probabilistic Relational Models (PRMs) (an exten-
sion of Bayesian Networks to the relational domain) in
computing accurate selectivity estimates for a broad class
of relational queries. Deshpande et al. (43) pro-posed
dependency-based histograms, a novel class of histogram-
based synopses that employs the solid foundation of
statistical interaction models to explicitly identify and
exploit the statistical characteristics of the data and, at
the same time, address the dimensionality limitations of
multidimensional histogram approximations. Spiegel
and Polyzotis (44) propose the Tuple-Graph synopses
that view the relational database as a semi-structured
data graph and employ summarization models inspired
by XML techniques in order to approximate the joint
distribution of join relationships and values. Finally,
Jagadish et al. (45) and Babu et al. (46) develop semantic
compression techniques for massive relational tables
based on the idea of extracting data mining models
from an underlying data table, and using these models
to effectively compress the table to within user-specified,
per-attribute error bounds.

Traditional database systems and approximation tech-
niques are typically based on the ability to make multiple
passes over persistent datasets that are stored reliably in
stable storage. For several emerging application domains,
however, data arrives at high rates and needs to be pro-
cessed on a continuous ð24� 7Þ basis, without the benefit of
several passes over a static, persistent data image. Such
continuous data streams occur naturally, for example, in
the network installations of large telecom and Internet
service providers where detailed usage information (call
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detail records (CDRs), SNMP/RMON packet-flow data,
etc.) from different parts of the underlying network needs
to be continuously collected and analyzed for interesting
trends. As a result, we are witnessing a recent surge of
interest in data stream computation, which has led to
several (theoretical and practical) studies proposing novel
one-pass algorithms for effectively summarizing massive
relational data streams in a limited amount of memory
(46–55).

APPROXIMATION TECHNIQUES FOR MASSIVE XML
DATABASES

XML (56) has rapidly evolved from a markup language for
web documents to an emerging standard for data exchange
andintegrationovertheInternet.Thesimple,self-describing
nature of the XMLstandard promises to enable a broad suite
ofnext-generationInternetapplications, rangingfromintel-
ligentwebsearchingandqueryingtoelectroniccommerce.In
many respects, XML represents an instance of semistruc-
tured data (57): The underlying data model comprises a
labeled graph of element nodes, where each element can be
either an atomic data item (i.e., raw character data) or a
composite data collection consisting of references (repre-
sented as graph edges) to other elements in the graph.
Moreformally,anXMLdatabasecanbemodeledasadirected
graph G(VG, EG), where each node u 2 VG corresponds to a
document element, or an element attribute, with label
label(u). If u is a leaf node, then it can be associated
with a value value(u). An edge (u, v) denotes either the
nesting of v under u in the XML document, or a reference
from u to v, through ID/IDREF attributes or XLink con-
structs (58–60).

XML query languages use two basic mechanisms for
navigating the XML data graph and retrieving qualifying
nodes, namely, path expressions and twig queries. A path
expression specifies a sequence of navigation steps, where
each step can be predicated on the existence of sibling paths
or on the value content of elements, and the elements
at each step can be linked through different structural
relationships (e.g., parent-child, ancestor-child, or
relationships that involve the order of elements in
the document). As an example, the path expression
==author ½ =book==year ¼ 2003� ==paper will select all
paper elements with an author ancestor, which is the root of
at least one path that starts with book and ends in year, and
the value of the ending element is 2003. The example
expression is written in the XPath (61) language, which
lies at the core of XQuery (62) and XSLT (63), the dominant
proposals from W3C for querying and transforming XML
data.

A twig query uses multiple path expressions in order to
express a complex navigation of the document graph and
retrieve combinations of elements that are linked through
specific structural relationships. As an example, consider
the following twig query, which is expressed in the XQuery
(62) language: for $a in //author, $p in $a//paper/
title, $b in $a//book/title. The evaluation of the
path expressions proceeds in a nested-loops fashion, by
using the results of ‘‘parent’’ paths in order to evaluate

‘‘nested’’ paths. Thus, the first expression retrieves all
authors, and, for each one, the nested paths retrieve the
titles of their papers and books. The final result contains all
possible combinations of an author node, with a paper title
node and a book title node that it reaches. Twig queries
represent the equivalent of the SQL FROM clause in the
XML world, as they model the generation of element tuples,
which will eventually be processed to compute the final
result of the XML query.

The goal of existing XML data reduction techniques is
to summarize, in limited space, the key statistical pro-
perties of an XML database in order to provide selectivity
estimates for the result size of path expressions or twig
queries. Selectivity estimation is a key step in the opti-
mization of declarative queries over XML repositories and
is thus key for the effective implementation of high-level
query languages (64–66). Given the form of path expres-
sions and twig queries, an effective XML summary needs
to capture accurately both the path structure of the data
graph and the value distributions that are embedded
therein. In that respect, summarizing XML data is a
more complex problem than relational summarization,
which focuses mainly on value distributions. As with any
approximation method, the proposed XML techniques
store compressed distribution information on specific
characteristics of the data, and use statistical assumptions
in order to compensate for the loss of detail due to compres-
sion. Depending on the specifics of the summarization
model, the proposed techniques can be broadly classified
in three categories: (1) techniques that use a graph
synopsis, (2) techniques that use a relational summariza-
tion method, such as histograms or sampling, and (3)
techniques that use a Markovian model of path distribu-
tion. It should be noted that, conceptually, the proposed
summarization techniques can also be used to provide
approximate answers for XML queries; this direction, how-
ever, has not been explored yet in the current literature
and it is likely to become an active area of research in the
near future.

Graph-Synopsis-Based Techniques

At an abstract level, a graph synopsis summarizes the basic
path structure of the document graph. More formally, given
a data graph G ¼ ðVG; EGÞ, a graph synopsis SðGÞ ¼
ðVS; ESÞ is a directed node-labeled graph, where (1) each
node v 2 VS corresponds to a subset of element (or attri-
bute) nodes in VG (termed the extent of) that have the same
label, and (2) an edge in (u, v) 2 EG is represented in ES as
an edge between the nodes whose extents contain the two
endpoints u and v. For each node u, the graph synopsis
records the common tag of its elements and a count field for
the size of its extent.

In order to capture different properties of the underlying
path structure and value content, a graph synopsis is
augmented with appropriate, localized distribution infor-
mation. As an example, the structural XSKETCH-summary
mechanism (67), which can estimate the selectivity of
simple path expressions with branching predicates, aug-
ments the general graph-synopsis model with localized

4 VERY LARGE DATABASES



per-edge stability information, indicating whether the
synopsis edge is backward-stable or forward-stable. In
short, an edge (u, v) in the synopsis is said to be forward-
stable if all the elements of u have at least one child in v;
similarly, (u, v) is backward-stable if all the elements in v
have at least one parent in u [note that backward/forward
(B/F) stability is essentially a localized form of graph bisi-
milarity (68)]. Overall, edge stabilities capture key proper-
ties of the connectivity between different synopsis nodes
and can summarize the underlying path structure of the
input XML data.

In a follow-up study (69), the structural XSketch model
is augmented with localized per-node value distribution
summaries. More specifically, for each node u that repre-
sents elements with values, the synopsis records a sum-
mary H(u), which captures the corresponding value
distribution and thus enables selectivity estimates for
value-based predicates. Correlations among different value
distributions can be captured by a multidimensional sum-
mary H(u), which approximates the joint distribution of
values under u and under different parts of the document.
It should be noted that, for the single-dimensional case,
H(u) can be implemented with any relational summariza-
tion technique; the multidimensional case, however,
imposes certain restrictions due to the semantics of path
expressions, and thus needs specialized techniques that
can estimate the number of distinct values in a distribution
[examples of such techniques are range-histograms (69),
and distinct sampling (70)].

The TWIGXSKETCH (71) model is a generalization
of the XSKETCH synopses that deals with selectivity
estimation for twig queries. Briefly, the key idea in
TWIGXSKETCHes is to capture, in addition to localized
stability information, the distribution of document edges
for the elements in each node’s extent. In particular, each
synopsis node records an edge histogram, which sum-
marizes the distribution of child counts across different
stable ancestor or descendant edges. As a simple example,
consider a synopsis node u and two emanating synopsis
edges (u, v) and (u, w); a two-dimensional edge histogram
Hu(c1, c2) would capture the fraction of data elements in
extent(u) that have exactly c1 children in extent(v) and
c2 children in extent(w). Overall, TWIGXSKETCHes store
more fine-grained information on the path structure of
the data, and can thus capture, in more detail, the joint
distribution of path counts between the elements of the
XML dataset.

Recent studies (73–75) have proposed a variant of
graph-synopses that employ a clustering-based model in
order to capture the path and value distribution of the
underlying XML data. Under this model, each synopsis
node is viewed as a ‘‘cluster’’ and the enclosed elements
are assumed to be represented by a corresponding ‘‘cen-
troid,’’ which is derived in turn by the aggregate character-
istics of the enclosed XML elements. The TREESKETCH (72)
model, for instance, defines the centroid of a node ui as a
vector of average child counts ðc1; c2; � � � ; cnÞ, where c j is the
average child count from elements in Ai to every other node
uj. Thus, the assumption is that each element in ui has
exactly c j children to node uj. Furthermore, the clustering
error, that is, the difference between the actual child counts

in ui and the centroid, provides a measure of the error of
approximation. The TREESKETCH study has shown that a
partitioning of elements with low clustering error provides
an accurate approximation of the path distribution, and
essentially enables low-error selectivity estimates for struc-
tural twig queries. A follow-up study has introduced the
XCLUSTERs (73) model that extends the basic TREESKETCH

synopses with information on element content. The main
idea is to augment the centroid of each cluster with a value-
summary that approximates the distribution of values in
the enclosed elements. The study considers three types of
content: numerical values queried with range predicates,
string values queried with substring predicates, and text
values queriedwith term-containment predicates.Thus, the
key novelty of XCLUSTERs is that they provide a unified
platform for summarizing the structural and heterogeneous
value content of an XML data set. Finally, Zhang et al. have
proposed the XSeed (74) framework for summarizing the
recursive structure of an XML data set. An XSeed summary
resembles a TREESKETCH synopsis where all elements of the
same tag are mapped to a single cluster. The difference is
that each synopsis edge may be annotated with multiple
counts, one per recursive level in the underlying data. To
illustrate this, consider an element path =e1=e

0
1=e2=e

0
2 where

e1 and e2 correspond to cluster u and e01 and e02 to cluster u0.
The sub-path e1=e

0
1 will map to an edge between u and u0 and

will contribute to the first-level child count. The sub-path
e2=e

0
2 will map to the same edge, but will contribute to the

second-level child count from u to u0. Hence, XSeed stores
more fine-grained information compared to a TREESKETCH

synopsis that uses a single count for all possible levels. This
level-based information is used by the estimation algorithm
in order to approximate more accurately the selectivity of
recursive queries (i.e., with the ‘‘//’’ axis) on recursive data.

Histogram- and Sampling-Based Techniques

Several XML-related studies attempt to leverage the avail-
able relational summarization techniques by casting the
XML summarization problem into a relational context.
More specifically, the proposed techniques represent the
path structure and value content of the XML data in terms
of flat value distributions, which are then summarized
using an appropriate relational technique.

The StatiX (75) framework uses histogram-based tech-
niques and targets selectivity estimation for twig queries
over tree-structured data (note, however, that StatiX needs
the schema of the XML data in order to determine the set of
histograms, which makes the technique nonapplicable to
the general case of schema-less documents). StatiX parti-
tions document elements according to their schema type
and represents each group as a set of (pid, count) pairs,
where pid is the id of some element p and count is the
number of elements in the specific partition that have p as
parent. Obviously, this scheme encodes the joint distribu-
tion of children counts for the elements of each partition.
This information is then compressed using standard rela-
tional histograms, by treating pid as the value and count as
the frequency information.

A similar approach is followed in position histograms
(76), which target selectivity estimation for two-step path
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expressions of the form A//B. In this technique, each ele-
ment is represented as a point (s, e) in 2-dimensional space,
where s and e are the start and end values of the element in
the depth-first traversal of the document tree; thus, (sa, ea )
is an ancestor of (sb, eb ), if sa < sb < eb < ea. The proposed
summarization model contains, for each tag in the docu-
ment, one spatial histogram that summarizes the distribu-
tion of the corresponding element points. A spatial join
between histograms is then sufficient to approximate
the ancestor-descendant relationship between elements
of different tags.

A recent study (77) has introduced two summarization
models, namely the Position Model and the Interval
Model, which are conceptually similar to position histo-
grams but use a different encoding of structural relation-
ships. Again, the focus is on selectivity estimation for two-
step paths of the form A//B. The Position Model encodes
each element in A as a point (sa, ea), and each element in B
as a point sb; the selectivity is then computed as the
number of sb points contained under an (sa, ea ) interval.
In the Interval Model, a covering matrix C records the
number of points in A whose interval includes a specific
start position, whereas a position matrix P includes the
start positions of elements in B; the estimate is then
computed by joining the two tables and summing up the
number of matched intervals. Clearly, both models reduce
the XML estimation problem to operations on flat value
distributions, which can be approximated using relational
summarization techniques.

Markov-Model-Based Techniques

At an abstract level, the path distribution of an XML
dataset can be modeled with the probability of observing
a specific tag as the next step of an existing path. Recent
studies have investigated data reduction techniques that
summarize the path structure by approximating, in limited
space, the resulting path probability distribution. The
principal idea of the proposed techniques is to compress
the probability distribution through a Markovian assump-
tion: If p is a path that appears in the document and l is a
tag, then the probability that p/l is also a path depends only
on a suffix p of p (i.e., the next step is not affected by distant
ancestor tags). Formally, this assumption can be expressed
as P½p=l� ¼ P½p� � P½ljp¯ �, where P½q� is the probability of
observing path q in the data. Of course, the validity of
this independence assumption affects heavily the accuracy
of the summarization methods.

Recent studies (78,79) have investigated the applica-
tion of a k-order Markovian assumption, which limits the
statistically correlated suffix of p to a maximum prede-
fined length of k. Thus, only paths of length up to k need to
be stored in order to perform selectivity estimation. The
proposed techniques further compress this information
with a Markov histogram, which records the most fre-
quently occurring such paths. Less frequent paths are
grouped together, either according to their prefix (if the
aggregate frequency is high enough), or in a generic ’�’
bucket. In order to estimate the occurrence probability of a
longer path, the estimation framework identifies sub-
paths that are present in the Markov histogram and

combines the recorded probabilities using the Markovian
independence assumption.

Correlated Suffix Trees (CSTs) (80) employ a similar
Markovian assumption in order to estimate the selectivity
of twig queries. The path distribution of the document is
stored in a tree structure, which records the most fre-
quently occurring suffixes of root-to-leaf paths; thus, the
tree encodes frequent paths of variable lengths, instead of
using a predefined fixed length as the Markov Histogram
approach. In addition to frequent path suffixes, the sum-
mary records a hash signature for each outgoing path of a
tree node, which encodes the set of elements in the node’s
extent that have at least one matching outgoing document
path. Intuitively, an ‘‘intersection’’ of hash signatures,
where each signature corresponds to a different label
path, approximates the number of elements that have
descendants along all represented paths. Combined with
path frequency information, this information yields an
approximation of the joint path-count distribution for
different subsets of document elements.
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1. D. Barbarà, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M.
Hellerstein, Y. Ioannidis, H. V. Jagadish, T. Johnson, R. Ng, V.
Poosala, K. A. Ross, and K. C. Sevcik, The New Jersey data
reduction report, IEEE Data Eng. Bull., 20(4): 3–45, 1997,
(Special Issue on Data Reduction Techniques).

2. M. Garofalakis and P. B. Gibbons, Approximate query proces-
sing: Taming the Terabytes, Tutorial in 27th Intl. Conf. on Very
Large Data Bases, Roma, Italy, September 2001.

3. S. Chaudhuri, R. Motwani, and V. Narasayya, On random
sampling over joins, in Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, Philadel-
phia, PA, May 1999, pp. 263–274.

4. P. B. Gibbons and Y. Matias, New sampling-based summary
statistics for improving approximate query answers, in Pro-
ceedings of the 1998 ACM SIGMOD International Conference
on Management of Data, Seattle, WA, June 1998, pp. 331–342.

5. P. J. Haas and A. N. Swami, Sequential sampling procedures
for query size estimation, in Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data,
San Diego, CA, June 1992, pp. 341–350.

6. R. J. Lipton, J. F. Naughton, and D. A. Schneider, Practical
selectivity estimation through adaptive sampling, in Proceed-
ings of the 1990 ACM SIGMOD International Conference on
Management of Data, Atlantic City, NJ, May 1990, pp. 1–12.

7. R. J. Lipton, J. F. Naughton, D. A. Schneider, and S. Seshadri,
Efficient sampling strategies for relational database opera-
tions, Theoret. Comp. Sci., 116: 195–226, 1993.

8. F. Olken and D. Rotem, Simple random sampling from rela-
tional databases, in Proceedings of the Twelfth International
Conference on Very Large Data Bases, Kyoto, Japan, August
1986, pp. 160–169.

9. S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, Join
synopses for approximate query answering, in Proceedings of
the 1999 ACM SIGMOD International Conference on Manage-
ment of Data, Philadelphia, PA, May 1999, pp. 275–286.

10. P. J. Haas and J. M. Hellerstein, Ripple joins for online aggre-
gation, in Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, Philadelphia, PA, May
1999, pp. 287–298.

6 VERY LARGE DATABASES



11. J. M. Hellerstein, P. J. Haas, and H. J. Wang, Online aggrega-
tion, in Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data, Tucson, AZ, May 1997.

12. W. G. Cochran, Sampling Techniques, 3rd ed. New York: John
Wiley & Sons, 1977.

13. C.-E. Särndal, B. Swensson, and J. Wretman, Model Assisted
Survey Sampling, New York: Springer-Verlag (Springer Series
in Statistics), 1992.

14. Y. E. Ioannidis and V. Poosala, Histogram-based approxima-
tion of set-valued query answers, in Proceedings of the 25th
International Conference on Very Large Data Bases, Edin-
burgh, Scotland, September 1999.

15. Y. E. Ioannidis, Universality of serial histograms, in Proceed-
ings of the Nineteenth International Conference on Very Large
Data Bases, Dublin, Ireland, August 1993, pp. 256–267.

16. Y. E. Ioannidis and S. Christodoulakis, Optimal histograms for
limiting worst-case error propagation in the size of join results,
ACM Trans. Database Sys., 18(4): 709–748, 1993.

17. Y. E. Ioannidis and V. Poosala, Balancing histogram optimality
and practicality for query result size estimation, in Proceedings
of the 1995 ACM SIGMOD International Conference on Man-
agement of Data, May 1995, pp. 233–244.

18. H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K.
Sevcik, and T. Suel, Optimal histograms with quality guaran-
tees, in Proceedings of the 24th International Conference on
Very Large Data Bases, New York City, NY, August 1998.

19. V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita,
Improved histograms for selectivity estimation of range pre-
dicates, in Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data, Montreal, Quebec,
June 1996, pp. 294–305.

20. C. Faloutsos and I. Kamel, Beyond uniformity and indepen-
dence: Analysis of R-trees using the concept of fractal dimen-
sion, in Proceedings of the Thirteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Min-
neapolis, MN, May 1994, pp. 4–13.

21. V. Poosala and Y. E. Ioannidis, Selectivity estimation without
the attribute value independence assumption, in Proceedings
of the 23rd International Conference on Very Large Data Bases,
Athens, Greece, August 1997, pp. 486–495.

22. M. Muralikrishna and D. J. DeWitt, Equi-depth histograms for
estimating selectivity factors for multi-dimensional queries, in
Proceedings of the 1988 ACM SIGMOD International Confer-
ence on Management of Data, Chicago, IL, June 1988, pp. 28–
36.

23. S. Muthukrishnan, V. Poosala, and T. Suel, On rectangular
partitionings in two dimensions: Algorithms, complexity, and
applications, in Proceedings of the Seventh International Con-
ference on Database Theory (ICDT’99), Jerusalem, Israel, Jan-
uary 1999.

24. D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi,
Approximating multi-dimensional aggregate range queries
over real attributes, in Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, Dallas, TX,
May 2000.

25. D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan, Dynamic
histograms: Capturing evolving data sets, in Proceedings of the
Sixteenth International Conference on Data Engineering, San
Diego, CA, March 2000.

26. P. B. Gibbons, Y. Matias, and V. Poosala, Fast incremental
maintenance of approximate histograms, in Proceedings of the
23rd International Conference on Very Large Data Bases,
Athens, Greece, August 1997, pp. 466–475.

27. A. Aboulnaga and S. Chaudhuri, Self-tuning histograms:
Building histograms without looking at data, in Proceedings
of the 1999 ACM SIGMOD International Conference on
Management of Data, Philadelphia, PA, May 1999, pp. 181–
192.

28. N. Bruno, S. Chaudhuri, and L. Gravano, STHoles: A Multi-
dimensional workload-aware histogram, in Proceedings of the
2001 ACM SIGMOD International Conference on Management
of Data, Santa Barbara, CA, May 2001.

29. S. Chaudhuri, R. Motwani, and V. Narasayya, Random sam-
pling for histogram construction: How much is enough?, in
Proceedings of the 1998 ACM SIGMOD International Confer-
ence on Management of Data, Seattle, WA, June 1998.

30. B. Jawerth and W. Sweldens, An overview of wavelet based
multiresolution analyses, SIAM Rev., 36(3): 377–412, 1994.

31. E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, Wavelets for
Computer Graphics—Theory and Applications, San Francisco,
CA: Morgan Kaufmann Publishers, 1996.

32. Y. Matias, J. S. Vitter, and M. Wang, Wavelet-based histo-
grams for selectivity estimation, in Proceedings of the 1998
ACM SIGMOD International Conference on Management of
Data, Seattle, WA, June 1998, pp. 448–459.

33. K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim.,
Approximate query processing using wavelets, in Proceedings
of the 26th International Conference on Very Large Data Bases,
Cairo, Egypt, September 2000, pp. 111–122.

34. M. Garofalakis and P. B. Gibbons, Wavelet synopses with error
guarantees, in Proceedings of the 2002 ACM SIGMOD Inter-
national Conference on Management of Data, Madison, WI,
June 2002, pp. 476–487.

35. J. S. Vitter and M. Wang, Approximate computation of multi-
dimensional aggregates of sparse data using wavelets, in Pro-
ceedings of the 1999 ACM SIGMOD International Conference
on Management of Data, Philadelphia, PA, May 1999.

36. M. Garofalakis and P. B. Gibbons, Probabilistic wavelet
synopses, ACM Trans. Database Syst., 29 (1): 2004. (SIG-
MOD/PODS Special Issue).

37. R. R. Schmidt and C. Shahabi, ProPolyne: A fast wavelet-based
algorithm for progressive evaluation of polynomial range-sum
queries, in Proceedings of the 8th International Conference on
Extending Database Technology (EDBT’2002), Prague, Czech
Republic, March 2002.

38. Y. Matias, J. S. Vitter, and M. Wang, Dynamic maintenance of
wavelet-based histograms, in Proceedings of the 26th Interna-
tional Conference on Very Large Data Bases, Cairo, Egypt,
September 2000.

39. A. Deligiannakis and N. Roussopoulos, Extended wavelets for
multiple measures, in Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, San Diego,
CA, June 2003.

40. M. Garofalakis and A. Kumar, Wavelet synopses for general
error metrics, ACM Trans. Database Syst., 30(4), 2005.

41. S. Guha and B. Harb, Wavelet synopsis for data streams:
Minimizing non-euclidean error, in Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Chicago, IL, August 2005.

42. L. Getoor, B. Taskar, and D. Koller, Selectivity estimation
using probabilistic models, in Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data,
Santa Barbara, CA, May 2001.

43. A. Deshpande, M. Garofalakis, and R. Rastogi, Independence
is good: Dependency-based histogram synopses for high-
dimensional data, in Proceedings of the 2001 ACM SIGMOD

VERY LARGE DATABASES 7



International Conference on Management of Data, Santa Bar-
bara, CA, May 2001.

44. J. Spiegel and N. Polyzotis, Graph-based synopses for rela-
tional selectivity estimation, in Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data,
Chicago, IL, 2006, pp. 205–216.

45. H. V. Jagadish, J. Madar, and R. Ng, Semantic compression
and pattern extraction with fascicles, in Proceedings of the 25th
International Conference on Very Large Data Bases, Edin-
burgh, Scotland, September 1999, pp. 186–197.

46. S. Babu, M. Garofalakis, and R. Rastogi, SPARTAN: A model-
based semantic compression system for massive data tables, in
Proceedings of the 2001 ACM SIGMOD International Confer-
ence on Management of Data, Santa Barbara, CA, May 2001.

47. N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy, tracking join
and self-join sizes in limited storage, in Proceedings of the
Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Philadeplphia, PA, May 1999.

48. N. Alon, Y. Matias, and M. Szegedy, The space complexity of
approximating the frequency moments, in Proceedings of the
28th Annual ACM Symposium on the Theory of Computing,
Philadelphia, PA, May 1996, pp. 20–29.

49. A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi, Proces-
sing complex aggregate queries over data streams, in Proceed-
ings of the 2002 ACM SIGMOD International Conference on
Management of Data, Madison, WI, June 2002, pp. 61–72.

50. J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan,
An approximate L1-difference algorithm for massive data
streams, in Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science, New York, NY, October
1999.

51. S. Ganguly, M. Garofalakis, and R. Rastogi, Processing set
expressions over continuous update streams, in Proceedings of
the 2003 ACM SIGMOD International Conference on Manage-
ment of Data, San Diego, CA, June 2003.

52. M. Greenwald and S. Khanna, Space-efficient online computa-
tion of quantile summaries, in Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data,
Santa Barbara, CA, May 2001.

53. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss,
Surfing wavelets on streams: One-pass summaries for approx-
imate aggregate queries, in Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases, Roma, Italy,
September 2001.

54. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss,
How to summarize the universe: Dynamic maintenance of
quantiles, in Proceedings of the 28th International Conference
on Very Large Data Bases, Hong Kong, China, August 2002, pp.
454–465.

55. P. Indyk, Stable distributions, pseudorandom generators,
embeddings and data stream computation, in Proceedings of
the 41st Annual IEEE Symposium on Foundations of Computer
Science, Redondo Beach, CA, November 2000, pp. 189–197.

56. N. Thaper, S. Guha, P. Indyk, and N. Koudas, Dynamic multi-
dimensional histograms, in Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of Data,
Madison, WI, June 2002, pp. 428–439.

57. T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler,
Extensible Markup Language (XML) 1.0, 2nd ed. W3C Recom-
mendation. Available: http://www.w3.org/TR/REC-xml/).

58. S. Abiteboul, Querying semi-structured data, in Proceedings of
the Sixth International Conference on Database Theory
(ICDT’97), Delphi, Greece, January 1997.

59. R. Goldman and J. Widom, DataGuides: Enabling query for-
mulation and optimization in semistructured databases, in
Proceedings of the 23rd International Conference on Very Large
Data Bases, Athens, Greece, August 1997, pp. 436–445.

60. R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes, Exploit-
ing local similarity for efficient indexing of paths in graph
structured data, in Proceedings of the Eighteenth Interna-
tional Conference on Data Engineering, San Jose, CA,
February 2002.

61. T. Milo and D. Suciu, Index structures for path expressions, in
Proceedings of the Seventh International Conference on Data-
base Theory (ICDT’99), Jerusalem, Israel, January 1999.

62. J. Clark, and S. DeRose, XML Path Language (XPath), Version
1.0, W3C Recommendation. Available: http://www.w3.org/TR/
xpath/.

63. D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon, and
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