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Abstract There is growing interest in algorithms for
processing and querying continuous data streams (i.e.,
data that is seen only once in a fixed order) with lim-
ited memory resources. In its most general form, a data
stream is actually an update stream, i.e., comprising
data-item deletions as well as insertions. Such massive
update streams arise naturally in several application do-
mains (e.g., monitoring of large IP network installations,
or processing of retail-chain transactions).

Estimating the cardinality of set expressions defined
over several (perhaps, distributed) update streams is
perhaps one of the most fundamental query classes of in-
terest; as an example, such a query may ask “what is the
number of distinct IP source addresses seen in passing
packets from both router R1 and R2 but not router R3?”.
Earlier work has only addressed very restricted forms of
this problem, focusing solely on the special case of insert-
only streams and specific operators (e.g., union). In this
paper, we propose the first space-efficient algorithmic
solution for estimating the cardinality of full-fledged set
expressions over general update streams. Our estima-
tion algorithms are probabilistic in nature and rely on
a novel, hash-based synopsis data structure, termed “2-
level hash sketch”. We demonstrate how our 2-level hash
sketch synopses can be used to provide low-error, high-
confidence estimates for the cardinality of set expres-
sions (including operators such as set union, intersection,
and difference) over continuous update streams, using
only space that is significantly sublinear in the sizes of
the streaming input (multi-)sets. Furthermore, our esti-
mators never require rescanning or resampling of past
stream items, regardless of the number of deletions in
the stream. We also present lower bounds for the prob-
lem, demonstrating that the space usage of our estima-
tion algorithms is within small factors of the optimal.
Finally, we propose an optimized, time-efficient stream
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synopsis (based on 2-level hash sketches) that provides
similar, strong accuracy-space guarantees while requir-
ing only guaranteed logarithmic maintenance time per
update, thus making our methods applicable for truly
rapid-rate data streams. Our results from an empirical
study of our synopsis and estimation techniques verify
the effectiveness of our approach.

Keywords: Data Streams – Set Expressions – Data
Synopses – Approximate query processing – Random-
ized algorithms

1 Introduction

Query-processing algorithms for conventional Database
Management Systems (DBMS) rely on (possibly) sev-
eral passes over a collection of static data sets in order
to produce an accurate answer to a user query. For sev-
eral emerging application domains, however, updates to
the data arrive on a continuous basis, and the query
processor needs to be able to produce answers to user
queries based solely on the observed stream of data and
without the benefit of several passes over a static data
image. As a result, there has been a flurry of recent work
on designing effective query-processing algorithms that
work over continuous data streams to produce results on-
line while guaranteeing (1) small memory footprints, and
(2) low processing times per stream item [1,11,15,18].
Such algorithms typically rely on summarizing the data
stream(s) involved in concise synopses that can be used
to provide approximate answers to user queries along
with some reasonable guarantees on the quality of the
approximation.

In their most general form, real-life data streams are
actually update streams; that is, the stream is a sequence
of updates to data items, comprising data-item deletions
as well as insertions 1. Such continuous update streams

1 Item modifications are simply seen as a deletion directly
followed by an insertion of the modified item.



2 Sumit Ganguly et al.

arise naturally, for example, in the network installations
of large Internet service providers, where detailed us-
age information (SNMP/RMON packet-flow data, active
VPN circuits, etc.) from different parts of the underly-
ing network needs to be continuously collected and ana-
lyzed for interesting trends. Other application domains
giving rise to continuous and massive update streams in-
clude retail-chain transaction processing (e.g., purchase
and sale records), ATM and credit-card operations, log-
ging Web-server usage records, and so on. The processing
of such streams follows, in general, a distributed model
where each stream (or, part of a stream) is observed and
summarized by its respective party (e.g., the element-
management system of an individual IP router) and the
resulting synopses are then collected (e.g., periodically)
at a central site, where queries over the entire collection
of streams can be processed [18]. This model is used, for
example, in Lucent’s Interprenet and Cisco’s NetFlow
products for IP network monitoring.

Clearly, there are several forms of queries that users
or applications may wish to pose (online) over such con-
tinuous update streams; examples include: joins and multi-
joins [1,11], frequency-moment and difference-norm com-
putations [2,12,24], quantile and order-statistics estima-
tion [20,21], frequent item/itemset counting [7,27], or
histogram and Haar-wavelet computations [19,30]. Per-
haps one of the most fundamental queries of interest is
estimating the result cardinalities of set expressions de-
fined over several update streams. As an example, an
application monitoring active IP-sessions may wish to
correlate the IP-session sources seen at routers R1, R2,
and R3 by posing a query such as: “estimate the num-
ber of distinct IP addresses seen at both R1 and R2 but
not R3”. This is simply the number of distinct elements
(i.e., set cardinality) for the (multi-)set (source(R1) ∩
source(R2))−source(R3), where source(Ri) is the multi-
set of IP source addresses seen at router Ri. The ability
to effectively estimate the cardinality of such set expres-
sions over the observed streams of updates for IP-session
data in the underlying network can be crucial in quickly
detecting possible Denial-of-Service (DoS) attacks, net-
work routing or load-balancing problems, potential reli-
ability concerns (catastrophic points-of-failure), and so
on. Note that the majority of the aforementioned IP-
data stream processing scenarios are exploratory in na-
ture, in the sense that the goal is to identify generic, in-
teresting, or “out-of-the-ordinary” patterns rather than
provide answers that are exact to the last decimal; thus,
a viable solution is to provide approximate cardinality es-
timates (along with some reasonable guarantees on the
quality of the approximation) [15,16]. Set expressions
are also an integral part of query languages for relational
database systems; for example, the SQL standard sup-
ports set operators like UNION, INTERSECT, and EXCEPT

(i.e., difference) in queries over tables with compatible
schemas [28]. Thus, one-pass synopses for effectively es-
timating set-expression cardinalities can be extremely

useful, e.g., in the optimization of such queries over Ter-
abyte relational databases.

Prior Work. Estimating the cardinality of set union
(i.e., number of distinct elements) over (one or more) el-
ement streams is a very basic problem with several prac-
tical applications (e.g., query optimization); as a result,
several solutions have been proposed in the literature
for the set-union estimation problem. In their influen-
tial paper, Flajolet and Martin [13] propose a random-
ized estimator for distinct-element counting that relies
on a hash-based synopsis data structure; to this date,
the Flajolet-Martin (FM) technique remains one of the
most effective approaches for this estimation problem.
The analysis of Flajolet and Martin makes the (unrealis-
tic) assumption of an explicit family of hash functions ex-
hibiting ideal random properties; in a later paper, Alon
et al. [2] present a more realistic analysis of the FM esti-
mator that relies solely on simple, linear hash functions.
Several estimators based on uniform random sampling
have also been proposed for distinct-element counting [6,
22]; however, such sampling-based approaches are known
to be inaccurate and substantial negative results have
been shown by Charikar et al. [6] stating that accurate
estimation of the number of distinct values (to within a
small constant factor with constant probability) requires
nearly the entire data set to be sampled! More recently,
Gibbons et al. [17,18] have proposed specialized sam-
pling schemes specifically designed for distinct-element
counting; their sampling schemes rely on hashing ideas
(similar to [13]) to obtain a random sample of the distinct
elements in the input streams that is then used for esti-
mation. Finally, Bar-Yossef et al. [4] propose improved
distinct-count estimators that combine new techniques
and ideas from [2,13,18].

All these earlier papers on set-union estimation either
ignore the possibility of deletions in the input stream(s)
or fail to deal with deletions in a completely satisfac-
tory manner. For example, sampling-based solutions like
[17,18] may very well require rescanning and resampling
of past stream items when deletions cause the main-
tained sample to be depleted; this is clearly an unrealis-
tic requirement in a data-streaming environment. More
importantly, none of the above-mentioned papers ad-
dresses the problem of dealing with general set expres-
sions (including operators like set intersection or dif-
ference), which is obviously significantly more complex
than simple set union.

The method of Minwise Independent Permutations
(MIPs) [5,9,23] is, to the best of our knowledge, the
only known technique that can accurately estimate the
result cardinalities of set operators other than union
(e.g., intersection) over an insertion stream rendering a
multi-set of data items. Furthermore, extending the ba-
sic technique to deal with set expressions is relatively
straightforward (e.g., see [8]). Unfortunately, MIPs are
also ill-equipped for dealing with general update streams.
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Deletions can easily deplete the MIP synopsis, rendering
it useless for the purposes of set-expression estimation
unless we are able to rescan past stream items; again,
however, this is not a realistic option in a data-stream
setting.

Our Contributions. In this paper, we present the first
space-efficient algorithmic solution for the full-fledged
problem of estimating set-expression cardinalities over
general update streams. Our proposed estimators are
probabilistic in nature and rely on a novel, hash-based
synopsis data structure, termed “2-level hash sketch”.
We present novel estimation algorithms that use our 2-
level hash sketch stream synopses to provide low-error,
high-confidence estimates for the cardinality of general
set expressions (including set union, intersection, and
difference operators) over continuous update streams,
using only space that is significantly sublinear in the
sizes of the (streaming) input multi-sets. We also present
lower bounds demonstrating that the space usage of our
basic estimators is within small factors of the best possi-
ble for any (randomized) solution. Furthermore, our es-
timators never require rescanning or resampling of past
stream items, regardless of the number of deletions in
the stream: at any point in time, our 2-level hash sketch
summary is guaranteed to be identical to that obtained
if the deleted items had never occurred in the stream! Fi-
nally, we propose a time-optimized update-stream syn-
opsis (based on 2-level hash sketches) that provides sim-
ilar, strong accuracy-space guarantees while requiring
only logarithmic processing time per update, thus mak-
ing our techniques applicable for truly rapid-rate data-
streaming environments. More concretely, the key con-
tributions of our work are summarized as follows.

• Novel 2-level Hash Sketch Synopses and Basic

Set-Operator Estimators over Update Streams.

We formally introduce the 2-level hash sketch synop-
sis data structure and describe its maintenance over a
continuous stream of updates (rendering a multi-set of
data elements). Briefly, 2-level hash sketches extend the
hash-based synopses of Flajolet and Martin [13] in a
non-trivial manner that renders them (a) robust to item
deletions in the stream, and (b) useful for estimating
the cardinalities of set difference and intersection (in ad-
dition to set union). We then present novel algorithms
for (probabilistically) estimating the cardinalities of the
three basic set operations (union, difference, and inter-
section) over 2-level hash sketches. To simplify the anal-
ysis of our basic estimators, we initially assume ideal,
fully-independent hash mappings for 2-level hash sketch
construction; we then demonstrate how our analysis car-
ries over to the (more realistic) limited-independence
case. We also prove a lower bound for all randomized
approximation algorithms, showing that the space re-

quirements of our estimators is actually within small
polynomial and log factors of the optimal.

• Extension to General Set-Expression Estima-

tion over Update Streams. We generalize our basic-
operator estimators (and their analysis) to derive an
accurate, low-space (probabilistic) estimation algorithm
for the cardinality of general set expressions over a col-
lection of continuous update streams. Once again, ours
is the first approach to solve this estimation problem
for arbitrary update streams, while guaranteeing that
no access to past stream items will ever be needed. Fur-
thermore, even though we present our estimators in a
single-site setting, our solution also naturally extends to
the more general “distributed-streams model with stored
coins” of Gibbons and Tirthapura [18].

• Optimized, Update-Time-Efficient Stream Syn-

opses and Corresponding Set-Expression Estima-

tors. Even though the size of the synopses maintained by
our probabilistic estimators is significantly sublinear in
the size of the input streams and provably near-optimal
(as verified by our lower-bound result), the time needed
to maintain these synopses on each streaming update
can be significant and could pose a potential problem
in rapid-rate data-stream processing environments (e.g.,
operations-monitoring applications for massive ISP net-
works). We therefore propose optimized, time-efficient
stream synopses (based on our 2-level hash sketches) and
corresponding estimation algorithms that, as our analy-
sis shows, can offer similar, strong accuracy-space guar-
antees while requiring only guaranteed small (i.e., loga-
rithmic) processing time per streaming update in order
to maintain the synopses.

• Experimental Results Validating our Method-

ology. We present results from an empirical study with
different synthetic data sets that verify the effectiveness
of our 2-level hash sketch synopses and estimation algo-
rithms. The results substantiate our theoretical claims,
demonstrating the ability of our techniques to provide
space-efficient and accurate estimates for set-expression
cardinality queries over continuous streaming data.

Organization. The remainder of this paper is organized
as follows. Section 2 describes our stream-processing ar-
chitecture and discusses basic distinct-count estimation
over streams. In Section 3, we introduce our 2-level hash
sketch synopsis data structure and present our proba-
bilistic estimators for basic set operators and their anal-
yses; Section 4 then extends our analyses and results to
the general set-expression estimation problem over up-
date streams. In Section 5, we present our update-time-
efficient stream synopsis structure and its analysis, and
Section 6 discusses the results of our experimental study.
Finally, we conclude in Section 7.
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2 Preliminaries

In this section, we discuss the basic elements of our
update-stream processing architecture and introduce some
key concepts and notation for our estimation algorithms.
We also describe the hash-based Flajolet-Martin (FM)
distinct-value count estimator in more detail, as it will
provide the basis for our 2-level hash sketch synopses
(introduced in Section 3).

2.1 Update-Stream Processing Model

The key elements of our update-stream processing archi-
tecture for set-expression estimation are depicted in Fig-
ure 1; similar architectures for processing data streams
have been described elsewhere (see, for example, [11,
19]).

Synopsis−Maintenance
Algorithm

Update stream for An

Update stream for A1

Memory

Set−Expression Query E

Synopsis
for A1

Synopsis

Update stream for A2

for An
Synopsis
for A2

Estimate of |E|  Set−Expression
Estimator

Fig. 1 Update-Stream Processing Architecture.

Without loss of generality, we assume that each in-
put stream renders a multi-set Ai of elements from the
integer domain [M ] = {0, . . . ,M − 1} as a continuous
stream of updates. (To simplify the exposition, we also
assume that M is a power of 2.) Each such update is
a triple of the form < i, e,±v >, where i identifies the
multi-set Ai being updated, e ∈ [M ] denotes the specific
data element whose frequency changes, and ±v is the
net change in the frequency of e in Ai, i.e., “+v” (“−v”)
denotes v insertions (resp., deletions) of e. We assume
that all deletions in our update streams are legal; that
is, an update < i, e,−v > can only be issued if the net
frequency of e in Ai is at least v. We also let N denote an
upper bound on the total number of data elements (i.e.,
the sum of element frequencies) in any multi-set Ai. In
contrast to conventional DBMS processing, our stream
processor is allowed to see the update tuples for each Ai

only once and in the fixed order of arrival as they stream
in from their respective source(s). Backtracking over an
update stream and explicit access to past update tuples
are impossible.

Given a set expression E over the multi-set streams
Ai, we use |E| to denote the number of distinct elements
in the result of expression E over the Ai’s; for example,

|A1∪A2| is the number of distinct elements in the union
of streams A1 and A2. Our stream-processing engine is
allowed a certain amount of memory, typically signifi-
cantly smaller than the total size of its input(s). This
memory is used to maintain a concise synopsis for each
update stream Ai. The key constraints imposed on such
synopses are that: (1) they are much smaller than the
number of elements in Ai (e.g., their size is logarith-
mic or polylogarithmic in |Ai|); and, (2) they can be
easily maintained, during a single pass over the update
tuples for Ai, in the (arbitrary) order of their arrival.
At any point in time, given an arbitrary set expression
E over the Ai’s, our set-expression cardinality estima-
tor can combine the maintained collection of synopses
to produce an estimate for |E|.

Even for the simpler case of insert-only streams, com-
munication complexity arguments can be applied to show
that the exact computation of set-expression cardinali-
ties requires at least Ω(M) space2, even for randomized
algorithms [25,26]. Instead, our focus is to approximate
the quantity X = |E| to within a small relative error,
with high confidence. Thus, we seek to obtain a (random-
ized) (ε, δ)-approximation scheme [2,18], that computes

an estimate X̂ of X such that Pr
[

|X̂ − X| ≤ εX
]

≥
1 − δ.

2.2 The Flajolet-Martin Distinct-Count Estimator

The Flajolet-Martin (FM) technique [13] for estimat-
ing the number of distinct elements (i.e., set-union car-
dinality) over a stream of insertions relies on a fam-
ily of hash functions H that map incoming data values
uniformly and independently over the collection of bi-
nary strings in the input data domain [M ]. It is then
easy to see that, if h ∈ H and lsb(s) denotes the po-
sition of the least-significant 1 bit in the binary string
s, then for any i ∈ [M ], lsb(h(i)) ∈ {0, . . . , log M − 1}
and Pr [lsb(h(i)) = l] = 1

2l+1 .3 The basic hash synop-
sis maintained by an instance of the FM algorithm (i.e.,
a specific choice of hash function h ∈ H) is simply a
bit-vector of size Θ(log M). This bit-vector is initialized
to all zeros and, for each incoming value i in the in-
put multi-set Ai, the bit located at position lsb(h(i))
is turned on. Of course, to boost accuracy and confi-
dence, the FM algorithm employs averaging over several
independent instances (i.e., r independent choices of the
mapping hash-function h ∈ H and corresponding syn-
opses). The overall FM algorithm is depicted in Figure 2.

Intuitively, the FM algorithm works since, by the
properties of the hash functions in H, we expect a frac-

2 The asymptotic notation f(n) = Ω(g(n)) is equivalent
to g(n) = O(f(n)). Similarly, the notation f(n) = Θ(g(n))
means that functions f(n) and g(n) are asymptotically equal
(to within constant factors); in other words, f(n) = O(g(n))
and g(n) = O(f(n)) [10].

3 All log’s in this paper denote base-2 logarithms.
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procedure EstimateDistinctFM( S, {h1(), . . . , hr()} )
Input: Stream S of data items (i.e., insertions) in the

domain [M ] = {0, . . . , M − 1}, family of randomizing
hash functions hi (i = 1, . . . , r).

Output: Estimate R of the number of distinct values in S.
begin

1. for i := 1 to r do

2. bitSketchi[] := [0, . . . , 0] // bitvector of length Θ(log M)
3. for each j ∈ S do

4. for i := 1 to r do bitSketchi[lsb(hi(j))] := 1
5. for i := 1 to r do

6. for m := log M − 1 downto 0 do

7. if bitSketchi[m] = 0 then leftmostZero := m
8. sum := sum + leftmostZero
9. endfor

10. R := 1.2928 × 2sum/r

11. return( R )
end

Fig. 2 The Flajolet-Martin (FM) Distinct-Count Estima-
tion Procedure.

tion of 1
2l+1 of the distinct values in Ai to map to location

l in each synopsis; thus, we expect |Ai|/2 values to map
to bit 0, |Ai|/4 to map to bit 1, and so on. Therefore,
the location of the leftmost zero in a bit-vector synop-
sis is a good indicator of log |Ai|. In fact, Flajolet and
Martin proved that the estimation procedure depicted
in Figure 2 is guaranteed to return an unbiased estimate
for |Ai| (i.e., the expected value of the returned quantity
R is E[R] = |Ai|).

The analysis of Flajolet and Martin actually assumes
the existence of an explicit family of hash functions H
exhibiting some ideal random properties (namely, fully-
independent value mappings) [13]; unfortunately, such
hash functions are impossible to compute in small space.
Alon et al. [2] present a more realistic analysis of a very
similar scheme (based again on bit-vector hash synopses)
that relies solely on linear hash functions (guaranteeing
only pairwise independence). Such hash functions can
be computed using only a seed of size O(log M) and, as
shown in [2], produce synopses that guarantee a distinct-
value estimate that is within a constant multiplicative
factor with constant probability.

3 Processing Binary Set Operators over Update

Streams

In this section, we describe the key ideas underlying
our proposed solution for processing set expressions over
continuous update streams. We begin by defining our ba-
sic synopsis data structures (termed 2-level hash sketches)
and the algorithm for maintaining a 2-level hash sketch
over a stream of updates (insertions/deletions) to an in-
put multi-set. We also describe some procedures for test-
ing certain elementary properties over our 2-level hash
sketch synopses that are used as basic primitives in our

set-operator routines. We then present our estimation
algorithms for processing the three basic set operations
(set union, set difference, and set intersection) over 2-
level hash sketch synopses. Our algorithm for union can
utilize a simple extension of the FM hashing data struc-
ture, so it does not actually require the full power of our
2-level hash sketch synopses. (The case of set union is not
the focal point of this paper, as the union sub-problem
has already been extensively treated in the literature;
however, for the sake of homogeneity, we do present a
novel algorithm in the context of our sketches and de-
scribe its analysis.) The role of 2-level hash sketches be-
comes critical in our algorithms for estimating set dif-
ference and intersection; to the best of our knowledge,
ours is the first approach to provide low-error, high-
confidence probabilistic estimates for these two set oper-
ators for general update streams with arbitrary deletions
(without ever requiring resampling or rescanning of the
stream).

To simplify the exposition in this section, we first
present and analyze our estimation schemes assuming
ideal randomizing hash functions that guarantee fully-
independent value mappings. Then, in Section 3.6, we
demonstrate some key statistical lemmas that enable all
our results to carry over to the more realistic limited-
independence case. More specifically, we show that our
analysis can be carried out assuming only O(log 1

ε )-wise
independence, where ε denotes the relative-error guar-
antee provided by our techniques. (An O(log 1

ε )-wise in-
dependent randomizing hash function over [M ] can be
implemented using only O(log 1

ε log M) space with stan-
dard techniques [3,23].) Finally, Section 3.7 presents a
lower bound on the space usage of any randomized set-
operator cardinality estimation algorithm showing that
our estimators are within small factors of the best pos-
sible solution.

3.1 Our Stream Synopsis: 2-level Hash Sketches

Our proposed synopsis data structure, termed 2-level
hash sketch, is a generalization of the basic bit-vector
hash synopsis proposed by Flajolet and Martin for distinct-
value estimation [13]. Similar to FM bit-vectors, 2-level
hash sketch synopses rely on a family of (first-level) hash
functions H. These first-level hash functions h ∈ H are
randomizing hash functions that map [M ] uniformly onto
a range [Mk] (i.e., h : [M ] → [Mk]), where k is a small
integer constant (e.g., k = 2) used to guarantee that
the h mapping over the elements of [M ] is injective with
high probability. For each domain partition created by
first-level hash functions, a 2-level hash sketch synopsis
maintains a small (logarithmic-size) count signature for
the corresponding multi-set of stream elements.

More specifically, a 2-level hash sketch uses one ran-
domly-chosen first-level hash function h ∈ H that, as in
the Flajolet-Martin algorithm (Figure 2), is used in con-
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junction with the lsb operator to map the domain ele-
ments in [M ] onto a logarithmic range {0, . . . , Θ(log M)}
of first-level buckets with exponentially decreasing prob-
abilities. Then, for the collection of elements mapping to
a given first-level bucket, a count signature comprising
an array of log M + 1 element counters is maintained.
This count-signature array consists of two parts: (a) one
total element count, which tracks the net total number of
elements that map onto the bucket; and, (b) log M bit-
location counts, which track, for each j = 1, . . . , log M ,
the net total number of elements e with bitj(e) = 1 that
map onto the bucket (where, bitj(e) denotes the value of
the jth bit in the binary representation of e ∈ [M ]). Con-
ceptually, a 2-level hash sketch for a streaming multi-set
A can be seen as a two-dimensional array XA of size
Θ(log M) × (log M + 1) = Θ(log2 M), where each entry
XA[j, k] is a data-element counter of size O(log N) cor-
responding to the kth count-signature location of the jth

first-level hash bucket. By convention, we assume that,
for a given bucket j, XA[j, 0] is always the total ele-
ment count, whereas the bit-location counts are located
at XA[j, 1], . . ., XA[j, log M ]. The structure of our 2-level
hash sketch synopses is pictorially depicted in Figure 3.

���
�

���
�

countlogMcount1count0 ���
�

��

0 logM

stream element: e LSB(h(e))

Second level

Θ(          ) First level

total element count

bit−location counts

Fig. 3 Our Basic 2-level Hash Sketch Synopsis Data Struc-
ture.

Maintenance. The algorithm for maintaining a 2-level
hash sketch synopsis XAi

over a stream of updates to
a multi-set Ai is fairly simple. The sketch structure is
first initialized to all zeros and, for each incoming up-
date < i, e,±v >, the element counters at the appro-
priate locations of the XAi

sketch are updated; that is,
we simply set XAi

[lsb(h(e)), 0] := XAi
[lsb(h(e)), 0] ±

v to update the total element count in e’s bucket and,
for each j = 1, . . . , log M such that bitj(e) = 1, we set
XAi

[lsb(h(e)), j] := XAi
[lsb(h(e)), j] ± v to update the

corresponding bit-location counts. Note here that our 2-
level hash sketch synopses are essentially impervious to
delete operations; in other words, the sketch obtained at

the end of an update stream is identical to a sketch that
never sees the deleted items in the stream.

We now proceed to describe our algorithms for pro-
cessing basic set operators over update streams using
our 2-level hash sketch synopses and their analysis. As
mentioned earlier, to simplify the exposition, our anal-
ysis initially assumes ideal, fully-independent first-level
hash functions.

3.2 Elementary Property Checks

Our basic set-operator estimators rely on checking cer-
tain elementary properties for the collection of elements
that map to a given first-level bucket in a 2-level hash
sketch synopsis. We now describe the procedures for per-
forming these elementary property checks. Briefly, the
key idea here is to make use of the second-level infor-
mation maintained for the first-level bucket in question.
Of course, given the very simple, limited-space count-
signature information kept for each bucket, the only checks
possible refer to truly elementary bucket properties (e.g.,
whether a bucket is empty or a singleton). 4

Our four procedures for checking elementary 2-level
hash sketch properties (termed EmptyBucket, Singleton-

Bucket, IdenticalSingletonBucket, and SingletonUnionBucket)
are depicted in Figure 4. Procedure EmptyBucket(X , i)
returns true iff the ith first-level bucket of the X 2-
level hash sketch is empty or, equivalently, the total el-
ement count in that bucket (i.e., X [i, 0]) is zero. Pro-
cedure SingletonBucket(X , i) returns true iff the collec-
tion of distinct elements mapping to the ith first-level
bucket of X is a singleton (i.e., contains only one distinct
element). To see this, note that, based on our count-
signature structure, a bucket is a singleton iff for each
bit-location j = 1, . . . , log M , the corresponding bit-
location count is either zero (i.e., X [i, j] = 0, implying
only bucket elements with a 0 bit in that location) or
equal to the total element count (i.e., X [i, j] = X [i, 0],
implying only bucket elements with a 1 bit in that lo-
cation). Also, note that the above technique allows us
to trivially identify the (binary signature of the) unique
data element in a singleton first-level bucket. Given two
2-level hash sketches XA and XB (for update streams
A and B) built using the same first-level hash function,
procedure IdenticalSingletonBucket(XA, XB , i) returns true

iff the ith first-level buckets for both XA and XB (1)
are singletons, and (2) contain the exact same distinct
element from [M ] (determined through a simple com-
parison of the corresponding element binary signatures
bit-by-bit (Steps 4-8)). Finally, procedure SingletonUnion-

Bucket(XA, XB , i) returns true iff the set union of the

4 Note that, unlike our earlier conference paper [14], the
implications made by our property checkers here are com-
pletely deterministic.
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elements from A and B mapping to the ith first-level
bucket of XA and XB is a singleton.

procedure EmptyBucket( X , i )
Input: 2-level hash sketch X , first-level bucket index i.

Output: true iff ith bucket of X is empty.
begin

1. if (X [i, 0] = 0) return(true)
2. else return(false)
end

procedure SingletonBucket( X , i )
Input: 2-level hash sketch X , first-level bucket index i.

Output: true iff ith bucket of X is a singleton.
begin

1. if (EmptyBucket(X , i)) return(false) // bucket is empty
2. unique := true; j := 1
3. while ( unique and j ≤ log M ) do

4. if ( X [i, j] > 0 and X [i, 0] > X [i, j] ) then

5. unique := false // at least two elements in bucket
6. j := j + 1
7. endwhile

8. return(unique)
end

procedure IdenticalSingletonBucket( XA, XB , i )
Input: 2-level hash sketches XA, XB , first-level bucket index i.

Output: true iff the ith buckets in XA and XB contain the
same singleton element.

begin

1. if (not SingletonBucket(XA, i)) or

(not SingletonBucket(XB , i)) then

2. return(false)
3. same := true; j := 1
4. while ( same and j ≤ log M ) do

5. if ( (XA[i, j] > 0) 6= (XB [i, j] > 0) ) then

6. same := false // differ in at least one bit-location
7. j := j + 1
8. endwhile

9. return(same)
end

procedure SingletonUnionBucket( XA, XB , i )
Input: 2-level hash sketches XA, XB , first-level bucket index i.

Output: true iff the union of ith buckets in XA and XB is a
singleton.

begin

1. if ( (SingletonBucket(XA, i) and EmptyBucket(XB , i))
or (SingletonBucket(XB , i) and EmptyBucket(XA, i)) )
then

2. return(true) // one singleton and one empty bucket
3. else return(IdenticalSingletonBucket(XA, XB , i))
end

Fig. 4 Elementary Property Check Procedures for 2-level
Hash Sketches.

The above elementary property check procedures for
2-level hash sketch synopses are used as basic building

blocks for the estimation algorithms developed in the
remainder of this paper.

3.3 The Set-Union Estimator

Given two multi-sets of elements A and B in the form
of continuous update streams, the set-union cardinality
|A ∪ B| is the number of distinct elements with positive
net frequency in either A or B. We present an (ε, δ)-
estimator for the set-union cardinality |A ∪B| based on
maintained 2-level hash sketch synopses XA and XB for
streams A and B, respectively. Our set-union algorithm
does not actually require the full power of 2-level hash
sketches, since it does not need to make use of any of
the log M bit-location counts. Thus, our union estima-
tor can work by simply maintaining a single counter (of
size O(log N)) for the total element count for each of
the Θ(log M) first-level hash buckets (Figure 3). 5 This
means that, in the simpler case of set union, we can use
a mild extension of the basic FM hash data structure.

Our algorithm for producing an (ε, δ)-estimator for
the union of two update streams A and B (termed Se-

tUnionEstimator) is shown in Figure 5. Briefly, our esti-
mator examines an input collection of r independent 2-
level hash sketch synopses built over A and B in parallel
(each copy using independently-chosen first-level hash
functions from H) in order to determine the smallest
first-level bucket index at which only a constant frac-
tion ≤ (1 + ε)/8 of the sketch buckets turns out to be
non-empty for the union A∪B (Steps 4-10). (Note that
the non-empty if-condition in Step 6 can be checked by
simply maintaining a single element counter at the cor-
responding first-level bucket; we present the algorithm
assuming full 2-level hash sketch synopses for unifor-
mity.) As our analysis shows, the observed fraction p̂
(Step 12) of non-empty first-level hash buckets can be
used to provide an estimate for the probability of ob-
serving a non-empty bucket at this level of the sketch
which, in turn, allows us to give a robust estimate for
|A ∪ B| (Step 13).

Analysis. We first demonstrate that, when the number

of independent input sketches is r = Θ( log(1/δ)
ε2 ), algo-

rithm SetUnionEstimator terminates with a bucket index
for which the non-empty bucket count satisfies 7(1−ε)r

128 ≤
count ≤ (1+ε)r

8 with probability at least 1 − δ. Con-
sider a specific level j of first-level hash buckets and let
pj denote the probability that bucket j is non-empty
for A ∪ B, i.e., bucket j is not empty in either XA or
XB . By independence, this probability is exactly pj =
1 − (1 − 1/Rj)

u, where u = |A ∪ B| and Rj = 2j+1.

5 Of course, for the general set-expression estimation prob-
lem considered in this paper, we need to build full 2-level
hash sketch synopses for each update stream, since we do
not know a-priori how a stream will be used in an incoming
expression (Figure 1).
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procedure SetUnionEstimator( {X i
A,X i

B : i = 1, . . . , r}, ε )
Input: r independent 2-level hash sketch pairs {X i

A,X i
B} for

streams A and B, relative accuracy parameter ε.
Output: Estimate for |A ∪ B|.
begin

1. f := (1 + ε)r/8
2. index := 0
3. while ( true ) do

4. count := 0
5. for i := 1 to r do

6. if ( not EmptyBucket(X i
A, index) ) or

( not EmptyBucket(X i
B , index) ) then

7. count := count +1
8. endfor

9. if (count ≤ f) then break // first index s.t. count ≤ f
10. else index := index +1
11. endwhile

12. p̂ := count / r ; R := 2index+1

13. return( log(1−p̂)
log(1−1/R)

)

end

Fig. 5 Set-Union Cardinality Estimator.

A simple application of the binomial expansion gives us
that u/Rj − (1/2)(u/Rj)

2 ≤ pj ≤ u/Rj .

Now, fix j to be a positive integer such that 1/16 <
u/Rj ≤ 1/8; for this value j of the bucket index, the
above bounds for the probability pj = p give 7/128 <
p ≤ 1/8. Note that the ratio count/r at this level j is
essentially an average over r independent observations
of the 0/1 random variable corresponding to pj = p. By
Chernoff bounds [29], the estimate p̂j = p̂ = count/r
at level j satisfies |p̂ − p| ≤ εp with probability at least

1 − δ as long as rp ≥ 2 log(1/δ)
ε2 , or (since p > 7/128)

r ≥ 256 log(1/δ)
7ε2 . Consequently, with this value j of the

bucket index and r = Θ( log(1/δ)
ε2 ), our SetUnionEstimator

procedure finds p̂ ∈ (1±ε)p which implies that 7(1−ε)r
128 ≤

count ≤ (1+ε)r
8 with probability at least 1 − δ (since

7/128 < p ≤ 1/8 at this level j).

Thus, with probability ≥ 1−δ, SetUnionEstimator finds

a level j such that count ≤ (1+ε)r
8 and the ratio p̂j =

count/r satisfies |p̂j − pj | ≤ εpj . The following lemma
then demonstrates that, for pj ≤ 1/4, we can directly
substitute the estimate p̂j in the equation pj = 1− (1−
1/Rj)

u and solve for u without any significant change
in the relative accuracy guarantees. (A similar lemma
is proven in [4], even though their proposed estimation
technique is quite different from ours.)

Lemma 1 Let f(x) = log(1 − x)/ log(1 − 1/R). If |y −
x| ≤ ε

2x for some ε < 1 and x ≤ 1/4, then |f(y)−f(x)| ≤
εf(x).

Proof: By Taylor Series, there is a value in w ∈ (x, y)
such that ln (1 − y) = ln (1 − x) − (y − x)/(1 − w) (ln

denotes the natural logarithm function). Thus, we have:

(−ln (1 − 1/R))|f(y) − f(x)| ≤ |y − x|
1 − max{x, y}

≤
ε
2x

1 − (1 + ε
2 )x

.

Now, since x ≤ 1/4 and ε < 1, we have (1 + ε
2 )x <

3/8 which gives: (−ln (1 − 1/R))|f(y) − f(x)| ≤ εx ≤
−εln (1 − x). Since, for any x, ln x = log x · ln 2, the
result follows.

We summarize the results of the above analysis in
the following theorem.

Theorem 2 Procedure SetUnionEstimator returns an (ε, δ)-
estimate for the size of the set union |A∪B| of two update
streams A and B using 2-level hash sketch synopses with

a total storage requirement of Θ( log(1/δ)
ε2 log M log N).

3.4 The Set-Difference Estimator

Given two multi-sets A and B presented as a continuous
stream of updates, the cardinality of the set difference
of A and B (i.e., |A − B|) is defined as the number of
distinct element values whose net frequency is positive
in A and zero in B. In this section, we present an (ε, δ)-
approximation scheme for estimating the set-difference
operator over two update streams A and B based on
their maintained 2-level hash sketch synopses XA and
XB . Our set-difference algorithm assumes the existence
of an (ε′, Θ(δ))-estimate û that approximates the car-
dinality of the union u = |A ∪ B| to within a relative
error of ε′ = ε/3 with probability at least 1 − Θ(δ). (û
can be obtained using the XA and XB synopses, and the
procedure described in Section 3.3.)6

Our algorithm for estimating set difference over two
update streams A and B (termed SetDifferenceEstimator)
is depicted in Figure 6. Briefly, our algorithm uses av-
eraging over r independent copies of 2-level hash sketch
synopses built over A and B; each of the r copies us-
ing independently-chosen first-level hash functions from
H. For each corresponding pair of 2-level hash sketches
for A and B (which, of course, use the same first-level
hash function), our basic difference-estimation procedure

6 Note that an “obvious” approach here would be to use the
set-theoretic formula |A − B| = |A ∪ B|− |B| in conjunction
with small-relative-error estimates for |A ∪ B| and |B| to
obtain an estimate for |A−B|; unfortunately, this procedure
fails to give any useful approximation-error guarantees for the
final set-difference estimate. The problem here, of course, is
that using ε-relative-error estimates for |A∪B| and |B| does
not imply any relative-error bounds for the resulting estimate
of their difference |A ∪ B|− |B|. The same problem arises
when trying to use the formula |A ∩ B| = |A|+ |B|− |A ∪
B| to directly obtain a set-intersection cardinality estimator
(Section 3.5).
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procedure SetDifferenceEstimator({X i
A,X i

B : i = 1, . . . , r}, û, ε)
Input: r independent 2-level hash sketch pairs {X i

A,X i
B} for

streams A and B, set-union cardinality estimate û, relative
accuracy parameter ε.

Output: Estimate for |A − B|.
begin

1. sum := count := 0
2. for i := 1 to r do

3. atomicEstimate := AtomicDiffEstimator( X i
A, X i

B , û, ε)
4. if ( atomicEstimate 6= noEstimate) then

5. sum := sum + atomicEstimate; count := count +1
6. endif

7. endfor

8. return( sum × û / count )
end

procedure AtomicDiffEstimator( X i
A, X i

B , û, ε )
begin

1. index := dlog( β·û
1−ε

)e // β is constant > 1 (see analysis)

2. if ( not SingletonUnionBucket(X i
A, X i

B , index) ) then

3. return( noEstimate)
4. estimate := 0
5. if ( SingletonBucket(X i

A, index) and

EmptyBucket(X i
B , index) ) then

6. estimate := 1 // found witness of A − B
7. return( estimate )
end

Fig. 6 Set-Difference Cardinality Estimator.

(termed AtomicDiffEstimator) is called to return an atomic
estimate. The key idea in AtomicDiffEstimator is to try to
discover a singleton first-level bucket in the pair X i

A and
X i

B that contains a “witness” element for A−B. This is
accomplished by selecting a first-level bucket at a level
located slightly higher than log |A ∪ B| (Steps 1-2), so
that we actually find a singleton bucket for A ∪ B with
constant probability; if the bucket is not a singleton, then
we cannot use this pair of sketches in our set-difference
estimation and a noEstimate flag is returned. Other-
wise, we check to see whether the bucket contains a wit-
ness element for A − B using the SingletonBucket proce-
dure for the X i

A bucket and a simple test to see if the X i
B

bucket is empty (Step 5). AtomicDiffEstimator returns an
atomic estimate of 1 if it finds a witness singleton and
0 otherwise. SetDifferenceEstimator then simply averages
all the valid (i.e., 0 or 1) atomic estimates and scales
the result by the union estimate û to compute the final
estimate for the set difference |A − B|.

Analysis. Consider the first-level bucket “index” chosen
in Step 3 of our AtomicDiffEstimator procedure, and let
R = 2index+1. Note that, by our selection of û, R is at
least β|A ∪B| with high probability. In this bucket, our
procedure tries to discover a witness value for A−B by
checking the following condition.

Set-Difference Witness Condition: Bucket “index”
is a non-empty singleton for A and empty for B, pro-

vided that bucket “index” is a singleton bucket for
A ∪ B.

Let p denote the (conditional) probability that the Set-
Difference Witness Condition is true. Then, we can write:

p =
Pr [“index” singleton for A and empty for B]

Pr [“index” singleton for A ∪ B ]

=
|A−B|

R

(

1 − 1
R

)|A∪B|−1

|A∪B|
R

(

1 − 1
R

)|A∪B|−1
=

|A − B|
|A ∪ B| .

To see this, note that the probability of any given el-
ement mapping to bucket “index” is 1/R, so (by in-
dependence) the probability of a given element being
the single element mapping to that bucket is exactly
1
R (1 − 1/R)|A∪B|−1. Now, the number of elements that
can give a singleton bucket for A and an empty bucket

for B is exactly |A−B|, giving the numerator |A−B|
R (1−

1/R)|A∪B|−1 (a similar argument applies for the denom-
inator), and the derivation follows.

Our technique relies on using the 0/1 atomic esti-
mates returned from the AtomicDiffEstimator procedure
as independent “observations” of p and averaging them
to obtain an estimate p̂ of p. Since (as shown above)
p = |A − B|/|A ∪ B|, our final estimate for the set-

difference size |A−B| is d̂ = p̂ · û (Step 8). Let r denote
the number of independent 2-level hash sketch synopses
maintained and r′ be the number of independent obser-
vations of p used to obtain p̂. Clearly, r′ ≤ r since for
some of our sketches the first-level “index” bucket is not
a singleton and a noEstimate flag is returned; however,
we can lower-bound the probability that a valid obser-
vation of p is obtained as follows:

Pr [0/1 observation] = Pr [“index” singleton for A ∪ B]

=
|A ∪ B|

R

(

1 − 1

R

)|A∪B|−1

>
|A ∪ B|

R

(

1 − |A ∪ B|
R

)

>
β − 1

β2
,

where the first inequality follows from Bernoulli’s in-
equality and the second inequality comes from the fact
that |A∪B|/R < 1/β. Then, we can simply apply Cher-
noff bounds to show that, with probability at least 1 −
Θ(δ), for any constant ε1 < 1, the number of valid ob-
servations r′ is going to be at least (1− ε1)

β−1
β2 r as long

as r ≥ Θ( log(1/δ)β2

ε2
1
(β−1)

).

In order to produce an (ε, δ)-estimate d̂ for the set dif-
ference |A−B|, we ensure that our p̂ average determined
in procedure SetDifferenceEstimator is an (ε/3, Θ(δ))-estimate
for p; that is:

Pr
[

|p̂ − p| ≤ εp

3

]

≥ 1 − Θ(δ).
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By Chernoff bounds, the above inequality holds if r′p ≥
Θ( log(1/δ)

ε2 ) or, equivalently, r′ ≥ Θ( log(1/δ)|A∪B|
ε2|A−B| ). As-

suming this condition is satisfied, we have:

|d̂ − |A − B|| = |p̂û − pu| ∈ |p(1 ± ε/3)u(1 ± ε/3)|,

which implies that |p̂û − pu| ∈ pu(1 ± ε), since ε ≤ 1.
Thus, we obtain an (ε, δ)-estimate for |A − B| provided
that the number of valid p observations r′ satisfies r′ ≥
Θ( log(1/δ)|A∪B|

ε2|A−B| ) or the total number of independent 2-

level hash sketches maintained is

r ≥ Θ(
log(1/δ)β2|A ∪ B|

ε2 min{ε21, 1 − ε1}(β − 1)|A − B| )

(since, as discussed above, r′ ≥ (1 − ε1)
β−1
β2 r with high

probability if r ≥ Θ( log(1/δ)β2

ε2
1
(β−1)

)). The optimal values

for the constants ε1 and β (i.e., the values minimiz-
ing the required number of independent sketch copies)
can be easily determined from the above expression as
ε1 = (

√
5 − 1)/2 and β = 2. Based on the above anal-

ysis and the fact that each 2-level hash sketch synopsis
maintained by our algorithm is of size Θ(log2 M log N),
we can state the following theorem.

Theorem 3 Procedure SetDifferenceEstimator returns an
(ε, δ)-estimate for the size of the set difference |A − B|
of two update streams A and B using 2-level hash sketch
synopses with a total storage requirement of

Θ

(

log(1/δ)|A ∪ B|
ε2|A − B| log2 M log N

)

.

3.5 The Set-Intersection Estimator

Given two continuous update streams A and B, the car-
dinality of the set intersection of streams A and B (i.e.,
|A∩B|) is defined as the number of distinct data elements
whose net frequency is positive in both A and B. The
structure of our set-intersection estimator (termed Set-

IntersectionEstimator) for A and B based on their 2-level
hash sketch synopses XA and XB is basically identical
to that of the SetDifferenceEstimator procedure depicted
in Figure 6. The only difference is that, since we are
now looking for “witness” elements for the intersection
A ∩ B, the if-condition in Step 5 of procedure AtomicD-

iffEstimator is changed to: “( SingletonBucket(X i
A, index)

and SingletonBucket(X i
B , index) )”, to obtain the cor-

responding atomic set-intersection estimation algorithm
AtomicIntersectEstimator. The following theorem can then
be shown using an analysis similar to that of Section 3.4.

Theorem 4 Procedure SetIntersectionEstimator returns an
(ε, δ)-estimate for the size of the set intersection |A∩B|

of two update streams A and B using 2-level hash sketch
synopses with a total storage requirement of

Θ

(

log(1/δ)|A ∪ B|
ε2|A ∩ B| log2 M log N

)

.

3.6 Extension to Limited Independence

Thus far, the analysis of our set-operation estimators
has made the (unrealistic) assumption that the first-
level hash functions used in our 2-level hash sketch syn-
opses guarantee fully (i.e., M -wise) independent value
mappings. In this section, we present a series of statis-
tical lemmas that allow the analysis of our (ε, δ) set-
operation estimators to be extended to the much more
realistic setting of t-wise independent first-level hashing,
where t = Θ(log 1

ε ). Note that maintaining these first-
level hash functions implies an additive storage cost of
O(log 1

ε log M) per 2-level hash sketch for storing an ap-
propriate seed (e.g., [3,23]). This cost can be factored in
the equations of Theorems 2-4 by simply adding a log 1

ε
multiplicative factor.

The only place in our analysis where the assumption
of full independence is used is in deriving the closed-form
expression for the probability of the conditions checked
through our 2-level hash sketch synopses (e.g., the “Set-
Difference Witness Condition” for set difference, or the
non-empty bucket condition for set union). Our results
below demonstrate that these (fully-independent) prob-
abilities are actually estimated to within small relative
error if only t-wise independence is assumed with t =
Θ(log 1

ε ). Assume that we have fixed a first-level bucket
j and let 1/R = 1/2j+1 denote the probability that an
element in [M ] maps to bucket j. We use i-subscripted
small letters (e.g., xi, yi) to denote the Boolean random
variables for the simple event “the ith distinct value in
a stream maps to bucket j”. Throughout this section,
we use Pr [] (Prt []) to denote the probability function
under full (resp., t-wise) independence of these Boolean
random variables. (We omit the proofs of these statistical
results since they are fairly long and do not offer much in
terms of understanding; similar results for limited inde-
pendence variables have appeared elsewhere, e.g., [23].)

Lemma 5 Let X =
∑m

i=1 xi be the sum of m Boolean
random variables such that E[xi] = 1/R, for 1 ≤ i ≤ m.
Then, |Prt [X ≥ 1] − Pr [X ≥ 1] | ≤ 2

(

m
t

)

(1/R)t.

Corollary 6 Under the assumptions of Lemma 5, and

if t ≥ max{3, log(2/ε)
log(R/m)} then,

|Prt [X ≥ 1] − Pr [X ≥ 1] | ≤ εPr [X ≥ 1] and

|Prt [X = 0] − Pr [X = 0] | ≤ εPr [X = 0] .
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Note that, with xi’s corresponding to the distinct el-
ements of the union A∪B, the condition X ≥ 1 in Corol-
lary 6 is essentially the set-union condition in Step 6 of
procedure SetUnionEstimator (Figure 5) that checks for a
non-empty bucket for A ∪ B. Thus, Corollary 6 shows
that the non-empty bucket fraction p̂ assuming full in-
dependence (in the analysis of Section 3.3) is approxi-
mated to within a relative error of ε if only Θ(log(1/ε))-
independent hash functions are used. The corresponding
result for the set-difference and set-intersection witness
conditions is slightly more complicated and relies on the
following statistical lemma (we omit the detailed con-
stants to simplify the exposition).

Lemma 7 Let X =
∑

S1
xi and Y =

∑

S2
yj denote the

sums of disjoint sets S1, S2 of Boolean random variables
with E

[

xi

]

= E
[

yi

]

= 1/R for each xi ∈ S1, yi ∈ S2, and
let E denote the event E := (X = 1∧Y = 0|X +Y = 1).
If t ≥ max{4, Θ(log(1/ε)}, then |Prt [E] − Pr [E] | ≤
εPr [E] .

Again, it is easy to see that, with S1 := A − B and
S2 := B, the event E := (X = 1∧ Y = 0|X + Y = 1) in
Lemma 7 is exactly the set-difference witness condition
described in the analysis of our SetDifferenceEstimator es-
timator in Section 3.4. Similarly, with S1 := A∩B and S2

:= (A∪B)−S1, E gives the corresponding condition for
set intersection (Section 3.5). Thus, Lemma 7 that the
witness condition probability estimate p̂ assuming full
independence (see analysis in Section 3.4) is estimated
to within a relative error of ε using only Θ(log(1/ε))-wise
independence.

An interesting question, of course, is how this addi-
tional level of approximation affects the storage require-
ments of our estimators. We now demonstrate that the
effect is bounded by a small constant factor. Consider
the case of set difference and let p̂t denote the probabil-
ity of a set-difference witness under t-wise independence
with t = Θ(log(3/ε)). Our final estimate is p̂tû and we
would like to guarantee that it is within (1 ± ε)pu. A
simple application of the triangle inequality gives:

|p̂tû − pu| ≤ |p̂tû − p̂û| + |p̂û − pu| ≤ ε

3
p̂û + |p̂û − pu|

and, assuming that p̂û (the estimate under full indepen-
dence) approximates pu to within a relative error of ε/3,
we have:

|p̂tû − pu| ≤ ε

3
(1 +

ε

3
)pu +

ε

3
pu ≤ εpu,

for any ε < 1. Thus, simply tightening our relative-error
requirement to ε′ = ε/3 (with the corresponding increase
in our earlier storage-cost expressions) is sufficient to
guarantee a relative error of ε for the final set-difference
estimate with only Θ(log(3/ε))-wise independence. Very
similar derivations can also be given for our set union
and intersection estimators under limited independence.

3.7 Lower Bounds

At this point, it is interesting to ask how good our ran-
domized estimators for set operators really are – is it
possible to design new estimation procedures that sig-
nificantly improve on the space requirements stated in
Theorems 2–4? In this section, we answer this question
in the negative by demonstrating space lower bounds
for set-operation estimators working in the streaming
model.

The space requirements of our set-union estimator
actually match those of earlier algorithms for set union
over insertion streams (see, for example, [2,4,18]); this
is, of course, modulo the O(log N) factor, since our algo-
rithms need to maintain counters for dealing with dele-
tions in the stream. Our SetUnionEstimator space require-
ments also match (to within log and constant factors)
the lower bounds shown by Alon et al. [2] on the space
needed by any randomized algorithm for estimating the
number of distinct values in a data stream. As evidenced
in the space bounds of Theorems 3–4, estimating set dif-
ference and intersection is a significantly more difficult
problem than that for union; essentially, our results show
that, with limited space, our estimators can only pro-
vide robust estimates for differences/intersections that
are sufficiently large compared to the corresponding set
union (i.e., |A ∪ B|). (Similar observations have been
made for estimators designed for the special case of insert-
only streams [5,12].) The following theorem proves a
lower bound for all randomized approximation algorithms
stating that the space requirements of our SetDifferenceEs-

timator and SetIntersectionEstimator estimators cannot be
significantly improved (their space usage is within small
polynomial and log factors of the optimal).

Theorem 8 Any randomized algorithm that, with high
probability, estimates the set cardinality |AopB| (op ∈
{−,∩}) to within any constant relative error ε must use

at least Θ( |A∪B|
ε|AopB| ) bits.

Proof: Let n = |A ∪ B|. Consider first the problem of
estimating the set-intersection cardinality |A∩B|. Deter-
mining the value of |A∩B| exactly with high probability
is at least as hard as the well-known SET-DISJOINTNESS
problem of (probabilistic) communication complexity, which
requires at least Θ(n) bits of communication (i.e., space)
[25,26]. Assume now that we have a procedure P (ε) that
estimates |A ∩ B| with high probability to within a rel-
ative error of ε using less than o( n

ε|A∩B| ) bits; then, we

will show that this implies an o(n) solution for SET-
DISJOINTNESS . More specifically, our algorithm for
solving the SET-DISJOINTNESS problem for A and B
is as follows. Pick any constant ε′ < 1 and run P (ε′) to
determine a high-probability estimate t̂ of |A∩B|. By our
assumptions for P (), we know that this run will use only
o( n

|A∩B| ) bits (remember that ε′ is a constant) and, with

high probability, (1−ε′)|A∩B| < t̂ < (1+ε′)|A∩B|. This
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last inequality also implies that, with high probability,

1 − ε′

2(1 + ε′)|A ∩ B| <
1 − ε′

2t̂
<

1

2|A ∩ B| . (1)

Now, run algorithm P (ε) again, this time with ε = 1−ε′

2t̂
;

since, 1−ε′

2t̂
< 1

2|A∩B| it is easy to see that this run will

estimate |A∩B| to within an additive error of less than
1/2, so it essentially allows us to estimate |A ∩ B| ex-
actly (with high probability). Furthermore, the space

used by P (ε) is only o( n
ε|A∩B| ) ≤ o( 2n(1+ε′)

1−ε′ ) (by Inequal-

ity (1)), which is obviously o(n). Thus, we have a proce-
dure for solving the SET-DISJOINTNESS problem us-
ing less than o(n) bits; this is clearly a contradiction.
The same argument also goes through for set difference,
since A − B is simply A ∩ B.

4 Processing Set Expressions

In this section, we generalize the estimation techniques
for individual set operators presented in Sections 3.3-
3.5 to formulate an (ε, δ)-estimator for the cardinality
of general set expressions over a collection of update
streams Ai, i = 1, . . . , n. Such set expressions are of
the generic form E := (((A1op1A2)op2A3) · · ·An), where
the connectives opj denote the standard set operators,
namely, union, intersection, and set difference (as an ex-
ample, E := A4 − (A3 ∩ (A2 ∪A1))). Our goal is to esti-
mate |E|, that is, the number of distinct elements with
positive net frequency in the output of E using only a
collection of independent small 2-level hash sketch syn-
opses built over the Ai update streams (of course, as in
the simple set-operator case, for a given sketch, we use
the same first-level hash functions across all Ai’s).

Briefly, our general set-expression estimator follows
along the lines of our set-difference and set-intersection
algorithms. As in the SetDifferenceEstimator and SetUnion-

Estimator procedures, we assume a robust estimate û for
the union cardinality u = |∪iAi|, where i ranges over the
streams participating in our input set expression E, and
uses û to select an appropriate first-level bucket index j
= dlog( β·û

1−ε )e, where β is a constant > 1. (This estimate
û can be obtained from the synopses using our SetU-

nionEstimator procedure.) Our set-expression estimation
algorithm for E starts by discarding all parallel 2-level
hash sketch collections {XA1

,XA2
, . . .} for which bucket

j is not a singleton bucket for ∪iAi. (An easy generaliza-
tion of our elementary check procedures in Section 3.2
can be used to determine this fact.) Then, E is mapped
to a Boolean expression B(E) over the level-j buckets of
the 2-level hash sketch synopses for Ai’s; this expression
is defined inductively as follows:

E = Ai : Define B(E) := ( not EmptyBucket(XAi
, j) )

(i.e., true iff bucket j is non-empty in XAi
).

E = E1 ∪ E2 : Define B(E) := B(E1)∨B(E2) (i.e., the
disjunction of the sub-expressions B(E1) and B(E2)).

E = E1 ∩ E2 : Define B(E) := B(E1)∧B(E2) (i.e., the
conjunction of the sub-expressions B(E1) and B(E2)).

E = E1 − E2 : Define B(E) := B(E1)∧B(E2) (i.e., must
satisfy B(E1) and not satisfy B(E2)).

It is easy to see that, with the above methodology, our
Boolean condition B(E) for set expression E essentially
corresponds to an “E Witness Condition” at the selected
bucket index j, as defined below.

E Witness Condition: Bucket j is a non-empty sin-
gleton for the set expression E defined over A1, . . . , An,
provided that bucket j is a singleton bucket for ∪n

i=1Ai.

As in our development for the SetDifferenceEstimator al-
gorithm, letting pE denote the (conditional) probability
that the E Witness Condition is true and R = 2j+1, we
have:

pE =
Pr [bucket j non-empty singleton for E]

Pr [bucket j singleton for U = ∪iAi ]

=
|E|
R

(

1 − 1
R

)|U |−1

|U |
R

(

1 − 1
R

)|U |−1
=

|E|
|U | .

An analysis similar to that in Section 3.4 can then be
employed to demonstrate the following theorem.

Theorem 9 The set-expression estimator described above
returns an (ε, δ)-estimate for the cardinality of a set ex-
pression |E| over a collection of update streams A1, . . . , An

using 2-level hash sketch synopses with a total storage
requirement of

Θ

(

n log(1/δ)| ∪i Ai|
ε2|E| log2 M log N

)

.

We can also easily extend the limited-independence
analysis of Section 3.6 to show that our result for set-
expression estimation holds under only Θ(log(1/ε))-wise
independent first-level hash functions for our sketches.
(Once again, the cost for storing these functions can be
factored in by simply adding a log(1/ε) multiplicative
factor in the expression of Theorem 9.)

We should note here that the technique presented in
this section for dealing with the union operator in the
context of larger set expressions is, in fact, different from
the SetUnionEstimator procedure described in Section 3.3.
Instead, the manner in which our set-expression esti-
mator handles union essentially follows along the gen-
eral paradigm of our set difference and intersection es-
timators (with an appropriately-defined “witness” con-
dition – Sections 3.4-3.5). It is easy to see that both
techniques basically have the same asymptotic storage
requirements (remember that set union does not require
complete second-level count signatures). On the other
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hand, a detailed analysis shows that our more special-
ized SetUnionEstimator algorithm does have better (i.e.,
smaller) constants for set-union estimation which is, in
general, much easier than the corresponding problem
for set difference/intersection. The key benefit of the
“witness”-based union algorithm is that (as shown in
this section) it allows for a very clean, uniform algorithm
for processing general set expressions.

Practical Considerations. Applying the analytical re-
sults of Sections 3 and 4 in practice raises some in-
teresting issues. Even though, as shown in Section 3.7,
our set-expression cardinality estimators offer provably
near-optimal space/accuracy tradeoffs, their space re-
quirements (specifically, the number of independent 2-
level hash sketch copies r) for given levels of accuracy
ε and confidence δ depends crucially on the actual set-
expression cardinality |E| that we seek to estimate (The-
orem 9). (Our results also clearly demonstrate that our
estimation problem becomes much more difficult as the
target cardinality becomes smaller with respect to the
overall union size; note, however, that, as demonstrated
in the lower bounds of Section 3.7, this is an inherent
characteristic of our estimation problem.) Given this de-
pendence on the quantity to be estimated, the natural
question that arises is how our analytical results can be
used to provide meaningful error guarantees in real-life,
practical scenarios.

Typically, in a deployment of our techniques in prac-
tice, we expect to have a fixed amount of space for main-
taining our stream synopses which, essentially, fixes the
number of independent 2-level hash sketch copies r that
we can build over the input stream(s). Based on this
number r and our analytical results (Sections 3-4), we
can then provide users with a “sanity” lower bound on
the sizes of the set expressions for which our synopses can
provide low-error, high-confidence (i.e., (ε, δ)) estimates.
Thus, for a given number of 2-level hash sketch copies
r (determined by the available synopsis space), our es-
timation procedures can provide error guarantees of the
form: “the estimate for |E| is within a relative error of
ε with probability ≥ 1 − δ, as long as |E| ≥ X”, where
X = f(r, ε, δ, | ∪i Ai|) is a sanity bound determined by
our theorems. We should, however, note that, as we also
discovered during our experimental study, such sanity
bounds tend to be quite pessimistic for practical sce-
narios. This is primarily due to the fact that our analy-
sis of the space requirements of our techniques is based
on generic, worst-case probabilistic bounds that can be
quite loose. Thus, the actual errors of our estimators in
practice are typically much better than what would be
predicted based on our (worst-case) analysis.

5 Time-Efficient Hash-Sketch Stream Synopses

A potential problem with employing collections of in-
dependent 2-level hash sketches for set-expression esti-

mation over update streams is that the time required
to maintain the stream synopsis for each arriving up-
date is essentially proportional to the number r of inde-
pendent 2-level hash sketches. This is, of course, due to
the fact that all these independent 2-level hash sketch
structures have to be updated on each stream arrival.
Unfortunately, as our earlier analysis has demonstrated,
although this number of sketches r can be significantly
sublinear in the sizes of the streaming input sets, it still
needs to be significant (and, clearly, larger than poly-
logarithmic) in order to achieve reasonable estimation
accuracy for general set expressions (Theorems 3, 4, and
9). Furthermore, as our lower bound in Theorem 8 in-
dicates, it is unlikely that the size of a set-expression
stream synopsis can be significantly reduced.

With modern computers offering main-memory ca-
pacities typically in the order of several Gigabytes, the
memory requirements of the stream synopsis may not ac-
tually be the key limiting factor for effective data-stream
processing. A potentially more pressing concern is the
time needed to update the synopsis on each stream ar-
rival – algorithms that require Ω(|synopsis size|) time to
maintain the synopsis on each update may be completely
inapplicable for truly rapid-rate data-stream processing
environments. This situation is, of course, especially ex-
acerbated when it comes to data-processing problems
with strong lower bounds on the size of the synopsis re-
quired (like our set-expression estimation problem).

In this section, we present an optimized, time-efficient
version of our 2-level hash sketch-based update-stream
synopsis that guarantees small, logarithmic maintenance
time per update, while providing similar, strong accuracy-
space guarantees for the final cardinality estimate.

Stream Synopsis and Estimation Technique. Our
time-efficient synopsis structure XA for a stream of up-
dates A again comprises a collection of independent 2-
level hash sketches; however, we now organize these hash
sketches along the buckets of a hash table that random-
izes incoming stream elements across a collection of b
hash buckets. More specifically, assume a randomizing
hash function g that maps [M ] uniformly onto a range
[b] (i.e., g : [M ] → [b]) of hash-table buckets. Inside
each such hash-bucket i (i = 1, . . . , b), our XA synopsis
maintains a single 2-level hash sketch XA[i] (with a cor-
responding hash function hi : [M ] → [Mk], i = 1, . . . ,
b) for the subset of domain values in [M ] that map onto
the ith hash bucket. (The functions h1, . . . , hb are chosen
independently from a family of hash functions H.) Our
time-efficient, hash-sketch-based stream synopsis struc-
ture is depicted pictorially in Figure 7.

The algorithm for maintaining our time-efficient stream
synopsis is a straightforward extension of the correspond-
ing algorithm for a simple 2-level hash sketch: basically,
for each incoming update < i, e,±v >, only the single 2-
level hash sketch residing in bucket g(e) (i.e., XA[g(e)])
is updated (as described in Section 3.1) to maintain the
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Fig. 7 Time-Efficient Hash-Sketch Stream Synopsis.

stream synopsis. Thus, even though our synopsis may
stil comprise a potentially large number of independent
2-level hash sketches (spread across the b hash buck-
ets), each streaming update only updates a single such
sketch (i.e., the one in the corresponding element bucket)
– this is the key to guaranteeing small, logarithmic (i.e.,
O(log M)) update times in our optimized scheme.7

The estimation algorithms for our time-efficient stream
synopses are actually quite similar to our basic set-ex-
pression estimators described earlier in this paper – the
key difference is that we now iterate and average atomic
estimates over the b individual 2-level hash sketches stored
in the hash table. (The analysis involved is quite differ-
ent and actually imposes a sanity lower bound on the
size of the set expression, as we will see below.) As an
example, Figure 8 depicts our algorithm (termed HashD-

ifferenceEstimator) for estimating the set-difference car-
dinality of two update streams A and B using a pair
of parallel, b-bucket time-efficient hash-sketch synopses
(which are, of course, built with the same set of hash
functions g, h1, . . . , hb). Our HashDifferenceEstimator also
assumes the existence of a (Θ(ε), Θ(δ))-estimate û for
the cardinality of the set union u = |A ∪ B|. û can be
obtained using the XA and XB synopses using a simi-
lar procedure; note, however, that the union-estimation
problem is inherently easier and, in fact, our basic SetU-

nionEstimator is update-time efficient since it only needs

Θ( log(1/δ)
ε2 ) 2-level hash sketches (Section 3.3). Briefly,

our HashDifferenceEstimator procedure iterates over the b
hash-table buckets of XA and XB , and, similar to the
basic estimator of Section 3.4, employs the 2-level hash
sketch pair (XA[i], XB [i]) in each bucket i in an atomic
BucketDiffEstimator procedure to try to discover singleton
“witness” elements for the set difference A−B. HashDif-

ferenceEstimator then computes the ratio of the number of

7 The actual time required to compute two simple (e.g.,
linear) hash functions (g() and hi()) and update log M + 1
element counters for a streaming update is typically in the
order of a few microseconds for a modern Pentium-III pro-
cessor.

procedure HashDifferenceEstimator( XA,XB , û, ε )
Input: Time-efficient hash-sketch synopses pair XA,XB (each

comprising b buckets) for streams A and B, set-union
cardinality estimate û, relative accuracy parameter ε.

Output: Estimate for |A − B|.
begin

1. sum := count := 0
2. for i := 1 to b do

3. bucketEstimate := BucketDiffEstimator(XA[i], XB [i], û, ε)
4. if ( bucketEstimate 6= noEstimate) then

5. sum := sum + bucketEstimate; count := count +1
6. endif

7. endfor

8. return( sum × û / count )
end

procedure BucketDiffEstimator( XA[i], XB [i], û, ε )
begin

1. index := dlog( 2·û
b (1−ε)2

)e

2. if ( not SingletonUnionBucket(XA[i], XB [i], index) ) then

3. return( noEstimate)
4. estimate := 0
5. if ( SingletonBucket(XA[i], index) and

EmptyBucket(XB [i], index) ) then

6. estimate := 1 // found witness of A − B
7. return( estimate )
end

Fig. 8 Set-Difference Cardinality Estimator Using Time-
Efficient Hash-Sketch Synopses.

set-difference witnesses to the number of valid (i.e., 0 or
1) atomic estimates found by BucketDiffEstimator in the b
hash buckets, and scales the result by the union estimate
û to produce the final estimate for the set-difference car-
dinality |A − B| (Step 8).

Analysis. We now present a sketch of the analysis of
the worst-case space requirements for our probabilistic
HashDifferenceEstimator algorithm (as a function of the as-
sociated (ε, δ) estimation guarantees). Similar analyses
can be given for other set operators as well as the gen-
eral set-expression cardinality estimation problem con-
sidered in this paper (along the lines of the development
in Section 4). In order to simplify the exposition, most of
the constants in our analysis are abstracted away using
asymptotic (O() and Θ()) notation. Furthermore, as in
our earlier analyses, we assume ideal, fully-independent
hash-function mappings g, h1, . . . , hb; once again, our
analysis can be extended to the more realistic limited-
independence case based on the results of Section 3.6.

Consider a hash bucket i (i ∈ {1, . . . b}), and let Ai,
Bi denote the portions of the A and B multi-sets that
map onto that bucket (through the g hash function) in
their stream synopses XA and XB , respectively. Also, let
ui denote the portion of the set-union cardinality u map-
ping onto the ith hash bucket, i.e., ui = |Ai ∪ Bi|. Note
that, due to the randomizing properties of the g hash
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function, ui is, in fact, a random variable, with expec-
tation E

[

ui

]

= u
b ; furthermore, by Chernoff bounds, we

have that ui ∈ (1±Θ(ε))u
b with probability ≥ 1−Θ(δ),

as long as u
b ≥ Θ( log(1/δ)

ε2 ). Then, a simple application
of the Union bound [29] ensures that

Pr
[

for all i ∈ {1, . . . b} : ui ∈ (1 ± Θ(ε))
u

b

]

≥ 1−Θ(δ),

as long as the number of hash buckets b satisfies the in-

equality u
b ≥ Θ( log(b/δ)

ε2 ). We assume that this assump-
tion holds for the remainder of our analysis.

Based on the above observation and following a sim-
ilar line of thinking as our basic set-difference estima-
tor (Section 3.4), our HashDifferenceEstimator procedure
tries to discover a “set-difference witness” element in
each hash bucket by looking at the corresponding 2-
level hash sketch and, more specifically, at a bucket of
that 2-level hash sketch located at a level slightly higher
than log u

b (Step 1 in procedure BucketDiffEstimator). As
in Section 3.4, the probability pi of discovering a witness
of the set difference A − B in hash bucket i is exactly

pi = |Ai−Bi|
ui

and, similarly, the probability of obtaining
a valid (i.e., 0/1) atomic estimate from procedure Buck-

etDiffEstimator for any hash bucket is lower-bounded by
a constant, that is, Pr [0/1 observation from bucket i] >
1/4. Thus, given a hash bucket i, the probability of ob-
taining a set-difference witness from that bucket is at
least pi/4 which, by Chernoff bounds, implies the fol-
lowing inequality for the size of the observed witness
set:

Pr

[

|witness set| ≤ (1 − ε)
∑b

i=1 pi

4

]

≤ exp(− ε2
∑b

i=1 pi

8
),

which, since pi = |Ai−Bi|
ui

and ui ∈ (1 ± Θ(ε))u
b for all i

(with high probability), gives:

Pr

[

|witness set| ≤ (1 − ε)
∑b

i=1 pi

4

]

≤ exp(−bε2|A − B|
8(1 + ε)u

),

which is guaranteed to be small, i.e., Θ(δ), probability

as long as b = Θ(u log(1/δ)
|A−B|ε2 ). In other words, assuming

the above condition on b holds, our technique guaran-
tees that, with high probability, the size of the sample of
set-difference witnesses observed by our HashDifferenceEs-

timator procedure (i.e., the “sum” variable in Figure 8)
is going to be at least

|witness set| ≥ Θ(

b
∑

i=1

pi) = Θ

(

b |A − B|
u

)

= Θ

(

log(1/δ)

ε2

)

.

Then, by Chernoff bounds, we know that the observed
ratio sum

count of witnesses in procedure HashDifferenceEsti-

mator is going to be a (Θ(ε), Θ(δ))-estimate for the true

|A−B|
|A∪B| ratio; that is,

Pr

[∣

∣

∣

∣

sum

count
− |A − B|

|A ∪ B|

∣

∣

∣

∣

≤ Θ(ε)
|A − B|
|A ∪ B|

]

≥ 1 − Θ(δ),

which, combined with our assumption on the input û
union-cardinality estimate, guarantees that the final es-
timate returned by HashDifferenceEstimator (Step 8) is a
(Θ(ε), Θ(δ))-estimate for |A − B|.

With respect to the space requirements of our esti-
mator, remember that each hash bucket maintains only
a single 2-level hash sketch for the subset of domain el-
ements mapped onto that bucket through g, and the
above requirement on the number of buckets (to guar-
antee a large enough sample of set-difference witnesses)

mandates that b = Θ( |A∪B| log(1/δ)
|A−B|ε2 ). Remember, how-

ever, that in the beginning of our analysis we made

the additional assumption that u
b ≥ Θ( log(b/δ)

ε2 ) to en-
sure that each ui is well-approximated by u

b . Since b =

Θ( |A∪B| log(1/δ)
|A−B|ε2 ), it is easy to see that this assumption

is satisfied as long as

|A − B| ≥ Θ

(

log(1/δ) log(M/δ)

ε4

)

,

that is, our time-efficient hash-sketch technique requires
the above polylogarithmic sanity bound on the set-difference
cardinality in order to guarantee a good estimate. The
following theorem summarizes the results of our analysis
for the HashDifferenceEstimator procedure.

Theorem 10 Procedure HashDifferenceEstimator returns
an (ε, δ)-estimate for the size of the set difference |A−B|
of two update streams A and B using time-efficient hash-
sketch synopses with a total storage requirement of

Θ

(

log(1/δ)|A ∪ B|
ε2|A − B| log2 M log N

)

,

and guaranteed O(log M) time for processing each stream-

ing update, assuming that |A−B| ≥ Θ( log(1/δ) log(M/δ)
ε4 ).

Once again, our analysis for time-efficient hash sketches
can be generalized to provide similar analytical results
for the general set-expression cardinality estimation prob-
lem in a straightforward manner (along the same lines
as the development in Section 4.)

6 Experimental Study

In this section, we present the results of an empirical
study of our 2-level hash sketch synopses and set-ex-
pression estimators with several synthetic data sets. The
objective of this study is to test the effectiveness of our
novel stream-synopsis data structures and probabilistic
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estimation algorithms in practical data-streaming sce-
narios, and study their average-case behavior over sev-
eral different problem instances. Our experimental re-
sults substantiate our theoretical claims, demonstrating
the ability of our techniques to provide (with only lim-
ited space) accurate approximate answers to set-expres-
sion cardinality queries over continuous streaming data.

6.1 Testbed and Methodology

Methodology. In our experiments, we study the accu-
racy of the probabilistic set-expression cardinality es-
timation techniques developed in this paper using 2-
level hash sketch synopses constructed over different syn-
thetic data streams. The primary metric used to gauge
the accuracy of our estimators is the conventional ab-
solute relative error metric; that is, given an expression
E and an estimate ê = |E| of its cardinality, we define

the error of the estimate as the ratio |ê−|E||
|E| . We per-

form experiments to measure the errors of our cardinal-
ity estimators as a function of the space made available
for building 2-level hash sketch synopses for the input
data streams. This accuracy/space tradeoff is studied
over various input expressions, ranging from simple bi-
nary set operations (primarily difference and intersec-
tion) to more complex set expressions (over three or
more streams). (Again, note that our techniques are the
first to deal with set difference/intersection and set ex-
pressions over general update streams; thus, in a sense,
comparing against the accurate answer is probably the
best measure of effectiveness for our approach.)

To account for the probabilistic nature of our estima-
tion algorithms, we run each experiment between 10−15
times (with different random-seed values). The numbers
used in our plots are averages of the observed relative
error values after trimming away 30% of the highest rel-
ative errors for each experiment. We used this more ro-
bust, “trimmed-average” error metric to avoid the effects
of outlier estimates (due to the variance of our random-
ized schemes) on the observed average-case behavior of
our estimators.

Synthetic Data Generation. Our 2-level hash sketch
synopses are impervious to delete operations, in the sense
that a sketch obtained at the end of an update stream
is identical to one that never sees the deleted items in
the stream. Given this fact, our synthetic data genera-
tor produces insert-only streams for updating the 2-level
hash sketch synopses for our estimation algorithms. Fur-
thermore, since the accuracy of our cardinality estimates
for a set expression E crucially depends on the ratio of
the underlying set union to |E| (Theorems 3, 4, and 9),
we generate our data streams in a controlled manner
that allows us to vary this cardinality ratio and observe
the behavior of our techniques for different settings. (We
fix the size of the underlying set union, i.e., | ∪i Ai|, to
u ≈ 218 in all our experiments.)

We now describe the data-generation process for a
binary set operation, say A∩B, assuming a given target
size e for the cardinality |A ∩ B|. (We vary the value of
e from u/2 down to u/210 in diminishing powers of 2.)
In a first step, we generate 218 32-bit random unsigned
integers and eliminate all duplicates (thus, the actual
union size u can be slightly less than 218). Then, for
each generated integer x, we insert x to either (a) both
A and B, with probability e/u; or, (b) only A or only

B, with equal probability 1−e/u
2 . Thus, at the end of

this process, we expect to have approximately e
uu = e

elements in A∩B, and about equal numbers of elements
in both A and B. It is easy to devise a very similar
controlled data-generation scheme for A − B.

For set expressions E involving multiple (say n) streams,
our controlled data generation is slightly more compli-
cated. Briefly, the main idea is to keep track of all 2n−1
partitions in the Venn diagram of the underlying set
union and give “assignment probabilities” to each parti-
tion such that the sum of probabilities for all partitions
that comprise E is approximately |E|/u. (For simplicity,
the probabilities are chosen so that all underlying sets
have the same expected size.) Generated random inte-
gers are then assigned to these partitions as discussed
above.

6.2 Experimental Results

We now present some of our experimental numbers for
our probabilistic estimation algorithms. We focus our
discussion here on three input set expressions: binary set
intersection A∩B, binary set difference A−B, and the
more complex three-stream expression (A−B)∩C. We
have observed qualitatively similar results for the estima-
tion of other expressions. It is interesting to note here
that, even though we did not experiment with highly-
complex set expressions (our most complicated expres-
sion dealt with four input streams), we found that, in
general, the accuracy of our estimators is relatively in-
sensitive to the complexity of the input set expression.
This is in accordance with our analytical results (Theo-
rem 9) where, clearly, the key factor in determining the
space/accuracy tradeoff is the ratio of the underlying
set union | ∪i Ai| to the target set-expression cardinality
|E|. Thus, as long as the | ∪i Ai|/|E| ratio remains con-
stant, set-expression complexity only has little effect on
the accuracy of our estimates. (The effect of expression
complexity on accuracy is primarily due to the fact that
we need to divide the available synopsis space among the
2-level hash sketches for the update streams A1, . . . , An

in E (i.e., the n factor in the numerator of the formula
in Theorem 9); note, however, that we typically expect
n to be a small constant for most real-life, practical ap-
plication scenarios.)

We present plots that depict the (average) relative
error behavior of our estimators as a function of the
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number of 2-level hash sketch synopses maintained on
each data stream. A rough estimate for the number of
bytes used by our synopses is given by multiplying the
number of sketches with 16; since we are only consid-
ering insert-only streams, this estimate assumes simple
bits (instead of counters) at each cell of our 2-level hash
sketches. (The number of bits used in second-level count
signatures is kept fixed at 32, i.e., each signature requires
4 bytes.)

Figure 9(a) depicts the average (percentage) relative-
error numbers for our set-intersection cardinality estima-
tor as a function of the number of 2-level hash sketches
used, and for three distinct values of the target inter-
section size |A ∩ B|. The plots demonstrate the effec-
tiveness and accuracy of our estimation algorithm. Even
with as few as 128−256 2-level hash sketches, the error of
our estimates is close to or below 20%, essentially across
the range of the target intersection sizes tested. And,
of course, increasing the number of sketches can lead to
significant further reductions in the observed estimation
error which finally drops to ≤ 10% for 512 sketches.

Similar trends can also be observed for set-difference
cardinality estimator in Figure 9(b). In this case, errors
for smaller target difference sizes (i.e., |A − B| = 8192)
are higher (about 48%) for small numbers of sketches.
Once again, however, when our synopsis space reaches
512 sketches, all errors are in the area of 10% or lower.
Note that, as predicted by our theoretical results, the
quality of our estimates for a given number of sketches,
in general, improves with higher target expression sizes.
We do, of course, observe certain crossovers in the plots
but they are to be expected given the variance of our
randomized estimation techniques.

Finally, Figure 10 depicts the average relative-error
plots for our set-expression cardinality estimator with
the input expression (A−B)∩C, for three different target
expression sizes. The numbers clearly show trends that
are very similar to those observed for the simpler binary
set intersection/difference experiments. Once again, er-
ror numbers are fairly small even for moderate synop-
sis sizes, eventually tailing off to 20% or lower for 512
sketches. And, in accordance with our theoretical results
(Theorem 9), larger target expression sizes imply better
cardinality estimates (for a given synopsis size).

7 Conclusions

Estimating the cardinality of set expressions defined over
several (perhaps, distributed) continuous update streams
is a fundamental class of queries that next-generation
data-stream processing systems need to effectively sup-
port. In this paper, we have proposed the first space-
efficient algorithmic solution for estimating the cardinal-
ity of full-fledged set expressions over general streams of
updates (including item deletions as well as insertions).
Our estimators rely on a novel, 2-level hash sketch synop-
sis data structure to provide low-error, high-confidence
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Expression Cardinality |(A − B) ∩ C|.

estimates for the cardinality of set expressions (including
operators such as set union, intersection, and difference)
over continuous update streams, using only space that
is significantly sublinear in the sizes of the streaming in-
put multi-sets. In fact, as our lower bound results have
shown, the space usage of our estimation algorithms is
within small factors of the optimal for any possible es-
timator. Furthermore, unlike earlier approaches, our al-
gorithms never require rescanning or resampling of past
stream items, regardless of the number of deletions in the
stream. Finally, we have proposed an optimized, time-
efficient stream synopsis (based on 2-level hash sketches)
that provides similar, strong accuracy-space guarantees
while requiring only logarithmic maintenance time per
update, thus making our methods applicable for truly
rapid-rate data streams. Our results from an empirical
study of our estimators have substantiated our theo-
retical claims, showing that our techniques can provide
space-efficient and accurate set-expression cardinality es-
timates over streaming data.
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