
Noname manuscript No.
(will be inserted by the editor)

Complex Event Recognition in the Big Data Era: A Survey

Nikos Giatrakos · Elias Alevizos · Alexander Artikis ·
Antonios Deligiannakis · Minos Garofalakis

Received: date / Accepted: date

Abstract

The concept of event processing is established as a generic
computational paradigm in various application fields. Events
report on state changes of a system and its environment.
Complex Event Recognition (CER) refers to the identifica-
tion of composite events of interest, which are collections of
simple, derived events that satisfy some pattern, thereby pro-
viding the opportunity for reactive and proactive measures.
Examples include the recognition of anomalies in maritime
surveillance, electronic fraud, cardiac arrhythmias and epi-
demic spread. This survey elaborates on the whole pipeline
from the time CER queries are expressed in the most promi-
nent languages, to algorithmic toolkits for scaling-out CER
to clustered and geo-distributed architectural settings. We
also highlight future research directions.

1 Introduction

CER systems accept as input a stream of time-stamped ‘sim-
ple, derived events’ (SDEs). These are the result of applying
a computational derivation process to some other event, such
as a measurement coming from a sensor. Using SDEs as in-

N. Giatrakos, A. Deligiannakis, M. Garofalakis
Athena Research and Innovation Center, Greece
Technical University of Crete, Greece
E-mail: {ngiatrakos,adeli,minos}@imis.athena-innovation.gr,
{ngiatrakos,adeli,minos}@softnet.tuc.gr

Elias Alevizos,
National and Kapodistrian University of Athens, Greece
National Centre for Scientific Research Demokritos, Greece
E-mail: ilalev@di.uoa.gr, alevizos.elias@iit.demokritos.gr

Alexander Artikis,
University of Piraeus, Greece
National Centre for Scientific Research Demokritos, Greece
E-mail: a.artikis@unipi.gr, a.artikis@iit.demokritos.gr

put, CER systems identify complex events (CEs) of interest,
which are collections of events that satisfy some pattern [35,
72,73]. The pattern of a CE imposes temporal and, possibly,
atemporal constraints on its sub-events. Consider, for exam-
ple, maritime surveillance, where CER allows for expressing
patterns that attach meaning to fused, streaming event tu-
ples for the real-time detection of suspicious or potentially
dangerous situations that may have a serious impact on the
environment and safe navigation at sea [130]. Simple po-
sition signals are continuously collected from hundreds of
thousands of ships worldwide. Vessels report their position
at different time scales, while the messages are often noisy
or even contradictory. Vessel movement is combined with
static geographical information while, for effective vessel
identification and tracking, additional data sources are taken
into account, such as weather reports and satellite images.

CER significantly differentiates itself from traditional
streaming conceptualizations [77]. Classical stream querying
leaves to the clients the responsibility of attaching meaning to
the result set. On the contrary, CER languages allow querying
for complex patterns that match incoming events on the basis
of their content, sequencing and ordering relationships as
well as other spatio-temporal constraints. Additionally, CER
systems incorporate strategies for selecting (and consuming)
events to derive composite ones [73].

This survey is built on three pillars. The first pillar (Sec-
tion 2) concerns CER languages. There are various CER
systems and languages that have been proposed in the lit-
erature. These systems have a common goal, but differ in
their architectures, data models, pattern languages and pro-
cessing mechanisms. Their comparative assessment is further
hindered by the fact that many of the techniques have been
developed in different communities, each bringing in their
own terminology and view on the problem. The current sur-
vey presents a unified view of CER languages. Our focus is

2 Nikos Giatrakos et al.

on the formal methods for CER developed in the database,
distributed systems and artificial intelligence communities.

The recent development of Big Data platforms, such as
Apache Storm [8], Spark [7] and Flink [1], has made it sim-
pler to design and build distributed processing pipelines.
However, these platforms are not sufficient on their own
for enabling CER. We will show how CER languages may
be used with Big Data platforms. The second pillar of our
survey (Sections 3-4) is thus on scaling-out CER, moving
from centralized architectures to clustered settings prevalent
in private data centers or public and hybrid clouds. Therefore,
we will present parallel CER approaches for dealing with the
volume of Big event Data and also focus on elastic (adaptive)
CER to handle volatile velocity and event data distributions.

The third pillar overviews CER applications at vast scale,
which operate over a set of geo-distributed sites (clusters,
sensors, IoT and other smart devices) each accumulating
event streams which later need to be efficiently synthesized
to provide holistic answers to continuous queries. In this case,
communication scalability issues are of additional essence.
On the one hand, in-situ processing places local filters in the
event sources to reduce communication. On the other hand,
in-network processing pushes the evaluation of network-wide
query operations to sites that are near the relevant event
sources so that relevant events are synthesized early, extract-
ing only compact aggregated information to be further for-
warded in the network.

The first key survey of CER systems was presented by
Cugola and Margara [61]. The second one focused on the
lack of Veracity of Big Data [27], where systems that can
handle uncertainty were presented. For example, Alevizos et
al. [27] identified two major classes of methods for probabili-
stic CER: automata-based systems (e.g., [102], [150], [161],
[138]) and logic-based ones (e.g., [145], [43], [151], [63]).
Other examples are [112], using fuzzy set theory, and [149],
using Petri Nets for recovery of missing events. In this survey
we do not elaborate on uncertainty handling in CER. Our
survey is thus complementary to [61] and [27]. We focus
on efficiently handling the volume, velocity and geographic
distribution of Big Data in CER, while at the same discussing
the expressivity of formal CER languages.

2 Languages for Complex Event Recognition

Numerous CER systems and languages have been proposed
in the literature. These systems have a common goal, but dif-
fer in their architectures, data models, pattern languages, and
processing mechanisms. For example, many CER systems
provide users with a pattern language that is later compiled
into some form of automaton. The automaton model is gen-
erally used to provide the semantics of the language and/or
as an execution framework for pattern matching. Apart from
automata, some CER systems employ tree-based models.

Again, tree-based formalisms are used for both modeling
and recognition, i.e., they may describe the complex event
patterns to be recognized as well as the applied recognition
algorithm. Recently, logic-based approaches to CER have
been attracting considerable attention, since they exhibit a
formal, declarative semantics, and at the same time have
been proven efficient enough for Big Data applications. Our
goal in this section is to provide an overview of the various
languages that have been proposed, determine the regions of
their convergence and divergence, and establish requirements
that they should satisfy in terms of their expressive power (for
a short tutorial on CER languages see also [34]). Note that it
is not our intention to present a survey of CER systems, since
this is covered elsewhere [61]. Our focus is on identifying
the classes of languages typically used in CER in order to
determine their expressive power and limits, and to initiate
a discussion about how expressive power may interact with
the performance exhibited by a CER system. This discussion
regarding performance is taken up again fully in Sections 3 -
5. In this section, we begin by presenting a set of language
features and notions usually encountered in CER systems,
as well as a set of extra requirements that we deem should
be satisfied by such systems but have attracted less attention
thus far. We then present the three classes of CER systems
that we have identified: automata-based systems, logic-based
ones and those that employ trees. Note that there also exist
hybrid systems, albeit these constitute a minority. We briefly
mention those as well.

2.1 Setting the scene

Due to the great variety of existing CER languages and sys-
tems, there is a lack of a common ground for comparing
them, and extracting a set of common operators is far from
being a trivial task. Notwithstanding this disparity, it seems
that it is indeed possible to identify some basic features that
should be present in every CER language; in fact, as of late
there have appeared attempts targeting such a unification
and homogenization [88,85]. Therefore, before delving into
the presentation of the languages themselves, we begin by
presenting these common features and establishing a set of
requirements. In Section 2.1.1 we discuss the basic opera-
tors that constitute the building blocks of a CER language,
borrowing from [27]. Our contributions may be found in Sec-
tions 2.1.2 – 2.1.5, where we discuss some extra features that
are common in CER systems and conclude with a discussion
on a set of functionality requirements that are less frequently
satisfied.

2.1.1 Abstract Event Algebra

A CER system takes as input a stream of events, also called
simple derived events (SDEs), along with a set of patterns,

Complex Event Recognition in the Big Data Era: A Survey 3

Input I Recognition I Output �

Event

Recognition

System

Complex

Event

Definitions

Simple Events

.

.

lowSpeedStart(ID0 , 10 , 00 :00 :12)
turn(ID0 , 11 , 00 :03 :12)
turn(ID0 , 12 , 00 :06 :46)
lowSpeedEnd(ID0 , 11 , 00 :10 :33)
. . .

Complex Events

.

.

PATTERN SEQ(lowSpeedStart a, turn + b, lowSpeedEnd c)
WHERE skip-till-next-match

AND [vesselId]
AND b[i].heading−b[i−1].heading > 90
WITHIN 21600

Fig. 1: High-level view of a CER system, using the maritime
domain as an example. The simple event stream consists of
turn, lowSpeedStart and lowSpeedEnd events from a vessel
with id ID0 . The pattern attempts to capture a sequence of
events, where the first indicates that a vessel starts moving at
a low speed, then the vessel performs one or more turns and
finally ends by a single event indicating the end of the slow
movement.

defining relations among the SDEs, and detects instances
of pattern satisfaction, thus producing an output stream of
complex events [117,73]. Since time is of critical importance
for CER, a temporal formalism is used in order to define the
patterns to be detected. Such a pattern imposes temporal (and
possibly atemporal) constraints on the input events, which, if
satisfied, lead to the detection of a CE.

Typically, an event has the structure of a tuple of values
which might be numerical or categorical. The most important
attributes which are always to be found in an event are those
of Event Type and timestamp. The timestamp may be a single
timepoint, indicating the occurrence time of the event, or an
interval, in cases where events may be durative. These two
basic attributes may be accompanied by any number of extra
attributes. As an example, consider the domain of maritime
monitoring where the input stream consists of events emitted
from vessels sailing at sea and relaying information about
their kinematic behavior, e.g., location, speed, heading, etc
[130]. In the terminology of the maritime domain, these
are called AIS (Automatic Identification System) messages.
Each such SDE may contain an event type referring to the
type of movement executed by a vessel (e.g., turning, sailing,
accelerating) and a timestamp. Additionally, it may contain
a number uniquely identifying each vessel (an identifier)
along with attributes for its longitude, latitude, speed, etc.
Figure 1 depicts a high-level view of a CER system, using
the maritime domain as an example.

In order to define the CEs to be detected upon the stream
of SDEs, we need a language that is expressive enough for the
needs of CER. The most basic operator is that of selection ac-

cording to a set of predicates. This set of selection predicates
are applied to every SDE and those SDEs that do not satisfy
the predicates are filtered out. An example of a selection
operator on the AIS messages could be one that checks the
speed of each vessel and retains only those messages with a
speed above 0.1 knots in order to keep only those vessels that
are actually on the move. As far as the temporal operators
are concerned, the most basic is the sequence operator, usu-
ally denoted by a semicolon. The implied constraint in this
case is that the events connected through a sequence operator
must succeed one another temporally. These operators are
sufficient to define simple patterns, but for more complex pat-
terns, we need to incorporate some more operators. With the
help of the theory of descriptive complexity, recent work has
identified those constructs of an event algebra which strike
a balance between expressive power and complexity [162].
For other event formalisms, see also [76,85,105,49,28,29].

These constructs may be summarized as follows:

– Sequence: Two events following each other in time.
– Disjunction: Either of two events occurring, regardless

of their temporal relation.
– Iteration: An event occurringN times in sequence, where
N ≥ 0.

– Conjunction: Both events occurring, regardless of their
temporal relation.

– Negation: Absence of event occurrence.
– Selection: Select those events whose attributes satisfy a

set of predicates/relations, temporal or otherwise.
– Projection: Return an event whose attribute values are a

possibly transformed subset of the attribute values of its
sub-events.

– Windowing: The event pattern must occur within a speci-
fied time window.

The above list can be presented in the form of a simple
event algebra, as presented below [27]

ce ::= sde | Base case

ce1 ; ce2 | Sequence

ce1 ∨ ce2 | Disjunction

ce∗ | Iteration

ce1 ∧ ce2 | Conjunction

¬ ce | Negation

σθ(ce) | Selection

πm(ce) | Projection

[ce]T2

T1
|Windowing (from T1 to T2)

(1)

where σθ(ce(v1, . . . , vn)) selects those ce whose variables
vi satisfy the set of predicates θ and πm(ce(a1, . . . , an))

returns a cewhose attribute values are a possibly transformed
subset of the attribute values of ai of the initial ce, according
to a set of mapping expressions m. Note that conjunction

4 Nikos Giatrakos et al.

a1 b1 a2 a3 c1 b2 . . .

a1 b1

(a) Matches under strict-contiguity.

a1 b1 a2 a3 c1 b2 . . .

a1 b1

a2 b2

a3 b2

a1 b2

(b) Matches under skip-till-any-match.

a1 b1 a2 a3 c1 b2 . . .

a1 b1

a2 b2

a3 b2

(c) Matches under skip-till-next-match.

Fig. 2: Example of selecting input events for the pattern R =

a; b under different selection policies. The top stream (green
rectangles) represents the input stream. The bottom streams
(red, rounded rectangles) represent the matches produced,
one per row.

may also be written by combining sequence and disjunction,
as: ce ::= (ce1; ce2)∨ (ce2; ce1). Please note that, compared
to the event algebra presented in [27], we have explicitly
added the conjunction operator, as it is not only important,
but it may also require special handling and cannot always be
derived from the other operators when there is no support for
disjunction. This inductive definition showcases an important
feature of CER languages: their compositionality, i.e., the
ability to define hierarchies of events, where SDEs may be
used to define some CEs and these may again be used to
define other, higher-level CEs.

2.1.2 Selection Policies

The first three temporal operators in the event algebra pre-
sented above (Eq. 1), namely sequence, disjunction and it-
eration, resemble the three operators of standard regular ex-
pressions: concatenation, union and Kleene star respectively.
This similarity is not a coincidence, as automata have fre-
quently been used as computational models in CER. Since

SDEs are not symbols but tuples, the automata variations em-
ployed in CER typically have predicates on their transitions:
the predicates of the selection operators. By following the
semantics of regular expressions, one would then expect that
the SDEs involved in a match of a CER pattern should occur
contiguously in the input stream. As an example, consider
the case where we have a stream with event types a, b or c
(for simplicity we ignore all other attributes) and we define a
simple pattern as a; b (an event of type a followed by one of
type b). Figure 2a shows an example of such a stream along
with the match that would be detected.

However, in CER it is often the case that we are also
interested in matches where the involved SDEs need not be
contiguous. This is where the notion of selection policies
enters the scene [61,162,163]. As its name suggests, a se-
lection policy determines which SDEs may be allowed to
enter a match by establishing conditions about whether we
are allowed to skip any events, deemed as “irrelevant”, or
not. The single match of Figure 2a is the result of our pat-
tern under one such policy, called strict-contiguity, due to its
requirement that all events in a match must be contiguous
in the input stream. This is indeed the strictest policy in the
sense that it produces the fewest matches. On the other end
of the strictness spectrum is the so called skip-till-any-match
policy. In this case, any combination of events that satisfy the
succession constraints of the pattern, regardless of whether
they are contiguous or not, is considered a match. This pol-
icy is closer in spirit to logic programming where running a
query/goal returns all results that satisfy it. Figure 2b depicts
the matches of our example stream for the pattern a; b under
the skip-till-any-match policy.

In between these two extremes, there exists the skip-till-
next-match policy. In this case, it is still possible to skip
irrelevant events, e.g., a c event occurring between an a and a
b, but only the immediately next relevant event in the stream
is selected, thus restricting the number of matches with re-
spect to the skip-till-any-match policy. Figure 2c shows the
matches produced in our example under skip-till-next-match.
The match {a1, b2} of skip-till-any-match is no longer a match,
since the partial match that started with a1 selected b1 and
then capitulated.

Another common policy is the so-called partition-contiguity
policy, where the stream is first partitioned into substreams
according to a predicate and then strict-contiguity is applied
to each substream separately. For example, for the maritime
domain this could be useful in order to partition the stream ac-
cording to the vessel identifier so that each vessel has its own
stream and a pattern may be applied to each individual vessel.
The same partitioning technique can also be applied to any of
the previous three selection policies. In the field of runtime
verification a similar technique is used, under the name of
“parametric trace slicing” [53]. Within the field of CER itself,
such partitioning schemes may be subsumed under the notion

Complex Event Recognition in the Big Data Era: A Survey 5

a1 a2 b1 b2 . . .

a1 b1

a2 b1

a1 b2

a2 b2

(a) Matches under reuse.

a1 a2 b1 b2 . . .

a1 b1

a2 b2

(b) Matches under consume.

a1 b1 b2 b3 . . .

a1 b1

a1 b2

(c) Matches under bounded-reuse.

Fig. 3: Example of consuming input events for R = a; b

under different consumption policies, with skip-till-any-match
as the selection policy. The top stream (green rectangles)
represents the input stream. The bottom streams (red, rounded
rectangles) represent the matches produced, one per row.
Note that for Figure 3c the input stream is slightly different.

of contexts [163,73]. A context may be defined as a specifi-
cation of conditions that groups events together for purposes
of common processing where each event is assigned to one
or more context partitions [73]. As a result, partition-contiguity
may not necessarily be viewed as a separate selection policy,
but as a combination of a selection policy (strict-contiguity)
with a partition/slicing/context scheme.

As a closing remark to this section, we should note that
there is no universal consensus about the semantics of se-
lection policies. The discussion of this section borrows the
terminology and semantics of the SASE CER engine [21,
162]. FlinkCEP [2], a CER engine built on top of the Flink
distributed processing engine [1], uses very similar notions
for selecting events, but with different semantics in some
cases. We will discuss this issue in more detail in the follow-
ing sections.

2.1.3 Consumption Policies

There is yet another notion for determining which events may
participate in a match: that of consumption policies [89,73,
163,61]. A consumption policy determines whether an event
that has participated in match of a pattern R is allowed to
participate again in other matches of R. In what follows, we
adopt the terminology of [73].

The most relaxed consumption policy is called the reuse
policy. As its name suggests, under this policy events may be
used without any restrictions to any number of matches, pro-

vided that they satisfy the constraints of the pattern and of the
selection policy. Figure 3a shows an example of the matches
produced for the pattern a; b under the reuse consumption
policy and the skip-till-any-match selection policy.

The strictest consumption policy is called consume. Un-
der consume, whenever an event becomes member of a match
it is no longer allowed to be included in any future matches.
Figure 3b shows an example of this policy. Upon the arrival
of b1, the candidate matches are {a1, b1} and {a2, b1}. As-
suming that the production of the matches starts from the one
whose initiator (a) is temporally first (for other options, see
[163]), then {a1, b1} is produced. This has two effects: a) b1
becomes no longer available and {a2, b1} is disqualified as
a match; b) a1 also becomes invalidated, thus disqualifying
{a1, b2} as a match when b2 arrives at the next timepoint.
We are therefore left with two matches after b2: {a1, b1} and
{a2, b2}.

An intermediate policy is the one called the bounded-
reuse consumption policy. The goal of this policy is to allow
the reuse of events, but to impose an upper bound on the num-
ber of matches in which an event may participate. Figure 3c
shows the matches produced under this policy when at most
2 matches are allowed. Assuming again the production of
matches follows a temporal order, the last match that would
normally be produced under reuse, {a1, b3}, is dropped since
2 matches with a1 have already been produced.

2.1.4 Windows

CER systems are not expected to detect CEs by considering
at every timepoint all SDEs that have occurred in the past. In
order to limit their search space, which can quickly become
unmanageable, especially when relaxed selection policies
and consumption policies are used, they typically incorporate
a special operator, that of windowing [73,61]. Windows are
usually applied on a per pattern basis and their function is
to restrict, up to a certain point in the past, the SDEs to be
considered. Although they can in principle be subsumed as
a constraint built from the standard operators of an event
algebra (by restricting the time difference between the last
and first events in a match), they are usually defined as an
extra operator, due to their importance and their effect on the
complexity of pattern evaluation.

The most typical window constraint to be found in a
pattern is of the form within(W), usually appended at the
end. A key distinction between window types is the one be-
tween time-based and count-based (also called tuple-based)
windows. Time-based windows impose a constraint on the
size of the time interval into which a match can extend.
The constraint imposed is that a (temporally ordered) can-
didate match M = {e1, . . . , en} is indeed a valid match if
en.timestamp − e1.timestamp < W . This basically con-
stitutes a sliding window of length W whose step (slide)

6 Nikos Giatrakos et al.

is equal to the temporal resolution of the CER system. On
the other hand, tuple-based windows impose an explicit con-
straint. In this case, a constraint like within(W) cannot be
directly expressed through the operators of an event algebra;
it implies that only the last W SDEs that have arrived at the
system are to be considered, regardless of their timestamps.
Some CER systems also include other window types, like
tumbling windows [50].

From an implementation point of view, we may also dis-
tinguish between actual and logical windowing mechanisms.
With actual windows, events belonging to a window are
buffered and their processing begins as soon as the window’s
timer has expired, for time-based windows, or the count limit
has been reached for count-based ones. When logical win-
dowing is used, the SDEs are not buffered, but are processed
as soon as they arrive.

2.1.5 Requirements

Our discussion thus far has focused on a basic core of op-
erators and features for a CER language. We conclude this
section by adducing a set of extra requirements for CER,
extracted from the limitations of the core features.

Support for both instantaneous and durative events: The
majority of CER languages make the assumption that the
timestamp of each event, either SDE or CE, is a single time-
point. However, there are domains where it is more natural to
express events as having a temporal duration. For example,
in human activity recognition, the activity of a person walk-
ing is durative. The same holds in the maritime domain for
several types of vessel behavior, such as fishing. Sometimes,
the interval of an activity may be open, in the sense that it is
still ongoing. For example, we should not wait until the end
of fishing before we report it. Additionally, there are some
subtle issues with respect to the semantics of instantaneous
events. When single timepoints are used as timestamps, it
is possible that some unintended semantics might be intro-
duced [76,128] (see also Sections 2.4 and 2.6). Note also that
formalisms for reasoning on durative events have appeared
in the past, such as the Event Calculus [105,49] and Allen’s
Interval Algebra [28,29], and have been used for defining
event algebras (e.g., [129,35]).

Support for relational events: By relational events we
mean CEs whose detection depends on multiple entities of
the domain under study. In the maritime domain, detecting
a possible collision requires to relate the activity of at least
two vessels. It is possible to detect such relational CEs by
partitioning the input stream according to its entities and
attempt to join these substreams. Such joins raise new issues
with respect to the runtime complexity of CE patterns. For
instance, relational events are not easy to be expressed and
captured with simple computational models, like simple au-
tomata or even extensions of automata often used in CER,

which often assume that only a single stream exists. There-
fore, more expressive models are required, like quantified
event automata, used for runtime verification [40].

Support for concurrency constraints: Sequence is one
of the basic operators in CER and this is the reason why
automata are so popular as computational models for CER.
On the other hand, there exist patterns that require a mecha-
nism for detecting concurrent events, especially in the case
of relational CEs. The above mentioned example of collision
detection is such a case, since a pattern for it would need to
relate the behavior of two vessels at the same time.

Support for patterns without windows: As already men-
tioned, windows are essential in CER since they significantly
reduce the search space for pattern matching. Although they
might also be useful from a conceptual point of view as well
(there are indeed patterns which are meaningless if they ex-
tend beyond a time interval), it is also the case that some
long-term relationships are important to capture as a CE,
without knowing beforehand their maximum temporal du-
ration. For example, a pattern for detecting when a vessel
approaches a port cannot be meaningfully constrained in
terms of its duration, since different vessel types exhibit dif-
ferent movement patterns (or the window would have to be
so large in order to include all cases, rendering it essentially
meaningless). Although it is conceptually and semantically
possible to get rid of the window constraint, this would incur
a heavy performance cost, considering that the size of the
window is one of the main factors affecting runtime complex-
ity (the larger the window the more partial matches that need
to be maintained) [162].

Support for event hierarchies: We have already men-
tioned that it is important to be able to define CEs hierarchi-
cally, i.e., using lower-level CEs to define other CEs at higher
levels. Hierarchies allow for structured, succinct representa-
tions, and thus code maintenance. We repeat this requirement
here, since it is not always satisfied. Event hierarchies raise
issues both with respect to the semantics of CER languages
and the performance of CER systems. For example, CER sys-
tems that are based on automata resemble in certain respects
register automata [98], i.e., automata that are equipped with
registers in order to store past elements of a stream and later
be able to retrieve them for comparison purposes. However,
register automata are not closed under complement, which
implies that it is not obvious how the negation operator is
to be properly used in a CER language that uses automata
as its underlying model. With respect to performance, a hi-
erarchy of CEs might exhibit a structure where CEs might
participate in the definition of multiple other CEs. Treating
such hierarchies in a naive manner would result in redundant
computations. For hierarchies to be a viable feature, careful
optimizations should be employed [114,35].

Support for background knowledge and non-temporal
reasoning: Most CER systems focus on temporal reasoning

Complex Event Recognition in the Big Data Era: A Survey 7

and their selection predicates are usually (in)equalities on
event attributes or aggregate functions, like averaging of a
certain event attribute, when iteration is present. Useful as
this kind of reasoning might be, there are also cases where
we need to take into account information that is not present
in the SDEs themselves. For example, we might need to
know whether it is prohibited to fish within a specific area
at sea in order to detect vessels that violate this restriction.
Therefore, it is important for a CER system to be able to
incorporate background knowledge (e.g., areas where fishing
is prohibited) and to perform non-temporal reasoning as well
(e.g., that a position lies within a given area polygon).

2.2 Automata–based Systems

Since the temporal operators of CER languages (sequence,
disjunction, iteration) resemble those of regular expressions,
it is no surprise that automata have been quite popular as
computational models of CER systems. In such systems,
patterns are usually defined in a language similar to SQL,
with the addition of operators for the regular part of the
pattern. This regular part typically appears first, followed by
a set of predicates that the events appearing in the regular
part must satisfy. After a pattern has been defined, it goes
through a compiler that transforms it to an automaton (often
non-deterministic). The automaton is then fed with the stream
of SDEs, changing states according to whether predicates on
the outgoing transitions of its current state are satisfied. Upon
the triggering of a transition, the responsible SDE may be
ignored if it is irrelevant or stored if it is relevant. Whenever
it reaches a final state, we say that a full match has been
completed and a CE is detected. The user is then informed of
the occurrence of the CE, along with the SDEs participating
in the match. When the automaton is in a non-final state, we
say that its stored SDEs constitute a “partial match” that may
or may not eventually lead to a full match.

Automata-based CER systems started as academic projects
(e.g., Cayuga [66,67], SASE [157,87,21,162] and its deriva-
tives, like SASE+ [68], NextCEP [143], DistCED [133]),
inspired to some extent by previous work on Data Stream
Management Systems, such as TelegraphCQ [52], CQL [32]
and CQL’s commercial derivative, Oracle CQL [16]. Work
along these lines still continues to this date [26], with ef-
fort being also devoted to providing solid foundations [85].
Automata-based CER has recently reached a new level of ma-
turity and found its way into systems, such as Flink, which
provides a library for complex event recognition and pro-
cessing, called FlinkCEP [2]. In what follows, we will focus
mainly on the popular FlinkCEP and the highly cited SASE,
which are both open source. The general ideas are very simi-
lar in all systems, though.

SASE is a CER engine which translates patterns into non-
deterministic automata, acting as its computational model.

As far as its input is concerned, it assumes that each SDE
is represented by an event type, a timestamp in the form of
a single timepoint and any other extra attributes. All SDEs
are also assumed to be in a single stream (in the case of
multiple streams, these must first be merged into a single
stream) and this stream is temporally ordered. A CE pattern
is defined through a SQL-like language, whose purpose is to
detect SDEs occurring in the specified temporal order and
satisfying any extra constraints (possibly atemporal) in the
form of predicates. The pattern of Figure 1 is an example
of a SASE pattern as applied to the maritime domain. The
PATTERN clause (line 1) captures a sequence of events, where
the first indicates that a vessel starts moving at a low speed,
then executes one or more turns and finally ends by a single
event indicating that the slow movement has ended. The
WHERE clause (lines 2–4) does three things: 1) determines
the selection policy as skip-till-next-match; 2) partitions the
stream according to the id of the vessels so that the pattern is
applied to each vessel individually; 3) imposes an atemporal
constraint on all the turn events so that the heading of each
turn event differs by more than 90 degrees from the heading
of the previous turn event. Finally, the WITHIN constraint (line
5) requires that the pattern happens within 21600 seconds
(6 hours). This could be a simple pattern detecting zig-zag
maneuvers, typical for vessels while trawling.

Figure 4 shows the automaton that would be constructed
from this pattern. The PATTERN clause is first used to build
the structure of the automaton and subsequently the WHERE
clause determines the predicates that must be placed on the
transitions. This automaton is non-deterministic as multiple
outgoing edges from a state may evaluate to TRUE at the
same time (upon reading the same event). Non-determinism
essentially implies that, when an automaton can follow more
than one edges, it must be cloned, i.e., a new run must be
created, with each run following a different “trajectory” from
that point on. When a run of an automaton follows a transi-
tion denoted by a solid line – see Figure 4 – the triggering
event is stored in a buffer as being relevant for a possible fu-
ture complete match. When a transition denoted by a dashed
line is followed, the triggering event is considered as irrel-
evant and is not stored. The multiple runs created due to
non-determinism (which can be present even with strict con-
tiguity) and the buffers storing the relevant events constitute
the main runtime bottlenecks. These bottlenecks become
more pronounced when skip-till-any-match is used and when
the pattern includes iteration operators [162].

SASE can accommodate all operators (even negation)
mentioned in Section 2.1.1 and all selection policies men-
tioned in Section 2.1.2. On the other hand, its operators are
not fully compositional, e.g., nesting of iterations is not al-
lowed. In theory, it also allows for event hierarchies through
another clause, called RETURN, appended at the end of pat-
terns and acting as a projection operator. However, its pub-

8 Nikos Giatrakos et al.

astart b[1] b[i] c
begin begin

ignore

proceed

take

ignore

begin

ignore

θbegin := a.ET = lowSpeedStart

θbegin := b[1].ET = turn ∧
b[1].id = a.id ∧
b[1].time < a.time + 21600b[1].time < a.time + 21600b[1].time < a.time + 21600

θtake := b[i].ET = turn ∧
b[i].id = b[1].id ∧
b[i].heading − b[i− 1].heading > 90 ∧
b[i].time < a.time + 21600b[i].time < a.time + 21600b[i].time < a.time + 21600

θproceed := TRUE θbegin := c.ET = lowSpeedEnd ∧
c.id = a.id ∧
c.time < a.time + 21600c.time < a.time + 21600c.time < a.time + 21600

θignore := ¬(b[1].ET = turn ∧
b[1].id = a.id)

θignore := ¬(b[i].ET = turn ∧
b[i].id = b[1].id ∧
b[i].heading − b[i− 1].heading > 90)

θignore := ¬(c.ET = lowSpeedEnd ∧
c.id = a.id)

Fig. 4: A non-deterministic automaton (NFA), as constructed by SASE, for the pattern of Figure 1. begin edges move the
NFA to a next state and store the SDE. take edges iterate over the same state, again storing the SDEs. ignore edges skip
“irrelevant” events due to the use of skip-till-next-match. The proceed takes the NFA out of the iteration. Above or below each
edge, its respective constraints are shown as a (negated) conjunction of predicates found in the pattern. Conjuncts shown in
bold correspond to the window constraint. Note that the window constraint is placed on multiple edges in order to be able to
“kill” an instance of the NFA as soon as possible if the constraint is violated, without waiting until it reaches the last non-final
state (c). ET stands for EventType .

licly available source code does not include this functionality
[17]. As far as the allowed consumption policies are con-
cerned, only reuse is available. Finally, the windows in SASE
are strictly time-based and constitute logical views.

FlinkCEP [2] is close in spirit to SASE. It also employs
non-deterministic automata, equipped with predicates on
their transitions. From a language perspective, one important
difference to SASE is that, strictly speaking, it does not have
a language for defining patterns. Instead, the user is required
to write a pattern in Java or Scala, as shown in Listing 1,
where we define a simple pattern with a vessel starting from
an idle status (speed less than 0.1 knots) and then accelerates
to more than 15 knots within less than 10 seconds. Writing
patterns in such a way is cumbersome and error-prone. On
the other hand, the advantage of FlinkCEP is that patterns are
compositional. For example, the idle pattern in the Listing
1 can be used to define other patterns as well, besides the
abruptStart pattern.

FlinkCEP also accommodates all selection policies (and
supports some more, see [2]), albeit with a slightly different
terminology: relaxed-contiguity is the equivalent of skip-till-
next-match and non-deterministic-relaxed-contiguity the equiv-
alent of skip-till-any-match. However, the semantics of its se-
lection policies do not exactly correspond to those of SASE.
For example, it seems that non-determinism is not applicable
for strict-contiguity in FlinkCEP, which is at odds with the se-
mantics of this policy in SASE. Consider the pattern a; b∗; b
and the simple stream a1, b1, b2. Even with strict-contiguity,
this pattern would require a non-deterministic automaton
for SASE. After the arrival of b1, SASE would have two
NFA runs: one that would terminate the pattern, move the

Listing 1: Example of Scala source code for defining patterns
in FlinkCEP
// initial pattern to start the sequence
val idle: Pattern[Event, _] =

Pattern.begin("idle").where(event => event.getSpeed
< 0.1)

// strict contiguity
val highSpeed: Pattern[Event, _] =

idle.next("highSpeed").where(event =>
event.getSpeed > 15)

// relaxed contiguity
val highSpeed: Pattern[Event, _] =

idle.followdBy("highSpeed").where(event =>
event.getSpeed > 15)

// non-deterministic relaxed contiguity
val highSpeed: Pattern[Event, _] =

idle.followedByAny("highSpeed").where(event =>
event.getSpeed > 15)

// window
val abruptStart: Pattern[Event, _] =

highSpeed.within(Time.seconds(10))

run to its final state and complete the match, producing
M1 = {a1, b1}; and one that would treat b1 as belonging
to the iteration operator and that would reach its final state af-
ter b2, thus producing another match, M2 = {a1, b1, b2}. On
the other hand, FlinkCEP would detect only M1. Inferring
the precise semantics of FlinkCEP’s selection policies is not
trivial, as its internals are not documented and the documenta-
tion provides only informal explanations. With respect to con-
sumption policies, reuse and consume are supported (along
with some variations), but not bounded-reuse. As with selec-
tion policies, there is a difference in terminology: NO SKIP

Complex Event Recognition in the Big Data Era: A Survey 9

is the equivalent of reuse and SKIP PAST LAST EVENT the
equivalent of consume.

FlinkCEP can use all operators of our algebra of Section
2.1.1. In fact, it includes several extensions of these operators.
For example, quantifiers, as used in regular expressions, are
also available, for imposing lower and/or upper bounds on
the number of repetitions of an iteration operator. It is also
quite flexible with respect to the windows that may be ap-
plied to a pattern. Both time-based and count-based windows
are available, which can also be either sliding or tumbling.
Finally, as in SASE, windows in FlinkCEP are also logical
views, which means that SDEs are not buffered in batches
(as, for example, in Spark streaming [5]), but they are directly
forwarded to the operators of a pattern.

Siddhi [18] is a commercial CER engine with capabil-
ities similar to those of FlinkCEP. It is also based on state
machines for pattern matching and can support all operators
of our algebra and most of the selection and consumption
policies. Contrary to FlinkCEP, Siddhi offers a language for
defining patterns.

Cayuga [66,67] is similar to SASE, but a bit earlier and
relatively less expressive. It does not support windows, but
supports iteration, although, like SASE, does not allow for
nested iterations. Due to the absence of windows, avoiding
unbounded storage in the presence of iteration is achieved
by using an automaton model that stores only the attribute
values of the most recent iteration. Cayuga uses skip-till-any-
match as its selection and reuse as its consumption policy.
As opposed to the systems presented thus far, in order to
avoid semantical ambiguities arising when timepoints are
used as timestamps [76], Cayuga treats events as durative,
with instantaneous events also available as a special case.
A sequence operator in Cayuga is satisfied if the involved
events are not overlapping, i.e., the end timepoint of an event
is smaller than the start timepoint of the next event in the
sequence.

NextCEP [143] and DistCED [133] are two other automata-
based systems. From a language perspective, they are very
similar to Cayuga. They also treat events as durative in order
to avoid the semantical issues mentioned above. Their focus
is not so much on providing a language with more expressive
power, but on optimizing the evaluation of automata for effi-
cient, distributed processing, e.g., by query rewriting. These
issues will be discussed in Sections 4 and 5.

2.3 Logic–based Systems

Besides automata-based systems, there exists another signifi-
cant line of work where a CER system employs a logic-based
temporal formalism (see [36] for a survey). In this case, pat-
terns often have the form of a rule, with a head and a body
defining the conditions which, if satisfied, lead to the de-
tection of a CE. The semantics are those of the temporal

formalism employed. The underlying mechanism for per-
forming inference can vary: from Selective Linear Definite
(SLD) resolution used in Prolog-based systems to directed
graphs (resembling automata) constructed from the rules.

The Chronicle Recognition System (CRS) is an example
of the latter case [71,79,70,72]. A chronicle in CRS termi-
nology is essentially a CE, i.e., a set of events linked together
by time constraints and whose occurrence may depend on
the context. A chronicle definition resembles a logical rule,
having a body and a head. Pattern (2) below presents a sim-
plified definition of the abruptStart pattern in the language
of CRS.

1 chronicle abruptStart [?VesselId](T2) {
2 event(AISMessage[?VesselId , idle], T1)

3 event(AISMessage[?VesselId , highSpeed], T2)

4 T2 − T1 in [1, 10]

5 }

(2)

Variables start with upper case letters while predicates and
constants start with lower case letters, as in logic program-
ming. Prefixing a variable with ? denotes that it is an atempo-
ral variable. A feature of CRS is that a CE, like abruptStart ,
may be defined through multiple rules, thus expressing dis-
junction. Another feature that CRS supports and is generally
lacking in other CER systems is the fact that the subevents in
the definition of a CE need not necessarily be totally ordered.
For example, line 4 in Pattern (2) could be T2−T1 in [−4, 6],
indicating that the highSpeed event could precede the idle

by at most 4 timepoints. CRS also supports negation and
iteration, although an iteration operator must have explicit
lower and upper bounds on the number of repetitions. On
the other hand, mathematical operators are not allowed as
constraints, e.g., stating that the speed of a vessel should be
above or below a certain threshold, e.g., as we did in the
FlinkCEP pattern shown in Listing 1. Such information must
be provided explicitly to the system through preprocessing.
Notice, for example, that in lines 2–3 of Pattern 2, we assume
that there already exists an attribute in each SDE concerning
the speed status of a vessel (whether it is idle or has a high
speed).

In order to be evaluated, a CRS pattern is compiled to
a Temporal Constraint Network (TCN), i.e., a graph whose
nodes correspond to events and edges encode the temporal
constraints. This allows CRS to perform both consistency
checking on the patterns and apply optimizations by propa-
gating constraints in the graph or even removing them com-
pletely if it detects that they are redundant. It is also possible
to provide semantics for the CRS language by using colored
Petri Nets [55]. The runtime behavior of the CRS system
is similar to that of automata-based systems, as instances
of a TCN are continuously created and killed, according to
whether future events can or cannot satisfy their constraints.

10 Nikos Giatrakos et al.

skip-till-any-match and reuse are the default selection policy
and consumption policy during evaluation, a fact which can
lead to a substantial number of TCN instances being cre-
ated and maintained. Although CRS does not directly use
the notion of selection and consumption policies, it enlists
techniques for reducing the number of active TCN instances
which are closely related. A pattern may be required to detect
chronicles that are not overlapping, a requirement which is a
stricter variation of skip-till-next-match. Moreover, two TCN
instances of the same pattern may also be forbidden to share
events, which essentially corresponds to the consume con-
sumption policy. CRS includes various other optimization
techniques, such as “temporal focusing”, which re-orders the
states of the TCN based on event frequency; such techniques
are being used in various contemporary CER approaches
[143,104].

We conclude this section by presenting RTEC (Event Cal-
culus for Run-Time reasoning) [35], a CER engine based on
the Event Calculus [105], written in Prolog. The Event Cal-
culus is a logic programming action language that allows for
reasoning about events and their effects. RTEC is an imple-
mentation of the Event Calculus tailored to event streams, by
incorporating a windowing mechanism along with caching
and indexing techniques for efficient reasoning. Patterns in
RTEC are (locally) stratified logic programs [134]. RTEC
patterns are usually written through initiatedAt and terminate-
dAt rules which determine when a CE starts and ceases to
hold respectively. Pattern (3) is an example of a RTEC rule
defining the withinArea CE, with which we want to detect
intervals during which vessels are inside areas of a specific
type, assuming that we also have SDEs (or lower level CEs)
about the entrance and exit of vessels in and out of areas.

initiatedAt(withinArea(VesselId) = AreaType, T)←
happensAt(entersArea(VesselId ,Area), T),

typeOf (Area,AreaType).

terminatedAt(withinArea(VesselId) = , T)←
happensAt(exitsArea(VesselId ,Area), T).

(3)

RTEC will find all timepoints within a window in which
withinArea is initiated, then compute the timepoints in which
it is terminated, and finally calculate its maximal intervals
by pairing initiating and terminating points. In other words,
RTEC assumes that composite activities are subject to the law
of inertia , i.e., a CE/fluent continues to hold unless explic-
itly terminated. Note also that RTEC makes no assumptions
on the temporal distance between initiating and terminating
points; these may be in different windows.

As is the case with CRS, a CE can have multiple defi-
nitions to indicate disjunction. It is also possible to define
arbitrary temporal constraints among the timestamps of the
subevents of a CE. Typically though, a global actual window
(not a logical view) for all patterns is defined in order to
restrict the search space of events. Contrary to CRS, besides

temporal constraints, it is also possible to include mathemat-
ical operators. As a matter of fact, RTEC inherits the full
expressive power of logic programming, and thus can natu-
rally handle, among others, arbitrary constraints, relational
CEs, and background knowledge. Another feature of RTEC is
that it can handle both point-based and interval-based events
and has constructs to manipulate time intervals, e.g., through
union, intersection and complement.

RTEC does not include an explicit sequence operator. It
also does not support iteration, either unbounded or bounded.
As is usual with most other CER systems, reuse is the only
supported consumption policy. With respect to selection poli-
cies, there is a divergence between instantaneous and durative
CEs. Instantaneous CEs follow skip-till-any-match whereas
durative CEs follow a (deterministic) version of skip-till-next-
match, since RTEC has been designed to compute the maxi-
mal intervals in which a CE is said to take place.

We also need to mention that there are some other logic-
based CER systems. For example, PADRES is a distributed
publish/subscribe messaging system [110] with fault detec-
tion and load balancing capabilities. It supports compos-
ite subscriptions (i.e., CEs) by combining low-level events
through temporal and logical constraints. PADRES is based
on Jess, a rule-based matching engine [15].

2.4 Tree–based Systems

Another line of work on CER is the one that employs trees
as a computational model, with ZStream being the prime
example [123]. From a language perspective, it is interesting
to note that ZStream is very similar to SASE, following the
same syntax in most respects. For example, the fishing pat-
tern of Figure 1 would be written in ZStream in an almost
identical manner, with the exception of the clause for the
selection policy, which would be absent. It is not easy to infer
which selection policy ZStream follows, since this informa-
tion is not directly reported, but we deduce from the provided
examples that it must be skip-till-next-match. Thus, the main
contribution of ZStream does not lie in offering more expres-
sive power, but in using trees as the underlying computational
model, which opens up avenues for optimizations.

ZStream differs from automata-based models in that it
assumes that CEs are durative. A sequence operator among
CEs is satisfied if the end timepoint of one CE is smaller than
the start timepoint of the next CE in the sequence. This allows
ZStream to avoid semantical ambiguities when hierarchies
of events are present. For example, if R1 := a; b is a pattern
with a window W1, then each CE detected would typically
acquire the timestamp of the last event, in this case of b.
Now, if we define another pattern as R2 := R1; c with a
windowW2, then the intended semantics should be thatR2 is
equivalent to a; b; c with the extra constraints b.timestamp−
a.timestamp < W1 and c.timestamp − a.timestamp <

Complex Event Recognition in the Big Data Era: A Survey 11

W2. However, the expressionR2 := R1; c could be translated
to an automaton violating the second window constraint,
since R1 would have the timestamp of b and not of a. By
treating CEs of R1 as durative, ZStream can avoid such
issues.

ZStream translates patterns to trees, whose leaves store
SDEs and internal nodes correspond to operators. At the
same time, it does not eagerly evaluate a pattern’s predicates.
Instead, it first collects SDEs into batches and then starts the
evaluation. The combination of trees and batch evaluation
allows ZStream to follow various physical plans for a given
pattern, according to the expected cost of its operators and
predicates. Such optimizations could be applied even to the
simplest of patterns. For example, for the pattern a; b, SASE
would create a new NFA run for every a appearing in the
stream, even if we knew that b is a rare event. On the other
hand, ZStream can follow another plan, by waiting until a b
event has arrived and then checking the previously arrived
a events that fall within the specified window and simply
discarding those that have “expired”.

E-Cube [114] is another CER system which employs tree
structures, albeit in a different manner than ZStream. With
respect to its expressive power, E-Cube supports most of the
common CER operators, with the exception of iteration. Its
temporal model is based on intervals, with only the SDEs
being instantaneous. Its selection and consumption policies
cannot be unambiguously determined in the work presenting
it, but, by the definition of the sequence operator, we deduce
that it probably follows skip-till-any-match and reuse.

The main power of E-Cube lies in its capabilities of multi-
query optimizations, i.e., in its ability to evaluate multiple pat-
terns while avoiding redundant and duplicate computations
when the patterns under evaluation share some common struc-
ture. It achieves this by constructing an event pattern query
hierarchy that allows for sharing of subpatterns, thus elim-
inating redundancy. Additionally, it employs a cost-driven
optimizer that can devise an optimal plan in the sense of find-
ing the plan that allows for maximal re-use of intermediate
results. Importantly, E-Cube also has elastic properties. It
continuously gathers stream statistics and can adapt online
to a new execution plan when a drift is detected.

2.5 Hybrid approaches

ZStream is a purely tree-based CER engine. Esper also uses
trees for the core of its functionality, like filtering, windowing
and aggregations [11]. However, Esper is not easy to classify,
since it also uses non-deterministic automata for its “match-
recognize” pattern matching functionality, i.e., for the regular
part of a pattern. Allen’s interval algebra is also used for some
of its time methods. This mixture of trees, automata and logic
makes Esper patterns quite expressive, but the consequences
on the semantics, soundness and completeness are unclear.

The T-Rex system, using TESLA as an event specifica-
tion language, is an example of a CER system combining
logic-based rules with automata [58,59]. T-REX represents a
transitional system from automata to logic, as it is not purely
logic-based. Its patterns, written in TESLA, have a syntax
similar to SASE and they are also translated to automata in
order to be evaluated upon an event stream. However, TESLA
patterns can be translated to TRIO formulas [80], i.e., to for-
mulas of a first-order logical language that supports temporal
operators and has clear semantics in terms of a metric tem-
poral logic. Pattern (4) is an example of a TESLA pattern,
capturing the FlinkCEP pattern presented in Listing 1, where
we assume that the Idle and HighSpeed CEs have already
been defined by other patterns. The sequence operator is
defined using the WITHIN clause: it states that a HighSpeed

event must follow an Idle event in no more than 10 seconds.
Partitioning (by VesselId) is denoted through the use of the
$ operator.

1 DEFINE AbruptStart()

2 FROM Idle(VesselId = $x)

3 AND last HighSpeed(VesselId = $x)

4 WITHIN 10sec from Idle

5 CONSUMING Idle

(4)

TESLA supports most CER operators except disjunction.
It also supports hierarchies of events. With respect to selec-
tion policies, it can define patterns with skip-till-any-match,
but also makes some other policies available, similar to skip-
till-next-match. For example, if we had a stream with two Idle

events and one HighSpeed , then Pattern (4) would select only
the second Idle , as denoted by the last keyword in line 3. By
using the first keyword, it would select only the first Idle

event. Notice that TESLA is one of the few systems that can
define different consumption policies. Line 5 in Pattern (4)
imposes the consume policy on the pattern.

2.6 Open Issues & Critical Discussion

We conclude our treatment of CER languages with a critical
discussion that attempts to pinpoint the weaknesses of the
various approaches. For easier reference, we also provide
an overview of the discussed systems in Table 1. A question
mark in a cell indicates that there are not enough details in the
paper(s) describing the relevant system to draw conclusions
about the operator/functionality corresponding to the cell’s
column.

According to our discussion thus far, automata-based
CER systems seem to satisfy many of the requirements de-
scribed in Section 2. Especially solutions, such as FlinkCEP,
offer a significant number of extra features, thus providing
substantial flexibility for defining patterns. A closer look,

12 Nikos Giatrakos et al.

System σ π ∨ ∧ ¬ ; * W H T.M. B.K. S.P. C.P. Remarks

Automata

SASE 4 4 8 8 4 4 8 Logical 8 Points 8 all Re ∨, ∧ and hierarchies possible in principle
but not available in source code.

SASE+ 4 4 8 8 4 4 4 Logical 8 Points 8 all Re
Iteration cannot be nested.

∨, ∧ and hierarchies possible in principle
but not available in source code.

Cayuga 4 4 4 ? 8 4 4 No windows ? Intervals 8 Stam Re

FlinkCEP 4 4 4 ? 4 4 4 Logical 4 Points 8 all Co,Re

Patterns in Java or Scala.
Extra selection and consumption policies

available.
Quantified iteration available.

NextCEP 4 8 4 8 4 4 4 Logical 8 Intervals 8 Stnm variant Re Durative events to handle associativity of
sequence operators.

DistCED 4 8 4 4 4 4 4 Logical 8 Intervals 8 ? ?

Sequence and concatenation have different
semantics.

Sequence does not allow sub-events to be
overlapping, permissible in concatenation.

Siddhi 4 4 4 4 4 4 4 Logical 4 Points 8 Sc,Stam Co,Re Quantified iteration available.

Logic

CRS 4 8 4 ? 4 4 4 Logical 4 Points 8 Stam,
Stnm variant

Co,Re
Only equality predicates (unification) for

σ.
Iteration explicitly bounded.

RTEC 4 4 4 4 4 4 8 Actual 4
Points +
Intervals

4

Stam for instanta-
neous CEs,
Stnm variant for du-
rative

Re Sequence through explicit time constraints.

PADRES 4 ? 4 4 ? 4 4 ? 4 Points 8 ? ? Based on Jess [15].
Iteration explicitly bounded.

Trees

ZStream 4 4 4 ? 4 4 4 Actual 4 Intervals 8 Stnm variant Re Reordered execution and lazy evaluation
of patterns.

E-Cube 4 4 4 4 4 4 8 Logical 4 Intervals 8 Stam Re Pattern hierarchies to share intermediate
results.

Hybrid

TESLA 4 4 8 ? 4 4 4 Logical 4 Points 8 Stam,
Stnm variant

Co,Re
Rules translatable to temporal logical

formulas,
converted to automata for evaluation.

Esper 4 4 4 ? 4 4 4 4 4 Points 8 ? ?
Mixture of trees, automata and Allen’s

interval algebra.
Windows available, but type unknown.

System σ π ∨ ∧ ¬ ; * W H T.M. B.K. S.P. C.P. Remarks

Table 1: Expressive capabilities of CER systems.
σ: selection, π: projection, ∧: conjunction, ∨: disjunction, ¬: negation, ;: sequence, *: iteration, W: windowing, H: hierarchies,
T.M.: temporal model, B.K.: background knowledge, S.P.: selection policies, C.P.: consumption policies, Stam : skip-till-any-
match, Stnm : skip-till-next-match, Sc : strict-contiguity, Co : consume, Re : reuse.

however, reveals that there still exists a number of pending
issues.

The existence of multiple systems, each with its own lan-
guage and its own variation of automaton model, might be
viewed as a sign of vigor for the field. On the other hand,
this heterogeneity, where the semantics of a language have to
be inferred from the operational semantics of the employed
automata, can be a source of confusion. A discussion about
the formal semantics of automata might seem like a purely
theoretical endeavor, but the lack of such semantics can have
important implications. Consider the requirement for event
hierarchies and compositional patterns. It is a well-known
fact that classical regular expressions and automata have nice
closure properties, thus allowing for compositional defini-

tions of expressions [95]. Interestingly, this is also the case
for symbolic automata, i.e., automata that have predicates
on their transitions and resemble the automaton models pro-
posed for CER [65]. However, by adding memory to such
automata, so that predicates relating more than one event
are possible, and the need for marking SDEs as being part
of match, we essentially move to symbolic transducers with
memory, in which case some of the closure properties start
breaking down [64,98]. Note, for example, that classical
regular expressions and automata are closed under iteration,
i.e., we can take any regular expression/automaton, apply an
iteration operator and the result will still be a regular expres-
sion/automaton. This is a procedure that can be repeatedly
applied, thus allowing for nested iterations. On the other

Complex Event Recognition in the Big Data Era: A Survey 13

hand, both SASE and Cayuga construct acyclic automata
allowing only self-loops on states to handle the operator of
iteration, but not loops on the whole automaton (i.e., tran-
sitions from its final to its start state). This indicates that
iteration cannot be arbitrarily used, as in regular expressions.
It is therefore unclear which operators for defining a CER
pattern may indeed be used compositionally and whether, if
a pattern does make use of nested operators, its semantics
will be as expected by a user (for a more detailed discussion
of this issue, see [85]).

A related issue is that of the semantics of selection and
consumption policies. On the one hand, consumption policies
are often ignored, where reuse is implicitly the default policy,
and their definition, whenever provided, is informal [73]. On
the other hand, there is no consensus regarding the semantics
of selection policies. Even at the terminology level, there is
substantial divergence, where certain policies, like partition-
contiguity, might be subsumed under a different notion (see
again Section 2.1.2). As a final note with respect to the issues
of semantics, we would like to point out that the lack of
well-defined semantics can be an obstacle to applying certain
optimization techniques, like query rewriting, since these
require a methodology for determining when two queries are
in fact equivalent.

From the point of view of expressiveness, automata are,
as expected, well-suited to the detection of sequential pat-
terns. There is no CER system that is based on automata
and can handle concurrency though. A conceivable solution
would be to define patterns with concurrent events by using
(in)equality predicates on the timestamps of SDEs. Such a so-
lution would, however, defeat the purpose of using automata
and could possibly complicate their semantics even further.
Automata assume that their input symbols arrive at a certain
order, which, in CER, is the temporal order of the SDEs.
This simple temporal model also allows the detected CEs
to be temporally ordered. Now, assume, as an example, that
we need to detect two concurrent durative SDEs by using a
pattern like b during a, meaning that b must happen while a
is happening, i.e., b.start > a.start and b.end < a.end (as
in Allen’s interval algebra [28,29]). If there in fact exist two
such SDEs in a stream, the first issue is the order in which
they should be presented to an automaton. An option would
be to present b first, since this is the event for which we first
know all the information we need, i.e., both its start and end
timepoints. Thus, upon reading b the automaton could move
to a next state. Upon reading a, it could check the inequality
constraint regarding the start timepoints (the constraint about
the end timepoints can be skipped since we assumed SDEs
are presented according to their end timepoints) and then
produce a new CE. The end timepoint of this new CE though
would have to be equal to b.end . As a result, we have pro-
duced a new event whose end timepoint is actually behind the
last end timepoint of our stream, that of a. Meanwhile, any

other events happening between b.end and a.end might have
already been processed by the engine, without taking into
account our new CE. A way out of this conundrum would be
to send the start and end timepoints of each event separately,
e.g., a.start , b.start , b.end , a.end . This solution could work
for SDEs, but not for CEs, since, for a CE, we cannot always
know when it started until we have actually seen the last event
of its sequence. For example, a WITHIN constraint forces us
to wait for the last event in order to make sure that the time
difference between the last and the first event is less than
that imposed by it. This simple example illustrates a possible
difficulty in handling concurrent events using automata; other
formalisms, such as Petri Nets [126] which are often used for
modeling concurrent processes, could possibly prove helpful.

The lack of a mechanism for incorporating background
knowledge in automata-based CER systems is another obsta-
cle for defining yet more expressive patterns. This does not
seem to be a serious limitation though; [26] is an example of
a system that employs automata with predicates drawn from
a knowledge base. Since these types of automata have predi-
cates which can be Boolean formulas, it is possible to use a
solver underneath, providing not only logical facts, but also
further (domain-dependent) axioms, along with a full-fledged
inference engine. This is indeed the approach followed in the
line of work concerning symbolic automata [147]. It is also
interesting to note the lack of support for conjunctive (involv-
ing ∧) patterns in most automata-based methods, although
conjunction can often be a useful operator. Conjunctive pat-
terns are generally more expensive than strictly sequential
ones since the ordering constraint is lifted and more matches
tend to be produced. In [69], optimization techniques for
handling such conjunctive patterns are presented, based on
static and runtime unsatisfiability checking.

Compared to automata, logic-based systems seem to have
a somewhat different focus with respect to their expressive-
ness. They can naturally express concurrency, as in CRS and
RTEC, and to support hierarchies of events. On the other
hand, iteration is either not supported (RTEC) or needs to be
explicitly bounded (CRS). This also implies that they do not
also support complex mathematical operators, like aggregates
(e.g., averages, maximum/minimum values) that need to be
applied to all the events selected by an iteration operator. In
fact, CRS does not support any such operators, even without
iteration. Given that engines for logic inference can easily in-
corporate knowledge in the form of facts, it is surprising that
only RTEC can actually take advantage of any background
knowledge. Except for TESLA, they also tend to ignore the
existence of the various selection and consumption policies.
Finally, with respect to performance, logic-based approaches
have proven at least as efficient as automata and tree-based
approaches.

Tree-based approaches provide multiple physical plans,
either for a single pattern (ZStream) or for multiple patterns

14 Nikos Giatrakos et al.

(E-Cube), which, in turn, allows for a more efficient pattern
evaluation, according to the cost of each plan. Ideas similar
to those of reordered execution and lazy evaluation behind
ZStream have also been applied to automata-based systems
[143,104].

We would also like to make some remarks concerning the
requirements for relational events and patterns without win-
dows (see Section 2.1.5). With the exception of Cayuga, all
other systems require windows in order to function. Cayuga
can handle windowless patterns by limiting its expressive
power. RTEC also relaxes to an extent the requirement for
windows, at least for durative CEs. Durative CEs in RTEC
need not have both their initiating and terminating timepoints
within the same window. This is manageable in RTEC due to
the fact that durative CEs are evaluated according to a deter-
ministic version of the skip-till-next-match policy, i.e., any new
initiation timepoints after the initial initiation do not result
in new CE candidates being created. It is thus an open issue
how to handle windowless patterns in the presence of relaxed
policies. With respect to relational events, the issue is not that
of a lack of expressive power. Even automata-based systems
could handle such patterns, through a constraint imposing
that the object identifiers of two successive events are differ-
ent; doing, in a sense, the opposite of what partition-contiguity
does. Efficiency is the real issue in this case, especially when
the CE has high arity (more than two objects need to be re-
lated), as such patterns would result in a significant increase
in the number of created runs for automata-based systems
and in a more expensive searching process for logic-based
systems.

Summarizing our discussion, the most obvious research
gap may be the lack of a common formal framework and of
a universally agreed terminology, also indicated by the fact
that there still do not exist any standard CER benchmarks.
Automata-based methods seem to support most of the core
CER operators, but it is still unclear how these operators may
be used and what their semantics should be. It also remains
an open issue how the common case of relational events
could be supported. On the other hand, logic-based methods
have clearer semantics, but they do not support all operators,
such as iteration (or support a limited version), while they
are also less flexible with respect to the allowed selection
policies. The absence of support for background knowledge
and the inability to handle both instantaneous and durative
events are also worth noting for most methods.

An area that has not received significant attention in
CER is that of automatically learning a set of patterns from
the stream of input SDEs. One example of a method for the
automatic extraction of CER patterns may be found in [101],
where a parallel system for learning theories in the form of
Event Calculus rules (as in RTEC) is presented. The issue
of parallelization will be discussed in the following sections.

CER

INPUT › OUTPUT

.
Recognised CEs
.

CER

CER

…

Clustered Architecture

Parallel CER

…

OUTPUT

.
Recognised CEs

.

Centralized Architecture

Serial CER

CER

…

Event Streams
… …

INPUT ›

… …

Event Streams
… …

Fig. 5: Abstract clustered architecture for parallel CER.

Other examples for learning CER patterns are [118], [107],
[43],[144].

3 Towards Scalable CER: CER on Big Data Platforms

CER engines [87,67,123,11,18,35] are devoted to process-
ing unbounded streams of event data as they arrive and pro-
vide real-time answers to continuous user queries. Most CER
engines function on top of a centralized architecture and
employ a serial processing model. That is, event data that
arrive in the CER engine are processed serially by a single
event processor [73] as shown in Figure 1. On the other hand,
Big Data is characterized by sheer volume and high veloc-
ity of event arrivals in which case such a centralized, serial
model causes the CER engine to become a computational
bottleneck.

To enable CER in the Big Data era we need to move
towards a clustered architecture composed of multiple pro-
cessing units that can work in parallel. As shown in Figure 5,
in such clustered architectures the computation is scaled-out
to a number of machines each with multiple CPUs and cores
that can work independently on parts of the given task and
finally merge the partial results of each unit to derive a single
outcome, i.e., the recognized CEs in the case of CER.

Parallel CER [59,143,94,119,39] usually aims at improv-
ing throughput, defined as the number of event tuples being
processed per time unit. Low latency is another desirable
property [143]. To continuously achieve high throughput and
low latency, one may need to adjust the assignment of the
processing load among the available units, on par with paral-
lel processing. Elastic resource allocation or elasticity refers
exactly to dynamically adjusting resource allocation, so that,
at each point in time, the utilized resources match the current
demands of running tasks as closely as possible.

Modern streaming Big Data platforms such as Apache
Storm [8], Spark [7] and Flink [1] provide by design the
primitives for the required scalability. They support paral-
lel processing over clustered architectures, allow elastic re-
source allocation and transparently ensure various levels of
resilience to failures while processing events. On the down

Complex Event Recognition in the Big Data Era: A Survey 15

side, such platforms are designed as general purpose stream-
ing engines. Therefore, the first step towards scalability is to
incorporate CER functionality to general-purpose Big Data
platforms. The question is how to bridge the gap between
such platforms and CER engines so that one can make the
most out of the two. In this section, we answer this question
by outlining how CER is incorporated in modern, popular
Big Data platforms. We will focus on Apache Storm, Spark
and Flink. Our purpose is not to provide a full technical guide.
Instead, we aim at (a) demonstrating where a CER engine of
choice may be incorporated, (b) introducing the basic con-
cepts that span these platforms and, importantly, elaborate
on the notion of a physical ‘task’ for each. In Section 4, we
review parallel and elastic CER approaches explaining that a
physical task may either be a CER query, operator or operator
instance [131].

3.1 CER on Spark Streaming

Conceptual View: The Spark Streaming API [5] works on
one or more discretized streams, each termed a DStream.
DStreams can be created either from input data streams stem-
ming from sources such as Kafka [4] or Flume [3], or by
transforming other DStreams. Data streams arrive at a Re-
ceiver process. To create a DStream, discretization takes
place based on two types of time intervals. The “block in-
terval” organizes incoming data streams into blocks of few
tens of milliseconds, with each block being a data partition.
Concatenating a number of blocks creates micro-batches.
These are then forwarded to the core of Spark, as shown at
the top part of Figure 6. There, a micro-batch is treated as an
immutable collection of data tuples organized into partitions
(blocks), called an RDD (Resilient Distributed Dataset).

As shown in Figure 6, as time passes new RDDs are
instantiated and may undergo a number of transformations
(map, reduceByKey, join, etc), window or output operations.
These operations may either be ‘narrow’, like map, which op-
erate on a single partition and essentially pipeline the data of
that partition to a resulting single partition (right-middle part
of Figure 6), or ‘wide’ operations like reduceByKey which
require to map the data across the partitions in new RDDs
(left-middle part of Figure 6). A series of such transforma-
tions or window operations form a Directed Acyclic Graph
(DAG) where nodes are RDDs at various timestamps and
arrows correspond to the desired operations on them. Such a
DAG expresses the conceptual view (see Figure 6) describing
the flow of data processing. There is also a newer streaming
API available in Spark, namely Structured Streaming [6], but
there is no effort on applying CER on it.
Physical & Cluster View: A Spark Cluster (see bottom of
Figure 6), includes a Driver process at a Master (Driver) node
and a number of Worker nodes. The Driver node is where
the Spark application (i.e., the SparkContext) is created. A

time

CER

› Transformations

› Window

Operators

› Output

Operators

DStream

RDD@time1 RDD@time4RDD@time2 RDD@time3
Conceptual View

CER

Engine

Instance

Tasks
t7 t8 t9

Stage StageStageStage

Stage

Stage

Stage

Tasks
t10 t11 t12

Tasks
t1 t2 t3

Tasks
t4 t5 t6

Tasks t13 t14 t15

Tasks t16 t17 t18

CER

Engine

Instance

Physical View

CER

Engine

Instances

CER

Engine

Instances

Kafka

Flume

HDFS
Kinesis

Twitter

Spark
Streaming

Input data
stream

Micro-
batches

of input
data

Spark
Engine

Micro-
Batches

of processed
data

R
e
ce

iv
e
r

Spark Cluster + CER example
(external or in executor)

Driver Node

Spark Context

Driver

CER

Executor

CER
Task

Worker

t1 t2 t3 CER

Executor

Worker

t16 t17 t18

CER Node (external)

…
CER
Task

……

Oracle CQP

Fig. 6: CER on Spark Streaming.

Worker node includes one or more Executors (JVMs) running
tasks assigned by the Driver.

In the physical view presented in Figure 6, each RDD
undergoes a number of processing stages, translating the
DAG of the conceptual view as shown in the figure. A stage
is formed as a set of narrow transformations that can be
pipelined and executed by a single Worker independently.
Having divided the execution graph into stages as shown in
the middle part of Figure 6, within each stage a data partition
is assigned to a single task. Then tasks are assigned by the
Driver to Workers. Such an exemplary assignment is shown
at the bottom of Figure 6.

Parallelism can be tuned in a number of ways. For in-
stance one can pre-partition (i.e., before reaching a Receiver
processes) Kafka messages and create a DStream for each
partition. Within Spark, the repartition transformation can cre-
ate more or fewer partitions of a DStream. Redistributing
streams using wide operations changes the partitioning of
the streams as well. For example, the keyBy transformation
repartitions data by hashing tuples based on key field(s).
CER Synergies with Spark Streaming: Two ways have
been applied to enable synergies among CER and Spark
Streaming. One way to go is to perform the required trans-

16 Nikos Giatrakos et al.

formations or window operations on Spark’s RDDs (micro-
batches) and then push the results to one or more, external to
Spark, running instances of a CER engine. Such an approach
has been described in the Stratio Decision Platform [20]
where the chosen CER engine is Siddhi [18], but in prin-
ciple this is also applicable on other CER engines such as
Esper [11]. The bottom of Figure 6 shows how this ratio-
nale could work at the cluster level. The Worker nodes in
the figure perform the required transformations, window or
output operations as part of the Spark cluster. There is a CER
Node marked in light blue in Figure 6. The red CER boxes
- tasks are absent at the Executor level upon choosing this
option. The CER Node in the cluster executes CER tasks
corresponding to the exemplary CER engine instances drawn
in the middle of Figure 6. Note that the actual number of
such instances depends on the actual CER operation and the
chosen parallelization scheme (these will be discussed in
Section 4).

A more elaborate approach is to incorporate an instance
of the CER engine as a CER task within each Executor, as
shown in red colored CER boxes at the bottom of Figure 6. By
employing this option, the CER Node in the figure is absent,
the communication lags between Spark and the external CER
engine instances are avoided and the local cache is shared
among common Spark and CER tasks that run on the same
Executor. Such an approach is adopted by OracleCQP [16,
9].

3.2 CER on Apache Storm

Conceptual View: The conceptual view of data processing
in Apache Storm is represented by a Storm Topology, as
shown in Figure 7. A Storm Topology is a DAG that includes
Spouts and Bolts. Spouts are data stream sources; each Bolt,
in turn, is where the actual processing takes place. Bolts can
do anything from filtering, aggregations, joins, interacting
with databases and more, before emitting tuples to other Bolts
or applications.
Physical & Cluster View: There are three kinds of nodes
on a Storm cluster as shown at the bottom of Figure 7. The
Master node runs a daemon called Nimbus, responsible for
assigning tasks to machines and monitoring for failures. A
ZooKeeper coordinates various processes and stores all of
the states associated with them. Finally, each Worker node
runs a Supervisor daemon, which listens for work assigned
to its machine and manages Worker processes.

Upon defining the topology, the developer has the ability
to explicitly set the number of Worker processes (JVMs).
A Worker process belongs to a specific topology and may
include one or more Executors (see bottom of Figure 7). Each
Executor is devoted to a Spout or Bolt of this topology. For
each Spout or Bolt the developer can explicitly declare the
number of its Executors (threads). A Spout’s/Bolt’s definition

Data Partitioning –Which task a tuple goes to?

› Shuffle Grouping: Random tuple distribution

› Fields Grouping: Partition based on field(s) – keys

› All Grouping: Replicate tuple to all tasks

› ……

› Custom partitioning scheme

Storm Cluster + CER (example)

Bolt

Storm Topology – Conceptual + Physical View

Spout S1

Tuple

…

Physical View: Bolt of

>1 tasks

CER

CER

CER

IBM Proactive Technology Online

CER Bolt B1

CER Bolt B2

Spout S2

Bolt B3

CER Bolt B4

CER

Bolt B1

Nimbus Zookeeper

Supervisor Supervisor

Executor
Worker

S1

Task

B1

Executor

B1

Tasks

B2

Executor

Task
Executor

Worker

B4

Task

Executor

Tasks

S2

Executor

Tasks

…

…

S2

B3

Fig. 7: CER on Apache Storm.

also allows for setting the number of tasks for the Spout/Bolt.
The tasks of a particular Spout/Bolt are running instances
of the exact same Spout/Bolt that produce/process different
data partitions. For instance, the middle right of Figure 7
shows that Bolt B1 may be instantiated to a number of tasks.
Moreover, Storm supports a number of grouping strategies
that specify how data will be partitioned and exchanged
among the tasks of Bolts. Custom groupings are possible,
while built-in ones are also available [8], some of which are
mentioned in Figure 7.

An example combining the physical view (tasks) with a
possible cluster deployment is also shown in Figure 7. On
the left, bottom part of Figure 7, there is a Worker process
with three Executors. The leftmost Executor handles a single
task for Spout S1, while the rightmost Executor runs a single
task for Bolt B2. However, the middle Executor possesses
two tasks for Bolt B1. Since B1 has two tasks, each of them
can execute the same code on different data partitions, in
parallel. Therefore, the maximum degree of parallelism in
the example is 2.

CER Synergies with Apache Storm: The standard way to
incorporate CER in Storm is, as shown in Figure 7, executing
CER queries in CER engine instances embedded in Bolts of
the Storm topology. This has been demonstrated for CER

Complex Event Recognition in the Big Data Era: A Survey 17

…

Flink Cluster + CER example

Flink Program – Conceptual Condensed View

Tuple

…

Physical View: Flink/FlinkCEP

operator of >1 tasks

Flink/FlinkCEP

Operator

JobManager (master)

…

Source S1

Source S2

FlinkCEP Op O1

map

Sink S3

map Flink Op O2

Data Partitioning –Which task a tuple goes to?

› keyBy: Partition based on field(s) – keys

› broadcast: Replicate tuple to all tasks

› rebalance: Round robin tuple distribution

› ……

Flink Op O3

Task Slot
TaskManager (worker)

S1

Op. Chain

O3

Task Slot

O2

Tasks

O1

Task Slot

Tasks

map

Tasks

O1
Op. Chain

Task Slot
TaskManager (worker)

S2

Op. Chain

O3

Task Slot

O2

Tasks

S3

Task Slot

Tasks

map

Tasks

S3
Op. Chain

Fig. 8: CER on Apache Flink.

engines such as Esper [12] and Siddhi [156]. One step further,
there exist examples of CER engines, such as IBM Proactive
Technology Online [13,14], that split their functionality to a
number of Bolts. A more detailed discussion on [14] follows
in Section 5.3. Such an approach provides greater flexibil-
ity since different degrees of parallelism can be applied at
various stages of CER within the CER engine.

3.3 CER on Apache Flink

Conceptual View: The basic building blocks of a Flink pro-
gram are Data Sources (streams), Operators and Data Sinks
bound together in a directed graph (see Figure 8) which is
not necessarily acyclic. From a developer’s viewpoint, Flink
operators or data sinks may resemble Spark transformations,
window operations or output operations, respectively. How-
ever, the implementation of these operators is much different.
Flink is a true streaming engine treating batch processing
as special case of streaming with bounded data and not vice
versa as it is the case with Spark. In Flink, each data source
or operator (map, keyBy, filter etc) is implemented as a long
running operator similar to Spouts and Bolts in Storm. Flink
also gives low-level control on the exact stream partitioning
after a transformation, similar to Storm groupings.
Physical & Cluster View: A Flink cluster is composed of
(at least one) Master and a number of Worker nodes. The
Master node runs a JobManager for distributed execution and
coordination purposes, while each Worker node incorporates

a TaskManager which undertakes the physical execution of
tasks. Each Worker (JVM process) has a number of task slots
(at least one). Each operator or instance of an operator of
the Flink program is assigned to a slot as shown in Figure 8
and tasks of the same slot have access to isolated memory
shared only among tasks of the same slot. The new concept
here involves task chaining. That is, Flink allows to place
two operators (or instances of operators) together into one
task i.e., thread (for instance, <source, map> in the figure)
for performance reasons.

At the level of an operator/data source/data sink, par-
allelism is configured by calling a setParallelism method.
Redistributing streams using wide operations (as in Spark)
changes the partitioning of the streams as well. For instance,
as shown in Figure 8, keyBy repartitions by hashing key
field(s), broadcast replicates the operator outcome and re-
balance performs round robin repartition.
FlinkCEP: Flink provides built-in support for CER via Flink-
CEP [2], which was discussed in Section 2.2 (see also Ta-
ble 1). Because of FlinkCEP, CER operators are incorporated
in the Flink Program and translated in physical tasks as any
other Flink operator. An example of a mixture of non-CER
and CER operators in Flink, at the conceptual and physical
view, is presented in Figure 8. Besides using FlinkCEP, Flink
provides Storm compatibility [19] making it possible to mi-
grate a Storm Topology with CER Bolts to a Flink Program.

3.4 Comparison of CER Implementations on Big Data
Platforms

Table 2 presents the default features of CER implementa-
tions on Big Data platforms. More advanced features require
custom code as we explain shortly. The first two rows of
the table are derived from our previous discussion. Event
delivery guarantees refer to how many times an event tuple
will be processed in case of system failure and, as it will be
discussed shortly, they directly affect the reliability of CER.
exactly-once is the strongest guarantee where each event tuple
will be processed exactly once, as it would when no failures
occur. Flink provides exactly-once guarantees for FlinkCEP.
at-least-once is a weaker guarantee where no event tuple will
be lost but, it may be processed multiple times. Storm pro-
vides at-least-once guarantees. at-most-once means that after
a system failure a tuple may be totally lost.

Note that Spark Streaming can provide exactly-once per
se, but its combination with a CER engine as described in
Section 3.1 affects this guarantee. An external CER node, as
in the example highlighted in light blue color in Figure 6,
can by default provide only the weaker at-most-once guar-
antee. This is the result of combining exactly-once of Spark
Streaming and the essentially no delivery guarantee of a
primitive external CER node setup. On the other hand, if one

18 Nikos Giatrakos et al.

CER over Big Data Platforms

Feature Apache Spark Streaming Apache Storm Apache Flink

CER @ External Node(s) Executor Storm Bolt Native CER Operator

Event Processing Micro-batch Micro-batch Event Event
Unit Size of Events of Events Tuple Tuple

Event Delivery at-most-once at-least-once at-least-once exactly-once
Guarantees

Windowing Time-based Time-based Time, Tuple-based Time, Tuple-based

Event Temporal processing- processing- event-time, event-time, processing-time,
Processing time time processing-time ingestion-time

Out of Order No No Yes, using Yes, using
Processing event-time event-time

Ease of Use 8 8 4 4

Separate node(s)
for CER

Manual launch
of CER engine at each
Executor or via custom

cluster manager

Import
CER engine’s
functionality

in Bolt’s definition

Native CER API

Flexibility 8 8 8 8 8 8 4 4 4 4 4 4

RDD to event tuples conversion from/to the CER
engine. Requires custom handling of tuple-based
windows. Only processing time-based windows

Flexible, if CER engine can be
incorporated as a library in Bolt.

Support for time- and
tuple-based windows. Support

for processing and event
time-based processing

Most flexible. Support for time-
and tuple-based windows.

Supports all event temporal
processing models

Reliability 8 8 8 8 8 4 4 4
Due to at-most/least-once guarantees custom
checks for selection/ consumption policies are

needed. Unless custom cluster manager is developed.
Out of order processing also requires custom code

at-least-once delivery requires
custom checks for selection/
consumption policies. Out of
order processing supported

Most reliable, with FlinkCEP.
exactly-once guarantees. Out
of order processing supported

Table 2: Features that popular Big Data platforms attribute to CER. The 4 and 8 marks denote advantages and drawbacks,
respectively, explained in the accompanying text.

incorporates the CER engine at each Executor, highlighted
in red color in Figure 6, then Spark Streaming keeps provid-
ing exactly-once for the processed micro-batches treated as
RDDs. However, each RDD will be pushed out to the CER
task of the same Executor and will be converted to single
event tuples. Pushing data out of an RDD format provides a
default behavior of at-least-once [5].

Regarding windowing (see Section 2.1.4), contrary to
Storm and Flink, Spark Streaming provides native support
only for time-based windows. Despite the fact that a CER
engine may natively support both tuple-(equivalently count-)
and time-based windows, ensuring the overall functionality
of tuple-based window operations as event tuples move from
and to Spark Streaming requires custom code.

The sixth row of Table 2 refers to the temporal processing
model. The processing-time option says that all time-based
operations (like time-windows) will use the system clock of
the machines that run the respective operations. The event-
time option specifies that all time-based operations will use
a timestamp attribute tagged on the event tuple by the event
producer device, typically before the event tuple enters the
corresponding Big Data platform. Finally, ingestion-time is the
time that an event enters the corresponding Big Data platform
(i.e., at a source operator in Flink). As Table 2 shows, Flink

supports all these options, Storm omits ingestion-time, while
Spark Streaming only supports processing-time.

Out of order event arrivals (see the seventh row of Ta-
ble 2) may occur due to network congestion and latency on
communication links delivering event tuples to the Big Data
platform. The support of event-time has a direct effect on the
ability of the platform to provide built-in functions for solv-
ing out of order event arrivals, as shown in the sixth row of
Table 2. All three platforms define out of order arrivals based
on event-time [6,8,1]. Because Spark Streaming does not
support event-time, it only allows the developer to customly
resolve such issues. Storm and Flink allow the specification
of a slack interval parameter in built-in functions tailored to
out of order handling. The platforms defer the computation
of order-critical operators (such as windows) waiting for de-
layed events an amount of time equal to the slack interval.
Events are buffered and re-ordered after delayed events ar-
rive, but before the operator evaluation begins. Techniques
for resolving such issues are also discussed in Section 6.

The second part of Table 2, i.e., the last three rows, sum-
marizes the effect of the above features from an ease of use,
flexibility and reliability viewpoint, respectively. For instance,
Spark Streaming is marked as a not easy-to-use choice in
the context of CER as it requires launching external CER
nodes or CER tasks in Executors of the cluster. Moreover, it

Complex Event Recognition in the Big Data Era: A Survey 19

is judged as inflexible as it requires micro-batches to be con-
verted to individual tuples before being fed into a CER task
(external or in an Executor) and vice versa. It further requires
custom handling of tuple-based windows and supports only
the processing-time temporal processing option. Therefore,
it receives three 8 marks regarding flexibility, while Storm
and Flink which (i) process each tuple individually, (ii) pro-
vide native support for tuple- and time-based windows, (iii)
support event-time and processing-time temporal processing
models, receive three 4 in the corresponding fields.

The last row of Table 2 concerns reliability features for
each platform based on its ability to allow exactly-once event
delivery guarantees and to provide built-in support for han-
dling out of order events. at-most-once and at-least-once may
affect the accuracy (and, thus, the reliability) of CER with
respect to the desired event selection or consumption policy
(Sections 2.1.2 - 2.1.3). In platforms providing such guaran-
tees one should include custom code provisions for address-
ing the requirements of the application under consideration.
For instance, assume that a consume consumption policy is
specified in the CER query and an event tuple has already
been consumed in a pattern match before a system failure.
at-least-once may allow the same event tuple to be consumed
again upon the failure recovery. In contrast, at-most-once may
result in a tuple being totally skipped while it should not.
Handling out of order event arrivals also affects the reliabil-
ity of CER on Big Data platform synergies. For instance, a
strict-contiguity policy will produce different CEs using the
event-time option compared to using an ingestion-time option,
unless event tuples arrive in order.

3.5 Open Issues in CER on Big Data Platforms

Benchmarking CER on Big Data platform synergies is the
major open issue here and perhaps one of the most difficult to
address among the open issues outlined in this survey. This
is because it lies at the intersection of (and thus, requires):

– Benchmarks of Big Data platforms, such as the Yahoo!
Streaming Benchmark [54] that puts Spark Streaming,
Storm and Flink to the test.

– Benchmarks of CER engines, where there is a lack of
industry-wide and well-accepted benchmarks1. For in-
stance, efforts like BiCEP [124] were not completed.

– Benchmarking combinations of the above based on crite-
ria such as those presented in Table 2.

– Benchmarking parallel CER approaches, as discussed in
Section 4.4.

One of the earliest and established benchmarks both in
general purpose stream processing systems and CER engines,
covering the first two of the above bullet points, is the Linear

1 http://www.espertech.com/esper/esper-faq/#benchmarks

Road Benchmark (LRB) [33,160]. However, recent results
in benchmarking [99] show that LRB and other benchmarks
such as StreamBench [116] introduce inaccuracies in the
derived performance (throughput, latency or other) measure-
ments upon applied to the context of Big Data platforms, or
even include bottlenecks in their implementations.

These recent advancements should be accounted for in
future efforts on introducing fair benchmarks for CER imple-
mentations on Big Data platforms. Since, to our knowledge,
no prior work surveys synergies among CER and Big Data
platforms the way we do in the current section and sum-
marize in Table 2, this area currently remains unexplored.
In addition, to our knowledge, no prior work surveys the
properties of parallelization schemes as those discussed in
Section 4.4. The exploration of all possible combinations of
Big Data platforms (such as Spark, Storm, Flink) that can
admit CER synergies, combined with the number of (poten-
tially hybrid) parallel CER implementations discussed in the
upcoming section, introduce a wide space of alternatives that
a series of future works could cover.

4 Scalable (Parallel and Elastic) CER

Having achieved CER engine to Big Data platform synergies
in one of the ways described in the previous section, it is
the developer’s responsibility to prescribe the desired paral-
lelization strategy in her code before submitting a query, or
even engage various parallelization schemes throughout the
CER process. There is a number of parallelization strategies
tailored to CER that have been proposed in the literature,
summarized in Figure 9. The suitability of a certain scheme
depends on the specifications, and therefore the needs, of a
given CER query. In what follows, we describe the rationale
and judge the suitability of the reviewed strategies based
on the following criteria [81,39] (see Figure 10), which of-
ten constitute common pitfalls in delivering parallel CER in
practice:

– Parallelization Granularity - Agility: This criterion refers
to the ability to fine tune the distribution of workload
so that parallel processing achieves (a) Load Balance
among the processing units that participate in CER query
processing and (b) limits Data Replication and Commu-
nication.

– Support for Event Selection Policies: Few parallelization
schemes are capable of supporting all event selection
policies, i.e., strict-contiguity, partition-contiguity, skip-till-
next-match and skip-till-any-match.

– Support for Event Consumption Policies: Similarly to
selection policies, not all parallel schemes are suitable
for all event consumption policies, i.e., consume, reuse
and bounded-reuse.

20 Nikos Giatrakos et al.

Task Parallelization

Q
u
e
ry

-b
a
se

d
[T

-R
E
X
, JS

S
’1
2
]

O
p
e
ra

to
r-b

a
se

d
[M

o
e
lle

r e
t a

l, D
E
B
S
’0
9
]

P
a
rtitio

n
-b

a
se

d
[H

irze
l
e
t a

l, D
E
B
S
’1
2
]

[M
a
y
e
r e

t a
l, D

E
B
S
’1
6
]

Data Parallelization

R
u
n
-b

a
se

d
[B

a
lk

e
se

n
e
t a

l, D
E
B
S
’1
3
]

S
ta

te
-b

a
se

d
[B

a
lk

e
se

n
e
t a

l, D
E
B
S
’1
3
]

G
ra

p
h
-b

a
se

d
[M

a
y
e
r e

t a
l, D

E
B
S
’1
6
]

H
a
rd

w
a
re

-sp
e
cific

[W
o
o
d
s

e
t a

l, P
V
L
D
B
’1
0
]

[C
u
d
a
C
E
P
, JP

D
C
’1
2
]

Fig. 9: Parallel CER Approaches. An outgoing/incoming
arrow indicates that a data parallel scheme lends/borrows
design concepts to/from another.

Criteria

Support for Event Selection Policies

Support for Event Consumption Policies

Support for Parallelization of Windows

Parallelization Granularity - Agility

L
o
a
d
 (

Im
)B

a
la

n
ce R

e
p
lica

tio
n
/

C
o
m

m
u
n
ica

tio
n

Fig. 10: Suitability Criteria for Parallel CER.

– Support for Parallelizing Window Operations: Sliding
windows may be viewed as overlapping partitions of the
input data that can be processed in parallel. Window par-
allelization is not trivial since computations may require
continuous communication of state among parallel tasks.
We will examine the cases of tuple-based windows and
time-based windows.

Parallelization can be broadly categorized to Task and
Data parallelization [131,81]. In task parallelization, multiple
CER queries are processed in parallel. In this case, the CER
query is interpreted as a physical task (see Section 3) placed
at the Executor or task slot of a Worker and all relevant data
are pipelined and serially processed. To further avoid data
and processing redundancy, queries may be decomposed to
their operators. In this case, the physical task involves the
execution of a certain operator and one can take advantage of
operators shared among multiple queries. Following [131],
data parallelization, on the other hand, focuses on a single
operator of a query, with each operator running in multiple
instances and each instance handling a different partition of
the data. A physical task is assigned to an operator instance
working on a certain data partition. Parallel CER categories
are summarized in Figure 9.

Recall from Section 3 that parallel CER aims at improv-
ing throughput and/or keeping latency low. To continuously
achieve these goals, elastic resource allocation takes place

Task Parallelization
T
h
re

sh
o
ld

-b
a
se

d

E
la

sticity
[H

e
in

ze
 e

t a
l, D

B
3
@

V
L
D

B
&

 IE
E
E
 D

a
ta

 E
n
g
. B

u
ll. 1

5
]

R
e
in

fo
rce

m
e
n
t

L
e
a
rn

in
g
-b

a
se

d

E
la

sticity
[H

e
in

ze
 e

t a
l, D

E
B
S
’1
4
]

Q
u
e
u
in

g
 T

h
e
o
ry

-b
a
se

d

E
la

sticity
[M

a
y
e
r e

t a
l, IE

E
E
 IO

T
’1
5
]

Data Parallelization

P
re

d
ictio

n
-b

a
se

d

E
la

sticity
[Z

a
ch

e
ila

s
e
t a

l, B
ig
D
a
ta
’1
5
]

Fig. 11: Elastic CER approaches and parallelization category
they have been applied to.

after applying a parallelization scheme and performing an
initial assignment of computing resources (CPU, memory,
bandwidth) to tasks. Then, statistics regarding resource uti-
lization and physical task state (partial pattern matches, active
windows, etc) are measured and analyzed. In case the analy-
sis shows that assigned resources are over- or under-utilized,
resource re-allocation is performed so that the allocated re-
sources match the current needs of physical tasks. Elastic
resource allocation can end-up in one of the following de-
cisions: (a) scaling-out (i.e., increasing the amount of re-
sources devoted to a physical task) due to over-utilization,
(b) scaling-in (i.e., devoting less computing resources) due to
under-utilization, (c) performing load balancing where run-
ning tasks are re-assigned to currently occupied computing
resources in order to avoid over- and under-utilization and
(d) taking no action.

In order to decide which decision is the best, elastic CER
approaches take into consideration the collected statistics
and predict the expected benefit from each of the adaptation
options. The expected benefit quantifies better (balanced)
resource utilization, increase of throughput or reduced com-
putational latency and the cost of migrating currently running
tasks to other virtual or physical machines, splitting/merging
their execution to more/less instances and thus processing
units. The following categories of elastic CER schemes have
been introduced [93]: (i) threshold-based, (ii) reinforcement
learning-based, (iii) queuing theory-based, (iv) prediction-
based. Figure 11 summarizes the parallelization category to
which these elastic schemes have been applied.

For each parallelization category (Figure 9), we accom-
pany the description of the parallel schemes with the respec-
tive elastic resource allocation techniques that have been
applied to them (Figure 11). Most of the presented schemes
have been developed on top of automata-based systems. How-
ever, in principle, they are equally applicable to the rest of
the system categories discussed in Section 2. Henceforth, we
use the term ‘processing unit’ to refer to either a single-core
CPU or a core of a multi-core CPU. For ease of presentation
we make the following convention: upon describing a par-

Complex Event Recognition in the Big Data Era: A Survey 21

allelization scheme we assume that each CER query, CER
operator (for task parallelization) or CER operator instance
(for data parallelization) is assigned a dedicated processing
unit. We then show how elastic resource allocation may place
multiple queries, operators or instances to a single processing
unit, where they operate in a pseudo-parallel fashion also
taking advantage of hyper-threading, and then make scale-in,
scale-out, load balancing or no action decisions.

4.1 Task-based Parallelization and Elasticity

4.1.1 Query-based Parallelization

For query-based parallelization we base our description on
T-Rex [59] which fosters an elaborate approach to imple-
ment this type of CER parallelism. However, we keep our
discussion generic. The structure of query-based parallelism
is shown in Figure 12. Each query, composed of multiple
CER operators, is assigned to a processing unit and multiple
CER queries are executed in parallel. In Figure 12 each col-
umn shows the stages of CER query processing which are
outlined below.

As soon as an event tuple streams into the cluster, a
splitter consults a static index of Automaton Models, each
representing a query, to verify which query the tuple is input
to. For each of these static automata, there is a number of
active instances (called Sequences in Figure 12) along with
their currently active states. These sequences essentially con-
stitute the current set of partial pattern matches. To mark the
active state of each automaton instance, a State Index is used
as shown in Figure 12. Once all the instances to which the
new tuple is input have been identified, further checks related
to window operations or other filtering criteria are performed.
Consequently, a new automaton instance may be created, or
an existing automaton instance may proceed to a new state.

To limit memory usage throughout parallel query pro-
cessing, an explicit copy of an event is only stored in a shared
memory component (see the left of Figure 12), while automa-
ton instances only keep pointers to these events. Going back
to our discussion in Section 3, we would like to emphasize
that shared memory can only be assumed within a JVM. A
heap is created at JVM start-up and shared by all JVM threads.
Queries running on separate JVMs require duplicating and
communicating input event tuples. Upon a full pattern match,
i.e., when an automaton instance reaches its final state, the
pattern is forwarded to the Generator component (see Fig-
ure 12), which retrieves the set of events that compose the
pattern from the shared memory. The recognized CEs are
then forwarded to the relevant subscribed applications. A
similar rationale has been adopted by Cayuga [44].

With respect to our criteria (Figure 10), since paralleliza-
tion is applied at the query level, query-based parallelization
is capable of supporting all event selection and consumption

Automaton Models

. . .

Event Streams

.

. . .

C
ER

Q
u

eries

…

Subscribed Applications

S
h

a
re

d
 M

e
m

o
ry

Splitter

C

E F
A

B D1 1 C

E F
A

B D1 1 C

E
A

B D1 1

…State Index State Index State Index

…Sequences Sequences Sequences

…Generator Generator Generator

Recognized CEs

Fig. 12: Query-based Parallelization Scheme [59].

policies. On the other hand, it does not allow for parallel
processing of windows and poses limitations on balancing
the load among the processing units since the load is solely
dependent on the complexity of the query assigned to a par-
ticular processing unit. Due to the fact that shared memory
usage is not always an option, tuples may need to be repli-
cated and communicated multiple times. Although for JVMs
running on the same machine communication does not nec-
essarily mean that data hit the network card, further tuning
is required to group queries that share input on the same ma-
chine. But even then, since the query is treated as an atomic
unit, operators shared among multiple queries need to be
evaluated multiple times, i.e. redundancy is introduced in
processing the queries.

4.1.2 Operator-based Parallelization

The basic concept in operator-based parallelism, as imple-
mented in NextCEP [143], is to perform intra-query and
multi-query optimizations while processing each individual
operator in parallel, i.e., each operator is assigned to a pro-
cessing unit. Multi-query optimization is achieved by lever-
aging operator sharing. That is, a single operator included
in multiple queries needs to be executed only once, by a
specific processing unit. Furthermore, the incoming data of
this operator need not be replicated for multiple queries as in
query-based parallelism. Intra-query optimization is achieved
by query rewriting, also taking into account operator statis-
tics. The key idea here is that each given query is analyzed
to its operators and each operator is rewritten in multiple
equivalent forms, leveraging operator properties including (i)
commutativity i.e., Op(Opi,Opj) ≡ Op(Opj,Opi) with Op
∈ {∧,∨} and Opi,Opj any of {∧,∨, ; } and (ii) associativity
i.e., (Opi, Opj),Opk ≡ Opi, (Opj,Opk) for {∧,∨, ; }.

One query rewriting is then chosen based on simple cost
estimation formulas incorporating incoming event rates and
the principle that operators with the rarest input events should

22 Nikos Giatrakos et al.

Automaton InstancesOperator i

Input Output

Automaton

Operator 1

Operator n

Event Streams

Recognised CEs

Operator jS
p
litte

r

Fig. 13: Operator-based Parallelization Scheme [143].

be evaluated first [72]. This principle is applied since an op-
erator with infrequent input events will rarely produce a full
pattern match and therefore only a limited number of CEs will
be fed to the next operator that receives input from the former.
The chosen query form is transformed into a query graph
as shown in Figure 13. The Splitter directs relevant input to
each operator. Operators that receive only SDEs are evalu-
ated first and then communicate full pattern matches (CEs)
to connected operators. Operators without outgoing edges
produce the CER query output. The execution of each opera-
tor within a processing unit can be materialized by structures
similar to the ones presented in Section 4.1.1 (input event
handler, automaton, automaton instances, operator-specific
output construction and evaluation), only this time applied
per operator. As already noted, multi-query optimization is
allowed, because by decomposing a query to its operators,
operators that are shared among queries need not be evalu-
ated more than once. Nevertheless, in principle, an operator
can be considered as shared if its specifications, such as input
event types and predicates, match exactly among multiple
queries.

This restriction is overcome in the work of [137] which
proposes the SPASS framework, aiming at optimizing the
parallel execution of multiple CER operators even if their
specifications do not precisely match. The basic idea is that
an optimizer module identifies a set of common sub-patterns
among the CER operators being executed. It decomposes
these CER operators using associativity, commutativity and
other Boolean algebra properties to new, equivalent expres-
sions which isolate the shared sub-pattern. For instance, a
CER operator written in SASE form as SEQ(A,B,C,D)

can be rewritten to SEQ(SEQ(A,B),SEQ(C,D)) and if
SEQ(A,B) is shared among many queries it is isolated and
executed independently. During the evaluation of the CER
operators, the intermediate results (partial pattern matches)
produced by shared sub-patterns are incorporated in shared
memory views so that they are accessible by all CER oper-
ators incorporating these sub-patterns. Therefore, the sub-
patterns do not need to be constructed more than once. Such
an idea is useful in maximizing the potential of operator-
based parallelization via exploiting operator sharing, how-

ever, it does not incorporate event selection and consumption
policies that may differ among operators. Additionally, as
was the case with shared memory in query-based paralleliza-
tion, it requires further fine-tuning at the cluster level to make
sure that all CER operators sharing a sub-pattern can access
shared memory views avoiding partial matches’ replication.

Operator-based parallelization, as discussed in [143], pro-
vides support for the whole set of event consumption policies,
while event selection policies are also supported excluding
skip-till-any-match. That is because skip-till-any-match violates
the “unique immediate successor” property. This property
implies that in order to apply the associativity property of the
sequence operator during query rewriting, there should be no
ambiguity which event is the immediate successor of another,
so that any possible rewriting produces equivalent output.
Finally, operator-based parallelization does not examine the
parallel processing of windows.

4.1.3 Threshold-based Elasticity

Elasticity on par with task (query- or operator-) paralleliza-
tion in CER has been considered in the FUGU resource allo-
cator [91,93,90,92]. FUGU initially assigns the set of physi-
cal tasks, each corresponding to a query or operator, to pro-
cessing units using a First Fit Bin Packing heuristic discussed
shortly. Then, one of the elasticity schemes that FUGU in-
corporates is the threshold-based approach discussed in [91,
93,90,92]. The basic principle behind this approach is that
a low and a high threshold are used in order to judge under-
and over-utilization of processing units (computing resources
in general), respectively, as shown in Figure 14. The elastic
allocator periodically checks whether either of these thresh-
olds is crossed so that it schedules a scale-in (due to under-
utilization) or scale-out (due to over-utilization) procedure.

There are two approaches to impose such thresholds.
They may either be local i.e., per processing unit, or global
i.e., a quantity measuring whether the global recourse uti-
lization exceeds or drops below a threshold. In case local
thresholds are used, a subset of the tasks (CER queries or op-
erators) assigned to an overloaded processing unit is selected
(in [93] using a subset sum algorithm) so that the load taken
away from the processing unit reduces its utilization below
the high threshold. The moved CER queries or operators are
re-assigned to non-overloaded processing units or new ones
are occupied, i.e., scaling-out. An under-loaded processing
unit is released (scale-in decision) by moving all CER queries
or operators assigned to it to other non-overloaded peers (if
possible).

Global thresholds may be defined using a function syn-
thesizing the utilization of different processing units such
as the average utilization adopted in [93]. If this average ex-
ceeds the high threshold, an amount of load is moved from
each processing unit. The amount of load that will be moved

Complex Event Recognition in the Big Data Era: A Survey 23

Threshold-based Approach →

Utilization Scale-in No Action Scale-out

80% 0.28 0.7 0.88

90% 0.28 0.5 0.9

100% 0.1 0.4 1.0

Reinforcement Learning Approach

- Look-up table describing “benefit”

of each action based on recent

experience

Time

Utilization
Upper T →

Scale-out

Lower T →
Scale-in

→

Fig. 14: Threshold-based and Reinforcement Learning-based
Approaches [91,93,90,92].

can be determined, for instance, by measuring how much the
high threshold is exceeded and almost equally distributing
this quantity among the processing units. Another approach
could well be that only the most overloaded processing units
have their tasks being re-allocated. If the low threshold is
exceeded, the processing units with the minimal utilization,
so that the new average surpasses the low threshold again,
are released and tasks are re-assigned (if possible).

Regarding CER query/operator placement to processing
units and load balance, in every scale-in or scale-out decision
as discussed above, a First Fit Bin Packing heuristic is used
for assigning tasks to processing units [93]. In First Fit Bin
Packing, tasks are ordered based on their expected work-
load. The available processing units are the bins along with
their remaining utilization capacity. A CER query/operator is
placed in the first processing unit that has enough remaining
capacity to host it or in a new processing unit.

Various versions of the above technique can be con-
structed so that resource re-allocation is only permitted when
thresholds are crossed in multiple consecutive checks. More-
over, one can schedule the elastic allocator to perform peri-
odic checks so that frequent re-allocations are avoided. Mi-
gration costs including the introduced computational latency
upon moving tasks can be taken into account for judging
whether task re-allocation is beneficial [108,90,92]. Similar
threshold-based approaches have also been discussed in the
broader stream processing literature [86,74].

4.1.4 Reinforcement Learning-based Elasticity

Reinforcement learning-based elastic resource allocation, in
FUGU [93], attempts to exploit past experience in order to
drive future scale-in or scale-out decisions. The elastic CER
resource allocator constructs a look-up table as shown in
Figure 14 and learns the values of its cells. The rows of
the table are current utilization values, while columns cor-
respond to scale-in, scale-out or no action decisions. The
value of each cell quantifies the benefit of the corresponding
decision given the current resource utilization. Initially, the

look-up table may point to scale-in decisions for all entries
below a configured lower threshold and to scale-out above
an upper threshold. Afterwards, given the current resource
utilization value, a corresponding decision is taken and the
benefit learned in practice updates accordingly the corre-
sponding table cell. For instance, according to the table in
Figure 14, for any value of the current utilization reaching or
exceeding 80%, the higher benefit comes from a scaling-out
decision. Being part of the FUGU approach, reinforcement
learning-based elastic CER relies on First Fit Bin Packing
heuristic for CER query/operator placement and load balance.
A reinforcement learning approach is also described in [115],
but using Markov Decision Processes instead.

In principle, both threshold- and reinforcement learning-
based elastic schemes can function on par with data paral-
lelization (besides task parallelization) schemes. Nonetheless,
in the literature these approaches have not been implemented
in a way that involves increasing or decreasing the running
instances on a per CER operator fashion.

4.2 Data Parallelization and Elasticity

4.2.1 Partition-based Parallelization

We continue our discussion with data parallelization and
partition-based parallelism in particular. Recall that in data
parallelization relevant techniques focus on a single operator
which is instantiated a number of times, with each instance re-
ceiving a different partition of the input event data. Two types
of partition-based parallelism have been proposed, namely
partition-key based parallelism [94] and pattern-sensitive par-
allelism [119]. As shown in the middle part of Figure 15,
the structure is similar in both schemes. A splitter partitions
the input, a number of operator instances undertake the pro-
cessing of data partitions and a merger synthesizes (based on
the operator’s specifications) partial results from operator in-
stances so as to extract the final CEs. The difference between
partition-key and pattern-sensitive parallelization concerns
the way the data is partitioned and whether an event tuple
may belong to one or multiple partitions.

In partition-key based parallelization [94] the input event
stream is assumed to be keyed or it can be pre-processed so
that tuples possess key fields. Hence the splitter partitions
the data based on the key of the incoming event data tuples.
Such a scheme is very often useful in practice where the CER
query groups incoming tuples based on key field(s). Such
examples are shown at the top of Figure 15 involving telecom-
munication companies where CER queries may group tuples
by caller or callee, social media analysis where queries often
group incoming event tuples by user id, or location-based
services provided by applications, where event tuples are
grouped by the area in which events occur.

24 Nikos Giatrakos et al.

. . .

Event Streams

.

. . .

S
p
litte

r M
e
rg

e
r

Recognised CEs

.

…

…

C

E F
A

B D1 1

C

E F
A

B D1 1

C

E F
A

B D1 1

Operator Instance 1

Operator Instance n

Operator Instance i

Key-based
Split

Pattern-
sensitive Split

Partition By

(Caller ID)… …Caller

Callee 1Call Event

Callee n

Partition By

(User ID)

Partition By

(Area ID)

location
updates

w3

w2

w1
W1, W2, W3 are active

(non-expired) time
windows (partitions)

Spatiotemporal Partition

P
artitio

n
 En

d
:

n
eigh

b
o

rh
o

o
d

d

isso
lves

(vessel co
u

n
t <3

)P
ar

ti
ti

o
n

 S
ta

rt
:

ve

ss
el

 n
ei

gh
b

o
rh

o
o

d

fo
rm

at
io

n

(v
es

se
l c

o
u

n
t

≥3
)

Slide

Slide

Fig. 15: Partition-based (Partition-key [94] and Pattern-
sensitive [119]) Parallelization Schemes.

Due to data partitioning, only the partition-contiguity event
selection policy can be supported by this scheme. All event
tuples with the same key are included in one partition, which
imposes partition isolation. Hence, the data concerning a
certain key need not be replicated or communicated among
the processing units. Due to partition isolation all event con-
sumption policies are applicable. Load distribution strongly
depends on the frequency of the keys of the incoming event
tuples.

In pattern-sensitive parallelization [119], the occurrence
of an event may act as a Boolean trigger for creating a new
partition. An event may, depending on the specifications of
the CER operator, (i) open a new partition, (ii) be included
in an existing partition, (iii) terminate a partition. The bot-
tom part of Figure 15 depicts examples of pattern-sensitive
parallelism. An example involves sliding windows. In time-
based sliding windows, there is a window slide and a window
size parameter which are time intervals, with the size of the
slide being smaller than the window size. A new partition -

window is created when a time interval equal to a window
slide passes. A partition is no longer active, i.e., is terminated,
when a time interval equal to the window size has passed
since its creation. Each partition W1,W2,W3 in Figure 15
is a window that extends within a constant sized time inter-
val which is the window size. All events with timestamps
between the start and end of each partition (active window)
are part of it and some of them expire after a window slide.
The red rectangle in the figure marks the overlap among all
partitions, including events that need to be replicated/com-
municated. In tuple-based sliding windows (not depicted in
Figure 15), instead of time intervals, the window slide and
the window size are measured in terms of the number of
event tuples that arrive in the system.

The second example illustrated at the bottom of Figure 15
involves spatio-temporal partitions taking for example the
maritime surveillance domain. In this example, a dynamic
partition may be created when the number (count) of vessels
within a certain spatial radius exceeds a given threshold. As
vessels move together, new vessels enter or existing vessels
exit the spatial neighborhood. The events of interest that these
vessels cause are assigned to the created partition. A dynamic
partition may be terminated when the count of vessels in the
neighborhood drops below a threshold. Since such spatio-
temporal neighborhoods may overlap, each vessel along with
its events may belong to more than one partition.

The pattern-sensitive parallelization scheme is a suitable
technique for parallelizing the processing of time- and tuple-
based windows. Due to data partitioning, only the partition-
contiguity event selection policy can be supported by this
scheme as well. An incoming tuple may belong to more
than one partitions as in our above examples. Therefore, data
replication, in the worst case to a degree equal to the number
of active partitions, cannot be avoided. Because, partition
isolation does not hold in pattern-sensitive parallelization,
the only consumption policy that can be supported is the
reuse policy. All the remaining consumption policies require
continuous communication among the processing units in
order to determine which partition will consume an event
first (in consume) or decide on how many times an event
has been consumed (in bounded-reuse). Since partitions are
dynamic and streams are volatile this scheme is prone to load
imbalance.

There exist efforts that attempt to handle data replica-
tion and communication overhead [122] or examine support
for consumption policies over sliding windows [121]. How-
ever, their success is highly dependent on constantly accurate
predictions [122], or approximation with loose quality guar-
antees [121].

Complex Event Recognition in the Big Data Era: A Survey 25

timeB=10, S=3

C

F

A

B D C

F

A

B D C

F

A

B D

PU 2 –
Operator Instance 2

PU 1 –
Operator Instance 1

PU 3 –
Operator Instance 3

C

F

A

B D C

F

A

B D C

F

A

B D

PU 2 –
Operator Instance 2

PU 1 –
Operator Instance 1

PU 3 –
Operator Instance 3

Fig. 16: Run-based [94] Parallelization. Colored boxes are
event tuples. Batches of tuples are marked with different
colors. PU stands for Processing Unit. Tuples marked with
8 are replicated in a pair of PUs. CER operator instance
evaluation is based on the depicted NFA.

4.2.2 Run-based Parallelization

Run-based parallelism [39] employs the neat observation that
if at most N events can participate in a full pattern match,
according to the CER operator specifications, then data can
be partitioned to batches of B ≥ N size. Each such batch is
a data partition that can be processed by different instances
of an operator assigned to different processing units. Some
full pattern matches may extend to consecutive batches by
including input events from both. Therefore, there is the
additional restriction that S = N − 1 ≤ B

2 and S tuples at
the start of a batch need to be replicated to the processing unit
that handles the chronically preceding batch. Each processing
unit detects all matches that start in the first B − S events in
a batch. The rationale is illustrated in Figure 16.

An example of a CER operation supported by this scheme
involves tuple-based windows. This is because the size of the
batch B can be set to a factor of the tuple-based window size
(W most recent tuples arriving in the system), this way creat-
ing corresponding partitions. On the contrary, in time-based
windows, the batch size cannot be set a priori. As another
example of a supported operation consider a sequence oper-
ator SEQ(e1, . . . , eN) along with a strict-contiguity selection
policy.

Run-based parallelism has the potential of balancing the
load among the processing units, since each operator instance
processes an equivalent amount of tuples. Furthermore, de-
spite the fact that it requires data replication and communica-
tion based on the S parameter, this is restricted to an a priori
known number of processing units and is query dependent
instead of being linked to volatile input data distributions.
Regarding support for event selection policies, due to the

fact that each batch is processed isolated, the restriction that
arises relates to partition-contiguity. In case a data partition,
i.e., the batch, internally contains logical CER partitions (e.g.
based on a key), the size of these partitions needs to also
be a priori known or at least upper bounded in order to al-
low for implementing the partition-contiguity selection policy.
This is often not the case in practice; for instance an upper
bound does not exist in key-based partitions. Finally, with
respect to event consumption policies, the reuse policy is
supported. Nonetheless, consume and bounded-reuse require
additional communication among processing units that han-
dle consecutive batches. This is necessary so that the pair of
the processing units can determine where an event tuple is
consumed first (in consume) or to decide on how many times
an event has been consumed (in bounded-reuse).

4.2.3 State-based & Hardware-centric Parallelization

In partition-based and run-based data parallelization, each
operator instance holds a full version of the corresponding
CER operator, assigned to a certain processing unit, working
on different data partitions. In state-based parallelization [39,
60] each processing unit is not assigned a full-fledged version
(instance) of the CER operator, but handles certain states of
the NFA that corresponds to the operator. This in turn means
that each processing unit initially handles events of certain
types that are input to the operator.

The splitter distributes incoming event tuples based on
their type, directing them to the responsible processing unit as
shown at the top of Figure 17. Each processing unit indepen-
dently performs checks on filtering conditions or predicate
evaluation per state. In order to evaluate predicates that en-
gage more than one event type, the corresponding event types
may need to be replicated to the relevant processing units.
For instance, consider a query in SASE-like format:

PATTERN SEQ (A,OR(B,F),C,D)
WHERE A.attribute1 > 30

AND B.attribute1 = C.attribute2

AND A.attribute1 < 60

WITHIN 60 SECONDS

Each of A,B,C,D, F is assigned to a different process-
ing unit. The condition A.attribute 1 > 30 as well as the
condition A.attribute1 < 60 are evaluated by the process-
ing unit handling tuples of event type A. For evaluating
B.attribute1 = C.attribute2 it suffices for the processing
unit that handles event type B to receive additional informa-
tion about C.attribute2 .

Besides having each processing unit working indepen-
dently on filters and other predicates, as new events arrive, the
evaluation of the CER operator takes place in an incremen-
tal fashion. This is achieved by pipelining event tuples that

26 Nikos Giatrakos et al.

C

F

A

B D

Event Stream

…, (a3), (a1)

…, (a3), (a1)

…, (a3b4)

…, (a3b4)

…, (a3f1)

…, (a3b4f1c1)

Recognised CEs

S
p
litte

r

Event type -
based Split

C

A

B D

Event Stream

(d1)

Recognised CEs

d1

(c1d1),
(c3d1),

…

a1

a3

…

b1

b5

…

c1

c3

…

(b1c1d1),
(b1c3d1),
(b5c1d1),

…

S
p
litte

r

Event type -
based Split

(d1)

Incremental Processing

Column-Delayed Processing

On FPGAs

activation

predicate
output

activation

predicate
output

activation

predicate
output

Predicate Decoder

A B C

A B C

1

Fig. 17: State-based Parallelization [39,60,155]. Each state
of the depicted NFA is assigned to a processing unit. Black
arrows in the case of incremental processing (top) are equiv-
alent to NFA state transition edges (D acts as merger), while
Column Delayed Processing (CDP) reverses these arrows
as it performs the CER operator evaluation in reverse order
(A acts as merger). NFA-state ‘F’ is omitted from CDP for
readability purposes. Event tuples of type A,B,C,D, F are
marked with ai, bi, ci, di, fi respectively. The ‘On FPGAs’
(bottom) part illustrates only a subset of the corresponding
hardware NFA states, for readability purposes.

pass filters and predicates among the NFA states, and thus
the responsible processing units, following the NFA arrows.
An example of such an incremental evaluation is depicted
at the top of Figure 17, where event tuples of type A are
forwarded to the processing units handling type B as well as
F . Partial pattern matches make it through the NFA edges
being directed to the processing unit handling C (from the
processing units handling B,F) and the one handling event
type D (from the unit of B). In case a full pattern match is
detected at the final NFA state, a CE is produced.

The above scheme does not allow for fine tuning the
load among the processing units, because it depends on the
complexity of the predicates per state and the distribution of
certain event types in the incoming stream. Additionally, the
maximum degree of parallelism is restricted by the number
of NFA states and the type of predicates. Moreover, the in-
cremental operator evaluation that pipelines data towards the
final states, also tends to assign higher pattern evaluation load

to the corresponding processing units that handle those states.
To understand why, consider for instance expansive event
selection policies (i.e., for o input events they can produce
more than o, up to o2 complex events), such as skip-till-any-
match. Furthermore, as our above discussion demonstrates,
data often requires to be replicated and are always communi-
cated among the processing units. Another limitation is that
sliding windows cannot be processed in parallel using this
scheme. On the bright side, state-based parallelization is the
only technique in the data parallelization category that can
support all event selection and consumption policies.

In order to alleviate part of the operator evaluation load
from the cluster, Column-Delayed Processing (CDP) has
been proposed [72,60]. The key observation that motivates
CDP is that incremental evaluation produces and forwards to-
wards the final NFA states, partial matches that may be highly
unlikely to produce a full pattern match. In the example of
Figure 17, if no event of type D occurs within the specified
time window, all the incrementally produced, partial pattern
matches were processed in vain. To make sure that the pro-
cessing load is indeed devoted to promising partial pattern
matches, CDP reverses the pipelining procedure.

In particular, CDP requires that all processing units cache
the incoming events of the type they were assigned, provided
they pass respective filters or predicates. The cached event
tuples will be further processed only when the processing
unit handling the final state of the NFA receives an event
of that type. Then, the operator evaluation process begins,
but this time backwards. CDP is depicted in the middle of
Figure 17.
Hardware-centric State-based Parallelization: An imple-
mentation of state-based parallelization using both the in-
cremental evaluation of CER operators as well as the back-
tracking process of CDP was discussed in [60]. There, these
versions of state-based parallelism were tested on both multi-
core CPU and CUDA settings. CUDA [10] constitutes a
widespread architecture for programming on GPUs.

Cache management and the transfer of events from the
main memory to the GPU memory appears a critical aspect
in implementing state-based parallelism over CUDA [60].
Each multi-processor creates, manages, schedules, and exe-
cutes threads in groups of parallel threads called warps. The
developer can take advantage of the fact that CUDA groups
and computes in a single, memory-wide operation concurrent
memory accesses to contiguous areas from threads having
contiguous identifiers in the same warp. In a multi-core CPU
environment, the implementation of state-based parallelism
would opt for exploiting shared memory within a JVM, as
also discussed in query-based parallelization (Section 4.1.1)
and at the thread level keep only pointers to events in the
shared memory. This would be efficient in an implementa-
tion on CPUs, but it would lead to memory fragmentation
in a GPU setting, making it impossible to control memory

Complex Event Recognition in the Big Data Era: A Survey 27

accesses from contiguous threads. Accordingly, in the CUDA
implementation caches should not hold pointers to events,
but copies of events.

The generic observation made in [60] is that the use
of GPUs brings impressive speed-ups when CER operators
are of high complexity (engaging various event types and
predicates), because then the advanced processing power of
the hardware overcomes the delay introduced by the need of
copying events from the main to the GPU memory and vice
versa. At the same time, multi-core CPUs scale better with
the number of queries.

Another hardware-centric implementation of the state-
based parallelism is presented in [155]. The idea there, is
to insert Field Programmable Gate Arrays (FPGAs) directly
into the event data path between the network interface and
the CPUs of the cluster. A FPGA module includes (a) Con-
figurable Logic Blocks (CLBs) forming a two-dimensional
array, (b) Interconnections between the CLBs to implement
the user logic, (c) a switch matrix which provides switching
between interconnects depending on the logic and (d) I/O
Pads to communicate with (in our case CER) applications.
CLB contains a Multiplexer, flip flop registers and Look Up
Tables (LUT) based function generators. LUT implements
combinational logical functions; the Multiplexer is used for
selection logic, and flip flop stores the output of the LUT.

A compiler module translates CER patterns (in the form
of regular expressions in [155]) into hardware NFAs as fol-
lows. Each NFA-state and its respective incoming transition
is mapped to a LUT-flip flop pair. Such pairs can work in
parallel concurrently checking with a Predicate Decoder if
the current tuple satisfies a given predicate (see bottom of
Figure 17). The Predicate Decoder consists of pure combina-
torial logic that takes a SDE as input and returns a predicate
vector as output, having one bit for each predicate indicating
whether it was satisfied by the SDE. This way, the NFA can
decide which transitions to take next. Finally, more related to
partition-based parallelism (Section 4.2.1) rather than state-
based parallelism, [155] includes a stream partitioner module
so that incoming data can be initially partitioned based on
some identifier.

4.2.4 Graph-based Parallelization

The data parallelization approaches we have examined so
far (Sections 4.2.1 – 4.2.3) process partitions of the data
independently on separate processing units. Graph paral-
lelism derives parallelism by partitioning graph-structured
data across processing units and then resolving dependen-
cies (along graph edges) through iterative computation and
communication [83].

The work of [120] attempts to engage graph-parallel
algorithms with the CER process. However, the proposed
GraphCEP approach keeps graph parallelism detached from

the CER operator evaluation itself. Therefore, in the current
section we also discuss how to achieve graph-parallel CER
operator evaluation.
GraphCEP [120]: GraphCEP uses two stages of parallelism.
At the first stage, partition-based parallelism is applied (see
Section 4.2.1). For each partition of events, a second stage of
graph-based parallelism is applied for graph structured data
that may be affected by incoming event tuples. These two
stages are shown at the leftmost part of Figure 18. For in-
stance, in a maritime surveillance application, the first stage
may partition event tuples based on vessel type. The sec-
ond stage may perform graph-parallel computations within
each vessel partition such as finding closest pairs or spatio-
temporal clusters of vessels. The graph-parallel stage of
each operator instance in Figure 18 operates using the GAS
paradigm, presented below.
GAS (Gather-Apply-Scatter) paradigm: Consider we have
two graphs. The query graph and the physical network of
processing units along with their communication links. Fig-
ure 18 depicts the latter graph. The query graph (not shown
in the figure) is partitioned and each partition is assigned to
a processing unit. Partitioning strategies using edge cuts or
vertex cuts are possible [82].

Graph parallelism can be implemented by arranging the
computation using gather-apply-scatter iterations where the
“think like a vertex” concept is applied. During the scatter
phase every vertex of the query graph sends data to its neigh-
bors in parallel, while during the gather phase every vertex
of the query graph collects data from its neighbors and ag-
gregates it, in parallel. In the apply phase every vertex of
the query graph transforms its data locally (depending on
the given task). Figure 18 illustrates the GAS paradigm at
the query graph partition level, i.e., showing the processing
units and their links. Each vertex in Figure 18 is a proces-
sor handling a different partition of the query graph, while
edges describe communication among processing units that
are assigned dependent (connected through edges) graph par-
titions. In other words, the GAS concept is implemented
both internally within a partition of the query graph that is
handled by a processing unit (in which case no communi-
cation is necessary), as well as among the processing units
handling different graph partitions as shown (black arrows)
in Figure 18.

The query graph in CER can be the NFA used for eval-
uating an operator. But in GraphCEP, graph parallelism is
not focused on evaluating a CER operator such as {; ,∨,∧},
but on combining CER with parallel computations on graphs.
Below we introduce the application of the GAS idea for
parallelizing the NFA-based CER operator evaluation itself.
Introducing Graph-parallel CER Operator Evaluation:
Our discussion here refers to involved CER operators, which
is exactly when graph parallelism is of the essence, i.e., when
the processing of complex graphs needs to be scaled-out. In

28 Nikos Giatrakos et al.

S
p
litte

r M
e
rg

e
r

…

…

Operator Instance 1

Operator Instance n

Operator Instance i

CER1 GP1

CERi GPi

CERn GPn

Vertex: PU handling a query subgraph

Edge: connects subgraphs of vertices

Scatter: vertex sends data about the

query subgraph it handles to neighbors

Gather: Each vertex gathers data from

neighbors and performs aggregations

Apply: Each vertex performs

local data transformations

Fig. 18: GraphCEP [120] and the GAS paradigm [83]. GP stands for the Graph-Parallel part of each operator instance. PU
stands for “Processing Unit”.

case NFAs are used for CER operator evaluation, complex-
ity is interpreted as a high number of states and complex
organizations of edges denoting state transitions.

The plausible observation for graph-parallel CER oper-
ator evaluation is that the NFA representing the operator is
itself a graph. A new event tuple may add edges and vertices
to an NFA instance by triggering a transition (edge) to a new
active state (vertex). Therefore, in an offline fashion, we may
choose a partitioning (using edge or vertex cuts as suggested
in [82]) of the NFA, termed as a sub-NFA, so that the load
assigned to each processing unit is balanced and commu-
nication is minimized i.e., by employing up-to-date event
statistics. Each sub-NFA can be assigned to a processing
unit.

Having assigned sub-NFAs to processing units, during
the gather phase all states (vertices) of the NFA receive data
from their incoming edges, in parallel. These incoming edges
may belong to the same sub-NFA or to another NFA partition
assigned to a different processing unit. Thus, for partitions
assigned to different processing units, the gather operation
entails inbound communication. The gathered data may be
SDEs transfered by the splitter as well as partial matches.
During the apply phase, every processing unit applies filters
and predicates on the received data and generates new (partial
or full) pattern matches in parallel and for each state. Finally,
during the scatter phase, all states of the NFA push data
to their outgoing edges, in parallel. These outgoing edges
may belong to the same sub-NFA or to a sub-NFA assigned
to another processing unit. Thus, for sub-NFAs assigned
to different processing units, the scatter operation entails
outbound communication.

For NFA-based CER operator evaluation, the proposed
GAS application may resemble state-based parallelization.
However, notice that state-based parallelization requires that
the processing of each state (event type) is assigned to a
different processing unit. This is much simpler, since one
does not need to seek for an appropriate partitioning of the
graph (NFA) but also suboptimal, because it does not al-
low to balance the load and exacerbates the communication
cost among the processing units. Therefore, regarding our
suitability criteria (see Figure 10), graph-based parallelism

maintains the same properties with state-based parallelism,
but overcomes important limitations regarding load balance,
need for replicating data and excessive communication.

4.2.5 Queuing Theory-based Elasticity

Queuing theory-based elastic resource allocation has been
applied in the context of partition-based parallelization [119],
but in principle it can also support any scheme falling in the
data parallelization category. This holds because elasticity
focuses purely on adaptively setting the number of running
instances of an operator that will be handled by a processing
unit. The idea is to model the whole parallel CER structure
of Figure 15 as a queue where exponential event tuple ar-
rivals and deterministic or exponential departures of complex
events are assumed. Between the input and output of a queue,
a number of processing units serving operator instances exist,
as shown in Figure 19.

To decide whether fewer or more processing units should
be occupied, a probabilistic input buffer limit is used. If at
time t the probability of the input queue size Q(t) being
smaller than the buffer limit (BL), is lower than a threshold
(Pthres), a scale-out decision is made. Thus, a processing unit
that, for instance, currently handles two operator instances
will keep one of them and the other operator instance will
be placed at a newly occupied unit. If this probability is
found to be below the threshold multiple times, the scale-in
option is preferred, i.e., operator instances are placed in the
same processing unit to be executed in pseudo-parallel mode.
Otherwise, no action is taken. [119] does not discuss further
task placement or load balance heuristics.

4.2.6 Prediction-based Elasticity

Prediction-based elastic CER [158] is another scheme that
has been applied on top of data parallelism. The scheme
works as sketched in Figure 20. We have a look-ahead time
horizon that we split in sliding time windows, numbered
from 1 to H in Figure 20. In each window we have a set of
states (gray circles in the figure). A state denotes the option

Complex Event Recognition in the Big Data Era: A Survey 29

Yes

Incoming
Event Queue Q

PU 1

PU C

PU i

…

…

Outgoing
Event Queue

Exponential arrivals
Exponential/

deterministic departuresC serving PUs

nowP=P(Q(t)≤BL)<Pthres

?

CC+1

lastP>Pthres?

CC-1

No Return C

Yes

No

Event Streams
Recognised CEs

Fig. 19: Queuing Theory-Based Elastic CER [119].

Lookahead Time Horizon (H)

1 PU
Init Last

Window 1

k PUs

…

1 PU

Window 2

k PUs

…

1 PU

Window H

…

k PUs

Cost=0

Cost

Cost(κ PUsλ<κ PUs)

Fig. 20: Prediction-Based Elastic CER [158]. Each edge has
a different weight (cost).

of utilizing 1 ≤ i ≤ k processing units for the execution
of running instances of a CER operator. Transition edges
connect states of contiguous, chronically ordered windows
and denote a scale-in or scale-out decision depending on
whether the transition is made to a state with more or less
processing units. Each transition edge has a weight which
is the cost of making the transition. The cost function used
in [158] is a formula that incorporates the expectation about
resource utilization and observed latency. The cost itself is
viewed as a random variable projected to the future.

Thus, the basic goal is, given the current initial state of
parallelization (with a corresponding number of processing
units) and a final state at the end of the look-ahead time hori-
zon, to choose one state per window so that the sum of the
cost of the edges that connect these states is minimized. In
order to compute the best combination of states, it suffices to
compute the shortest path between the initial and final state of
the graph as shown in Figure 20. The authors of [158] exper-
iment with various alternatives for predicting the weight of a
transition edge, including Gaussian Processes, Support Vec-
tor Machine or Neural Network-based predictions. Gaussian
Processes exhibit the best prediction accuracy.

The recent approach of [159] complements [158] with
a task placement scheme so that the load is balanced. [159]
models the problem of balanced operator instance (and thus)
placement as a Job Shop Scheduling problem, where a num-

ber of tasks should be assigned to a number of processing
units, so that a metric trading-off load balance with running
task migration cost is minimized. A dynamic task placement
algorithm is presented based on a well-known greedy approx-
imation of the Job Shop problem.

4.3 Summary of CER Parallelization Scheme Properties and
Hybrid Schemes

The discussion presented so far showed that there is no one-
size-fits-all solution when it comes to parallelizing CER.
With respect to our suitability criteria, presented at the be-
ginning of Section 4 and in Figure 10, we summarize the
properties of the various parallelization schemes in Table 3.

Depending on the CER operator or query it is often neces-
sary to resort to hybrid parallel CER approaches to maximize
throughput, reduce computational latency, and better balance
the load. For instance, a CER query may group events based
on some key such as those shown in Figure 15 and simulta-
neously impose a sliding window over the incoming events
that are to be taken into account in pattern matches. Such a
query may use a hybrid parallelization strategy that combines
partition-key based and pattern-sensitive parallelism (Sec-
tion 4.2.1). The question that arises, is how the properties of
the overall parallelization scheme evolve upon using such a
hybrid approach. We provide guidelines on this issue.

The expected behavior of a hybrid scheme is marked in
the last column of Table 3. With respect to event selection and
consumption policies, if one of the parallelization schemes
engaged in the hybrid approach does not support a policy,
then the overall hybrid approach cannot support it. This is
denoted by a logical AND in the last column of Table 3. On
the other hand, for achieving sliding window parallelization,
load balance, limited event data replication or communica-
tion during the parallel execution, it suffices for one of the
techniques involved in the hybrid scheme to possess such
a property for the overall scheme to support it. This is de-
noted by a logical OR in the last column of Table 3. Whether
combinations of parallelization schemes are possible or not
depends on the specifications of the CER query or operator.
For instance, one cannot mix operator-based parallelization
and run-based parallelization if the parameter S used in the
latter cannot be set to a constant (see Section 4.2.2).

Regarding event selection and consumption policies, their
support depends on how data is partitioned, excluding the
case of operator-based parallelization where query rewriting
prevents the use of skip-till-any-match policy, for the reasons
discussed in Section 4.1.2. Therefore, if at least one paral-
lelization scheme, partitions data or rewrites the query so that
a policy cannot be supported, encapsulating the rationale of
that scheme in another one (or vice versa) cannot amend this
property.

30 Nikos Giatrakos et al.

Criterion Task Parallelism Data Parallelism
Query- Operator- Partition Pattern State- Graph- Run- Hybrid
based based Key-based Sensitive based based based

Sc 4 4 8 8 4 4 4
Selection Pc 4 4 4 4 4 4 p A
Policies Stnm 4 4 8 8 4 4 4

Stam 4 8 8 8 4 4 4 N
Co 4 4 4 8 4 4 p

Consumption Re 4 4 4 4 4 4 4 D
Policies BRe 4 4 4 8 4 4 p

Window TuW 8 8 8 4 8 8 4
Parallel TiW 8 8 8 4 8 8 8 O

LB 8 8 8 8 8 4 4
Agility Rep/Com 8 8 4 8 8 4 p R

Table 3: Summary of CER Parallelization Schemes’ Properties. The 4 and 8 marks in each column denote that the criterion is
supported or not, respectively, by the corresponding parallelization scheme. p denotes that the corresponding criterion is
supported under certain circumstances. For instance, in Section 4.2.2 we argued about the fact that run-based parallelization
does not directly support the consume and bounded-reuse consumption policies, but since data is replicated to at most two
processing units, these units can impose consume and bounded-reuse by limiting communication only among the involved pair.
Stam : skip-till-any-match, Stnm : skip-till-next-match, Sc : strict-contiguity, Co : consume, Re : reuse, BRe : bounded-reuse, TuW :
Tuple-based Window, TiW : Time-based Window, LB: Load Balance, Rep/Com : Data Replication/Communication.

The next criterion regards the capability to parallelize
windows. To attribute such a property to a hybrid scheme
at least one of pattern-sensitive or run-based scheme should
be adopted. Therefore, the logical OR in the last column of
Table 3.

The Load Balance, Replication and Communication cri-
teria require some additional commentary on why it suffices
for at least one of the parallelization schemes in a hybrid
approach to possess these properties, for the overall scheme
to maintain them i.e., OR in the last column of Table 3. Let
us first elaborate more on how OR is interpreted for Replica-
tion and Communication. For instance, partition-key based
parallelization does not replicate data by imposing partition
isolation, but pattern-sensitive parallelization requires data
replication for overlapping windows, or state-based paral-
lelism creates multiple copies of events and partial matches
during incremental/backtracked operator evaluation. Thus,
OR in the respective cell of Table 3 seems a bit counter-
intuitive. The observation here is that since data is first parti-
tioned based on a key, the second level of parallelism creates
partitions internal to a key partition. Therefore, the hybrid
scheme can be configured to run all the second level parti-
tions of the data related to a given key, on the same machine
or JVM. Thus, overlapping windows for the same key can
be co-hosted and shared memory will be used to hold actual
events, while only pointers can be kept at threads. Data does
not need to be replicated or hit the network card. Similar
observations can be derived for other combinations.

Finally, regarding load balance, consider for instance, a
second level, run-based parallelization scheme is encapsu-
lated in a first level partition-key based scheme. The first
level scheme does not provide native support for load bal-
ancing as the load of an operator instance depends on the
distribution (frequency) of the respective keys. Now assume

that the key distribution is skewed and only few, very fre-
quent keys appear in the incoming event stream. Applying
the second level parallelism will re-partition the initially large
partition of events of a certain key and create smaller, equally
sized partitions of the data, therefore fairly distributing the
load among the processing units. In case graph-based paral-
lelism is imposed as the second level scheme, load balance is
achieved by appropriately partitioning the entire NFA graph,
which this time is instantiated for each input key. Similar
observations can be derived for other combinations.

4.4 Open Issues in Parallel and Elastic CER

Graph-Parallel CER: In Section 4.2.4 we commented on
the absence of graph-parallel schemes tailored to CER and
introduced the application of the GAS idea to NFA graph-
based CER operator evaluation. A key observation we make
is that a CER query or operator may itself be interpreted
as a complex graph other than a NFA, the processing of
which needs to be parallelized. Such a graph may be a Petri
Net [42], a Markov Logic Network [146], a tree or a (strati-
fied) logic program such as those discussed in Section 2. The
introduction of a graph-parallel scheme tailored to CER can
be quite useful when CER operators need to be evaluated
over such graphs. This is because the GAS rationale enables
the parallel processing of complex graphs, when the other
data parallelization schemes we examined are difficult or
impossible to be implemented, due to complex relationships
among operators and operator instances, that make it hard to
first partition the input and then merge the outcomes of the
parallel processing. For instance, none of the data paralleliza-
tion schemes we described in this section allows the parallel

Complex Event Recognition in the Big Data Era: A Survey 31

processing of CER operator instances that are evaluated over
Markov Logic Networks, stratified logic programs or Petri
Nets in the general case, since it is non-trivial to even appro-
priately construct splitters and mergers (see Figure 15). Thus,
graph-parallel schemes tailored to CER is an open area for
further research as a key enabler for scaling-out CER beyond
automata-based techniques.
The Need for Rules of Thumb: In Section 4.3 we presented,
to our knowledge for the first time, the properties attributed
to CER when choosing a hybrid CER parallel scheme syn-
thesizing some of the basic schemes we examined. In the last
column of Table 3 we presented properties of hybrid paral-
lelizations schemes. We also commented that for a hybrid
approach to support, for instance, an event selection strategy;
all the engaged parallel CER schemes should do the same.
Nevertheless, having commented on the properties of such
hybrid schemes, the open research issue that remains is the
identification of rules of thumb about when the use of a hy-
brid approach is worthwhile. Such rules will indicate when
the choice of a hybrid scheme outperforms each of the paral-
lel CER approaches that are being synthesized and to which
extent. For instance, a rule of thumb may say that if the reuse
consumption policy is used and a data parallelization scheme
is applied for 20% of the most CPU demanding query opera-
tors, while the remaining 80% of CER operators are executed
on operator-based parallelization, the overall throughput of
the CER process will increase by 75%. Such a rule of thumb
has a great impact in practice since it cuts down the time
and effort devoted to fine tuning multiple CER queries by
incorporating prior knowledge extracted out of benchmarks
and experiences in real-world application settings.
CER-oriented Elastic Resource Allocator: There is no elas-
tic resource allocation scheme that is indeed tailored to CER.
Indicatively, at the current status of related works on elas-
tic CER, event selection and consumption policies are not
taken into account. This is despite the fact that an elastic
CER resource allocator needs to account for the migration
cost, which is affected by such policies. The migration cost
of a CER operator under strict-contiguity is likely to differ
significantly from the cost of the same operator being exe-
cuted under skip-till-any-match (the latter can produce a much
larger set of partial pattern matches). Complexity analysis
can be performed a priori to narrow down the search space
and guide heuristics on which CER tasks are preferable to
move.

Similarly, when an elastic CER allocator examines if it
would be preferable to create multiple operator instances
for an operator previously running in one instance, it can
take into account the operator’s consumption policy to prop-
erly estimate migration (state transfer) costs. For instance,
event tuples under a bounded-reuse policy should probably
not be replicated among different host machines with tasks
that require them. This is because under such a policy, all

hosts need to communicate with each other anyway before
consuming a tuple, in order to check if the bounded-reuse
constraint is violated, i.e. if other tasks consumed the tuple
the permitted number of times. Therefore, since communi-
cation among machines will take place anyway, an elastic
resource allocator should instead keep these tuples only at
the host of the initial, single operator instance, which can
count (via receiving reports) the number of times these tuples
have been consumed among the newly introduced operator
instances. In any case, it makes sense to examine replication
versus communication cost trade-offs under a bounded-reuse
policy.

The development of an elastic resource allocator special-
ized for CER is particularly useful in cloud environments.
An elastic CER resource allocator at the side of the cloud
provider can act as a CER optimizer which monitors and
adapts the number of reserved resources, such as virtual
machines, to achieve fair monetary costs under the pay-as-
you-go pricing model. Keeping computational latency un-
der certain thresholds is important as well to ensure com-
pliance with Quality-of-Service (QoS) criteria defined on
Service Level Agreements (SLAs) between clients and cloud
providers. At the client side, an elastic CER resource allo-
cator can minimize monetary costs simultaneously abiding
by computational latency constraints of time-critical applica-
tions.
CER Task Placement Algorithms: The current state-of-the-
art in driving the decision of CER task placement to process-
ing units uses simple and potentially suboptimal heuristics
such as the First Fit Bin Packing [91,93,90,92] or a Job
Shop Scheduling [159] heuristic. In all such cases the prob-
lem is NP-hard and therefore greedy heuristics are used.
The question that is yet to be answered is whether certain
CER characteristics such as event selection policies allow for
greedy algorithms providing a constant factor approximation
of the optimal task placement. For selection strategies such as
skip-till-any-match it may be the case that no greedy algorithm
can allow a constant factor approximation of the optimal task
placement. However, restrictive selection policies such as
strict-contiguity or partition-contiguity are more likely to provide
such an approximation.

5 Geographically Distributed CER

Our discussion so far has focused on scalable CER within
clustered architectures (data centers, cloud) where Big Data
stream-in and, in order to recognize CEs in a timely man-
ner, parallel and elastic CER techniques are applied. Hence,
throughput is maximized and computational latency is har-
nessed. Nonetheless, SDEs, more often than not, are not pro-
duced within computer clusters or just appear there. There
is a network of data gathering devices, placed in application
fields of interest, that collect and relay relevant information

32 Nikos Giatrakos et al.

Cluster

Parallel & Elastic

Local

Streams

Cluster

In-Situ
Processing

Sensor

In-Situ Processing

Mobile

Device

In-Situ

Processing

Machine

In-Situ Processing

TR

BL BR

TL

CER Operator Graph

(Global Query)
TR

BL
BR

TL

In-Network Processing –

CER Operator Placement

Fig. 21: Geographically Distributed Architectures - In-Situ
& In-Network Processing. As an instance, consider BR :=

SEQ(e1, e2), BL := AND(e3, e4), TL := AND(BL, e5) and
TR := SEQ(BR,BL, e6). SDEs e1, . . . , e6 are omitted from
the CER operator graph for readability purposes. Blue arrows
indicate communication due to operator dependence (one op-
erator provides input to another) according to the CER query
graph. Red arrows show an example of the corresponding
sites contributing relevant to the operator event data (such as
SDE e6) that surpass in-situ filters.

towards clustered architectures. In massive-scale scenarios,
multiple data centers or clouds may even be part of this,
geo-distributed, architecture.

Consider, for instance, a maritime monitoring scenario
where position signals in the form of AIS messages originate
from multiple vessels. Certain base stations or even satel-
lites initially receive such messages and later forward them
to shipping companies’, authorities’ or ship tracking intelli-
gence ventures’ potentially geographically distributed data
centers. Additional examples of geographically distributed ar-
chitectures involve, but are not limited to, smart energy grids
which may span one or more countries, Industry 4.0 settings,
networks of ATMs in banking and networks of smartphones
in telecommunication scenarios.

In all the above cases, naive event data centralization
is not a viable option. Since CER queries continuously run
for protracted periods of time, constantly centralizing data
at a single site before applying parallel and elastic CER
would require excessive communication in the first place.
Therefore, sooner or later communication links shall become
unresponsive, hindering the timely delivery of event data and,
at the cluster side, the timely execution of CER analytics.
Prior work [160] has pointed out that the maximum stream
processing rate that can be achieved in such distributed set-

tings is network bound. Therefore, what is important in geo-
distributed CER is to reduce communication in the network
and control the network latency. Besides, returning to our
discussion in Section 4.4, the pay-as-you-go model also ap-
plies to communicated data [125,84,30], while QoS criteria
related to network latency and compliance with SLAs are
also of the essence.

Therefore, in this section we discuss techniques for en-
abling CER to scale one step further out, from clustered
architectures discussed in Section 4 to fully distributed set-
tings composed of data gathering sites, relay sites and mul-
tiple clusters or clouds, as shown in Figure 21. In principle,
there exist two generic tools for enabling communication effi-
cient CER over geo-dispersed settings: (a) in-situ processing,
which involves the installation of local filters at sites so that
they communicate local data within the scope of CER analyt-
ics, only when it is absolutely necessary, in which case the
corresponding filter is satisfied (see the top of Figure 21), (b)
in-network processing, i.e., instead of collecting all stream-
ing event tuples that satisfy in-situ filters at a single site, CER
operators are evaluated in network, at various sites near the
event sources, so that event data are aggregated early and
only the aggregated information is further forwarded towards
the CER query source. The rationale is depicted at the bottom
of Figure 21, where an abstract CER query graph, represent-
ing the global query posed over the distributed architecture,
is mapped to the physical network of sites. Each operator
is assigned and evaluated at a particular site as shown in
the figure. Thus, in-network operator placement expresses a
mapping (assignment) of CER operators to clusters.

In principle, in-network processing via operator place-
ment can be performed as in traditional geo-distributed stream
processing systems [132,141,135,46,106,56,148]. The main
difference in geo-distributed CER comes from the in-situ pro-
cessing rationale accepted by CER operators and the ability
of the proposed techniques to combine such CER-tailored
in-situ filters with in-network operator placement. Based on
this, as well as on service-oriented (pricing, QoS) parameters
mentioned earlier in our discussion, we evaluate related ap-
proaches, with respect to their suitability for geo-distributed
CER relying on the following criteria, summarized in Table 4:
[A] Algorithmic Criteria: the goal and usefulness of in-situ
and in-network processing has already been analyzed in our
previous discussion. Therefore, suitable techniques should
effectively blend:

– [A1] In-network processing - operator placement.
– [A2] CER-tailored in-situ processing.

[B] Service-Oriented Criteria: Minimizing the communica-
tion cost of geo-distributed CER loosens the network bound
on the maximum stream processing rate [160]. Moreover,
pay-as-you-go network pricing in modern cloud platforms
entails that communication cost minimization also aids in

Complex Event Recognition in the Big Data Era: A Survey 33

Criterion
Algorithmic Service

Related Work A1: A2: B1: B2: QoS
In-Network In-Situ Network Pricing Network Latency

Akdere et al [24] 8 4 4 4

Cardellini et al [46], SODA [154] 4 8 8 4

SAND [23], SBON [132], SPADE [78], DistCED [133],
FAIDECS [153], DHCEP [142], Kumar et al [106], Rizou [141] 4 8 8 8

SIENA [48], Gryphon [22], Cordies [103], PADRES [110] 8 8 8 8

Iridium [135], JetStream [136] 8 8 4 4

SQPR [97], Geode[148] 4 8 4 8

Amini et al [31], Repantis et al [139], Benzing et al [41] 8 8 8 4

FERARI [75] 4 4 4 4

Table 4: Geo-distributed CER approaches versus suitability criteria.

minimizing monetary costs. Compliance with SLAs adds
up network latency constraints to the problem. Therefore,
suitable techniques for geo-distributed CER should seek to
optimize a constrained, bi-criteria optimization problem
including communication/network pricing cost ([B1]) and
network latency related Quality-of-Service (QoS) ([B2]):

– [B1] Network Pricing: To minimize costs in the pay-as-
you-go model, minimization of intra- and multi-query
communication by CER operators is a prerequisite.

– [B2] Network-Aware QoS criteria: Network latency-cons-
trained optimization allows compliance with QoS criteria
defined on SLAs or requirements of time critical appli-
cations. Latency-constrained optimization is often not
supported as shown in Table 4.

Both in-situ and in-network processing are algorithmic
prerequisites for geographically distributed CER. Merely
incorporating just one of [A1],[A2] can yield severely subop-
timal communication and network latency performance [62].
From a service viewpoint (i.e., [B]), suboptimality results
in overcharges in the pay-as-you-go model. To justly lower
charges as much as possible, but also abide by QoS con-
straints, [B1][B2] should be supported.

5.1 CER-Oriented In-Situ Processing

The main tool for installing local filters on individual sites
in the context of CER, is based on the push-pull rationale.
The push-pull logic has been introduced in the context of
geo-distributed CER in the work of [24], but has been used
in other CER contexts as well [143,152]. According to [24]
all CER operators of a given query are assigned and get eval-
uated at a central site. Thus, the technique lacks support for
in-network processing (criterion [A1]). Given a CER operator
OP ∈ {; ,∧}, implying that push-pull makes sense only for
CER operators that require all their input events to produce
a full pattern match, the local filters are installed in every

SEQ

e1

e2

e3

SEQ
e1

e2

e3
SEQ

e1

e2

e3

SEQ

SEQ

e3 is pulled when
e1 and e2 appear

e2 is pulled when e1 appears
e3 is pulled when e1 and e2 appear

SEQ

Rare Event Input
(push mode – send immediately)

Frequent Event Input
(pull mode – cache)

Exemplary Push-Pull: Different ways of evaluating SEQ

P
a
re

to
 O

p
ti
m

a
lit

y

Comm. cost

La
te

n
cy

Push-pull Rationale

Fig. 22: Push-pull Rationale on SEQ(e1, e2, e3).

site contributing input event instances for OP. The local fil-
ter itself says that one or more of the most rare event types
participating in OP are marked in push mode, in which case
corresponding event tuples are communicated to the central
site as soon as they appear. On the contrary, more frequent
event types are marked in pull mode which means that sites
cache the corresponding event tuples, until either the central
site reverses the mode of these event types to push, or the
tuples expire due to window constraints. Communication sav-
ings are ensured because frequent events are not transmitted
before the apparition of rare ones and, in the meantime, some
of them expire. On the other hand, setting event types in pull
mode means that tuples are communicated on-demand in-
stead of being instantly flashed to the central site. Therefore,
setting event types to pull mode increases network latency.

Different push-pull alternatives can be prescribed by in-
creasing the number of pull steps or the ordering of event
types at each step. The number of steps cannot exceed the
number of event types that are input for the CER opera-
tor. The bottom of Figure 22 shows some, but not all, push-
pull alternatives for the distributed evaluation of a pattern
SEQ(e1, e2, e3). From left to right, the first option is to set

34 Nikos Giatrakos et al.

all e1, e2, e3 in push mode. Such a strategy essentially does
not impose an in-situ filter and all events are transmitted to
the central site as soon as they appear somewhere in the net-
work. As shown in the middle, bottom of Figure 22 another
alternative is to set e1, e2 in push mode and e3 in pull mode.
This alternative entails one pull step. By doing so, e3 will be
cached at the sites it is produced, while e1, e2 will be directly
communicated to the central site. Finally, on the right, bot-
tom of Figure 22, an alternative that uses a two step pull is
shown. More precisely, e1 is set in push mode, if the central
site receives e1, e2 is pulled, while on e2’s occurrence the
central site pulls e3.

As mentioned above, increasing the number of pull steps
has greater potential for reducing communication and increas-
ing network latency. Hence, Akdere et al [24] seek Pareto
optimal solutions to a constrained bi-criteria (comm cost,

network latency) optimization problem as shown at the top
of Figure 22. The two axes in the graph represent communi-
cation (and potentially monetary) cost and network latency
dimensions. Pareto optimal solutions form the marked sky-
line. This skyline is composed of push-pull alternatives that
are not dominated in both (comm cost, network latency)

dimensions from any other push-pull alternative. The part of
the skyline included in the shaded areas in the graph corre-
sponds to Pareto optimal solutions that are pruned due to net-
work latency (horizontal) or communication (monetary) cost
(vertical) constraints. Hence, as marked in Table 4 Akdere
et al [24] supports [A2],[B], but falls short with respect to
[A1] because it simply collects events that pass in-situ filters
at the query source without in-network processing.

5.2 In-Network Processing - CER Operator Placement

Techniques for in-network operator placement share the goal
of picking the proper network site for assigning the execution
of an operator. However, the way these sites are picked can
determine their suitability for distributed CER with respect
to communication and monetary cost minimization, and their
abidance by network latency constraints. Here we provide an
overview of in-network processing approaches and discuss
their ability to comply with criteria [A],[B].

5.2.1 Geo-distributed CER Approaches

There is a number of approaches on geo-distributed CER in-
cluding SIENA [48], Gryphon [22], Hermes [133], PADRES
[110] and the more recent works of Cordies [103], DH-
CEP [142] and FAIDECS [153]. SIENA and Gryphon do not
consider in-network aggregation of events, but have focused
on the efficient routing of SDEs by reducing the communi-
cation costs between clients and brokers in pub/sub systems,
thus avoiding the flooding of events to all subscribers. Con-
sequently, they do not comply with criteria [A] and [B]. Her-

mes (a.k.a DistCED) uses a Distributed Hash Table (DHT) to
determine in-network operator placement, while FAIDECS
employs Hermes’s DHT for the same reason. However, as
discussed in [132] DHT tables minimize the hop count as op-
posed to network latency or bandwidth. Thus, DHT routing
paths lead to inefficient in-network placements and respec-
tive techniques fall short with respect to criteria [A2], [B].
Although PADRES and Cordies opt for optimizations involv-
ing network traffic and routing delay, they neither take into
account any network-, latency- or system-specific informa-
tion, nor provide any specific algorithmic suite for operator
placement. Thus, they cannot support [A],[B].

DHCEP, which neglects [A2], uses network usage in its
optimization process. Network usage is defined as the sum
of products of dataRate× latency on communication links.
This is a popular metric also in distributed stream process-
ing techniques, which are discussed below. However, using
such a blended metric does not allow for latency-constrained
optimization and network pricing separately. Therefore such
techniques cannot adapt to criterion [B]. Despite the fact that
DHCEP [142] extensively talks about heavy constraints in
the optimization process, all these constraints involve pro-
cessing, security or domain restrictions, but not bandwidth
or latency separately (i.e., [B1] and [B2]).

5.2.2 Broader Geo-distributed Stream Processing

One of the earliest works in operator placement for geo-
Distributed Stream Processing (DSP) is the work of [23],
which however is DHT-based. Such techniques cannot pro-
vide latency-constrained optimization and communication
or monetary cost minimization. The work of SBON [132]
seeks to optimize a sum of a quantity similar to network
usage, that is dataRate × latency2. Apart from the prob-
lematic behavior of this metric (e.g. when the length of a
path is doubled, the latency quadruples), it cannot support
network latency-constrained optimization and communica-
tion or monetary cost minimization. The same holds for ef-
forts [106,141] that employ a similar utility or usage metric.
Although [106,141] and [56] claim to support latency con-
straints, this comes after [106,141] or before [56] having
determined operator placement instead of pruning infeasible
solutions while exploring the search space. [46,47] propose
a general formulation of the optimal DSP placement which
takes into account network resources and encompasses differ-
ent solutions proposed in the literature. Nonetheless, it does
not optimize operator sharing falling short in [A2], [B1].

The recently proposed JetStream [136] trades-off network
bandwidth minimization with timely query answering and
accuracy, but while exploring in-network operator placement
solutions it restricts itself to the MapReduce rationale (place-
ment on source nodes), nearest site of relevant data presence
or central location. This is only a set of straightforward solu-

Complex Event Recognition in the Big Data Era: A Survey 35

CER Optimizer
logical plan

physical
plan

event
stream

analyzer

cost

Site Configurations
runtime

statistics

…

…

real-time
input streams

Output

 Inter-cluster

In-situ (push-pull)
In-Network
Processing

PullPush

Output [Complex or Pushed Events]

Time
Machine

C
o

m
m

u
n

ic
a

to
r

CER
Engine

Input [Raw or Pulled Events]

Gate-
Keeper

 Intra-cluster

Topology

Parallel CER

Fig. 23: FERARI Architecture [75].

tions that any technique can accommodate and a restricted
subset of possible in-network placement solutions. Iridium
[135] assumes control over where relevant data is transfered
and moves these data around sites to optimize query response
latency. Wise network resource usage is only accounted for
during data placement instead of operator execution. More-
over, its network-related metrics account for data rates in
uploading and downloading data, but not for intra-query com-
munication costs where one operator placement decision af-
fects upstream/ downstream operators. Finally, Geode [148]
focuses on minimizing bandwidth cost and does not account
for latency.

5.3 In-Network, In-Situ & Parallel CER

The FERARI framework [75] enables CER over multiple
clusters or clouds by covering criteria [A],[B] in their entirety.
Geographically distributed CER is optimized by a query op-
timizer that receives as input the CER query and determines
the in-network placement of CER operators patched with a
proper push-pull strategy. To achieve that, FERARI enhances
the algorithms of [24] with in-network placement. It seeks for
overall Pareto optimal solutions in terms of both in-network
processing and push-pull strategy not only per operator, but
also among operators shared by multiple queries.

Contrary to [24] which requires every event type to be
observable by every site in the network, FERARI allows
different sites to observe only a subset of the event types
that participate in the posed CER query and the FERARI
optimizer uses this information during in-network CER op-
erator placement. As shown at the upper part of Figure 23
the key component of FERARI is an optimizer module. The

optimizer utilizes statistics of the frequency of each event
type (involved in running queries) per site, as well as la-
tency measurements for communication links. Based on the
gathered statistics, the best, in terms of Pareto optimality
(comm cost, network latency), execution plan, composed
of CER operators’ in-network placement at sites as well as
push-pull strategy, is picked.

FERARI’s intra-cluster processing is built on Apache
Storm. Each site is assumed to run a Storm topology. A site’s
Storm topology, shown at the bottom of Figure 23, is com-
prised of the following components:
Input Spout: A Spout where streaming tuples arrive or
pushed events from other sites are fed into the CER Engine.
CER Engine: It receives the input events from the Input
Spout and, having processed them according to the CER
operator placed at its site, emits derived events towards the
Time Machine component. The CER Engine itself is com-
posed of a number of Bolts.
Time Machine: A Storm Bolt that caches events in pull mode
and CEs from the CER Engine and deals with out of order
issues as those discussed in Section 3.4 and further analyzed
in Section 6.
Gatekeeper: A Storm Bolt responsible for handling generic
streaming operators (such as aggregations).
Communicator: A Storm Bolt responsible for the push/pull
based communication to/from sites.

The CER Engine is ProtonOnStorm [14]. The paralleliza-
tion rationale resembles partition-based parallelism (see Sec-
tion 4.2.1). Upon the reception of an event tuple, multiple
independent parallel instances of a Routing Bolt, determine
the metadata that should be assigned to the tuple, the CER
operator name and the context name, which are added to
it. ProtonOnStorm uses the Apache Storm’s field grouping
option on the metadata routing fields - the agent name and
the context name - to route the information to a Context Pro-
cessing Bolt. The event tuple is then processed by the context
service and the relevant context partition id is added to it. At
this point, ProtonOnStorm uses the field grouping on context
partition and agent name fields to route the event to specific
instances of the relevant CER operator. If a CE that needs to
be transmitted to a remote cluster or cloud is detected, it will
be routed to the Time Machine Bolt and it will be pushed to
the site where in-network processing has assigned the CER
operator.

5.4 Open Issues in Geo-distributed CER

Geo-distributed CER Optimization Algorithms: Although
the need to combine in-situ and in-network processing in geo-
distributed CER has been demonstrated in FERARI [75], the
actual algorithms have not been provided. Thus, still, there
seems to be no published algorithm that combines the two

36 Nikos Giatrakos et al.

optimizations. The task is non-trivial since for any given in-
network placement there is a number of alternative in-situ
filters that may be materialized. Exploring the space of all
possible combinations requires (i) a modeling of the setup as
a proper optimization problem, (ii) optimal, but expectedly
computationally demanding, algorithms for solving this prob-
lem and (iii) efficient greedy, heuristic algorithms to reduce
the computational complexity of the optimal ones.
Adaptive Geo-distributed CER: Even when a proper com-
bination of in-network CER operator placement and in-situ
(push-pull) processing is determined, this decision needs to
be adapted at runtime as an optimal combination at the cur-
rent time may not remain optimal in the long run. Such adap-
tive geo-distributed CER schemes are needed to practically
maintain low communication costs and restricted network la-
tency. Respective algorithms should provide decision making
mechanisms for taking adaptation decisions and cost formu-
las quantifying the expected benefit of adaptation, taking into
consideration CER operator migration (to other sites) costs
and/or in-situ filter alteration. Moreover, issues and practical
aspects regarding the combination of adaptive (as previously
described) and elastic CER at the intra-cluster level are not ac-
counted for in the literature and thus constitute open research
issues.
Multi-Constrained Optimization: In real-world settings
network latency constraints are not the only ones a geo-
distributed CER prototype should account for. Intra-cluster
capacity constraints should also be taken into consideration.
For instance, if in-network processing assigns multiple heavy
load CER operators to a site, the memory or CPU capacity
of the site may not be enough to carry out their evaluation.
Besides, network latency is not the only dimension that may
affect alignment with SLAs and QoS requirements. Network
congestion is another real-world aspect that affects QoS. The
difficulty in this case is that the in-network and in-situ combi-
nations that have been chosen may cause themselves traffic,
leading to network congestion. Then, the cost formulas for
determining the geo-distributed CER evaluation fail. Tech-
niques which can account for network congestion by incor-
porating (inbound, outbound) bandwidth capacity limits per
link during geo-distributed CER evaluation are also needed.

6 Out Of Order Processing Issues

Network latencies, communication or machine failures may
cause events to arrive out of order both at geo-distributed
networks of sites or within a cluster (site) implementing CER
on Big Data platforms. Table 5 summarizes the categories of
techniques handling out of order streams and their properties.
Out of order arrivals can affect the accuracy of the CER
process while imposing selection and consumption policies,
as well as the computation of windows of events.

Property

Method Cache CPU CE Timely CEs
Usage Usage Inaccuracy Delivery

Slack 8 4 4 8

Compensation 8 8 8 4

Checkpoint 8 4 4 8

Approximation 4 4 8 8

Table 5: Properties of out of order processing approaches. A
8 mark in a table cell means this property is considered a
drawback. For instance, compensation-based techniques are
CPU intensive as they recompute CEs in case of out of order
events arrive. A 4 refers to advantageous properties, i.e.,
slack-based techniques cannot produce (even temporarily) in-
accurate CEs. Timely CE delivery means that CE production
cannot be delayed if events arrive in order.

In Section 3.4, we mentioned that some CER on Big
Data platforms alternatives support only simplified versions
of slack-based out of order event handling [37,96]. The basic
idea behind such techniques is to cache relevant events and
defer the execution of order-critical operators for a specified
slack interval, so that even delayed events should have arrived
before operator evaluation begins.

To avoid the delay of slack-based techniques in CE de-
livery, compensation-based techniques [34,45,113,51,127]
have been proposed. The rationale is that order-critical op-
erators are evaluated as if no out of order issues exist. Rel-
evant events used in the evaluation process are cached for
a specified slack interval. This cache is used for checking
out of order arrivals. Upon such an arrival, the operator is
re-evaluated, which incurs additional CPU usage. Thus, the
CER application is compensated for inaccurate CEs [113]
later on.

Checkpoint-based techniques [113,51] focus on discov-
ering event tuples and timepoints at the event stream, beyond
which no out of order issues need to be examined. For in-
stance, Liu et al [113] define such a checkpoint via a Partial
Order Guarantee (POG) model which exploits event type
metadata to deduce that events of a certain type cannot occur
after a certain timepoint. For illustration purposes, consider a
maritime monitoring scenario. Based on a vessel’s maximum
speed metadata, a nearCoast event may not be possible to
occur if the last location update of a vessel is sufficiently far
from the coastline. Similarly, if a nearPort event occurs, there
may have been a nearCoast event that has not arrived yet.
Checkpoint-based techniques reduce cache (buffer) usage in
a best effort (based on available metadata) way, but delay CE
delivery similar to slack-based techniques.

Approximation-based techniques [38,109,57,140] either
exploit recent event (SDE and CE) history to produce the
most likely approximate results quickly and potentially com-

Complex Event Recognition in the Big Data Era: A Survey 37

pensate for inaccuracies later on [38,109,140], or employ
stream summarization [57] to limit buffer usage and generate
approximate events with a priori defined accuracy guarantees.
Hence, such techniques limit buffer and CPU usage to partly
report CEs in a timely fashion, but the CER application may
not be compensated later on for unreported CEs.

Further research on handling out of order arrivals is of
particular interest in the scope of future benchmarking efforts
as those discussed in Sections 3.4 – 3.5 and Table 2.

7 Research Challenges Beyond Scalability

Throughout our study we elaborated on open issues and
future research directions in a per section fashion. Here, we
list open issues that touch important aspects beyond the scope
of our survey. First, there is a need for a formal comparison of
language expressiveness and recognition complexity. Some
steps towards this have already been taken [85,162]. This
way, it would be possible to identify the appropriate language
(subset) addressing the requirements of a given application.

Second, there is also a need to adjust the parallelization
and distribution techniques presented in this paper, for han-
dling the lack of Veracity of Big Data. Some very preliminary
steps towards this directions stem from [150].

Third, more often than not, the rules that dictate the pat-
terns which constitute interesting CEs are folded in correla-
tions, interconnections and trends in high velocity streams
originating from a variety of data sources. In dynamic settings
there is no way to extract those rules timely and in an online
fashion manually. Therefore, automatic discovery of such
patterns is imperative. Although there are efforts towards on-
line discovery of CER rules [100,101], concept drifts should
be detected and the set of monitored rules should get updated
to avoid monitoring obsolete patterns.

Finally, approximate CER may take the form of (a) fore-
casting a full pattern match [26,25], before it takes place or
(b) operating on a summary of SDEs so that large part of the
workload is shed provided quality guarantees can be derived.
The goal of (a) is to proactively respond to monitored events,
while the goal of (b) is to enable scalability at extreme scales.
However, complex event forecasting and approximate CER
operating on specialized event data summaries is still in its
infancy [111]. Therefore, both aspects of approximate CER
constitute an open field of study and research.

8 Acknowledgments

This work has received funding from the EU Horizon 2020
research and innovation program INFORE under grant agree-
ment No 825070.

References

1. Apache Flink v. 1.7. https://flink.apache.org/. [On-
line; accessed 31-March-2019].

2. Apache FlinkCEP. https://ci.apache.org/
projects/flink/flink-docs-stable/dev/libs/
cep.html. [Online; accessed 31-March-2019].

3. Apache Flume. https://flume.apache.org/. [Online;
accessed 31-March-2019].

4. Apache Kafka. https://kafka.apache.org/. [Online;
accessed 31-March-2019].

5. Apache Spark Streaming. https://spark.apache.org/
docs/latest/streaming-programming-guide.
html. [Online; accessed 31-March-2019].

6. Apache Spark Structured Streaming. https:
//spark.apache.org/docs/latest/
structured-streaming-programming-guide.
html. [Online; accessed 31-March-2019].

7. Apache Spark v. 2.4.0. https://spark.apache.org/.
[Online; accessed 31-March-2019].

8. Apache Storm v. 2.0.0. http://storm.apache.org/. [On-
line; accessed 31-March-2019].

9. Bringing complex event processing to spark streaming. https:
//www.youtube.com/watch?v=naCRk9wAd6g. [On-
line; accessed 31-March-2019].

10. CUDA Zone. https://developer.nvidia.com/
cuda-zone. [Online; accessed 31-March-2019].

11. Esper. http://www.espertech.com/esper. [Online;
accessed 31-March-2019].

12. Esperonstorm. https://github.com/tomdz/
storm-esper. [Online; accessed 31-March-2019].

13. Ibm proactive technology online. https://github.com/
ishkin/Proton/tree/master/IBM%20Proactive%
20Technology%20Online. [Online; accessed 31-March-
2019].

14. Ibm proactive technology online on storm. https:
//github.com/ishkin/Proton/tree/master/
IBM%20Proactive%20Technology%20Online%20on%
20STORM. [Online; accessed 31-March-2019].

15. Jess, the rule engine for the java platform. https://www.
jessrules.com/jess/docs/71/. [Online; accessed 31-
March-2019].

16. Oracle cep cql language reference. https://docs.oracle.
com/cd/E16764_01/doc.1111/e12048/intro.htm.
[Online; accessed 31-March-2019].

17. Sase source code. https://github.com/haopeng/
sase/. [Online; accessed 31-March-2019].

18. Siddhi CEP. https://github.com/wso2/siddhi. [On-
line; accessed 31-March-2019].

19. Storm compatibility beta. https://ci.apache.org/
projects/flink/flink-docs-stable/dev/libs/
storm_compatibility.html. [Online; accessed 31-
March-2019].

20. Stratio Decision. https://github.com/Stratio/
Decision. [Online; accessed 31-March-2019].

21. J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient
pattern matching over event streams. In SIGMOD, 2008.

22. M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D.
Chandra. Matching events in a content-based subscription system.
In PODC, pages 53–61, 1999.

23. Y. Ahmad and U. Çetintemel. Network-aware query processing
for stream-based applications. In VLDB, pages 456–467, 2004.

24. M. Akdere, U. Çetintemel, and N. Tatbul. Plan-based complex
event detection across distributed sources. PVLDB, 1(1):66–77,
2008.

25. E. Alevizos, A. Artikis, and G. Paliouras. Event forecasting with
pattern markov chains. In DEBS, pages 146–157, 2017.

38 Nikos Giatrakos et al.

26. E. Alevizos, A. Artikis, and G. Paliouras. Wayeb: a tool for
complex event forecasting. In LPAR, 2018.

27. E. Alevizos, A. Skarlatidis, A. Artikis, and G. Paliouras. Proba-
bilistic complex event recognition: A survey. ACM Comput. Surv.,
50(5):71:1–71:31, 2017.

28. J. F. Allen. Maintaining knowledge about temporal intervals.
Commun. ACM, 26(11):832–843, 1983.

29. J. F. Allen. Towards a general theory of action and time. Artif.
Intell., 23(2):123–154, 1984.

30. Amazon. Cloud Services Pricing Amazon Web Ser-
vices (AWS). https://aws.amazon.com/pricing/
services/. [Online; accessed 31-March-2019].

31. L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure. Adap-
tive control of extreme-scale stream processing systems. In
ICDCS, pages 71–71, 2006.

32. A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: semantic foundations and query execution. VLDB J.,
15(2):121–142, 2006.

33. A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: A
stream data management benchmark. In VLDB, pages 480–491,
2004.

34. A. Artikis, A. Margara, M. Ugarte, S. Vansummeren, and M. Wei-
dlich. Complex event recognition languages: Tutorial. In DEBS,
2017.

35. A. Artikis, M. J. Sergot, and G. Paliouras. An event calculus for
event recognition. IEEE Trans. Knowl. Data Eng., 27(4):895–908,
2015.

36. A. Artikis, A. Skarlatidis, F. Portet, and G. Paliouras. Logic-based
event recognition. Knowledge Eng. Review, 27(4):469–506, 2012.

37. S. Babu, U. Srivastava, and J. Widom. Exploiting k-constraints to
reduce memory overhead in continuous queries over data streams.
ACM Trans. Database Syst., 29(3):545–580, 2004.

38. M. Balazinska, Y. Kwon, N. Kuchta, and D. Lee. Moirae: History-
enhanced monitoring. In CIDR, pages 375–386, 2007.

39. C. Balkesen, N. Dindar, M. Wetter, and N. Tatbul. RIP: run-based
intra-query parallelism for scalable complex event processing. In
DEBS, pages 3–14, 2013.

40. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Ry-
deheard. Quantified event automata: Towards expressive and
efficient runtime monitors. In FM, 2012.

41. A. Benzing, B. Koldehofe, and K. Rothermel. Efficient support
for multi-resolution queries in global sensor networks. In COM-
SWARE, pages 11:1–11:12, 2011.

42. J. Boubeta-Puig, G. Daz, H. Maci, V. Valero, and G. Ortiz.
Medit4cep-cpn: An approach for complex event processing mod-
eling by prioritized colored petri nets. Information Systems, 2017.

43. W. Brendel, A. Fern, and S. Todorovic. Probabilistic event logic
for interval-based event recognition. In CVPR, pages 3329–3336,
2011.

44. L. Brenna, J. Gehrke, M. Hong, and D. Johansen. Distributed
event stream processing with non-deterministic finite automata.
In DEBS, 2009.

45. A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber. Speculative
out-of-order event processing with software transaction memory.
In DEBS, pages 265–275, 2008.

46. V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli. Optimal
operator placement for distributed stream processing applications.
In DEBS, pages 69–80, 2016.

47. V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli. Optimal
operator replication and placement for distributed stream pro-
cessing systems. SIGMETRICS Performance Evaluation Review,
44(4):11–22, 2017.

48. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM Trans.
Comput. Syst., 19(3):332–383, 2001.

49. I. Cervesato and A. Montanari. A calculus of macro-events:
Progress report. In TIME, 2000.

50. U. Çetintemel, D. J. Abadi, Y. Ahmad, H. Balakrishnan, M. Bal-
azinska, M. Cherniack, J. Hwang, S. Madden, A. Maskey,
A. Rasin, E. Ryvkina, M. Stonebraker, N. Tatbul, Y. Xing, and
S. Zdonik. The aurora and borealis stream processing engines.
In Data Stream Management, Data-Centric Systems and Applica-
tions, pages 337–359. Springer, 2016.

51. B. Chandramouli, J. Goldstein, and D. Maier. High-performance
dynamic pattern matching over disordered streams. PVLDB,
3(1):220–231, 2010.

52. S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, F. Reiss, and
M. A. Shah. Telegraphcq: Continuous dataflow processing. In
SIGMOD, 2003.

53. F. Chen and G. Rosu. Parametric trace slicing and monitoring. In
TACAS, 2009.

54. S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves,
M. Holderbaugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, et al.
Benchmarking streaming computation engines: Storm, flink and
spark streaming. In IPDPSW, pages 1789–1792, 2016.

55. C. Choppy, O. Bertrand, and P. Carle. Coloured petri nets for
chronicle recognition. In 14th Ada-Europe International Confer-
ence, 2009.

56. N. Cipriani, M. Eissele, A. Brodt, M. Grossmann, and
B. Mitschang. Nexusds: a flexible and extensible middleware
for distributed stream processing. In IDEAS, pages 152–161,
2009.

57. G. Cormode, F. Korn, and S. Tirthapura. Time-decaying aggre-
gates in out-of-order streams. In PODS, 2008.

58. G. Cugola and A. Margara. TESLA: a formally defined event
specification language. In DEBS, 2010.

59. G. Cugola and A. Margara. Complex event processing with T-
REX. Journal of Systems and Software, 85(8):1709–1728, 2012.

60. G. Cugola and A. Margara. Low latency complex event processing
on parallel hardware. J. Parallel Distrib. Comput., 72(2):205–218,
2012.

61. G. Cugola and A. Margara. Processing flows of information: From
data stream to complex event processing. ACM Comput. Surv.,
44(3):15:1–15:62, 2012.

62. G. Cugola and A. Margara. Deployment strategies for distributed
complex event processing. Computing, 95(2):129–156, 2013.

63. G. Cugola, A. Margara, M. Matteucci, and G. Tamburrelli. Intro-
ducing uncertainty in complex event processing: model, imple-
mentation, and validation. Computing, 97(2):103–144, 2015.

64. L. D’Antoni and M. Veanes. Extended symbolic finite automata
and transducers. Formal Methods in System Design, 47(1):93–119,
2015.

65. L. D’Antoni and M. Veanes. The power of symbolic automata
and transducers. In CAV, 2017.

66. A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M.
White. Towards expressive publish/subscribe systems. In EDBT,
2006.

67. A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma,
and W. M. White. Cayuga: A general purpose event monitoring
system. In CIDR, 2007.

68. Y. Diao, N. Immerman, and D. Gyllstrom. Sase+: An agile lan-
guage for kleene closure over event streams. UMass Technical
Report, 2007.

69. L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura, W. Hsiung,
and K. S. Candan. Runtime semantic query optimization for event
stream processing. In ICDE, pages 676–685, 2008.

70. C. Dousson. Extending and unifying chronicle representation
with event counters. In ECAI, 2002.

71. C. Dousson, P. Gaborit, and M. Ghallab. Situation recognition:
Representation and algorithms. In IJCAI, 1993.

Complex Event Recognition in the Big Data Era: A Survey 39

72. C. Dousson and P. L. Maigat. Chronicle recognition improvement
using temporal focusing and hierarchization. In IJCAI, 2007.

73. O. Etzion and P. Niblett. Event Processing in Action. Manning
Publications Company, 2010.

74. R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. R. Piet-
zuch. Integrating scale out and fault tolerance in stream processing
using operator state management. In SIGMOD, 2013.

75. I. Flouris, V. Manikaki, N. Giatrakos, A. Deligiannakis, M. N.
Garofalakis, M. Mock, S. Bothe, I. Skarbovsky, F. Fournier,
M. Stajcer, T. Krizan, J. Yom-Tov, and T. Curin. FERARI: A
prototype for complex event processing over streaming multi-
cloud platforms. In SIGMOD, pages 2093–2096, 2016.

76. A. Galton and J. C. Augusto. Two approaches to event definition.
In Database and Expert Systems Applications DEXA, 2002.

77. M. N. Garofalakis, J. Gehrke, and R. Rastogi, editors. Data
Stream Management - Processing High-Speed Data Streams.
Data-Centric Systems and Applications. Springer, 2016.

78. B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade:
the system s declarative stream processing engine. In SIGMOD,
pages 1123–1134, 2008.

79. M. Ghallab. On chronicles: Representation, on-line recognition
and learning. In KR, 1996.

80. C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO: A logic lan-
guage for executable specifications of real-time systems. Journal
of Systems and Software, 12(2):107–123, 1990.

81. N. Giatrakos, A. Artikis, A. Deligiannakis, and M. N. Garo-
falakis. Complex event recognition in the big data era. PVLDB,
10(12):1996–1999, 2017.

82. J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natural
graphs. In OSDI, pages 17–30, 2012.

83. J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica. Graphx: Graph processing in a distributed dataflow
framework. In OSDI, pages 599–613, 2014.

84. Google. Google Cloud Platform Pricing Calculator. https:
//cloud.google.com/products/calculator/. [On-
line; accessed 31-March-2019].

85. A. Grez, C. Riveros, and M. Ugarte. A formal framework for
complex event processing. In ICDT, 2019.

86. V. Gulisano, R. Jiménez-Peris, M. Patiño-Martı́nez, C. Soriente,
and P. Valduriez. Streamcloud: An elastic and scalable data stream-
ing system. IEEE Trans. Parallel Distrib. Syst., 23(12):2351–2365,
2012.

87. D. Gyllstrom, E. Wu, H. Chae, Y. Diao, P. Stahlberg, and G. An-
derson. SASE: complex event processing over streams (demo).
In CIDR, 2007.

88. S. Hallé. From complex event processing to simple event process-
ing. CoRR, abs/1702.08051, 2017.

89. U. Hedtstück. Complex event processing: Verarbeitung von
Ereignismustern in Datenströmen. Springer Vieweg, Berlin, 2017.

90. T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer. Latency-
aware elastic scaling for distributed data stream processing sys-
tems. In DEBS, pages 13–22, 2014.

91. T. Heinze, Y. Ji, Y. Pan, F. J. Grüneberger, Z. Jerzak, and C. Fetzer.
Elastic complex event processing under varying query load. In
BD3@VLDB, volume 1018 of CEUR Workshop Proceedings,
pages 25–30. CEUR-WS.org, 2013.

92. T. Heinze, Y. Ji, L. Roediger, V. Pappalardo, A. Meister, Z. Jerzak,
and C. Fetzer. FUGU: elastic data stream processing with latency
constraints. IEEE Data Eng. Bull., 38(4):73–81, 2015.

93. T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer. Auto-scaling
techniques for elastic data stream processing. In DEBS, pages
318–321, 2014.

94. M. Hirzel. Partition and compose: parallel complex event process-
ing. In DEBS, pages 191–200, 2012.

95. J. Hopcroft, R. Motwani, and J. Ullman. Introduction to automata
theory, languages, and computation. Pearson/Addison Wesley,
2007.

96. Y. Ji, H. Zhou, Z. Jerzak, A. Nica, G. Hackenbroich, and C. Fetzer.
Quality-driven processing of sliding window aggregates over out-
of-order data streams. In DEBS, pages 68–79, 2015.

97. E. Kalyvianaki, W. Wiesemann, Q. H. Vu, D. Kuhn, and P. Piet-
zuch. Sqpr: Stream query planning with reuse. In ICDE, pages
840–851, 2011.

98. M. Kaminski and N. Francez. Finite-memory automata. Theor.
Comput. Sci., 134(2):329–363, 1994.

99. J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen,
and V. Markl. Benchmarking distributed stream data processing
systems. In ICDE, pages 1507–1518, 2018.

100. N. Katzouris, A. Artikis, and G. Paliouras. Online learning of
event definitions. TPLP, 16(5-6):817–833, 2016.

101. N. Katzouris, A. Artikis, and G. Paliouras. Parallel online event
calculus learning for complex event recognition. Future Genera-
tion Comp. Syst., 94:468–478, 2019.

102. H. Kawashima, H. Kitagawa, and X. Li. Complex event process-
ing over uncertain data streams. In 3PGCIC, pages 521–526,
2010.

103. G. G. Koch, B. Koldehofe, and K. Rothermel. Cordies: Expressive
event correlation in distributed systems. In DEBS, 2010.

104. I. Kolchinsky, I. Sharfman, and A. Schuster. Lazy evaluation
methods for detecting complex events. In DEBS, 2015.

105. R. A. Kowalski and M. J. Sergot. A logic-based calculus of events.
New Generation Comput., 4(1):67–95, 1986.

106. V. Kumar, B. F. Cooper, and K. Schwan. Distributed stream
management using utility-driven self-adaptive middleware. In
ICAC, pages 3–14, 2005.

107. O. Lee and J. E. Jung. Sequence clustering-based automated
rule generation for adaptive complex event processing. Future
Generation Comp. Syst., 66:100–109, 2017.

108. C. Lei and E. A. Rundensteiner. Robust distributed query process-
ing for streaming data. ACM Trans. Database Syst., 39(2):17:1–
17:45, 2014.

109. C. Li, Y. Gu, G. Yu, and B. Hong. Aggressive complex event
processing with confidence over out-of-order streams. J. Comput.
Sci. Technol., 26(4):685–696, 2011.

110. G. Li and H. Jacobsen. Composite subscriptions in content-based
publish/subscribe systems. In Middleware, 2005.

111. Z. Li and T. Ge. History is a mirror to the future: Best-effort
approximate complex event matching with insufficient resources.
PVLDB, 10(4):397–408, 2016.

112. H. Liu and H. Jacobsen. Modeling uncertainties in publish/sub-
scribe systems. In ICDE, pages 510–521, 2004.

113. M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and K. T.
Claypool. Sequence pattern query processing over out-of-order
event streams. In ICDE, 2009.

114. M. Liu, E. A. Rundensteiner, K. Greenfield, C. Gupta, S. Wang,
I. Ari, and A. Mehta. E-cube: multi-dimensional event sequence
analysis using hierarchical pattern query sharing. In SIGMOD,
2011.

115. K. Lolos, I. Konstantinou, V. Kantere, and N. Koziris. Elastic
management of cloud applications using adaptive reinforcement
learning. In Big Data, 2017.

116. R. Lu, G. Wu, B. Xie, and J. Hu. Stream bench: Towards bench-
marking modern distributed stream computing frameworks. In
UCC, pages 69–78, 2014.

117. D. C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-
Wesley, 2001.

118. A. Margara, G. Cugola, and G. Tamburrelli. Learning from the
past: automated rule generation for complex event processing. In
DEBS, pages 47–58. ACM, 2014.

119. R. Mayer, B. Koldehofe, and K. Rothermel. Predictable low-
latency event detection with parallel complex event processing.
IEEE Internet of Things Journal, 2(4):274–286, 2015.

40 Nikos Giatrakos et al.

120. R. Mayer, C. Mayer, M. A. Tariq, and K. Rothermel. Graphcep:
real-time data analytics using parallel complex event and graph
processing. In DEBS, pages 309–316, 2016.

121. R. Mayer, A. Slo, M. A. Tariq, K. Rothermel, M. Gräber, and
U. Ramachandran. SPECTRE: supporting consumption policies
in window-based parallel complex event processing. In Middle-
ware, pages 161–173, 2017.

122. R. Mayer, M. A. Tariq, and K. Rothermel. Minimizing com-
munication overhead in window-based parallel complex event
processing. In DEBS, pages 54–65, 2017.

123. Y. Mei and S. Madden. Zstream: a cost-based query processor for
adaptively detecting composite events. In SIGMOD, 2009.

124. M. Mendes, P. Bizarro, and P. Marques. Towards a standard event
processing benchmark. In Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering, pages
307–310. ACM, 2013.

125. Microsoft. Bandwidth Pricing Details. https:
//azure.microsoft.com/en-us/pricing/
details/bandwidth/. [Online; accessed 31-March-
2019].

126. T. Murata. Petri nets: Properties, analysis and applications. Pro-
ceedings of the IEEE, 77(4):541–580, apr 1989.

127. C. Mutschler and M. Philippsen. Adaptive speculative process-
ing of out-of-order event streams. ACM Trans. Internet Techn.,
14(1):4:1–4:24, 2014.

128. A. Paschke. Eca-ruleml: An approach combining ECA rules with
temporal interval-based KR event/action logics and transactional
update logics. CoRR, abs/cs/0610167, 2006.

129. A. Paschke and M. Bichler. Knowledge representation concepts
for automated SLA management. Decision Support Systems,
46(1):187–205, 2008.

130. K. Patroumpas, E. Alevizos, A. Artikis, M. Vodas, N. Pelekis,
and Y. Theodoridis. Online event recognition from moving vessel
trajectories. GeoInformatica, 21(2):389–427, 2017.

131. P. Pietzuch. How event-based systems took over the
world. In DEBS, 2016, https://www.ics.uci.edu/d̃ebs2016/ebs-prp-
debs16.pdf. Keynote Speech [Online; accessed 31-March-2019].

132. P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh,
and M. Seltzer. Network-aware operator placement for stream-
processing systems. In ICDE, 2006.

133. P. R. Pietzuch, B. Shand, and J. Bacon. A framework for event
composition in distributed systems. In Middleware, 2003.

134. T. C. Przymusinski. On the declarative semantics of deductive
databases and logic programs. In J. Minker, editor, Foundations
of Deductive Databases and Logic Programming, pages 193–216.
Morgan Kaufmann, 1988.

135. Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica. Low latency geo-distributed data analytics.
In SIGCOMM, pages 421–434, New York, NY, USA, 2015.

136. A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman. Ag-
gregation and degradation in jetstream: Streaming analytics in the
wide area. In NSDI, pages 275–288, 2014.

137. M. Ray, C. Lei, and E. A. Rundensteiner. Scalable pattern sharing
on event streams. In SIGMOD, pages 495–510, 2016.

138. C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event queries
on correlated probabilistic streams. In SIGMOD, pages 715–728,
2008.

139. T. Repantis, X. Gu, and V. Kalogeraki. Synergy: Sharing-aware
component composition for distributed stream processing systems.
In Middleware, pages 322–341, 2006.

140. N. Rivetti, N. Zacheilas, A. Gal, and V. Kalogeraki. Probabilistic
management of late arrival of events. In DEBS, 2018.

141. S. Rizou. Concepts and algorithms for efficient distributed pro-
cessing of data streams. University of Stuttgart, 2013.

142. B. Schilling, B. Koldehofe, and K. Rothermel. Efficient and dis-
tributed rule placement in heavy constraint-driven event systems.
In HPCC, pages 355–364, 2011.

143. N. P. Schultz-Møller, M. Migliavacca, and P. R. Pietzuch. Dis-
tributed complex event processing with query rewriting. In DEBS,
2009.

144. J. Selman, M. R. Amer, A. Fern, and S. Todorovic. PEL-CNF:
probabilistic event logic conjunctive normal form for video inter-
pretation. In ICCVW, pages 680–687, 2011.

145. A. Skarlatidis, G. Paliouras, A. Artikis, and G. A. Vouros. Proba-
bilistic event calculus for event recognition. ACM Trans. Comput.
Log., 16(2):11:1–11:37, 2015.

146. A. Skarlatidis, G. Paliouras, G. A. Vouros, and A. Artikis. Proba-
bilistic event calculus based on markov logic networks. In RuleML
2011, pages 155–170, 2011.

147. M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic regular
expression explorer. In ICST, 2010.

148. A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye,
and G. Varghese. Global analytics in the face of bandwidth and
regulatory constraints. In NSDI, pages 323–336, 2015.

149. J. Wang, S. Song, X. Zhu, and X. Lin. Efficient recovery of
missing events. PVLDB, 6(10):841–852, 2013.

150. Y. H. Wang, K. Cao, and X. M. Zhang. Complex event process-
ing over distributed probabilistic event streams. Computers &
Mathematics with Applications, 66(10):1808–1821, 2013.

151. S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. Complex event
processing over uncertain data. In DEBS, volume 332, pages
253–264, 2008.

152. M. Weidlich, H. Ziekow, A. Gal, J. Mendling, and M. Weske.
Optimizing event pattern matching using business process models.
IEEE Trans. Knowl. Data Eng., 26(11):2759–2773, 2014.

153. G. A. Wilkin, P. Eugster, and K. R. Jayaram. Decentralized
fault-tolerant event correlation. ACM Trans. Internet Technol.,
14(1):5:1–5:27, aug 2014.

154. J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle, K.-
L. Wu, and L. Fleischer. Soda: An optimizing scheduler for large-
scale stream-based distributed computer systems. In Middleware,
pages 306–325, 2008.

155. L. Woods, J. Teubner, and G. Alonso. Complex event detection at
wire speed with fpgas. PVLDB, 3(1), 2010.

156. WSO2. Creating a Storm Based Distributed Execu-
tion Plan. https://docs.wso2.com/display/
CEP410/Creating+a+Storm+Based+Distributed+
Execution+Plan. [Online; accessed 31-March-2019].

157. E. Wu, Y. Diao, and S. Rizvi. High-performance complex event
processing over streams. In SIGMOD, 2006.

158. N. Zacheilas, V. Kalogeraki, N. Zygouras, N. Panagiotou, and
D. Gunopulos. Elastic complex event processing exploiting pre-
diction. In Big Data, pages 213–222, 2015.

159. N. Zacheilas, N. Zygouras, N. Panagiotou, V. Kalogeraki, and
D. Gunopulos. Dynamic load balancing techniques for distributed
complex event processing systems. In DAIS, 2016.

160. E. Zeitler and T. Risch. Massive scale-out of expensive continuous
queries. PVLDB, 4(11):1181–1188, 2011.

161. H. Zhang, Y. Diao, and N. Immerman. Recognizing patterns in
streams with imprecise timestamps. PVLDB, 3(1):244–255, 2010.

162. H. Zhang, Y. Diao, and N. Immerman. On complexity and opti-
mization of expensive queries in complex event processing. In
SIGMOD, pages 217–228, 2014.

163. D. Zimmer and R. Unland. On the semantics of complex events
in active database management systems. In ICDE, 1999.

