
The VLDB Journal manuscript No.
(will be inserted by the editor)

Shawn R. Jeffery · Michael J. Franklin · Minos Garofalakis

An Adaptive RFID Middleware for Supporting
Metaphysical Data Independence

Received: date / Accepted: date

met·a·phys·ics: a division of philosophy that is con-
cerned with the fundamental nature of reality and be-
ing [2].
Abstract Sensor devices produce data that are unre-
liable, low-level, and seldom able to be used directly
by applications. In this paper, we propose Metaphysical
Data Independence (MDI), a layer of independence that
shields applications from the challenges that arise when
interacting directly with sensor devices. The key philoso-
phy behind MDI is that applications do not deal with any
aspect of physical device data, but rather interface with
a high-level reconstruction of the physical world created
by a sensor infrastructure. As a concrete instantiation
of MDI in such a sensor infrastructure, we detail MDI-
SMURF, an RFID middleware system that alleviates is-
sues associated with using RFID data through adaptive
techniques based on a novel statistical framework.

Keywords Data cleaning · RFID technology · Statisti-
cal sampling · Sensor-based applications

1 Introduction

With the widespread deployment of physical sensing de-
vices such as wireless sensor networks and RFID tech-
nology, the physical world is being brought ever closer
to the digital world: RFID provides enterprises with up-
to-the-second information on their supply chains [23];
wireless sensor networks enable unprecedented visibil-
ity into environmental and structural processes [60]; and

Shawn R. Jeffery
UC Berkeley
E-mail: jeffery@cs.berkeley.edu

Michael J. Franklin
UC Berkeley
E-mail: franklin@cs.berkeley.edu

Minos Garofalakis
Yahoo! Research and UC Berkeley
E-mail: minos@yahoo-inc.com
Work done while at Intel Research Berkeley

Fig. 1 Today’s sensor-based applications are dependent on
the underlying sensors and thus complex and hard to man-
age. Metaphysical Data Independence allows applications to
interact with a reconstruction of the physical world in the
digital world, greatly simplifying application deployment.

ubiquitous computing technology is changing the way we
interact with our surroundings [3].

The Physical-Digital Divide. Sensor-based applica-
tions use data about the physical world to make decisions
or perform other tasks. There is a wide gulf, however,
between the data produced by devices in the physical
world and the needs and requirements of applications in
the digital world. We term this rift the physical-digital
divide [32].

The crux of the problem is that the raw data pro-
vided by a set of sensor devices do not adequately rep-
resent the physical world. Rather, the data are noisy
due to outliers and mis-calibrated sensors, incomplete
as a result of dropped messages, and coarse-grained in
both time and space as devices cannot sample infinitely
nor be deployed with complete coverage. Furthermore,
in many cases the application desires data for which no
sensing device exists (e.g., [12,52]). For instance, a dig-
ital home application is concerned about the locations
of the house’s inhabitants, but there is no device that
provides exactly these data.

2 Shawn R. Jeffery et al.

Metaphysical Data Independence. Sensor-based de-
ployments typically include complex logic to map from
low-level, dirty sensor data to high-level application con-
cepts and maintain this mapping over time [11,60]. Any
errors or fluctuations in the underlying devices must be
handled directly by the application. As a result, current
sensor-based applications tend to be complex, brittle,
and hard to evolve.

To address this problem, we introduce a new layer
of data independence, Metaphysical Data Indepen-
dence1(MDI), that shields sensor-based applications
from the challenges associated with managing and
accessing physical sensor devices. Just as traditional
RDBMSs use physical and logical data independence
to hide the complexity and changes of the physical
data storage and base schema, respectively, MDI hides
the complexity of the physical sensing devices from
sensor-based applications.

The key philosophy behind Metaphysical Data Inde-
pendence is that sensor data should be abstracted as data
about the physical world; that is, applications should in-
teract with a reconstruction of the physical world in the
digital world, as if the physical-digital divide did not ex-
ist (as illustrated in Figure 1).

To represent this reconstruction, we need to model
the physical world at a level appropriate for use across
many applications. The challenge in defining this model
is to balance the tension between hiding the complexity
of sensor data and providing data at a semantic level
that is appropriate for a large class of applications.

To this end, we outline a data model for sensor-based
applications based on the concepts of objects, attributes,
and uncertainty estimates. Objects in this model cor-
respond to real-world entities such as people, products,
and rooms. Each object has a set of associated attributes
such as location, temperature, and velocity. Due to the
uncertainty of sensor data, an integral part of this model
is uncertainty estimates. The set of all objects, their at-
tributes, and associated uncertainty estimates at a given
time-step make up the “state of the world” at that time-
step.

The fundamental aspect of this model and interface
is that they expose no information about the underlying
physical devices. Just as an application interacting with
a traditional relational database using SQL does not have
to know anything about the underlying storage models,
disk usage, or data format, an application using MDI
can be oblivious to details of the devices on which it is
deployed.

1 The term “metaphysical” is a loose reference to Plato’s
Divided Line philosophy concerning the real world and the
perceived world [48]. He conjectured that the physical world is
only accessible through a person’s imperfect senses and thus
knowledge and reason must be used to guide any perception
of the real world.

Fig. 2 The architecture of MDI-SMURF.

MDI-SMURF. In order to realize the MDI interface,
many mechanisms need to work in concert to access,
clean, process, and virtualize data from sensing devices
to adequately reconstruct the physical world in the dig-
ital world. In this paper we present one such solution,
MDI-SMURF,2 an implementation of Metaphysical Data
Independence for RFID deployments. The principle con-
tribution of MDI-SMURF is a novel statistical frame-
work that enables it to continually and adaptively correct
for the temporal and spatial errors associated with RFID
data and produce data corresponding to the MDI inter-
face. We place the work presented in [35] in the broader
context of supporting MDI for RFID deployments. Fur-
thermore, we outline how MDI-SMURF extends the con-
cepts presented in [35] with additional functionality to
handle all aspects of the physical-digital divide.

MDI-SMURF is an RFID middleware platform
organized as a pipeline of processing stages [33,34] with
an associated uncertainty-tracking shadow pipeline [53]
as shown in Figure 2. RFID data from readers flow
into Temporal-SMURF, a smoothing filter that uses
its statistical framework to correct for dropped read-
ings common in RFID data streams. Additionally,
Temporal-SMURF estimates the resulting uncertainty
of the cleaned readings. These cleaned readings are then
streamed into Spatial-SMURF , a module that extends
Temporal-SMURF’s statistical framework to address
errors and semantic issues that arise from multiple
RFID readers deployed in close proximity. A simple
translation module (Virtualize) converts the temporally
and spatially cleaned readings to MDI readings with
the following schema: (objectID[uncertainty],
location[uncertainty], time).

This paper is organized as follows. We first provide
background on Metaphysical Data Independence, the un-

2 “SMURF” stands for Statistical sMoothing of Unreliable
RFid data

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 3

derlying philosophy of MDI-SMURF (Section 2). In Sec-
tion 3, we give an overview of RFID technology and its
current shortcomings. We then detail MDI-SMURF in
Sections 4 - 6. Finally, we review related work and con-
clude in Sections 7 and 8, respectively.

2 Background: The Physical-Digital Divide and
MDI

In this section, we provide a high-level background on
the challenges associated with sensor-based deployments
and outline our philosophy, Metaphysical Data Indepen-
dence, for addressing these issues.

2.1 The Physical-Digital Divide

We illustrate the shortcomings of current sensor tech-
nologies using examples from two of the more common
types of sensing devices, RFID readers and wireless sen-
sor networks. While each type of sensing device has spe-
cific challenges associated with processing the data it
produces, there are many issues that are common across
devices.

Sensor Data Unreliability. Applications typically
need a reliable and complete picture of reality to operate
correctly. Sensors, however, tend to produce incomplete
and unreliable data.

Sensors often employ low cost, low power hardware
and wireless communication, which lead to frequently
dropped messages. For example, the observed read rate,
or percentage of tags in a reader’s vicinity that are actu-
ally reported, in real-world RFID deployments is often
in the 60− 70% range [33,38]; in other words, over 30%
of the tag readings are routinely dropped. Wireless sen-
sors also demonstrate similar errors. For instance, in a
wireless sensor network experiment at the Intel Research
Lab in Berkeley, each sensor delivered, on average, only
42% of the data it was asked to report [31].

Not only are readings frequently dropped, but often
individual sensor readings are unreliable. In a sensor net-
work deployment in Sonoma County, CA, for example,
8 out of 33 temperature-sensing motes failed, but con-
tinued to report readings that slowly rose to above 100o

Celsius [59].
Thus, the data produced by sensors must be appro-

priately cleaned to compensate for these failures before
they can be used by any application. Incorporating clean-
ing logic in applications greatly increases the complexity
of the application.

Granularity Mismatch. Sensor-based applications
tend to have specific notions of time and space that
usually do not correspond to the sensing granularity of
the underlying devices [19,34].

Temporally, the actual sensing granularity of the de-
vices may be coarser than an application desires due to

power or bandwidth limitations as in the case of wireless
sensors, or it may finer such as with the high sample rate
of RFID readers.

Similarly, the spatial sensing granularity of devices
may not match an application’s notion of space. One de-
vice may monitor multiple application-level spatial units,
such as rooms or shelves. Conversely, there may be mul-
tiple devices that monitor the same spatial unit. For in-
stance, RFID deployments usually deploy multiple read-
ers in close proximity to ensure full coverage of the area
of interest.

This mismatch in sensing granularity potentially
causes semantic errors. For instance, redundant readings
in space could lead to an application seeing an object in
two places at the same time.

The Semantic Gap. Usually, sensor-based applications
view the world as high-level concepts; sensing devices,
on the other hand, produce low-level data that often has
little meaning to the application.

In many cases, applications are interested in data for
which no physical sensing device exists. Common exam-
ples of such data include people in pervasive applica-
tions [3], products in supply-chain management applica-
tions [23], or attributes of manufactured goods in indus-
trial processes [52]. These high-level application concepts
must be derived through the combination of data from
multiple devices as well as other sources of data.

Translating from low-level device readings to
application-level concepts involves intimate knowledge
of the environment, devices, and the data they pro-
duce, thus complicating application development and
deployment.

Variability in Sensor Deployments. Not only do sen-
sor data exhibit the issues described above, but the na-
ture of these issues changes over time and from deploy-
ment to deployment.

Wireless sensor motes, for instance, lose accuracy as
their batteries wear [60]. RFID readers produce different
quality data and their detection fields vary depending
on the environment in which they are deployed [24]. For
example, during a series of RFID reader tests in a vari-
ety of environments, the quality of readings from readers
in two different rooms, next door to each other, varied
greatly. (See Section 3 for a detailed description of this
experiment.)

As a result of such variability, sensor deployments not
built to adjust and adapt to varied environments tend to
produce erroneous data as conditions change.

2.2 Metaphysical Data Independence

As illustrated by the issues above, there is significant
complexity involved in converting data produced by sens-
ing devices into data that can be used in an application.
Motivated by these complexities, we propose a new layer
of data independence, Metaphysical Data Independence

4 Shawn R. Jeffery et al.

(MDI). MDI defines a separation of concerns between the
application logic and the logic needed to access and man-
age the data from physical devices. The key philosophical
statement behind MDI is that the specifics of the under-
lying devices are abstracted away behind a model of the
physical world that represents a reconstruction of this
world in the digital world.

Object Model. Our model consists of objects,
attributes, and uncertainty estimates.

Objects: At the core of our model is the concept of an
object. An object is loosely defined as any entity in the
real world to which an application may uniquely refer.
For instance, a digital home may have people objects,
room objects, and pet objects. The actual objects de-
fined for each deployment may vary dramatically, but
experience shows that within an application the appro-
priate objects are evident (e.g., [41,57]).

Attributes: Associated with each object is a set of at-
tributes that describe the state of that object. Attributes
are attached directly to the object, and in general have
little meaning without this association (e.g., temperature
means nothing unless it is the temperature of some ob-
ject). The primary attributes of any real-world object are
time and space (location); these attributes are typically
included for all objects. Examples of other attributes in-
clude temperature and velocity. An attribute may also
be a complex multi-valued field instead of a single value.
For instance, some attributes may describe the contour
of a value in a certain area [27].

While an attribute is dependent on the object that
it describes, it is independent of any physical sensing
device. There may be multiple devices that observe the
same value. For instance, wireless motes and some RFID
tags [58] both sense light levels. Soft sensors [49], on the
other hand, may be used to combine data from multi-
ple types of sensors to derive an attribute. Alternatively,
no device may be employed at all to sense a particu-
lar attribute; model-based sensing [18], cached values, or
archived data may be used. In any case, such acquisition
and processing is hidden by the model.

Uncertainty: Due to the limitations of sensing de-
vices, an estimate of the uncertainty in the reported data
is essential. Thus, throughout this model is the notion of
uncertainty. Uncertainty serves as the unifying means by
which device-dependent processing can be hidden.

We use uncertainty estimates at multiple levels. At-
tached to each object is a confidence of existence, used
in a similar manner to that defined in [44,53]. Addition-
ally, each attribute has some uncertainty value(s) with
which it is associated. The exact representation of these
values are dependent on the type of attribute. For in-
stance, the uncertainty of a particular value for a tem-
perature attribute may be represented as a range and
confidence [18], while uncertainty in location could be
described with a spatial probability distribution func-
tion. Regardless of the description method, uncertainty
is expressed in a device-independent manner.

The set of all objects, their attributes, and uncer-
tainty at a given time-step make up the “state of the
world” at that time-step.

Interface. Data expressed in this model can be accessed
as a stream of object states, ideally through declarative
means using languages such as CQL [7] or those defined
as part of the HiFi [51] or SASE [65] projects.

Sensor-based applications have differing needs in
terms of data; the interface should allow applications
to specify selection predicates on which objects and
attributes are necessary. Given these predicates, the
sensor infrastructure can optimize access to these data.
Similarly, since different applications have different
data quality requirements, the interface needs to allow
applications to request the desired level of data quality
through uncertainty predicates. Such predicates can
help guide the infrastructure on which devices to use
and by which means to produce the requested data.
Further, some sensor data processing is inherently
application-specific. Thus, the interface should allow
user-defined code to be pushed down into the sensor
infrastructure to assist in data processing.

As there are potentially many applications accessing
data from the same set of devices, but with different
requirements, the sensor infrastructure should support
multiple streams of MDI data. Generating this output
should be done in such a way as to minimize access to
the devices themselves and to maximize sharing across
streams [37]. Further, the interface should provide seam-
less access to present, past, and future MDI data. That is,
access to streaming data (present), archival data (past),
and future predictions based on models should all hap-
pen through the same interface in a unified manner.

Finally, we note that while there will always be uses of
sensor devices that demand low-level access to the data
and devices, such as advanced scientific monitoring ap-
plications or tight-loop sensor-actuator systems, we feel
that there is a large class of emerging sensor-based ap-
plications that would benefit from the higher level of
abstraction with which to interact with sensor data that
MDI provides.

Having outlined our MDI approach for dealing with
sensor data, in the remainder of the paper we focus on a
specific MDI-based infrastructure for dealing with RFID
data.

3 RFID Technology

In this section give a brief background on RFID technol-
ogy and the challenges facing current deployments.

3.1 RFID Background

RFID (Radio Frequency IDentification) is an electronic
tagging and tracking technology designed to provide non-

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

R
ea

d
R

at
e

Distance (ft.)

(a)Alien reader with Alien Squiggle tag in a controlled envi-
ronment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

R
ea

d
R

at
e

Distance (ft.)

(b)Sensormatic reader with Alien I2 tag in a noisy environ-
ment.

Fig. 3 Read rate of a single tag at varying distances from the reader in different environments. Error bars represent ± one
standard deviation.

line-of-sight identification [63]. For the purposes of this
paper, a typical RFID installation consists of three com-
ponents: readers, antennae, and tags.

A reader uses antennae to communicate with tags
using RF signals to produce lists of tag IDs in its detec-
tion field. Tags may either be active (battery-powered)
or passive (no on-board battery). We focus on passive
tags, as they are the most widespread variety of RFID
tags. Tags store a unique identifier code (e.g., a 64- or 96-
bit ID for EPCGlobal tags [22]). Although there exists
RFID technology for multiple frequencies, we focus on
915 MHz technology, which has a long detection range
(roughly 10-20 feet) and is typical of supply chain man-
agement applications.

Readers interrogate nearby tags by sending out an
RF signal. Tags in the area respond to these signals with
their unique identifier code. An interrogation cycle is one
iteration through the reader’s protocol that attempts to
determine all tags in the reader’s vicinity.

The results of multiple reader interrogation cycles are
typically grouped into what we term epochs.3 The epoch
size, which may be specified as a number of interrogation
cycles or as a unit of time, is configured as part of the
initial reader hardware setup. A typical epoch range is
0.2-0.25 seconds [1,56]. For each epoch, the reader keeps
track of all the tags it has identified, as well as addi-
tional information such as the number of interrogation
responses for each tag and the time at which the tag
was last read. Readers store this information internally
in a tag list (Table 1) which is periodically transferred
to readers’ clients.

Tag ID Responses Timestamp

8576 2387 2345 8678 9 11:07:06
8576 4577 3467 2357 1 11:07:06
8576 3246 3267 5685 7 11:07:07

Table 1 Example reader tag list.

RFID Reader and Tag Performance.

3 In ALE terms, an epoch is a read cycle [6].

To better understand the properties of RFID read-
ings, we profile two RFID readers with different tags in
two environments. Our profiling methodology is as fol-
lows. We suspend a single tag at varying distances in the
same plane as the antenna. For every 6-inch increment
of distance from the reader, we measure the read rate
(number of responses to number of interrogations) for
100 epochs.

Our profiling experiments use two types of readers,
the Alien ALR-9780 [4] and the Sensormatic Agile 2 [55],
with three types of tags (Alien “I2”, “M”, and “Squig-
gle” [5]). We test various combinations of these readers
and tags in two environments. Our first environment, a
large, wide-open room with little metal present, repre-
sents a controlled environment for RFID technology: we
eliminate many of the causes of degraded read rates [24].
Our second profiling environment, a lab with metal ob-
jects such as desks and computer equipment, represents
a noisy environment.

Figure 3 depicts the results from two different pro-
filing experiments showing the read rate of the tag at
distances ranging from 0 to 20 feet. The plots shown
here are representative of the 8 different profiles we col-
lected; all other experiments yielded a curve similar in
shape to one of these two plots.

All of the profiles we collected have similar properties
despite being generated using different readers, tags, and
environments. First, the overall detection range of all
readers and tags profiled remains relatively constant at
15-20 feet. Second, within each reader’s detection range,
there are two distinct regions: (1) The area directly in
front of the reader, termed the reader’s major detection
region [29], giving high detection probabilities (read rates
at or above 95%); and, (2) the reader’s minor detection
region, extending from the end of the major detection
region to the edge of the reader’s full detection range,
where the read rate fluctuates as it drops to zero at the
end of the detection range.

The main difference between our observed profiles lies
in the percentage of the reader’s detection range corre-

6 Shawn R. Jeffery et al.

sponding to its major detection region. For instance, the
major detection region corresponds to roughly 75% of the
full detection range for the profile in Figure 3(a), whereas
it makes up only 25% of the range in the profile in Fig-
ure 3(b). All of our experiments showed similar behavior.
Note that these findings are consistent with the results of
in-depth commercial studies of the performance of many
different tags and readers under highly-controlled condi-
tions [17].

We also test the readers to determine how they re-
spond to the presence of multiple tags in their detection
ranges. For these tests, we suspend 10 tags in the same
plane as the reader and measure the average read rate for
100 epochs at varying distances from the reader. While
the overall properties of the observed profile are similar
to the single tag case (there is still a separation between a
major and minor detection region), the read rate in the
major detection region typically drops to around 80%.
Additional tests show that the read rate in the major
detection region stays somewhat constant with increas-
ing numbers of tags, at least up to 25 tags in the reader’s
detection range.

In the remainder of the paper, we use these obser-
vations in the design of MDI-SMURF’s cleaning mecha-
nisms and in the implementation of an RFID data gen-
erator for evaluating our techniques.

3.2 Smoothing Filters for RFID Data Cleaning

A primary factor limiting the widespread adoption
of RFID technology is the unreliability of the data
streams produced by RFID readers [38]. The standard
data-cleaning mechanism for today’s RFID middleware
systems is a temporal “smoothing filter”: a sliding
window over the reader’s data stream that interpolates
for lost readings from each tag within the time win-
dow [28,40]. The goal is to reduce or eliminate dropped
readings by giving each tag more opportunities to be
read within the smoothing window. While the APIs
for RFID middleware systems vary, smoothing filter
functionality can be expressed as a simplified continuous
query (e.g., in CQL [7]) as shown in Query 1 (for a
5 second window). This query states that if the tag
appears at least once in the window, it is considered to
be present for the entire window.
Query 1 CQL Smoothing Filter to Correct for Dropped
Readings.
SELECT distinct tag id
FROM rfid readings stream [RANGE ’5 sec’]
GROUP BY tag id

Static Window Smoothing. Typically, the RFID
middleware system requires the application to fix the
smoothing window size (as in the above CQL state-
ment). Setting the window size, however, is a non-trivial
task: the ideal smoothing-window size needs to carefully

Fig. 4 Tension in setting the smoothing-window size
for tracking a single tag (dark bars indicate the tag is
present/read): small windows fail to fill in dropped readings
(false negatives); large windows fail to capture tag movement
(false positives).

balance two opposing application requirements (as
shown in Figure 4): ensuring completeness for the set of
tag readings (due to reader unreliability) and capturing
tag dynamics (due to tag movements in and out of the
reader’s detection field).

– Completeness: To ensure that all tags in the reader’s
detection range are read, the smoothing window must
be large enough to correct for reader unreliability. Small
window sizes cause readings for some tags to be lost,
leading to false negatives (i.e., tags mistakenly assumed
to have exited the reader’s detection range) and,
consequently, a large underestimation bias (e.g., always
under-counting the tag population). Adjusting the
window size for completeness depends on the reader’s
read rate, which, in turn, depends on both the type of
reader and tag as well as the physical surroundings [16,
24].

– Tag dynamics: Using a large smoothing window, on the
other hand, risks not accurately detecting tag movements
within the window, leading to false positives (i.e., tags
mistakenly assumed to be present after they have exited
the reader’s detection range).

Adjusting the window size for tag dynamics depends
on the movement characteristics of the tags, which, in
turn, can vary significantly depending on the applica-
tion; for instance, a tag motionless on a shelf exhibits
a different movement pattern from a tag on a conveyor
belt.

As a result, a considerable challenge to deploying
RFID-based applications is ascertaining the characteris-
tics of the environment and configuring the middleware
to take into account the above factors. Furthermore, no
single window size is expected to be effective over the life-
time of a deployment as both the reader reliability and
tag behavior may vary dynamically; thus, either the win-
dow size must be repeatedly reconfigured, or the quality
of the data suffers.

A second major problem with fixed-window smooth-
ing techniques is the use of a single window size for all
tags in a deployment. Different subsets of tagged objects
may behave very differently from others. For instance
in a warehouse environment, some tagged items may be

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 7

placed on a shelf while others are moved on forklifts. The
best smoothing window size for each of these groups of
tags is potentially different.

Adaptive Windowing for MDI. The key to mask-
ing the unreliability of RFID data in support of MDI
is to hide the window size from the application and in-
stead automatically determine the window size initially
and then adapt it as the system runs. To this end, we
have developed Temporal-SMURF, an adaptive smooth-
ing filter that does not require the application to set the
window size; instead, Temporal-SMURF uses statistical
properties of the data to continually adjust the window
size in response to the data to provide a reliable stream of
RFID readings. Furthermore, Temporal-SMURF adapts
its smoothing-window sizes at a much finer granularity
compared to traditional RFID middleware systems that
fix a single window size for the entire tag population.

4 RFID Data Cleaning with Temporal-SMURF

In this section we present Temporal-SMURF, our adap-
tive smoothing filter for cleaning RFID data.

4.1 RFID Data: A Statistical Sampling Perspective

Temporal-SMURFcaptures tag dynamics while compen-
sating for lost RFID readings in a principled, statistical
manner. The key idea is that the observed RFID read-
ings can be viewed as a random sample of the population
of tags in the physical world.

Consider an epoch t. Recall from Section 3 that an
epoch is a reader’s unit of detection. Epochs represent
our basic time units, many of which can be combined
to make up a smoothing window [28,40]. Without loss of
generality, let Nt denote the (unknown) size of the under-
lying tag population at epoch t, and let St ⊆ {1, . . . , Nt}
denote the subset of tags observed (“sampled”) during
that epoch. Temporal-SMURF views St as an unequal
probability random sample of the tag population.

Temporal-SMURF uses a per-epoch sampling proba-
bility pi,t for each tag that represents the probability that
tag i is detected in epoch t. While there are many possi-
ble means of deriving this value, in this work we utilize
the response-count information stored in the reader’s tag
list (Table 1). Specifically, for each tag i ∈ St, Temporal-
SMURF employs the response-count information for tag
i in conjunction with the known number of interrogation
cycles per epoch to derive pi,t. This sampling probability
pi,t is empirically estimated as the observed read rate for
tag i during that epoch; for instance, assuming a reader
configuration of 10 interrogation cycles per epoch, the
sampling probabilities for the first and second tags in Ta-
ble 1 would be px78,t = 0.9 and px57,t = 0.1, respectively.
Of course, these sampling probabilities differ across tags

Fig. 5 Temporal-SMURF’s internal architecture.

and can also vary over time as the observed tags move
within reader’s detection range.

The key insight of viewing each RFID epoch as
a “sampling trial” enables Temporal-SMURF’s novel,
statistical-driven perspective on adaptive RFID data
cleaning. In a nutshell, Temporal-SMURF views the ob-
served readings within a smoothing window as the result
of repeated random-sampling trials, and employs tech-
niques and estimators grounded in statistical sampling
theory to reason about the underlying physical-world
phenomena and drive its adaptive RFID data cleaning
algorithms.

More specifically, Temporal-SMURF uses the sta-
tistical properties of the observed random sample to
appropriately adapt the size of its smoothing window
based on (1) completeness requirements, and (2) signal
transitions detected as statistically-significant changes
in the underlying tag readings. Further, even for window
sizes that are necessarily small (to capture fast-varying
signals), Temporal-SMURF uses sampling-based esti-
mators [15,54] to provide accurate, unbiased estimates
for tag-population aggregates (e.g., counts), and thus
avoids the systematic under-counting of conventional
smoothing techniques. Thus, Temporal-SMURF’s
sampling-based foundation enables it to explore the
tension between completeness and tag dynamics in a
principled, statistical manner that continuously adapts
the smoothing strategy based on statistical properties
of the data to provide accurate, unbiased data to
applications.

4.2 Temporal-SMURF

Temporal-SMURF’s overall architecture is presented in
Figure 5. Temporal-SMURF contains two primary clean-
ing mechanisms aimed at (1) producing accurate data
streams for individual tag ID readings (per-tag clean-
ing); and (2) providing accurate aggregate (e.g., count)
estimates over large tag populations (multi-tag clean-
ing). Additionally, Temporal-SMURF incorporates two
modules that apply to both data-cleaning techniques:

8 Shawn R. Jeffery et al.

a sliding-window processor for fine-grained RFID data
smoothing, and an optimization mechanism for improv-
ing cleaning effectiveness by detecting mobile tags. Fi-
nally, Temporal-SMURF contains shadow modules for
both per-tag and multi-tag smoothing to calculate un-
certainty estimates.

Sliding Window Processing. As with any window-
based cleaning scheme, Temporal-SMURF produces
an output reading for a given tag ID if there exists at
least one reading for that tag within the smoothing
window [28,40]. Temporal-SMURF’s sliding-window
processor implements two basic modifications to con-
ventional RFID smoothing filters: (1) partitioned RFID
smoothing, and (2) epoch-based mid-window slide.

To handle subsets of tagged objects that behave
differently from others, Temporal-SMURF’s cleaning
techniques adapt the smoothing-window size at a
much finer granularity than traditional smoothing
mechanisms. At one extreme, when tracking individual
tag movements, Temporal-SMURF runs its adaptive
sliding-window processing per tag ID. In general, the
granularity of Temporal-SMURF’s windowing mecha-
nisms is determined by the aggregate query of interest.
That is, by a pair (subset, aggregate) determining
the subset of tags over which the aggregate value
(e.g., count) is monitored. Note that such fine-grained
processing can be expressed in a declarative fashion,
such as through the Partition By clause in CQL.

As epochs are a sample cycle in Temporal-SMURF’s
sampling-based model of RFID data, Temporal-SMURF
slides its windows by a single epoch (as opposed to a time
period or by tuples). Furthermore, Temporal-SMURF
produces readings with a timestamp corresponding to
the midpoint of the window after the entire window has
been seen. This behavior captures the intuitive notion of
smoothing: e.g., if there are reported readings at times
t − 1 and t + 1, then there is likely a reading at time
t. We experimentally validated that this approach yields
the most reliable readings.

4.3 Adaptive Per-Tag Cleaning

To clean readings from a single tag, the fundamental
challenge is to distinguish between periods of dropped
readings and periods where the tag has actually left the
reader’s detection field. Temporal-SMURF must set its
window size such that it provides completeness for pe-
riods of dropped readings as well as accurately captures
transitions for periods where the tag has left. To help
differentiate between these two behaviors and to guide
subsequent window adaptations, Temporal-SMURF em-
ploys statistical mechanisms based on its random-sample
view of RFID data.

A Binomial Sampling Model for Single Tag Read-
ings. Consider the simple case of cleaning the readings

from a single tag (say, i) based on a reader’s observa-
tions over a smoothing window of size wi epochs (say,
Wi = (t−wi, t]). Assume, for the time being, that tag i
is present in the reader’s range throughout the window
Wi, and has the same probability, pi, of being observed in
each epoch of Wi. Temporal-SMURF views each epoch as
an independent Bernoulli trial (i.e., a sampling draw for
tag i) with success probability pi. This, in turn, implies
that the number of successful observations of tag i in
the window is a random variable that follows a binomial
distribution with parameters (wi, pi) (i.e., B(wi, pi)). In
the general case, assume that tag i is seen in only a sub-
set Si ⊆ Wi of all the epochs in Wi, and let pavg

i denote
the average empirical read rate over these observation
epochs; that is, pavg

i =
∑

t∈Si
pi,t/|Si|, where each pi,t is

calculated based on the reader’s tag list information as
shown in Section 4.1. Note that we assume that within
an appropriately-sized window, the pi,ts will be relatively
homogeneous and thus averaging is a valid estimate of
the actual pi,t.4 Based on our discussion above, and un-
der the assumption that the tag stays within the reader’s
detection field throughout Wi, we can view Si as a bino-
mial sample (of epochs in Wi) and |Si| as a B(wi, p

avg
i)

binomial random variable; thus, from standard probabil-
ity theory, we can express the expectation and variance
of |Si| as:

E[|Si|] = wip
avg
i and Var[|Si|] = wip

avg
i (1− pavg

i).

Next, we discuss how Temporal-SMURF employs this
binomial sampling model to adjust its smoothing win-
dow for per-tag cleaning and accurately detect transi-
tions (e.g., departures of tag i).

Per-Tag Adaptive Window Size Adjustment.
With our binomial sampling model in place, we first
consider the problem of setting Temporal-SMURF’s
window size wi to guarantee completeness. In other
words, we want to ensure that there are enough epochs
in Wi such that tag i is observed if it exists within
the reader’s range. Given the statistical nature of our
model, our guarantees are necessarily probabilistic; that
is, we can set wi to ensure that tag i is read with high
probability, as described in the following lemma.

Lemma 1 Let pavg
i denote the observation probability

for tag i during an epoch. Then, setting the number of
epochs within the smoothing window to be wi ≥ d ln(1/δ)

pavg
i

e
ensures that tag i is observed within Wi with probability
> 1− δ.

Proof: Based on our model of independent Bernoulli
trials for observing tag i, the probability that we miss
a reading from tag i over wi sampling trials is exactly

4 In cases where this homogeneity assumption does not hold
due to a tag moving rapidly away from the reader, our mo-
bile tag detection algorithm (Section 4.5) allows Temporal-
SMURF to appropriately size its window to capture tag dy-
namics.

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 9

(1−pavg
i)wi . Setting this probability ≤ δ and taking logs

gives wi ln(1 − pavg
i) ≤ ln δ. Combining this result with

the inequality −x ≥ ln(1−x) for x ∈ (0, 1), we see that it
suffices to require that −wip

avg
i ≤ ln δ, or, equivalently,

wi ≥ ln(1/δ)
pavg

i
. This completes the proof.

Thus, a window size of wi = d ln(1/δ)
pavg

i
e is sufficient to

guarantee completeness (with high probability). In gen-
eral, due to the weak (logarithmic) dependence on δ,
small settings for δ (i.e., less than 0.1) do not have a
large effect on the overall window size.

While using a smoothing-window size as suggested
by Lemma 1 guarantees completeness (i.e., correct de-
tection of tag i) with high probability, it can also lead to
missing the temporal variation in the underlying signal
(e.g., due to the movements of tag i). Note that in the
per-tag case, we are dealing with a binary signal: either
tag i is there (value = 1) or it is not (value = 0). As
discussed earlier, large smoothing windows can miss sig-
nal transitions, where tag i is mistakenly presumed to
be present in the reader’s detection range due to the in-
terpolation of readings inside the window (Figure 4). In
order to avoid smoothing over transitions and producing
many false positives, Temporal-SMURF needs to accu-
rately determine when tag i exited the reader’s detection
range (as opposed to a period of dropped readings) and
decrease the size of its window. We term this process
transition detection.

Given the unreliability of tag readings, accurate tran-
sition detection is crucial: readings will routinely be lost
(e.g., for tags outside the reader’s major detection re-
gion (Figure 3)), and thus an overly-sensitive transition
detection mechanism can result in failing to compensate
for lost readings. On the other hand, a coarse detection
mechanism can miss true signal transitions, resulting,
once again, in false positives. Temporal-SMURF employs
its binomial sampling model to detect transitions in a
principled manner as statistically-significant deviations
in the observed binomial sample size from its expected
value. More formally, assuming that the current window
size wi and sampling probability pavg

i are not too small,
it follows from a Central Limit Theorem (CLT) argu-
ment that, assuming no transition occurred in the cur-
rent window, the value of |Si| is within ±2

√
Var[|Si|]

of its expectation with probability close to 0.98. Based
on this observation, Temporal-SMURF flags a transition
(i.e., exit) for tag i in the current window if the number
of observed readings is less than the expected number of
readings and the following condition holds5:

||Si| − wip
avg
i | > 2

√
wip

avg
i (1− pavg

i). (1)

5 More conservative, non-CLT-based probabilistic criteria,
e.g., based on the Chebyshev or Chernoff bounds [42], can
also be used here.

Estimating Data Quality for Cleaned Per-Tag
Readings. Through its principled, statistical sampling
framework, Temporal-SMURF can also compute and
attach uncertainty estimates for each tag reading
emitted to higher-level applications. More specifically,
consider the value |Si| for tag i in the current window,
and let wip

avg
i − |Si| = η, where η does not satisfy the

transition condition (1) above. Then, we can attach an
uncertainty indicator with the emitted reading of tag i,
indicating our level of confidence in the presence of tag
i (during the window). This is done by estimating an
upper bound on the probability

Pr[wip
avg
i − |Si| = η | tag i is present]

< Pr[|wip
avg
i − |Si|| ≥ η | tag i is present].

Such upper bounds can be estimated based on either
a CLT argument using the η-percentiles of the Normal
distribution, or standard tail inequalities for the binomial
distribution, such as Chernoff bounds [42]. For instance,
using Chernoff bounds, we have

Pr[|wip
avg
i − |Si|| ≥ η | tag i is present]

≤ 2e−η2/(2wip
avg
i).

For our experimental evaluation (Section 5), we use
the above equation based on Chernoff bounds to compute
Temporal-SMURF’s uncertainty estimates.

SMURF Per-Tag Cleaning Algorithm. A pseudo-
code description of Temporal-SMURF’s adaptive per-tag
cleaning algorithm is depicted in Algorithm 1. Temporal-
SMURF employs the common Additive-Increase/Multi-
plicative-Decrease (AIMD) paradigm [13] to adjust its
window size for each tag i, based on guidance from its
binomial-sampling model as discussed above.6

Algorithm 1 Temporal-SMURF Adaptive Per-Tag
Cleaning
Require: T = set of all observed tag IDs

δ = desired completeness confidence
∀i ∈ T, wi ← 1
while (getNextEpoch()) do

for (i in T) do
processWindow(Wi)
w∗

i ← completenessSize(pavg
i , δ) // Lemma 1

if (w∗
i > wi) then

wi ← max{min{wi + 1, w∗
i }, 1}

else if (detectTransition(|Si|, wi, pavg
i)) then

wi ← max{min{wi/2, w∗
i }, 1}

end if
end for

end while

Temporal-SMURF runs its sliding-window smooth-
ing for each observed tag i. The window size is initially
set to one epoch for each tag, and then adjusted dynami-
cally based on observed readings. (If at any point during

6 Note that our algorithm uses only simple mathematical
operations; thus, the overhead beyond traditional smoothing
techniques is minimal.

10 Shawn R. Jeffery et al.

(a)Normal sliding window processing for tag
i in Temporal-SMURF. At each epoch,
Temporal-SMURF emits a reading with a
timestamp corresponding to the midpoint of

the window.

(b)Ensuring completeness. In the
left-most window, the pavg

i de-
mands a larger window such
that the tag has a high proba-
bility (1 − δ) of being detected.
Thus, the window size is in-

creased.

(c)Transition detection. In the
left-most window, the num-
ber of readings indicates a
statistically-significant devi-
ation given the pavg

i . Thus,
a transition is likely to have
occurred so the window is

halved.

Fig. 6 Graphical depiction of per-tag cleaning in Temporal-SMURF.

processing Temporal-SMURF sees an empty window for
a tag, it resets its window size to one epoch.)

During each new epoch, and for each tag i, Temporal-
SMURF starts by processing the readings of tag i inside
the window Wi (processWindow(Wi)). This processing
includes estimating the required model parameters for
tag i (e.g., pavg

i , |Si|) using tag-list information as well
as emitting an output reading for tag i if there exists at
least one reading within the window. Then, Temporal-
SMURF consults its binomial-sampling model to deter-
mine the number of epochs necessary to ensure complete-
ness with high probability (completenessSize(pavg

i , δ)),
based on Lemma 1. If the required size w∗

i exceeds the
current window size wi = |Wi|, Temporal-SMURF grows
its current window size for tag i additively. This additive
window growth rule allows Temporal-SMURF to incre-
mentally monitor the tag’s readings as the window grows
and thus remain responsive to changes in the underlying
signal.

If the current window size satisfies the completeness
requirement, then Temporal-SMURF tries to detect if a
transition occurred during Wi (detectTransition(|Si|,
wi, pavg

i)), based on Condition (1). If a transition is
flagged, Temporal-SMURF multiplicatively decreases
the size of its current smoothing window for tag i (i.e.,
divides it in half). By multiplicatively decreasing its
window size, Temporal-SMURF can quickly react to
detected transitions, while at the same time avoiding
over-reaction in the unlikely event of an incorrect
transition detection. Of course, if the completeness
requirement is met and no transition is detected,
Temporal-SMURF continues with its current window
size for tag i.

To summarize, Figure 6 graphically depicts some
example scenarios in Temporal-SMURF’s basic per-tag
cleaning scheme.

4.4 Adaptive Multi-Tag Aggregate Cleaning

In many real-world RFID scenarios, applications need to
track large populations of tags, typically in the several

hundreds or thousands. In addition, applications often do
not require information for each individual tag, and only
need to track simple aggregates (e.g., counts or averages)
over the entire tag population. For instance, a retail-store
monitoring application may only need to know when the
count of items on a shelf drops below a certain threshold.

An “obvious” cleaning approach in such scenarios
is to apply Temporal-SMURF’s per-tag cleaning algo-
rithms (Section 4.3) for each individual tag in the pop-
ulation and then aggregate the results across individ-
ual smoothing filters for each epoch. Such a solution,
however, potentially suffers from underestimation bias:
tags not read at all in a window will not be counted.
Additionally, this approach incurs overhead: Temporal-
SMURF needs to continuously track and dynamically
adapt the window for each individual tag; furthermore,
many window adjustments can happen (e.g., with mobile
tags) even though the underlying aggregate signal (e.g.,
population count) remains stable. To avoid these prob-
lems, Temporal-SMURF employs statistical-estimation
techniques to accurately estimate the population count
without cleaning on a per-tag basis.

Random-Sampling Model and Estimators for
Multi-Tag Aggregates. Consider the problem of
estimating the count of the tag population over a
window of size w epochs (say, W = (t−w, t]). As earlier,
we use pavg

i to denote the average empirical sampling
probability for tag i during W (i.e., the average read
rate over all observations of i in W derived from the
reader’s tag list information). Temporal-SMURF views
each epoch as an independent “sampling experiment”
(i.e., Bernoulli trial) with success probability pavg

i ; thus,
the overall probability of reading tag i at least once
during W is estimated as:

πi = 1− (1− pavg
i)w. (2)

Again, the size w of the smoothing window plays a crit-
ical role in capturing the underlying aggregate signal: a
large w ensures completeness (i.e., all πi’s are close to 1),
but a small w is often needed to ensure that the variabil-
ity in the population count is adequately captured. Un-
fortunately, compromising on completeness implies that

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 11

RFID smoothing algorithms that simply report the ob-
served readings count can suffer from consistent under-
estimation errors.

Temporal-SMURF employs its unequal-probability
random sampling model to correct for this under-
estimation bias through the use of π-estimators (also
known as Horvitz-Thompson estimators) [54] to ap-
proximate population aggregates.7 Specifically, let
SW ⊆ {1, . . . , NW } denote the subset of observed (i.e.,
sampled) RFID tags over the window W (NW denotes
the true count), with sampling probabilities determined
by Equation (2). The π-estimator for the population
count based on the sample SW is defined as:

N̂W =
∑

i∈SW

1
πi

.

In other words, the count π-estimator weights each
sample point i with its sampling probability πi. The rea-
son for this is fairly intuitive: if tag i, which is observed
with probability πi, appears once in the sample, then, on
average, we expect to have 1/πi tags with similar prob-
abilities in the full population (since πi · 1/πi = 1); thus,
the single occurrence of tag i in the sample is essentially
a “representative” of 1/πi tags in the full population.

The N̂W π-estimator is unbiased (correct on expec-
tation); that is, E[N̂W] = NW [54]. Thus, by weight-
ing with sampling probabilities, Temporal-SMURF’s π-
estimator techniques correct for the underestimation bias
of conventional smoothing schemes in a principled, sta-
tistical manner (even for small smoothing window sizes).
Similar calculations show that, assuming independence
across different tags, the variance of N̂W is estimated
by [54]:

V̂ar[N̂W] =
∑

i∈SW

1− πi

π2
i

. (3)

Of course, even though Temporal-SMURF guarantees
unbiasedness, as the window shrinks, the observed
sample size and corresponding πi’s also drop, resulting
in possibly lower-quality (high-variance) π-estimators.
As our experimental results demonstrate, Temporal-
SMURF’s π-estimation algorithms still significantly
outperform conventional smoothing algorithms in such
“difficult” settings.

Adaptive Window Size Adjustment for Multi-
Tag Aggregates. As in the single-tag case, we first
consider the problem of upper-bounding Temporal-
SMURF’s smoothing window in a manner that results

7 Although our discussion here focuses primarily on tag
counts, Temporal-SMURF’s π-estimator scheme for adaptive
multi-tag cleaning can be easily extended to other aggregates.
For instance, if our goal is to estimate the sum of some mea-
sure (e.g., temperature) over the underlying tag population,
then the contribution of tag i to our π-estimator formula be-
comes yi

πi
, where yi is the measured quantity of interest.

in reasonably complete readings over the reader’s
detection range. Let SW denote the sample of (distinct)
tags read over the current smoothing window W , and let
pavg =

∑
i∈SW

pavg
i /|SW | denote the average per-epoch

sampling probability over all observed tags. Following
a rationale similar to that used in Lemma 1, we set
the upper bound for Temporal-SMURF’s smoothing
window size for multi-tag aggregate cleaning at w =
d ln(1/δ)

pavg e; in other words, for completeness, we require
that the “average tag” in the underlying population
is read with high probability (≥ 1 − δ). Note that
a more pessimistic window-size estimate would use
the minimum of the pavg

i s in the above calculation
to ensure that the “worst” tag is read; however, since
Temporal-SMURF employs π-estimators to correct for
missed readings, such a pessimistic window could result
in over-estimation errors.

Temporal-SMURF also employs its random-sampling
model and π-estimator calculations in order to dynam-
ically adapt its smoothing window size to accurately
capture the temporal variation in the population count
(analogous to transition detection in the per-tag case).
The key observation here is that Temporal-SMURF can
detect transitions in the underlying aggregate signal as
statistically-significant changes in its aggregate estimates
over sub-ranges of its current smoothing window. Specif-
ically, assume W = (t − w, t] is the current window,
and let W ′ = (t − w/2, t] denote the second half of W .
Also, let N̂W and N̂W ′ denote the π-estimators for the
tag population counts during W and W ′, respectively.
Under similar CLT-like assumptions as in Section 4.3,
we have that the corresponding true population counts
(NW and NW ′) satisfy NW ∈ N̂W ± 2

q
V̂ar[N̂W] and

NW ′ ∈ N̂W ′ ± 2

q
V̂ar[N̂W ′] with high probability. Based

on these observations, Temporal-SMURF detects that
a statistically-significant transition in population count
has occurred in the second half of W if the following
condition is satisfied:

|N̂W − N̂W ′ | > 2
(√

V̂ar[N̂W] +
√

V̂ar[N̂W ′]
)

. (4)

The above condition essentially asserts that the dif-
ference |NW −NW ′ | of true counts is non-zero with high
probability.

There are two important points to note here.
First, remember that the key problem with adaptive
smoothing-window sizing is to correct for false-positive
readings due to a large window W and a drop-off in the
true number of tags in the detection range over W . (An
increase in the tag count over W is always “caught”,
regardless of the current window size, since the observed
new readings are by default interpolated throughout
the smoothing window.) Condition (4) attempts to
accurately capture such significant drop-offs within
the current window, and allows Temporal-SMURF to
adaptively shrink its smoothing window size. Second,

12 Shawn R. Jeffery et al.

while Condition (4) with W ′ = (t − w/2, t] is sufficient
to identify count changes that persist for at least w/2
epochs within the smoothing window, it may still miss
transitions that last for < w/2 epochs. A more general
solution here is to check Condition (4) for a series of
dyadic-size windows W ′ = (t − w/2i, t] (i = 1, 2, . . .) at
the tail end of W and signal a transition whenever one
of these conditions is satisfied. Note that, as we slide
W across time, any transition is initially located at the
tail end of W and thus can be discovered by the above
technique. The caveat here is that as the sub-range
within W decreases, the variability of the N̂W ′ estimate
goes up, making it difficult to detect very short-lived
transitions. Our empirical results demonstrate that
using Condition (4) for just the second-half window
W ′ = (t − w/2, t] is sufficient to provide accurate
population-count estimates to applications.

Estimating Data Quality for Cleaned Multi-Tag
Readings. Similar to the single-tag case, Temporal-
SMURF’s statistical sampling foundation allows for
uncertainty indicators to be attached to derived π-
estimates and emitted to higher-level applications. In
the multi-tag case, such indicators take the form of ap-
propriate confidence intervals for the N̂W π-estimators
based on their unbiasedness and observed sample
variances. Such intervals can be computed through
standard probabilistic methods, e.g., using the Normal
distribution based on CLT arguments, or using the
(more conservative) Chebyshev bound [42]:

Pr[|N̂W −NW |] ≥ η] ≤ V̂ar[N̂W]
η2

.

For Temporal-SMURF’s confidence interval, η, we
use the following equation based on the Chebyshev
bound above:

η =

√
V̂ar[N̂W]

α
, (5)

where 1−α is the desired confidence level; that is, for
(1 − α) percent of the readings reported by Temporal-
SMURF, we expect the true value of the tag count ag-
gregate to be in the range N̂W ± η.

SMURF Multi-Tag Cleaning Algorithm. Algo-
rithm 2 depicts the pseudo-code for Temporal-SMURF’s
multi-tag cleaning scheme that incorporates the above
techniques. Similar to per-tag cleaning, Temporal-
SMURF uses AIMD to adjust its smoothing window
size; however, in contrast to the per-tag case, only a
single window W is maintained (and adapted) for all
observed tags.

For each epoch, Temporal-SMURF starts by process-
ing the readings in the window W (processWindow(W)).
This involves computing key window parameters (e.g.,

Algorithm 2 Temporal-SMURF Adaptive Multi-Tag
Cleaning
Require: δ = desired average completeness confidence

w ← 1
while (getNextEpoch()) do
processWindow(W)
W ← slideWindow(w)
w∗ ← completenessSize(pavg, δ) // Lemma 1

if (detectTransition(N̂W ,N̂W ′ ,V̂ar[N̂W],V̂ar[N̂W ′]))
then

wi ← max{min{wi/2, w∗
i }, 1}

else if (w∗ > w) then
wi ← max{min{wi + 1, w∗

i }, 1}
end if

end while

pavg, N̂W ′ , V̂ar[N̂W ′]), determining the aggregate contri-
bution from each tag (1/πi), and calculating (and sub-
sequently emitting) the estimated tag count (N̂W) using
π-estimation.

The window is then checked for a statistically-
significant change in the count estimate in its sec-
ond half (detectTransition (N̂W , N̂W ′ , V̂ar[N̂W],
V̂ar[N̂W ′])) based on Condition (4). If a change is
detected, Temporal-SMURF halves its window size.
Otherwise, Temporal-SMURF checks if the current
window meets the completeness requirement based on
the average tag detection probability pavg and grows its
window additively, if necessary.

Note that the ordering of the increasing and decreas-
ing phases in Algorithm 2 is reversed from the per-tag
case. Since Temporal-SMURF’s π-estimation scales-up
readings in a window to estimate the underlying tag pop-
ulation, the completeness requirement (i.e., a large win-
dow) is not as crucial for accurate estimation as in the
single-tag case (where a missed reading causes a 100%
error). Thus, multi-tag processing in Temporal-SMURF
focuses primarily on capturing transitions in the aggre-
gate and uses π-estimation to compensate for small win-
dows in an unbiased manner.

4.5 Mobile Tag Detection

Here we present an enhancement to Temporal-SMURF
processing that applies to both per-tag and multi-tag
cleaning.

Tags that are detected far away from the reader with
a low probability can force Temporal-SMURF to use
a large smoothing-window (based on Lemma 1). While
large windows are necessary to accurately detect static
tags placed far from the reader, they can cause problems
in environments where tags are mobile. For per-tag clean-
ing, a mobile tag detected with a low pi,t just before it
leaves the reader’s detection range causes a large number
of false positives since it forces an abnormally large win-
dow. In the multi-tag case, a similar reading results in an
overly large contribution to the overall count estimate,
and thus a large over-estimation error.

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 13

To alleviate the effects of low pi,ts produced by
mobile tags, we enhance Temporal-SMURF with a
pre-processing stage that recognizes mobile tags that
are exiting the detection range and reacts accordingly.
This stage, termed mobile tag detection, monitors
individual tag pi,ts and attempts to determine when
low detection probabilities are caused by an exiting
mobile tag (as opposed to a static remote tag, which
should force a large window). Mobile tag detection uses
a simple heuristic: tags that are read with consistently
falling pi,ts are likely to be moving away from the reader
and, thus, may be exiting the detection range soon.
Such readings with low pi,t values are filtered out by
Temporal-SMURF’s mobile tag detector.

Temporal-SMURF’s mobile tag detection algorithm
forms a best-fit line using least squares fitting with the
observed pi,ts in the window. Using the slope of this line
(in units of ∆pi,t

epochs), Temporal-SMURF calculates a fil-
ter threshold as filterThresh = ε − slope · wmd. This
threshold is a value of pi,t for which it is estimated that
the pi,t for the tag will drop below some value ε in the
next wmd epochs, where wmd is wi in the per-tag case
and w in the multi-tag case. The reason the algorithm
looks ahead wmd epochs is intuitive: the larger the win-
dow the greater the potential for false positives if the
tag exits; thus, Temporal-SMURF more aggressively fil-
ters readings when the window size is large. Using ε = 0
yields a good indication of whether the tag will be exit-
ing the detection range soon. Mobile tag detection filters
all readings for mobile tags whose pi,ts fall below this
threshold, thus preventing such readings from adversely
influencing the window size calculation or count estima-
tion.

5 Experimental Evaluation

In this section, we experimentally evaluate Temporal-
SMURF’s data cleaning techniques. For both per-tag
and multi-tag cleaning, we illustrate two key points: (1)
there is no single static window that works well in the
face of fluctuating tag movement, reader unreliability, or
both; and (2) across a range of environments with dif-
ferent levels of tag movement and reader unreliability,
Temporal-SMURF’s cleaning techniques produce an ac-
curate stream of readings (both individual tag IDs and
counts) describing tags in the physical world.

5.1 Experimental Setup

In order to run experiments across a wide variety of sce-
narios, we built a data generator to produce synthetic
RFID streams given realistic configurations of tags and
readers.

Reader Detection Model. The data generator is
based on RFID reader detection regions as observed in

the tests described in Section 3. We simplify a reader’s
detection field to derive a model of RFID readers as
shown in Figure 7.

Fig. 7 Reader model and tag behavior for the RFID data
generator.

The model uses the following parameters to capture
a wide variety of reader behavior under different condi-
tions:
– DetectionRange: the distance in feet from the reader

to the edge of the reader’s detection range.
– MajorPercentage: the percent of the reader’s overall

detection range that is the major detection region.
– MajorReadRate: the read rate (i.e., the probability of

detection) of a tag within the major detection region.
While our experimental studies show that the read
rate in the minor detection region has high variance
(Section 3), for the sake of simplicity we model the
read rate in this region as a linear drop-off from the
end of the major detection region to the end of the
reader’s detection range. We ran additional tests
where we introduced variance into the read rate
in the minor detection region; these experiments
yielded similar results to those presented here.

Tag Behavior. We randomly place NumTags tags uni-
formly between 0 and 20 feet from the reader along its
central axis. Here we have detailed data describing the
read rate of the readers along this axis as described in
Section 3. By moving the tags along this axis, we can gen-
erate readings with pi,ts corresponding to many types of
movement. For instance, the pi,ts of readings produced
by a tag passing through an RFID-enabled door can be
generated by moving a tag from outside DetectionRange

to directly in front of the reader, and then back to out-
side DetectionRange.

Tags move between 0 and 20 feet following one of two
behaviors representative of a range of RFID applications:
1. Pallet : All tags have the same velocity. This simulates

grouped tags, such as tagged items on a pallet.
2. Fido: Each tag chooses a random initial velocity (uni-

form between 1 and 3 feet/epoch). Note that the av-
erage velocity, 2 feet/epoch, is roughly equivalent to
conveyor-belt speed [61]. Every 100 epochs, on av-
erage, each tag switches from a moving state to a

14 Shawn R. Jeffery et al.

resting state (and vice versa). When a tag resumes
movement, it chooses another random velocity be-
tween 1 and 3 feet/epoch. This behavior simulates
tracking environments such as a digital home, where
each tag displays independent random behavior.

Data Generation. We run the generator for
NumEpochs epochs.8 At each epoch, the generator
determines which tags are detected based on the read
rate at each tag’s location relative to the reader. It
then produces a set of readings containing a tag ID,
epoch number, and the tag’s pi,t (the read rate at which
the reader read the tag). Additionally, the generator
produces the set of all tags within the reader’s detection
range at each epoch to serve as the reality against which
we compare the output of each cleaning mechanism.

Table 2 summarizes the experimental parameters we
use to produce synthetic RFID data traces. We manip-
ulate the other parameters as part of these experiments.
The settings for the RFID detection model were chosen
as they represent the average of the reader/tag combi-
nations we profiled. Recall from Section 3 the average
read rate drops to around 0.8 with multiple tags in the
reader’s detection field; we set MajorReadRate to reflect
this behavior.

Parameter Value

DetectionRange 15 feet
MajorReadRate 0.8
MajorPercentage varied
NumTags 25 (per-tag), 100 (multi-tag)
V elocity varied
NumEpochs 5000 epochs

Table 2 Experimental parameters.

Smoothing Schemes. We clean the data produced by
the generator using Temporal-SMURF as well as various-
sized static smoothing-window schemes. We denote each
fixed-window scheme as Static-x, where x is the size of
the window in epochs (1 epoch ≈ 0.2 seconds).

5.2 Per-Tag Cleaning Experiments

The first set of experiments examine cleaning techniques
that report individual tag ID readings. We analyze the
performance of different cleaning schemes as the envi-
ronment changes in terms of tag movement and reader
reliability.

Our evaluation metric for per-tag cleaning is av-
erage errors per epoch. An error is a reading that
indicates a tag exists when it does not (a false pos-
itive), or a (lack of) reading where a tag exists, but
is not reported (a false negative). The average errors
per epoch is calculated as

PNumEpochs
j=1 (FalsePos-

itivesj + FalseNegativesj)/NumEpochs. This metric
8 To eliminate effects caused by the start or end of the

trace, we run the generator for an additional 300 epochs and
omit the first and last 150 epochs from our measurements.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

E
rr

or
s

pe
r e

po
ch

Major detection region percent

SMURF

raw

Static-25

Static-10

Static-2

Static-5

raw
Static-2

Static-5
Static-10

Static-25
SMURF

Fig. 8 Average errors per epoch as MajorPercentage varies
from 0 to 1 with tags following Fido behavior.

captures both types of errors in one metric that allows
us to easily compare the effectiveness of each scheme.

Experiment 1: Varied Reader Reliability. In the
first test, we determine how each technique reacts to
different levels of reader unreliability. We move tags
using Fido behavior and vary the major detection
region percentage. At each value for MajorPercentage

between 0 and 1, we measure the average errors per
epoch produced by each scheme (recall that a lower
value for MajorPercentage corresponds to a more
unreliable environment). Figure 8 shows the results of
this experiment.

As can be seen, when the major detection region per-
centage is 0 (a noisy environment), the large windows do
comparatively well, producing around 4 errors per epoch
(i.e., misreporting about 4 tags out of 25 per epoch, on
average). We truncate the traces for raw and Static-
2 due to their poor performance. As MajorPercentage

increases, the accuracy of all schemes improves due to
more reliable raw data. When the major detection region
makes up the entire detection field (MajorPercentage =
1), the small windows are competitive; Static-2 misre-
ports slightly more than 1 tag out of 25 per epoch, on
average.

In this experiment, Temporal-SMURF cleaning has
the lowest errors per epoch across the entire range of
environments. Its relative performance is particularly
good in this case because of its partitioned smoothing:
it adapts, on a per-tag basis, to each tag’s independent
random behavior. Static windowing schemes that use a
single window for all tags cannot capture this variation.

To further investigate the mechanisms behind each
smoothing scheme, we drill-down on a 200 epoch trace of
this experiment. We focus on readings produced from a
single tag ID in a noisy environment: the major detection
region percentage is set to 0 (the left-most x-value in
Figure 8). The readings produced by the reader in this
scenario are particularly challenging to clean as the data
are highly unreliable and the tag sporadically moves at

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 15

Reality

Raw

Static 10

Static 25

SMURF

 2150 2200 2250 2300 2350
Time (epoch number)

A

40

30

20

10

0

W
in

do
w

 s
iz

e

20

15

10

5

0

Ta
g

di
st

an
ce Detection range

Fig. 9 A 200-epoch trace of different mechanisms cleaning the readings from a single tag moving with Fido behavior.

a high velocity: a smoothing scheme must be able to
discern between periods of dropped readings and periods
when the tag is transiently absent.

Figure 9 shows this time-line. The top subsection
of the figure shows the tag’s distance relative to the
reader: the tag moves with a high velocity for a pe-
riod, stops (at point A) for a period at the edge of
the detection field, and then resumes movement. The
middle subsection of the graph shows reality (e.g., the
readings that would have been produced by a perfect
reader), readings produced by the best two static win-
dow smoothing schemes (according the Figure 8), and
the output of Temporal-SMURF. The bottom subsection
shows Temporal-SMURF’s window size over the course
of the trace.

During the first period, the tag rapidly moves in and
out of the detection field; the challenge for any smooth-
ing scheme is to accurately capture this movement. Both
static windows, however, fail to capture all of the tag’s
transitions. In the worst case, Static-25 continuously re-
ports the tag as present. Smaller windows would catch
these transitions, but would perform worse during the
second phase of this trace.

At point A, the tag stops at the edge of the detection
range, causing the reader to infrequently report the tag.
Static-10 fails to report the tag’s behavior due to lack
of readings: according to Static-10, the tag is still mov-
ing. Static-25 accurately reports the tag’s presence only
because it reports the tag’s existence continuously.

Temporal-SMURF, in comparison, captures the high-
level behavior of the tag during the entire trace. During
the first phase of tag movement, it keeps its window size
small, as can be seen at the bottom of the figure, and
accurately reports that the tag is moving; it succeeds at
catching all transitions. Once the tag stops, Temporal-
SMURF grows its window in reaction to the unreliable
readings it receives during this period. Thus, Temporal-
SMURF accurately reports the tag as present despite the
severe lack of readings.9

9 Note that there is a short period just after point A where
all schemes fail to report the tag while it exists. During this

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2

E
rr

or
s

pe
r e

po
ch

Tag velocity (ft/epoch)

SMURF

raw

Static-25

Static-10

Static-2

Static-5

raw
Static-2

Static-5
Static-10

Static-25
SMURF

Fig. 10 Average errors per epoch as tag velocities vary from
0 to 2 feet/epoch following Pallet behavior.

Experiment 2: Varied Tag Velocity. Next, we
measure each scheme’s effectiveness as the tag velocity
changes. We fix the MajorPercentage at 0.7 (represent-
ing a controlled environment) and move tags with Pallet
behavior. At each velocity from 0 and 2 feet/epoch, we
measure the average errors per epoch produced by each
scheme. Figure 10 shows the results of this experiment.
Additionally, we measure separately the average false
positives and average false negatives produced per epoch
by each scheme, shown in Figure 11.

The results illustrate the challenge in setting a static
smoothing window. As we increase the tag velocity, there
is no single static window that does consistently well.
Static-25 and Static-10 do well when the tags are mo-
tionless by eliminating many of the dropped readings
(they miss less than 1 tag out of 25 every other epoch,
on average). As the tags speed up, however, the perfor-
mance of the large windows degrade due to many false
positives. The reason the errors for the two large win-

period, the reader produces no readings; no scheme without
foreknowledge of the tag’s motion can report the tag before
it is read.

16 Shawn R. Jeffery et al.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2

F
al

se
 p

os
iti

ve
s

pe
r

ep
oc

h

Tag velocity (ft/epoch)

raw
Static-2

Static-5
Static-10

Static-25
SMURF

(a)Average false positives per epoch.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2

F
al

se
 n

eg
at

iv
es

 p
er

 e
po

ch

Tag velocity (ft/epoch)

raw
Static-2

Static-5
Static-10

Static-25
SMURF

(b)Average false negatives per epoch.

Fig. 11 Average errors per epoch as tag velocities vary from 0 to 2 feet/epoch following Pallet behavior, separated into
false positives and false negatives.

dows drop at higher velocities is because at that point
they continuously report all tags as present. Thus, while
they produce a large number of false positives, they pro-
duce few or no false negatives.

On the other hand, the smaller windows (Static-2
and Static-5), aren’t able to fully compensate for lost
readings. As the tag velocity increases, these schemes
become comparatively better by filling in some of the
missed readings without producing many false positives.
Static-5, however, performs poorly at high tag speeds due
to false positives. In a deployment where tags move with
different velocities or change velocities over the course of
time, an application cannot set a single static smoothing
window that captures the variation in tag movement to
provide accurate data.

Temporal-SMURF, in contrast, consistently performs
well as the tags increase speed. When the tags are mo-
tionless, it removes many of the false negatives and is
competitive with the large window schemes.

As the tags increase velocity, Temporal-SMURF is
able to generally track the best static window. At low
velocities, Temporal-SMURF does well, but not as well
as Static-5. Here, tags are not moving fast and thus mo-
bile tag detection has little effect. As a result, Temporal-
SMURF’s binomial sampling scheme occasionally sets its
window too large: it produces roughly twice as many
false positives as Static-5 at lower velocities. As the tags
speed up, however, mobile tag detection filters readings
from tags that are exiting and thus reduces the false
positives. As can be seen in Figure 11, from tag veloci-
ties of 1 to 1.25 feet/epoch both Temporal-SMURF and
Static-5 show similar increases in false negatives, but
Temporal-SMURF produces only 2/3rds the false posi-
tives as Static-5.

At the highest velocities, Static-2 performs better
than Temporal-SMURF. Here, the tag velocity is ap-
proaching a fundamental limitation for any detection
scheme: if the time between transitions is smaller than

the window size, then the transition will be lost. In our
setup, at 2 feet/epoch the time between transitions is
5 epochs. Thus, for a smoothing scheme to be able to
detect a transition, the window size must be set smaller
than 5 epochs. In this experiment (MajorReadRate =
0.8, MajorPercentage = 0.7), Temporal-SMURF uses an
average window size (without transition detection or mo-
bile tag detection) of d ln(1/δ)

pavg
i

e = d ln(1/0.05)
0.68 e = 5. Thus,

the tag velocity in this case is at Temporal-SMURF’s
limit; transition detection and mobile tag detection pre-
vent it from breaking down completely.

Experiment 3: δ as a Declarative Parameter.
While the primary contribution of Temporal-SMURF is
the removal of the imperative window size parameter
from RFID data cleaning, Temporal-SMURF provides a
parameter δ, where (1− δ) is the probability of reading
a tag if it exists, that allows the application to declare
a preference for reduced false positives or reduced false
negatives.

To analyze how the value for this parameter affects
Temporal-SMURF cleaning, we run Temporal-SMURF
with different values for δ. For this experiment, we set
MajorPercentage to 0.7 and move tags with Fido be-
havior. Given that the dependence on δ of the binomial
sampling approach used by Temporal-SMURF is weak
(logarithmic), using a small δ is common practice. Thus,
we vary δ between 0.1 (90% completeness) to 0.01 (99%
completeness). The results are shown in Figure 12. We
ran this experiment with multiple tag and reader char-
acteristics; all experiments produced similar results.

First of all, notice that the value of δ has very lit-
tle impact on the overall number of errors Temporal-
SMURF produces. This means that an application that
does not tune δ will not be adversely affected by choosing
a standard value (e.g., 0.05).

Second, δ is a declarative parameter that allows an
application to express what data it wants; Temporal-

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 17

 0

 0.5

 1

 1.5

 2

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

E
rr

or
s

pe
r e

po
ch

δ	

False positives False negatives Total

Fig. 12 Errors per epoch using different values of δ.

SMURF then determines how to produce that data. If
an application, such as an RFID-enabled doorway, de-
sires responsiveness (low false positives), it can set δ
closer to 0.1, in which case Temporal-SMURF sets its
window smaller. Conversely, an application (e.g., shelf-
monitoring) that desires completeness (less false nega-
tives) can set δ closer to 0.01 causing Temporal-SMURF
to grow its window larger to meet the completeness re-
quirement. In either case, the value of δ has little impact
on overall error.

Experiment 4: Accuracy of Uncertainty Esti-
mates. Here we measure the accuracy of Temporal-
SMURF’s uncertainty estimation. For this experiment,
we use the same setup as in Experiment 2: we set
MajorPercentage at 0.7 and move tags with Pallet
behavior at varying speeds. At each tag velocity, we
measure the accuracy of the uncertainty estimate.
Accuracy measures how close the estimate is to reality,
where reality is 1 if the tag is in the reader’s detection
field for the given epoch, 0 if it is not. If we denote
a reading’s uncertainty estimate as conf , then for
correct readings the accuracy is defined as conf , and for
incorrect readings the accuracy is defined as (1− conf).

For Temporal-SMURF’s estimation strategy, we
assign an uncertainty estimate based on the Chernoff
bound as described in Section 4. We denote this
strategy as Chernoff. We compare the accuracy of
Temporal-SMURF’s uncertainty estimation to three
other strategies. The first comparison strategy, Percent,
assigns a confidence based on the percent of positive
readings in a window: conf = |Si|

wi
. Strategy Average

simply assigns a confidence using the average of the de-
tection probabilities: conf = pavg

i . The third algorithm
we compare, Unit, assigns unit uncertainty estimates to
every output reading: conf = 1.

The results are shown in Table 3, reported as the
average accuracy of the uncertainty estimates across all
environments. Strategies Average and Percent perform
poorly as they tend to assign quality estimates that are
too low. Both Chernoff and Unit perform well. Unit per-

Strategy Average accuracy

Percent 0.73 (0.04)
Average 0.59 (0.02)
Unit 0.94 (0.03)
Chernoff 0.95 (0.01)

Table 3 Average accuracy of different mechanisms for esti-
mating uncertainty across a range of tag velocities. The stan-
dard deviation is in parenthesis.

forms well due to the fact that Temporal-SMURF is very
successful at producing clean data. In a sense, the goal of
Temporal-SMURF is to produce readings of confidence 1,
so it is no surprise that Unit performs well. Chernoff, on
the other hand, achieves the highest accuracy by assign-
ing high confidence to true positive readings and lower
confidence to false positive readings.

Experiment 5: Experiences with Real RFID
Data. The previous experiments were based on a gener-
ator that created RFID data based on a simple model.
Real-world RFID data does not follow this model
exactly. Here we describe our experiences with real
RFID data and the performance of cleaning mechanisms
on this data. First, we collect real RFID data under
varying circumstances and examine how it differs from
the model used in our generator. Second, we show that
Temporal-SMURF’s cleaning techniques are robust to
any discrepancies.

For these experiments, we recreate the conditions
used in Experiment 2 through an RFID testbed de-
ployed in the controlled environment from Section 3
using an Alien reader [4] and a single Alien “I2” [5] tag
suspended in the same plane as the antenna. We gather
data using tag velocities ranging from 0 to 2 feet/epoch.
For the motionless tag test, we average results from
data collected every 0.5 feet from 0 to 15 feet (the
reader’s detection range is approximately 15 feet). For
the mobile tag tests, we move the tag back and forth
between 0 and 20 feet from the reader. For tag velocities
we are unable to produce in our testbed (1.5 and 2
feet/epoch) we collect data at lower velocities and then
speed up the data traces. All runs are performed for
2000 epochs (≈ 400 seconds). Additionally, we collect
limited traces from two reader positions in the noisy
environment, differing by ≈ 5 feet.

During the course of these experiments, we discovered
that real RFID data differ from our model in two main
ways. First, if the reader is deployed near obstacles (e.g.,
walls), its detection field does not follow the same shape
as seen in all other positions: it is much more irregular.
The detection field for a reader deployed close to a wall
and metal desks, for instance, has multiple high and low
detection regions. Such behavior argues for an adaptive
approach to data cleaning: very small changes in the en-
vironment can cause dramatic changes in RFID reader
and thus necessitates changes to any static windowing
scheme.

Real RFID data differ from our model in another
important way: the reader occasionally produces many

18 Shawn R. Jeffery et al.

more or many less readings than expected based on the
reported pi,t. For instance, the reader occasionally pro-
duces many readings with a very low pi,t (e.g., 0.1) in
a window; Temporal-SMURF is robust to such cases. In
rare cases, a tag statically placed at very specific dis-
tances relative to the reader (e.g., ≈ 12 feet ± 2 inches
for one of the reader positions) will cause the reader to
occasionally produce only one reading in 5-10 epochs,
but report the pi,t of the reading as greater than 0.8.
Based on this pi,t, it is expected to see roughly 8 readings
in a window of 10 epochs. In such cases, the Temporal-
SMURF algorithm mistakenly signals a transition and
shrinks the window, causing many false negatives (e.g.,
12% dropped readings versus 10% for Static-10 and 2%
for Static-25). As such behavior occurs rarely and only
in very specific locations with static tags, we do not ex-
pect this to be a problem in practice. If necessary, the
δ parameter can be used to help alleviate the effects of
these types of readings: by setting δ to 0.01, the dropped
readings are reduced to 6%.

Finally, these tests confirm our two key points. Across
the different speeds and environments, there is no single
static window that works uniformly well. At high speeds
in the controlled environment, Static-2 works very well,
while it falters at slow speeds and in the noisy environ-
ment. On the other hand, Static-25 works very well with
a motionless tag, but performs poorly when the tag starts
moving. In contrast, Temporal-SMURF handles all of
these cases well. When the tag moves fast in the con-
trolled environment, it closely follows Static-2 while at
the same time competing with Static-25 when the tag
is motionless. On average, Temporal-SMURF performs
the best: for instance, in the controlled environment,
Temporal-SMURF averages 0.05 errors per epoch, com-
pared to 0.06 for Static-2 and Static-5, 0.14 for Static-10,
and 0.18 for Static-25.

Due to the difficulty in running controlled experi-
ments with RFID technology, for the remainder of the
experiments we use synthetic data streams.

5.3 Multi-Tag Aggregate Cleaning Experiments

As stated in Section 4.4, many applications only need a
count of the tagged items in the area. Here we compare
techniques for accurately counting the number of tags in
a reader’s detection field.

We show the same static windowing schemes as
the previous experiments (Static-2, Static-5, Static-10,
Static-25). For count aggregates, these schemes use the
equivalent of a windowed count distinct operation. For
Temporal-SMURF processing, we show two versions,
as outlined in Section 4.4: Temporal-SMURF using
per-tag cleaning with summation (σ-SMURF) and
Temporal-SMURF using π-estimators (π-SMURF).

As π-SMURF cannot produce individual tag
readings, we change our evaluation metric to root-mean-

square error (RMS error) of the count of reported tags
compared to reality.

Experiment 6: Varied Reliability and Tag Veloc-
ity. We test the accuracy of the counts produced by each
scheme as either the level of tag movement or unrelia-
bility increases. We run the same tests as Experiments 1
and 2, but with more tags (100), and measure the RMS
error of each scheme’s output compared to reality.

To determine the count accuracy of different schemes
as the tag velocity increases, we run a similar test to
Experiment 2. We set MajorPercentage at 0.25 and vary
the tag velocity between 0 and 2 feet/epoch using Pallet
behavior. We show the results in Figure 13(a).

In most cases, both σ-SMURF and π-SMURF are
more accurate than any static window. π-SMURF
does particularly well here due to its unbiased nature.
σ-SMURF, however, suffers from under-counting. To
illustrate, we also measure the mean error of the count
estimates (a measure of the bias of an estimator). At
a tag velocity of 1 foot/epoch, for example, σ-SMURF
has an mean error of -6.5, indicating an under-count of
6.5 items, on average. π-SMURF, in comparison, only
has a mean error of -0.3: on expectation, π-SMURF
provides accurate estimates.

To determine how each scheme performs as the level
of reliability changes, similar to Experiment 1, we move
tags using Fido behavior and vary the major detection
region percentage. At each value of MajorPercentage, we
measure the error of each scheme. Here, both σ-SMURF
and π-SMURF are competitive with the best static win-
dow.

The results are shown in Figure 13(b). Across a
range of environments, both σ-SMURF and π-SMURF
are competitive with the best static window. Note
that this case represents the worst-case scenario for
π-SMURF. As tags are moving independently and
at random, on average there are an equal number of
tags exiting and entering the detection field at each
epoch. Since π-SMURF only looks at the count of tags,
it is unable to recognize these changes. Despite this
limitation, it remains close to the best scheme.

Experiment 7: Accuracy of Uncertainty Es-
timates. We also verify the accuracy of Temporal-
SMURF’s uncertainty estimates in the multi-tag case.
For these tests, we fix the confidence bound at 95% and
confirm that the true count of tags falls within the range
supplied by Temporal-SMURF’s confidence interval.
For this uncertainty estimate, we use π-SMURF for
the count estimate and derive a confidence interval
based on the Chebyshev bound as described in Equa-
tion 5. We use the same setup as in the second half of
Experiment 6: we move tags using Fido behavior and
vary the major detection region percentage. For each
value of MajorPercentage, we measure the hit rate, or
percentage of epochs for which the true count of tags is
within Temporal-SMURF’s confidence interval.

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 19

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.5 1 1.5 2

R
M

S
 e

rr
or

Tag velocity (ft/epoch)

raw
Static-2
Static-5

Static-10
Static-25

σ-SMURF

π-SMURF

(a)RMS error of each scheme as the tag velocity increases.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1

R
M

S
 e

rr
or

Major detection region percentage

raw
static 2
static 5

static 10
static-25

σ-SMURF

π-SMURF

(b)RMS error of each scheme as the reader reliability increases.

Fig. 13 The RMS error of different cleaning schemes counting 100 tags.

Across most of the range of MajorPercentage, the
true count of tags is within the confidence interval over
95% of the time; when MajorPercentage is between 0
and 0.9, the average hit rate is 0.97. When the reader is
highly reliable (MajorPercentage > 0.9), however, the
hit rate suffers: when MajorPercentage = 1, the hit rate
falls to 0.28. This low accuracy is due to the fact that the
tags are mobile in a very reliable environment: within
the smoothing window the pavg

i is high (> 0.8), yield-
ing a low variance for the estimator and consequently
a tight confidence interval; at the same time, the tags
are highly mobile, so some tags included in the esti-
mate have left the detection range causing a less accurate
count estimate. In general, Temporal-SMURF’s uncer-
tainty estimates will be less accurate when the reader
is very reliable and tags are moving quickly. Since it is
highly unlikely for a reader to have a MajorPercentage
greater than 0.9, these poor uncertainty estimates are
likely not a problem in practice. Note that Temporal-
SMURF’s uncertainty estimates remain accurate when
the reader is highly reliable, but the tags not mobile;
when MajorPercentage = 1 and the tags are not mo-
bile, the hit rate rises to 0.99.

Experiment 8: Tracking Counts in a Dynamic En-
vironment. Here we illustrate how different multi-tag
cleaning schemes react as conditions change over time.
We simulate tag movement and reader characteristics
typical of a warehouse scenario over the course of 15000
epochs. In this scenario, an application monitors the
count of 100 tags placed together on a pallet as it travels
through the warehouse in three phases (as depicted at
the top of Figure 14):

1. Shelf : In the first phase, the pallet is motion-
less on a shelf. Due to interference from the shelf and
other tags in the vicinity, the read rate is low: we set
MajorReadRate to 0.5 and MajorPercentage to 0.5.

2. Forklift : After 5000 epochs, a forklift picks up the
pallet and begins moving. Here, there is less reader inter-

ference due to other tags or obstructions, but the forklift
reduces the major detection region (MajorReadRate =
0.8, MajorPercentage = 0.25). We simulate the forklift’s
motion by moving the tags at 0.5 feet/epoch.

3. Conveyor Belt : In the final phase, we simu-
late the pallet traveling on a conveyor belt. Here, the
reader environment is controlled to reduce unreliability
(MajorReadRate = 0.8, MajorPercentage = 0.7). The
tags, however, move very fast (2 feet/epoch).

These three phases simulate realistic conditions in
terms of tag and reader behavior. Any cleaning scheme
should be able to handle all of these conditions to pro-
duce accurate readings describing the count of items on
the pallet as it moves through the warehouse.

We clean the data produced by the tags on the pal-
let using different schemes and measure the RMS error
during each phase as shown in the middle subsection
of Figure 14. Additionally, we include a trace of a 100-
epoch sliding window of the RMS error for each scheme
to illustrate how accuracy changes over time.

When the pallet is on the shelf, the raw data (not
shown) is very poor (reporting less than 20 tags out of
100 per epoch on average). To clean this data, a large
window must be used: with either counting technique,
Temporal-SMURF provides a stream of count readings
that are competitive with Static-25, the largest static
window (of course, larger windows would do better here,
but we omit them due to poor performance during the
remainder of the experiment). The bottom portion of the
figure shows the trace of a 100-epoch moving average of
the window size set by π-SMURF. During the period
when the tags are motionless, π-SMURF sets its window
large to compensate for the unreliability of the reader.

Once the tags start moving, both Temporal-SMURF
techniques adjust their window sizes to balance unrelia-
bility and tag movement to outperform all static window
schemes.

Finally, when the tags are moving very fast in a con-
trolled environment, π-SMURF does particularly well as

20 Shawn R. Jeffery et al.

Fig. 14 A simulated pallet moving through three phases in a warehouse: shelf, forklift, and conveyor belt.

it drastically reduces its window size in reaction to the
tags’ movement while using π-estimators to avoid under-
counting with such a small window.

As can be seen, there is no single static window that
the warehouse monitoring application case use to pro-
vide accurate counts in this scenario. Using Temporal-
SMURF, in contrast, the application can get accurate
readings throughout the pallet’s lifetime without setting
the smoothing window size. π-SMURF further refines its
accuracy by providing an unbiased estimate.

6 Providing MDI for RFID-based Applications

In the previous sections, we detailed how Temporal-
SMURF effectively dealt with RFID’s unreliable and
frequently changing nature by adaptively cleaning the
data streams. In this section, we give an overview on
how MDI-SMURF handles the other two challenges as-
sociated with RFID data: RFID’s spatially mismatched
and low-level nature.

Spatial Mismatch. There is typically a spatial mis-
match between readers’ detection fields and application-
level spatial units. That is, the area in which a reader is
able to detect tags is usually not the same as the unit
of space in which the application is interested. Further-
more, most RFID deployments contain multiple readers
placed in close proximity to ensure full coverage of the
area of interest and ensure completeness.

These two factors lead to overlapping detection fields,
causing potential duplicate readings. Duplicates may be
from readers in the same area (e.g., two readers in the
same room of a digital home) and thus reinforce each

Fig. 15 Spatial issues in RFID deployments. Readings for
tag 1 reported by readers A.1 and A.2 reinforce each other,
while readings for tag 2 from readers A.1 and B.2 must be
arbitrated.

other; in such a case, the middleware should boost the
confidence of these readings. In other cases, the read-
ings may conflict with one another (e.g., two readers on
adjacent shelves in a retail scenario) and must be arbi-
trated [25,34,33]

Figure 15 illustrates these issues. Here, a digital home
application is monitoring room occupancy for two rooms
using four RFID readers (two in each room). Reinforce-
ment is shown by the readings for tag 1 from readers A.1
and A.2. Arbitration is necessary for the readings for tag
2 from readers A.1 and B.2.

The opportunities of reinforcement and the chal-
lenges of arbitration cause problems for sensor-based
applications. In the case of reinforcement, an application
has to understand the effect on overall confidence, and
perhaps collapse several readings into a single reading
with appropriately-adjusted (higher) confidence. For

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 21

arbitration, the application is presented with a tag
that is reported in two or more locations and must
somehow decide on an appropriate spatial location
the tag. Dealing with both of these issues involves
detailed knowledge of the detection fields of the readers
involved and how these fields change over time, further
complicating the processing of RFID readings.

Here, we briefly outline some ideas on how to apply
our statistical-modeling techniques to handle such issues
in the design of Spatial-SMURF, a spatial RFID filter
designed to enable applications to effectively cope with
reinforcement and arbitration in RFID readings.

In a nutshell, Spatial-SMURF approaches RFID rein-
forcement and arbitration issues using a spatial window
abstraction. A spatial window is a grouping of readers
across space that provides a multi-resolution probabilis-
tic statement about a tag’s actual location The output of
Spatial-SMURF’s spatial windowing is a combination of
intersections and unions of reader detection fields, with
attached uncertainty estimates indicating the probabil-
ity of the tag being located inside the corresponding spa-
tial window. Applications can map these spatial windows
to application-level spatial units; as we discuss below,
MDI-SMURF incorporates a module that enables each
deployment to specify the appropriate spatial mappings.

The abstract goal of Spatial-SMURF, then, is to de-
termine, for each tag, appropriate groupings of reader
detection fields as well as corresponding uncertainty in-
dicators (i.e., existence probabilities) for the tag in each
grouping. This is obviously a very complex problem, and
a full-fledged solution is beyond the scope of this paper;
here, we simply outline a brief example showing how
some of the above ideas can be applied in the context
of Spatial-SMURF.

Example 1 Consider a simple scenario with two RFID
readers A and B and let r(A) and r(B) denote their
(possibly overlapping) detection fields. The output of
each reader is fed into a Temporal-SMURF module that
assigns an uncertainty estimate for the existence of any
tag i in its detection field based on the sampling bounds
outlined earlier in this paper; that is, we can estimate
the probabilities ρr(A) = Pr[i ∈ r(A)] and ρr(B) =
Pr[i ∈ r(B)].

Since r(A) and r(B) can overlap, in order to provide a
multi-resolution spatial window to applications, Spatial-
SMURF can also estimate the uncertainty indicators for
other spatial regions of interest, such as r(A) ∩ r(B)
and r(A)∪r(B). To compute ρr(A)∩r(B), the “naive” ap-
proach of assuming independence of readers (i.e., setting
ρr(A)∩r(B) = ρr(A) ·ρr(B)) is incorrect if the detection
fields overlap. Instead, Spatial-SMURF can estimate the
uncertainty of r(A)∩ r(B) (i.e., the probability that tag
i lies in the overlap region of readers A and B) using the
formula ρr(A)∩r(B) = Pr[i ∈ r(A)|i ∈ r(B)] ·ρr(B), where
the conditional probability on the right-hand side of the
equation can be estimated using a variety of techniques
such as using the percentage of spatial overlap across

detection ranges together with some spatial uniformity
assumption, or from historical overlap data collected for
the two readers. Similarly, Spatial-SMURF can estimate
ρr(A)∪r(B) = ρr(A) +ρr(B) −ρr(A)∩r(B).

Higher-level applications are then provided
with a multi-resolution spatial-window probabilis-
tic statement of the form: {r(A)[ρr(A)], r(B)[ρr(B)],
r(A) ∩ r(B)[ρr(A)∩r(B)], r(A) ∪ r(B)[ρr(A)∪r(B)]}, and
can determine the appropriate level of spatial localiza-
tion for the tag based on the observed confidence levels.
�

We leave a detailed study and evaluation of Spatial-
SMURF to future work.

Semantic Gap. There is a semantic gap between the
low-level data RFID readers provide and the needs of
applications. The output of most RFID middleware is
a stream of tag IDs and the reader at which they were
read. Applications, on the other hand, typically want to
know about high-level concepts such as products, people,
rooms, and shelves.

The final stage in the MDI-SMURF pipeline is a
virtualize module [33,34] that translates the smoothed
and spatially processed streams from RFID-specific
readings into MDI readings. Basically, the main goal
of this module is to convert the data into a stream
with the following schema: (objectID[uncertainty],
location[uncertainty], time). Producing the ob-
jectID involves a relatively simple mapping from tag
ID to an application-specific object ID, such as the
approach proposed for ONS [45]. For the location,
Spatial-SMURF’s spatial windows need to be mapped
to an application-level spatial unit as mentioned above.
This module can incorporate this logic internally so
as to shield applications from such complexity. These
mappings can be defined in a declarative manner to ease
configuration [34].

Hiding these mappings in the middleware rather than
exposing them to the application provides the final step
for supporting MDI: all RFID-specific information is hid-
den by MDI-SMURF. Thus, tag IDs in a deployment can
change (e.g., the deployment can switch from pallet-level
to item-level tagging) or the actual readers may change;
any applications using MDI-SMURF can be oblivious to
such changes.

By successively correcting all challenges associated
with the physical-digital divide facing RFID-based appli-
cations, MDI-SMURF provides Metaphysical Data Inde-
pendence for a wide array of emerging applications. As
a result, RFID applications are less complex and easier
to manage and maintain.

7 Related Work

Metaphysical Data Independence provides a powerful
paradigm under which to organize and unify much

22 Shawn R. Jeffery et al.

of the research in sensor data processing to date. In
this section, we survey work related to sensor data
processing in the context of MDI.

We organize this section from bottom (physical
world) to top (digital world): data acquisition, data
cleaning, temporal and spatial processing, virtualization,
and application infrastructures.
Data Acquisition. The first task, obviously, in sup-
porting MDI is to acquire data from the sensor devices.

Systems such as TinyDB [39], Cougar [8], and
DSN [14] significantly reduce the complexity of access-
ing data from raw devices. Nonetheless, they produce
low-level, dirty streams of readings that must be pro-
cessed substantially before being sent to applications.

At a level above these systems is BBQ [18]. Many sen-
sor data are highly correlated, both in time and space.
This fact can be exploited by using model-based sens-
ing, which only uses the physical devices when its in-
ternal model is unable to answer a query with suffi-
cient confidence. While BBQ explores the idea of using
probabilistic models for sensor measurements, our work
is the first to apply statistical techniques for adaptive
RFID data processing. Furthermore, this scheme relies
on learning and maintaining many fairly heavyweight
multi-dimensional Gaussian models; our techniques rely
on simple, non-parametric sampling estimators. Explor-
ing interactions between the two approaches is an inter-
esting area for future work.
Sensor Data Cleaning. Much work has focused on
techniques for low-level cleaning of sensor data [21,43].
Other work, on the other hand, has addressed high-level
cleaning using data mining-based techniques [50]. Simi-
larly, StreamClean takes a high-level approach to clean-
ing RFID data using global integrity constraints [36].
Such techniques straightforwardly fit within a sensor in-
frastructure providing MDI.

More specifically related to Temporal-SMURF, sev-
eral projects have explored simple techniques to clean
RFID data based on fixed-window smoothing. In one pa-
per, the authors identify the trade-off between smooth-
ing the data and capturing the temporal variation but
provide no real solutions [24]. In previous work, we rec-
ognize the need to clean RFID data and use an approach
based on declarative continuous queries [33,34]. We show
smoothed RFID data using different sized windows, but
do not address how to choose the best size.

Many commercial RFID middleware solutions con-
tain configurable filters to process data produced by
RFID readers [9,28,40,62]. Many of these platforms
explicitly incorporate data smoothing as a solution to
RFID unreliability. None of these systems, however,
provide any guidance for how to configure the smoothing
filters, nor do they address the granularity mismatch
and low-level semantics of RFID data. Furthermore,
they do not estimate the uncertainty of the readings
they produce.

Adaptive filtering has been studied in digital signal
processing in wide-ranging contexts such as image analy-
sis and speech processing [47]. Especially applicable are
nonlinear digital filters, which are designed to capture
transitions in the signal. For instance, AWED [47] adapts
the size of a smoothing window for cleaning noisy images
using a multi-phase approach involving smoothing and
edge detection that inspired the basic Temporal-SMURF
design.

Related to data cleaning is uncertainty estimation
for cleaned sensor data. In [53], we proposed the shadow
quality-tracking pipeline used in the MDI-SMURF ar-
chitecture. The uncertainty estimates presented here im-
prove upon the techniques presented in that paper.
Temporal and Spatial Processing. Removing the de-
pendence on the spatial and temporal specifics of sensing
devices has been the focus of recent work in the context
of both wireless sensor networks and RFID data.

MauveDB [19] provides temporal and spatial inde-
pendence from the underlying sensors through the use of
model-based views that are updated as the sensor data
changes. Similarly, ESP [33,34] proposes temporal and
spatial granules to capture the application-level notion
of time and space. While the focus of Distributed Re-
gression [27] is efficient in-network processing of wireless
sensor data to extract more information than traditional
aggregation schemes, by fitting a regression function to
the sensor data it produces spatial independence. Fi-
nally, localization [29,30] using multiple sensor readings
provides a means by which the data can be fused into
high-level spatial information that is independent of the
underlying devices.

While all of the above techniques can be used to re-
move the dependence on the spatial and temporal sens-
ing granularity of physical devices, they do not fully ad-
dress all of the challenges associated with the physical-
digital divide.
Virtualization. Many projects have looked at providing
an abstraction layer between the application and devices
in the physical world.

Closest to our work is Semantic Streams [64], which
proposes a programming framework using inference mod-
ules for deriving various characteristics of the physical
world declaratively. Similarly, the Context Toolkit [20]
advocates an architectural approach to hiding the details
of sensor devices. These projects, however, do not fully
address many of the issues with crossing the physical-
digital divide, such as data cleaning, temporal and spa-
tial processing, and variability.

SensorML [46] and ALE [6] define high-level inter-
faces to sensor and RFID devices, respectively. They ease
the development of applications by providing a standard
interface with which to interact with their respective
type of device, but they are device-specific and thus do
not completely separate the devices and the application
with a layer of independence.

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 23

The Virtual Device architecture [32] presented as
part of the HiFi [25,51] project was designed as a
general architecture for supporting MDI and influenced
much of the work presented here; MDI-SMURF can be
thought of as a specific instance of a Virtual Device for
RFID deployments.
Application Infrastructures. With the rise in popu-
larity of sensing devices, there are many systems in the
digital world designed to understand or make use of sen-
sor data.

Trio [44], MYSTIQ[10], and HeisenData [26] are sys-
tems designed to manage uncertain or probabilistic data.
These systems exist in the digital world, but understand
the uncertain nature of the physical world; thus, they
provide applications built to use data from the real world
the means of understanding the uncertainty inherent in
the physical world. Further, sensor infrastructures de-
signed to provide MDI could benefit from the techniques
for processing and tracking uncertain data being devel-
oped by these projects.

Complex event processing infrastructures developed
as part of the HiFi [51] and SASE [65] projects provide
languages and execution environments designed explic-
itly for applications that utilize sensor data. Such sys-
tems and the applications using them would greatly ben-
efit from Metaphysical Data Independence: applications
could be built using event languages on top of an MDI-
based interface without being concerned with any of the
issues in dealing with sensor devices.

8 Conclusions

While sensor-based applications hold much promise to
revolutionize the way in which we interact with the phys-
ical world, current sensor-based applications are brittle,
ad-hoc, and hard to deploy and maintain due to their
dependence on the devices over which they are built.

At the core of this issue is the physical-digital divide:
sensor data is unreliable, mismatched with application
needs in time and space, semantically low-level, and fre-
quently changing. Incorporating logic in the application
to bridge this divide cause applications to become com-
plex and hard to manage and scale.

Toward this end, Metaphysical Data Independence
draws a separation of concerns between applications and
the devices on which they are built. Through a high-level
object-based abstraction interface, applications interact
with a reconstruction of the physical world in the digital
world as if the physical-digital divide did not exist.

As a concrete example of how to create this recon-
struction, MDI-SMURF is an RFID middleware system
that addresses all issues associated with RFID data and
provides an MDI-based interface to applications that use
RFID data.

The key insight behind MDI-SMURF’s data process-
ing mechanisms is its view of RFID data streams as a

random sample of the tags in the physical world. Us-
ing this insight, MDI-SMURF incorporates techniques
from sampling theory, such as binomial sampling and π-
estimators, to guide RFID data processing operations in
a principled, statistical manner.

In order to realize the promise of sensor-based appli-
cations, it is critical that these applications be separated
from the issues associated with crossing the physical-
digital divide by Metaphysical Data Independence. As
a result of the data independence provided by sensor
infrastructures such as MDI-SMURF, sensor-based ap-
plications are substantially simpler and more robust.

9 Acknowledgments

The authors would like to thank the following people
for their contributions. Gustavo Alonso, Wei Hong,
and Jennifer Widom contributed to the original MDI
vision and shaped much of the resulting work. Nathan
Burkhart, Eugene Wu, and Kai Xia assisted in the
sensor experiments. Matt Denny, Ryan Huebsch, David
Liu, Alexandra Meliou, and other members of the
Berkeley Database Group provided feedback on early
drafts. Ryan Aipperspach, Kurt Brown, Joe Hellerstein,
Eirinaios Michelakis, and Daisy Wang of the Data
Furnace/HeisenData project provided additional insight
from the point of view of data quality and pervasive
applications. Anish Das Sarma helped with quality
tracking for sensor data. Finally, the anonymous re-
viewers provided many useful comments. This work was
funded in part by NSF under ITR grants IIS-0086057
and SI-0122599, and by research funds from Intel and
the UC MICRO program.

References

1. Alien Technology. Nanoscanner Reader User Guide
2. Merriam-Webster Online Dictionary. http://m-w.com
3. Abowd, G.D., Mynatt, E.D.: Charting past, present,

and future research in ubiquitous computing. ACM
Transactions on Computer-Human Interaction 7(1), 29–
58 (2000)

4. Alien ALR-9780 915 MHz RFID Reader.
http://www.alientechnology.com/products/rfid-
readers/alr9780.php

5. Alien RFID tags. http://www.alientechnology.com/
products/rfid-tags

6. Application Level Event (ALE) Specification Version 1.0.
Http://www.epcglobalinc.org/standards technology/
EPCglobal ApplicationALE Specification v112-2005.pdf

7. Arasu, A., Babu, S., Widom, J.: The CQL continuous
query language: semantic foundations and query execu-
tion. The VLDB Journal 15(2), 121–142 (2006)

8. Bonnet, P., Gehrke, J., Seshadri, P.: Towards Sensor
Database Systems. In: Proc. Mobile Data Management,
Lecture Notes in Computer Science, vol. 1987. Springer,
Hong Kong (2001)

9. Bornhövd, C., Lin, T., Haller, S., Schaper, J.: Integrat-
ing Automatic Data Acquisition with Business Processes
- Experiences with SAP’s Auto-ID Infrastructure. In:
VLDB (2004)

24 Shawn R. Jeffery et al.

10. Boulos, J., Dalvi, N., Mandhani, B., Mathur, S., Re, C.,
Suciu, D.: MYSTIQ: a system for finding more answers
by using probabilities. In: SIGMOD ’05: Proceedings
of the 2005 ACM SIGMOD international conference on
Management of data (2005)

11. Buonadonna, P., Gay, D., Hellerstein, J.M., Hong, W.,
Madden, S.: TASK: Sensor Network in a Box. In: EWSN
(2005)

12. Chen, J., Kam, A.H., Zhang, J., Liu, N., Shue, L.: Bath-
room Activity Monitoring Based on Sound. In: Pervasive
(2005)

13. Chiu, D.M., Jain, R.: Analysis of the increase and de-
crease algorithms for congestion avoidance in computer
networks. Comput. Netw. ISDN Syst. 17(1) (1989)

14. Chu, D.C., Popa, L., Tavakoli, A., Hellerstein, J.M.,
Levis, P., Shenker, S., Stoica, I.: The design and
implementation of a declarative sensor network sys-
tem. Tech. Rep. UCB/EECS-2006-132, EECS De-
partment, University of California, Berkeley (2006).
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/
2006/EECS-2006-132.html

15. Cochran, W.G.: “Sampling Techniques”. John Wiley &
Sons (1977)

16. Daniel Dobkin and Steven Weigand: Tags vs. the World:
HF and UHF Tags in non-ideal environments. WCA
RFID SIG (2005)

17. Deavours, D.D.: Performance Analysis of Commercially
Available UHF RFID Tags Based on EPCglobal’s Class
0 and Class 1 Specifications. RFID Alliance Lab (2004)

18. Deshpande, A., Guestrin, C., Madden, S., Hellerstein,
J.M., Hong, W.: Model-Driven Data Acquisition in Sen-
sor Networks. In: VLDB Conference (2004)

19. Deshpande, A., Madden, S.: MauveDB: supporting
model-based user views in database systems. In: SIG-
MOD ’06: Proceedings of the 2006 ACM SIGMOD inter-
national conference on Management of data (2006)

20. Dey, A.K.: Providing architectural support for building
context-aware applications. Ph.D. thesis, Georgia Insti-
tute of Technology (2000)

21. Elnahrawy, E., Nath, B.: Cleaning and querying noisy
sensors. In: WSNA ’03: Proceedings of the 2nd ACM
international conference on Wireless sensor networks and
applications (2003)

22. EPC Tag Data Specification Version 1.1.
http://www.epcglobalinc.org/standards technolo-
gy/EPCTagDataSpecification11rev124.pdf

23. EPCGlobal, Inc. http://www.epcglobalinc.org/
24. Fishkin, K.P., Jiang, B., Philipose, M., Roy, S.: I Sense a

Disturbance in the Force: Unobtrusive Detection of Inter-
actions with RFID-tagged Objects. In: Ubicomp (2004)

25. Franklin, M.J., Jeffery, S.R., Krishnamurthy, S., Reiss,
F., Rizvi, S., Wu, E., Cooper, O., Edakkunni, A., Hong,
W.: Design Considerations for High Fan-In Systems: The
HiFi Approach. In: CIDR (2005)

26. Garofalakis, M.N., Brown, K.P., Franklin, M.J., Heller-
stein, J.M., Wang, D.Z., Michelakis, E., Tancau, L., Wu,
E., Jeffery, S.R., Aipperspach, R.: Probabilistic Data
Management for Pervasive Computing: The Data Fur-
nace Project. IEEE Data Eng. Bull. 29(1), 57–63 (2006)

27. Guestrin, C., Bodi, P., Thibau, R., Paski, M., Mad-
den, S.: Distributed regression: an efficient framework for
modeling sensor network data. In: IPSN’04: Proceedings
of the third international symposium on Information pro-
cessing in sensor networks (2004)

28. Gupta, A., Srivastava, M.: Developing Auto-ID Solu-
tions using Sun Java System RFID Software (2004).
DOI http://java.sun.com/developer/technicalArticles/
Ecommerce/rfid/sjsrfid/RFID.html

29. Hahnel, D., Burgard, W., Fox, D., Fishkin, K., Philipose,
M.: Mapping and Localization with RFID Technology.
In: ICRA (2004)

30. Hightower, J., Brumitt, B., Borriello, G.: The Location
Stack: A Layered Model for Location in Ubiquitous Com-
puting. In: Proceedings of the 4th IEEE Workshop on
Mobile Computing Systems & Applications (WMCSA
2002), pp. 22–28. IEEE Computer Society Press, Cal-
licoon, NY (2002)

31. Intel Lab Data. http://berkeley.intel-
research.net/labdata/

32. Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W.,
Widom, J.: Virtual Devices: An Extensible Architecture
for Bridging the Physical-Digital Divide. Tech. Rep.
UCB-CS-05-1375, UC Berkeley CS Division (2005)

33. Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W.,
Widom, J.: A Pipelined Framework for Online Cleaning
of Sensor Data Streams. In: ICDE (2006)

34. Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W.,
Widom, J.: Declarative Support for Sensor Data Clean-
ing. In: Pervasive (2006)

35. Jeffery, S.R., Garofalakis, M., Franklin, M.J.: Adaptive
Cleaning for RFID Data Streams. In: VLDB’2006: Pro-
ceedings of the 32nd international conference on Very
large data bases, pp. 163–174 (2006)

36. Khoussainova, N., Balazinska, M., Suciu, D.: Towards
correcting input data errors probabilistically using in-
tegrity constraints. In: MobiDE ’06: Proceedings of the
5th ACM international workshop on Data engineering for
wireless and mobile access (2006)

37. Krishnamurthy, S.: Shared query processing in data
streaming systems. Ph.D. thesis, University of California,
Berkeley (2006)

38. Laurie Sullivan: RFID Implementation Challenges Per-
sist, All This Time Later. Information Week (2005)

39. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong:, W.:
The Design of an Acquisitional Query Processor For Sen-
sor Networks. In: SIGMOD (2003)

40. Manage Data Successfully with RFID Anywhere Edge
Processing. http://www.ianywhere.com/developer/
rfid anywhere/rfidanywhere edgeprocessing.pdf

41. Martonosi, M.: Embedded systems in the wild: Zebranet
software, hardware, and deployment experiences. In:
LCTES (2006)

42. Motwani, R., Raghavan, P.: “Randomized Algorithms”.
Cambridge (1995)

43. Mukhopadhyay, S., Panigrahi, D., Dey, S.: Data aware,
Low cost Error correction for Wireless Sensor Networks.
In: WCNC (2004)

44. Mutsuzaki, M., Theobald, M., de Keijzer, A., Widom, J.,
Agrawal, P., Benjelloun, O., Sarma, A.D., Murthy, R.,
Sugihara, T.: Trio-One: Layering Uncertainty and Lin-
eage on a Conventional DBMS. In: Proceedings of the
Third Biennial Conference on Innovative Data Systems
Research (CIDR ’07) (2007)

45. Object Naming Service (ONS) Standard, Version
1.0. http://www.epcglobalinc.org/standards/Object
Naming Service ONS Standard Version 1.0.pdf

46. OpenGIS Sensor Model Lan-
guage (SensorML) (05-086r2).
http://portal.opengeospatial.org/files/?artifact id=13879

47. Pitas, I., Venetsanopoulos, A.N.: ”Nonlinear digital fil-
ters: principles and applications”. Kluwer, Boston, MA
(1990)

48. Plato: ”Republic”
49. Qin, S.: Neural networks for intelligent sensors and con-

trol — practical issues and some solutions. In Neural Net-
works for Control, D. Elliott, Ed. Academic Press, 1996.
Chapter 8.

50. Rao, J., Doraiswamy, S., Thakkar, H., Colby, L.S.: A
deferred cleansing method for rfid data analytics. In:
VLDB’2006: Proceedings of the 32nd international con-
ference on Very large data bases (2006)

An Adaptive RFID Middleware for Supporting Metaphysical Data Independence 25

51. Rizvi, S., Jeffery, S.R., Krishnamurthy, S., Franklin, M.J.,
Burkhart, N., Edakkunni, A., Liang, L.: Events on the
edge. In: SIGMOD ’05: Proceedings of the 2005 ACM
SIGMOD international conference on Management of
data (2005)

52. Rousu, J., Elomaa, T., Aarts, R.J.: Predicting the Speed
of Beer Fermentation in Laboratory and Industrial Scale.
In: IWANN (2), pp. 893–901 (1999)

53. Sarma, A.D., Jeffery, S.R., Franklin, M.J., Widom, J.:
Estimating Data Stream Quality for Object-Detection
Applications. In: IQIS (2006)

54. Särndal, C.E., Swensson, B., Wretman, J.: “Model As-
sisted Survey Sampling”. Springer-Verlag New York, Inc.
(Springer Series in Statistics) (1992)

55. Senosrmatic Agile 2 915Hz RFID Reader.
http://www.sensormatic.com/RFID/stationary/

56. SensorID Series 2 Agile Reader Query Protocol (2004)
57. Sharp, C., Schaffert, S., Woo, A., Sastry, N., Karlof, C.,

Sastry, S., Culler, D.: Design and Implementation of a
Sensor Network System for Vehicle Tracking and Au-
tonomous Interception (2005)

58. Smith, J.R., Sample, A.P., Powledge, P.S., Roy, S.,
Mamishev, A.: A Wirelessly-Powered Platform for Sens-
ing and Computation. In: Ubicomp, pp. 495–506 (2006)

59. Sonoma Redwood Sensor Network Deployment.
http://www.cs.berkeley.edu/get/sonoma/

60. Tolle, G., Polastre, J., Szewczyk, R., Culler, D.E., Turner,
N., Tu, K., Burgess, S., Dawson, T., Buonadonna, P.,
Gay, D., Hong, W.: A Macroscope in the Redwoods. In:
SenSys, pp. 51–63 (2005)

61. UW RFID Lab http://www.uwrfidlab.org/
62. Wang, F., Liu, P.: Temporal Management of RFID Data.

In: VLDB, pp. 1128–1139 (2005)
63. Want, R.: The Magic of RFID. ACM Queue 2(7), 40–48

(2004)
64. Whitehouse, K., Zhao, F., Liu, J.: Automatic program-

ming with semantic streams. In: SenSys ’05: Proceedings
of the 3rd international conference on Embedded net-
worked sensor systems (2005)

65. Wu, E., Diao, Y., Rizvi, S.: High-performance Complex
Event Processing Over Streams. In: SIGMOD Conference
(2006)

