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Abstract. The publish/subscribe paradigm is a popular model
for allowing publishers (i.e., data generators) to selectively
disseminate data to a large number of widely dispersed sub-
scribers (i.e., data consumers) who have registered their in-
terest in specific information items. Early publish/subscribe
systems have typically relied on simple subscription mecha-
nisms, such as keyword or “bag of words” matching, or simple
comparison predicates on attribute values. The emergence of
XML as a standard for information exchange on the Internet
has led to an increased interest in using more expressive sub-
scription mechanisms (e.g., based on XPath expressions) that
exploit both the structure and the content of published XML
documents. Given the increased complexity of these new data-
filtering mechanisms, the problem of effectively identifying
the subscription profiles that match an incoming XML docu-
ment poses a difficult and important research challenge. In this
paper, we propose a novel index structure, termed XTrie, that
supports the efficient filtering of XML documents based on
XPath expressions. Our XTrie index structure offers several
novel features that, we believe, make it especially attractive
for large-scale publish/subscribe systems. First, XTrie is de-
signed to support effective filtering based on complex XPath
expressions (as opposed to simple, single-path specifications).
Second, our XTrie structure and algorithms are designed to
support both ordered and unordered matching of XML data.
Third, by indexing on sequences of elements organized in a
trie structure and using a sophisticated matching algorithm,
XTrie is able to both reduce the number of unnecessary index
probes as well as avoid redundant matchings, thereby provid-
ing extremely efficient filtering. Our experimental results over
a wide range of XML document and XPath expression work-
loads demonstrate that our XTrie index structure outperforms
earlier approaches by wide margins.
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1 Introduction

The exploding volume of information (e.g., stock quotes, news
reports, advertisements) made available on the Internet has fu-
eled the development of a new generation of applications based
on selective data dissemination, where specific data is selec-
tively relayed to a large number (e.g., millions) of distributed
clients. This trend has led to the emergence of novel middle-
ware architectures that asynchronously propagate data from a
set of publishers (i.e., data generators) to a large number of
widely dispersed subscribers (i.e., data consumers) who have
pre-registered their interest in specific information items [6].
In general, such publish-subscribe architectures are imple-
mented using a set of networked servers that selectively prop-
agate relevant messages to the consumer population, where
message relevance is determined by subscriptions represent-
ing the consumers’ interests in specific messages.

The majority of existing publish/subscribe systems have
typically relied on simple subscription mechanisms, such as
keyword or “bag of words” matching, or simple comparison
predicates on attribute values. For example, systems such as
Gryphon [1], Siena [6], and Elvin [18], all use filters in the
form of a set of attributes and simple arithmetic or Boolean
comparisons on the values of these attributes. The recent
emergence of XML (eXtensible Markup Language) [21] as
a standard for information exchange on the Internet has led
to an increased interest in using more expressive subscrip-
tion/filtering mechanisms that exploit both the structure and
the content of published XML documents. In particular, the
XPath language [20], which is a W3C proposed standard for
addressing parts of an XML document, has been adopted as
a filter-specification language by a number of recent XML
data dissemination systems (e.g., XFilter [2], Intel’s NetStruc-
ture XML Accelerator [7]). Given the increased complexity
of structural, XPath-based data filters, the problem of effec-
tively identifying the subscriptions that match an incoming
XML document poses a difficult and important research chal-
lenge. More specifically, the key problem faced in XPath-
based data-dissemination systems can be abstracted as the fol-
lowing XPath Expression (XPE) Retrieval Problem: “Given a
large collection P of XPath expressions (XPEs) and an input
XML document D, find the subset of XPEs in P that match
D.”
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The key technique for expediting XPE retrieval is to con-
struct an appropriate index structure on the given collection
of XPE subscriptions. Since XPEs can, in general, repre-
sent complex tree-structured patterns with one or more wild-
cards, building index structures for efficient XPE retrieval is a
non-trivial problem. Furthermore, simplistic approaches (e.g.,
building an index based solely on the element names contained
in the XPEs) can result in very ineffective retrieval schemes
that incur a lot of unnecessary checking of (irrelevant) XPE
subscriptions.

1.1 Our contributions

In this paper, we propose a novel index structure, termed XTrie,
that supports the efficient filtering of XML documents based
on XPath expressions. Our XTrie index structure offers several
novel features that make it especially attractive for large-scale
publish/subscribe systems. First, XTrie is designed to sup-
port effective filtering based on complex XPath expressions
(as opposed to simple, single-path specifications). Second,
our XTrie structure and algorithms are designed to support
both ordered and unordered matching of XML data. Note that
ordered matching is an important requirement for many ap-
plications (e.g., document processing) that has typically been
overlooked in existing data dissemination systems. Third, by
indexing on sequences of element names (i.e., substrings) or-
ganized in a trie structure and using a sophisticated matching
algorithm, XTrie is able to both reduce the number of unnec-
essary index probes as well as avoid redundant matchings,
thereby providing extremely efficient filtering.

Indexing on a carefully-selected set of substrings (rather
than individual element names) in the XPEs is a key ingredient
of our approach that enables us to minimize both the number
and the cost of the required index probes. The key intuition
here is that a sequence of element names has a lower proba-
bility (compared to a single element name) of matching in an
input document, resulting in fewer index probes. In addition,
since there are fewer indexed XPEs associated with a “longer”
substring key, each index probe is likely to be less expensive
as well.

To support on-line filtering of streaming XML data, our
XTrie indexing scheme is based on the event-based SAX pars-
ing interface [14], to implement XML data filtering as the
XML document is parsed. This is in contrast to the alternative
DOM parsing interface [19], which requires a main-memory
representation of the XML data tree to be built before filtering
can commence. To the best of our knowledge, the only other
SAX-based index structure for the XPE retrieval problem is
Altinel and Franklin’s XFilter [2], which relies on indexing the
XPE element names using a hash-table structure. By index-
ing on substrings rather than individual element names, our
XTrie index provides a much more effective indexing mech-
anism than XFilter. A further limitation of XFilter is that its
space requirement can grow to a very large size as an input
document is parsed, which can also increase the filtering time
significantly. Our experimental results over a wide range of
XML document and XPath expression workloads validate our
claims, demonstrating that our XTrie index scheme scales well
to high volumes of XPEs and complex documents, and con-

sistently outperforms XFilter by significant margins (factors
of up to one or two orders of magnitude).

1.2 Roadmap

The remainder of this paper is organized as follows. In Sect. 2,
we give an overview of the XPath language and discuss both
the unordered and ordered matching mode for XPEs. Section 3
discusses our methodology for decomposing complex XPEs
into substrings for effective indexing. In Sect. 4, we present
our novel XTrie index structure and algorithms. Sect. 5 dis-
cusses two optimized variants of XTrie: the first variant is
optimized to further reduce the number of unnecessary index
probes, and the second variant is optimized for the special case
where the indexed XPEs are simple, single-path expressions
(rather than arbitrary trees). Section 6 compares XTrie against
related work. In Sect. 7, we present the results of an extensive
experimental study comparing the various variants of XTrie
against the XFilter index [2]. Finally, we conclude in Sect. 8.

2 Background

In this section, we first present an overview of the XPath
language for specifying path expressions over XML docu-
ments [20], followed by a discussion of the two modes of
matching (unordered and ordered) for XPath expressions.

2.1 XPath Expressions (XPEs) and XPE-trees

An XML document comprises a hierarchically nested struc-
ture of elements, starting with a root element; sub-elements
of an element can themselves be elements and can also con-
tain character data (i.e., text) and attributes. Elements can be
nested to any depth and the scope of an element in the XML
document is defined by a start-tag and an end-tag. The XPath
language treats XML documents as a tree of nodes (corre-
sponding to elements) and offers an expressive way to specify
and select parts of this tree. XPath expressions (XPEs) are
structural patterns that can be matched to nodes in the XML
data tree. The evaluation of an XPE yields an object whose
type can be a node-set, a Boolean, a number, or a string. For
our XPE retrieval problem, an XML document matches an
XPE when the evaluation result is a non-empty node set.

The simplest form of XPEs specify a single-path pattern,
which can be either an absolute path from the root of the docu-
ment or a relative path from some known location (i.e., context
node). A path pattern is a sequence of one or more location
steps. In its basic form, a location step specifies a node name
(i.e., an element name), and the hierarchical relationships be-
tween the nodes are specified using parent-child (“/”) oper-
ators (i.e., at adjacent levels) and ancestor-descendant (“//”)
operators (i.e., separated by any number of levels). For exam-
ple, the XPE /a/b//c selects all c element descendants of all
b elements that are direct children of the root element a in the
document. XPath also allows the use of a wildcard operator
(“∗”) to match any element name at a location step.

Each location step can also include one or more predicates
to further refine the selected set of nodes. Predicate expressions
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are enclosed by “[” and “]” symbols. The predicates can be ap-
plied to the text or the attributes of the addressed elements, and
may also include other path expressions. Any relative paths in
a predicate expression are evaluated in the context of the ele-
ment nodes addressed in the location step at which they appear.
For example, the XPE /a[b[@x ≥ 100]/c]/ ∗ /d specifies a
tree-structured pattern starting at the root element a with two
child “branches” b/c and ∗/d such that the element b has an
attribute x with a value of at least 100.

In this paper, we focus on a fragment of the XPath language
commonly referred to as tree patterns, which represents a sig-
nificant and useful fragment of XPEs; in fact, tree patterns have
been used extensively in the literature as a natural and intuitive
means for specifying tree-structured constraints in XML and
LDAP applications [3,4,17,16]. A tree pattern is an ordered
rooted tree, where each node is labeled with an element name
(prefixed by either “/” or “//” followed by an optional se-
quence of one or more “*/”), and the ordering of the child nodes
for each parent node is based on their order of appearance in
the XPE.We refer to such a tree-structured representation of an
XPE as an XPE-tree. As an example, Fig. 1a depicts the XPE-
tree of the expression p = //a[.//b[∗/c][./d]]/f . Note that in
Fig. 1a, the child node for ∗/c precedes the child node for d
since the former precedes the latter in the expression for p. Our
tree patterns allow for predicates comparing element/attribute
values against constants, but not join predicates involving a
comparison of two path expressions; we believe that our tree
patterns probably capture the key features of XPEs that will
prove most useful in data-dissemination applications.

2.2 Unordered and ordered XPE Matchings

Before we describe the two modes of matching XPEs, we
first introduce some new definitions and notation. Given two
nodes v and v′ in a rooted tree T , we say that v precedes
v′ in a pre-order traversal of T , denoted by v≺pre v′, if v is
visited before v′ in a pre-order traversal of T . Given an XML
document tree, we associate each node d in the tree with a
level number, denoted by level(d), where level(d) = 1 if d
is the root element of the document; otherwise, level(d) =
level(d′) + 1, where d′ is the parent node of d. For example,
in Fig. 1b, the element “f” is at level 3. In addition, given an
XPE-tree T , we associate each node t in T with a relative level
(with respect to its parent node in T ), which is defined to be
at least k, denoted by relLevel(t) = [k,∞], if the label of t
is prefixed with “//” followed by (k − 1) “∗/”; otherwise, if
the label of t is prefixed with “/” followed by (k − 1) “∗/”,
then the relative level of t is defined to be exactly k, denoted
by relLevel(t) = [k, k]. Figure 1a shows the relative-level
annotations for the nodes in our example XPE-tree.

Consider an XPE-tree T and an XML document tree D.
We say that a node ti in T matches at a node d in D if the ele-
ment name of ti is equal to that of d. In the unordered matching
model, where T is treated as an unordered tree, T matches D if
there exists a mapping, referred to as a node mapping (denoted
by f ), from the nodes in T to the nodes in D such that: (1) for
each node ti in T , ti matches at f(ti) in D; and (2) for each
child node tj of a node ti in T , f(tj) is a descendant of f(ti)
in D such that level(f(tj)) − level(f(ti)) ∈ relLevel(tj).
In other words, our definition ensures that both: (1) the la-
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Fig. 1a,b. Unordered and ordered matchings. a XPE-tree of p =
//a[.//b[∗/c]/d]/f . b Example XML tree of a document D

bels of individual elements in the XPE are matched in the
document; and (2) the positional constraints specified in the
XPE are met. As an example, consider the XPE-tree T of
p = //a[.//b[∗/c]/d]/f in Fig. 1a, and the XML document
tree D in Fig. 1b, where T matches D with the node mapping
indicated by the set of dashed arrows from the nodes in T to
those in D.

In addition to the model of unordered matchings, XPath
also allows the order of matching to be explicitly specified.
A key reason for this is that the preservation of ordering con-
straints is a basic requirement in several application domains
(e.g., document processing). Consider again the XPE-tree in
Fig. 1a for p. If we wish to indicate that the branch ∗/c
must match in the document before the branch d, this can
be expressed using the XPE p′ = //a[.//b/ ∗ [following-
sibling::d]/c]/f 1. Referring again to Fig. 1b, if the positions
of the two subtrees rooted at e and d in D are swapped, then
p′ would not match D while p would still match D. In the or-
dered matching model, where T is treated as an ordered tree,
T matches D if: (1) T matches D in the unordered match-
ing model; and (2) for each pair of child nodes tj and tk
of each internal node ti in T , tj≺pre tk in T if and only if
f(tj)≺pre f(tk) and f(ti) is the least common ancestor node
of f(tj) and f(tk). Condition (2) basically ensures that sib-
ling substrings matched along distinct branches in the XML
document tree.

To simplify the presentation, we discuss unordered and
ordered matchings of XPEs in terms of their XPE-trees. Ab-
stractly, for ordered matching, the order in which the child
branches of each XPE-tree node are matched is the same as
the left-to-right ordering depicted in the XPE-tree, whereas
for unordered matching this order is immaterial. Thus, for the
remainder of the paper, we focus mainly on XPEs that are
formed using the basic operators (i.e., child-operator “/” and
descendant-operator “//”) and view their XPE-trees as or-
dered (unordered) trees for ordered (resp., unordered) match-
ings. Hybrid matchings of XPEs, involving both unordered as
well as ordered node matchings, are also discussed later in the
paper.

1 Other order-related operators in XPath include following::,
preceding::, and preceding-sibling:: [20].
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Table 1. Notation

Symbol Description
P Set of XPEs being indexed.
S Set of distinct substrings from the simple decom-

positions of all the XPEs in P .
|pi| Number of substrings in the simple decomposi-

tion of pi.
si,j jth substring in a decomposition of XPE pi.
Lmax Maximum number of levels in XML document.
label(N) Label of trie node N in XTrie.
α(N) Substring pointer of trie node N in XTrie.
β(N) Max-suffix pointer of trie node N in XTrie.

3 XPE Decompositions and matchings

In this section, we describe the mechanisms employed in our
XTrie index for decomposing XPEs into sequences of XML el-
ement names (i.e., substrings), and explain how the substrings
resulting from such a decomposition can be organized into
substring-trees for effective matching over streaming XML
documents. We also define several important concepts for
matching based on substring-trees that play a key role in our
XTrie indexing structure and matching algorithms.

We begin by summarizing (in Table 1) some of the key no-
tational conventions used in our discussion in the remainder
of the paper. We provide detailed definitions of the parame-
ters in the text once all the relevant concepts are presented.
Additional notation will be introduced when necessary.

3.1 Substring decompositions and substring-trees

Given an XPE p, we define a sequence of element names
s = t1.t2. · · · .tn to be a substring of p if s is equal to the
concatenation of the element names of the nodes along a path
< v1, v2, · · · vn > in the XPE-tree of p, such that each vi is
the parent node of vi+1 (1 ≤ i < n) and the label of each vi

(except perhaps for v1) is prefixed only by “/”. In other words,
each pair of consecutive element names in a substring ofpmust
be separated by a parent-child (“/”) operator. As an example,
consider the XPE p = /a/b[c/d//e][g//e/f ]// ∗ / ∗ /e/f
whose XPE-tree is depicted in Fig. 2a. The set of substrings
of p includes abg, bcd, ef and b; on the other hand, abge,
gef , and bef are not substrings of p, since they involve an
intermediate element name (i.e., e) that is not prefixed by “/”.

Let P = < p1, p2, · · · , pn > be a sequence of paths in
the XPE-tree of an XPE p that satisfies all the following three
properties: (1) for each pi in P , the concatenation of the el-
ement names of all the nodes along pi is a substring of p
(denoted by si); (2) pi precedes pj in P iff the last node in
pi precedes the last node in pj in the pre-order traversal of
the XPE-tree of p; and, (3) each node in the XPE-tree of p is
contained in at least one path in P . We refer to the sequence
of substrings < s1, s2, · · · , sn > corresponding to P as a
substring decomposition of p. A substring decomposition S
is a minimal decomposition of p if each substring si of S is
of maximal length; that is, there does not exist another longer
substring in p’s XPE-tree that contains si. Clearly, a minimal
decomposition of p comprises the smallest possible number
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Fig. 2. Substring decompositions. a Sa =< abcd, e, abg, ef, ef > b
Sb =< ab, abcd, e, abg, ef, ef > c Substring-tree for Sb d Example
XML document tree D

of substrings among all possible decompositions of p. Fig-
ures 2a and b show two possible substring decompositions
for our example XPE p, where each dashed region encloses a
path of nodes defining a substring. Note that Sa is the (unique)
minimal decomposition of p.

Our XTrie index relies on substring decompositions for
installing XPEs into the indexing structure. The choice of a
specific class of substring decompositions impacts both the
space and performance of the index. Minimal decompositions,
in particular, have two important performance advantages.
First, since longer substrings have a lower probability of be-
ing matched in the input XML document, the maximal-length
substrings chosen in a minimal decomposition generally result
in fewer index probes. Second, since there are fewer XPEs as-
sociated with a longer substring, the cost of each index probe
is generally lower with minimal decompositions. On the other
hand, using only a minimal decomposition for an XPE can
result in problems when checking for an unordered match un-
der our SAX-based parsing model for XML documents. As an
example, consider again the minimal decomposition Sa of an
XPE p in Fig. 2a with s1 = abcd, s2 = e, s3 = abg, s4 = ef ,
s5 = ef , and the XML document tree D in Fig. 2d, where the
numeric subscripts denote the order in which the document
elements are seen through the SAX parsing interface. Clearly,
p matches D in the unordered matching model.A matching al-
gorithm for p that relies on p’s substring decomposition needs
to match the substrings in that decomposition in some par-
tial order that enables the positional constraints between each
matching substring and its “parent” to be checked as the doc-
ument nodes are streaming by through the SAX-based docu-
ment parser. For example, to correctly detect a matching of s6,
the element e must be matched at exactly three levels below
where the element b in abcd (or abg) is matched. The prob-
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lem with this example is that the matching of ef (after f6 is
parsed in D) occurs before the matchings of both s1 = abcd
and s3 = abg and, therefore, there is no matching ocurrence
of either of these substrings to enable checking the positional
constraints for ef . The key problem here, of course, is that ab
appears only as a prefix of substrings s1 and s3, and not as an
explicit substring in the decomposition of p.

Intuitively, to avoid such problems, we need to enrich the
minimal decomposition of an XPE so that it “takes note” of the
branching nodes in the XPE-tree. Our XTrie indexing scheme
accomplishes this through the use of simple XPE decompo-
sitions. Formally, a substring decomposition S is said to be
a simple decomposition of an XPE p if S can be partitioned
into two sequences S1 and S2, where: (1) S1 is the minimal
decomposition of p; and, (2) S2 consists of one substring s for
each branching node v in p’s XPE-tree, such that s is the max-
imal substring in p with v as its last node and s is not already
listed in S1. As an example, the decomposition Sb depicted
in Fig. 2b is the simple decomposition of our example XPE
p. Note that Sb simply adds the substring ab (b is a branching
node) to the minimal decomposition Sa. In addition, note that,
for a single-path XPE, its simple decomposition is equal to its
minimal decomposition.

The substrings of the simple decomposition of an XPE p
can be organized into a unique rooted tree, referred to as the
substring-tree of p. Let S = < s1, s2, · · · , sn > denote the
simple decomposition of p corresponding to the sequence of
paths P = < p1, p2, · · · , pn >. Then, the substring-tree of p
is constructed as follows:

1. The root substring is s1.
2. For each substring si ∈ S, i > 1, the parent substring of

si is sj (or equivalently, si is the child substring of sj), if
the last node of pj (among all the paths in P ) is the nearest
ancestor node of the last node of pi.

3. The ordering among sibling substrings is based on their
ordering in S.

As an example, Fig. 2c shows the substring-tree for the simple
decomposition Sb of p depicted in Fig. 2b. We define the rank
of a substring si to be equal tok if si is thekth child of its parent
substring; the rank of the root substring is 1. A substring that
has no child substrings is called a leaf substring. For example,
in Fig. 2c, the ranks of s4 and s5 are 2 and 1, respectively; and
the leaf substrings are s3, s5, and s6.

We now extend the notion of relative level that was defined
for nodes in XPE-trees to substrings. Abstractly, the relative
level of a substring s refers to the range of possible differences
in levels between the last elements of s and its parent substring
in a matching. More formally, let S = < s1, s2, · · · , sn > be
the substring decomposition of an XPE p corresponding to
the sequence of paths P = < p1, p2, · · · , pn >. Consider a
substring si in S (with parent substring sj), and let V denote
the set of nodes in pi that are not in pj . Let x denote

∑
vk∈V �k,

where relLevel(vk) = [�k, uk]. Then, the relative level of si

is defined to be at least x, denoted by relLevel(si) = [x,∞],
if maxvk∈V {uk} = ∞; otherwise, it is defined to be exactly
x, denoted by relLevel(si) = [x, x]. Figure 2c shows the
relative-level annotations for the nodes in the substring tree
for the simple decomposition Sb.

3.2 Matching with substrings

Consider an XML document tree D and an XPE p with XPE-
tree T and simple decomposition < s1, s2, · · · , sn > corre-
sponding to the sequence of paths P = < p1, p2, · · · , pn >.
Suppose p matches D; i.e., there is a node mapping f from
the nodes in T to those in D. We can extend the definition of
matching for XPE nodes to substrings as follows: si matches
at a node d in D (or there is a matching of si at d in D) if
f(v) matches at d in D, where v is the last node of pi. For
notational convenience, we use f(si) = v to denote a match-
ing of si at node v under the node mapping f . We say that
there is a matching of si at level � in D if si matches at some
node at level � in D. Clearly, to fully match p, we need to
find a matching for each of the substrings of p such that the
positional constraint defined by p between each substring and
its parent is satisfied.

As the nodes in D are parsed in a pre-order traversal (by the
SAX parser), the ordered matching of p in D also progresses
incrementally following a pre-order traversal of the substring-
tree of p such that each substring si is matched before si+1.
Thus, to determine if p matches D, we need to keep track
of the partial matchings of p in D. However, since we are
interested only in whether or not p matches D and not in the
actual number of match occurrences, partial matchings of p
that are redundant should be ignored in order to improve the
effectiveness of the filtering process.

We now formally define the notions of partial and redun-
dant matchings. Let p′ be a new XPE that is equivalent to p
except that p′ is formed using only the first i paths in P , for
some i ∈ [1, n]. We say that there is a partial matching of
substring si at a node d in D if p′ matches D such that the last
node of pi matches at d in D. We represent a partial matching
by its node matching f that maps nodes from T to nodes in
D. It follows that we have a (complete) matching of p in D if
there is a partial matching of sn at some node in D.

A partial matching of si at node d in D, where d is the
kth node in the pre-order traversal of D, is defined to be a
redundant matching if for each XML document D′ (that is
equivalent to D for the first k nodes) that matches p under a
mapping f with f(si) = d, there exists an alternative map-
ping f ′ that also defines a complete matching of p but with
f ′(si) ≺pre d. As an example, consider again Fig. 1, where
the simple decomposition of p is < a, b, c, bd, af >. Note that
each of the partial matchings indicated by the dashed arrows
in Fig. 1 is a non-redundant matching. There are, however, two
redundant matchings (which are not explicitly shown): (R1)
the partial matching of substring c at the c node under the node
h, and (R2) the partial matching of substring b at the second b
node under the node a.

Informally, a partial matching of a substring si is redun-
dant if there already exists a preceding partial matching of si

such that ignoring the later partial matching would not affect
the correctness of deciding whether or not p matches D. Since
we are not interested in the actual number of occurrences for
a match, the efficiency of filtering documents with XPEs can
be improved by detecting and ignoring redundant substring
matches so as to reduce the overhead of book-keeping oper-
ations to maintain such partial matchings. To enable efficient
detection of redundant matchings, we introduce the notion of
subtree-matchings.
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for redundant matchings

A node mapping f is said to define a subtree-matching of
si if f defines a partial matching of each descendant of si; that
is, f actually captures a matching that includes the entire XPE
subtree rooted under si. As an example, consider again the
substring-tree in Fig. 2c, and assume that a partial matching
of the substring ef (whose parent substring is abg) has just
been detected. This implies that there is a subtree-matching
for each of the following four substrings: abcd, abg, e and ef
itself. Subtree-matchings provide a useful operational means
to capture redundant matchings. Referring to the two redun-
dant matchings (R1) and (R2) in Fig. 1, the partial matching of
substring c in (R1) is redundant because there already exists a
subtree-matching of its ancestor substring b, while the partial
matching of substring b in (R2) is redundant because there
already exists a subtree-matching of the substring b itself.

Thus, a convenient approach to detect redundant match-
ings is to keep track of subtree-matchings for the various
substrings. More formally, a partial matching of si (defined
by a mapping f ) is redundant if there exists another par-
tial matching of si (defined by a mapping f ′) such that: (1)
f ′(si) ≺pre f(si); and, (2) there exists an ancestor substring
sa of si such that: (a) f ′(sa) = f(sa); and (b) f ′ defines a
subtree-matching of the child substring of sa whose subtree
contains si.

An example to illustrate the above subtree-based condi-
tions for redundant matchings is depicted in Fig. 3a, where
two node mappings, f and f ′, are shown for matching a
substring-tree with (six substrings) to an XML document (with
seven nodes). Suppose that the node d6 in the XML document
has just been parsed and it matches the substring s3. By our

subtree-based conditions, the partial matching of s3 at d6 (de-
fined by f ) is redundant because there already exists an earlier
partial matching of s3 at d3 (defined by f ′) which is part of a
subtree-matching (in this example, a subtree-matching of s3
itself), where both f ′ and f map s2, the parent substring of s3,
to the same node d2. To understand why we require the con-
dition that f ′(sa) = f(sa), consider the XPE-tree and XML
document tree in Figs. 3b and c, respectively. Without this con-
dition on sa, the partial matching of substring b to the circled
b node in Fig. 3c would have been incorrectly considered to be
redundant since there is subtree-matching of substring b at an
earlier b node. The XML document tree in Fig. 3d illustrates
why we need the condition that there be a subtree-matching
at the child substring of sa (as opposed to at some descendant
substring of sa) whose subtree contains si. If the weaker con-
dition is used, then the partial matching of substring c to the
circled c node in Fig. 3c would have been incorrectly regarded
as redundant since there is a subtree-matching of substring c
at an earlier c node.

The above subtree-based conditions essentially detect re-
dundant matchings based on information about earlier sub-
strings that have already been matched. However, since there
could be redundant matchings that can only be detected
through information about “yet-to-be-matched” substrings,
our subtree-based conditions are in fact only sufficient for
redundant matchings. For example, consider the XPE p and
XML document D in Figs. 4a and b. Note that the partial
matching of the substring b at the leaf b node is actually re-
dundant, but this would not be detected by our subtree-based
conditions since there is no subtree-matching of the substring
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a. The reason for this redundancy is because the b substring
has only one unmatched child substring d that has a prefix of
// which means that subsequent matchings of b will not affect
the overall matching outcome. This type of redundant match-
ing clearly depends on the contents of the “yet-to-be-matched”
substrings; for instance, if the prefix of substring d had been /
as in Fig. 4c, or if the b substring had another child substring
that is prefixed with / (e.g., Fig. 4d), then the partial matching
of the substring b at the leaf b node would have been non-
redundant. Since our subtree-based approach relies only on
information about substrings that have already been matched,
it is incapable of detecting such redundant matchings. Detect-
ing such redundancies is more complex and would require
more elaborate book-keeping operations. Our proposed XTrie
index structure is based on the simple approach of detecting
redundant matchings using earlier subtree-matchings so as to
minimize the book-keeping overhead.

4 The XTrie indexing scheme

In this section, we present our novel XTrie indexing scheme
for filtering XML documents based on XPEs. We first describe
the XTrie index structure and matching algorithm for the or-
dered matching model (Sects. 4.1 to 4.4), and then explain how
our approach can be extended to handle unordered matchings
(Sect. 4.5) and hybrid matchings (Sect. 4.6). To simplify the
presentation, our discussion in this section focuses mostly on
XPEs that: (1) do not refer to any attribute names or text data;
and (2) do not involve Boolean combinations of XPEs. Sec-
tion 4.7 then explains how our approach can deal with Boolean
combinations of XPEs (i.e., composite XPEs) with attributes
and/or text data.

4.1 The index structure

Let P = {p1, p2, · · · , pn} denote the set of XPEs being in-
dexed, and S denote the set of distinct substrings derived from
all the simple decompositions of the XPEs in P . An XTrie in-
dex consists of two key components: (1) a Trie [13] (denoted
by T ) constructed on S to facilitate detection of substring
matchings in the input XML data; and, (2) a Substring-Table
(denoted by ST ) that stores information about each substring
of each XPE in P . The information in ST is used to check for
partial matchings. We now describe each of these two XTrie
components in detail, and briefly discuss the maintenance is-
sues for the XTrie index.

4.2 The Substring-Table

The substring-table ST contains one row for each substring
of each indexed XPE; i.e., there are

∑
p∈P |p| rows in ST

with each row corresponding to some si,j (denoting the jth

substring in the decomposition of pi). The rows in ST are
physically clustered in terms of the XPEs such that the sub-
strings belonging to an XPE p are stored in consecutive rows
ordered based on the simple decomposition of p. The order of
the XPEs in ST is arbitrary. Since each row r in ST corre-
sponds to some substring, for convenience, we use the symbol
ri,j to denote the row in ST that corresponds to substring si,j .

To facilitate locating all XPEs that contain some substring,
the rows in ST are also logically partitioned into |S| disjoint
blocks such that each block contains all the rows that corre-
spond to the same substring. This substring-based partitioning
of the rows in ST is achieved by chaining the rows within each
block using a singly-linked list, giving a total of |S| singly
linked lists in ST with one list for each distinct substring in
S2.

Each row in ST (corresponding to some substring si,j)
is a 5-tuple (ParentRow, RelLevel, Rank, NumChild,
Next), where:

• ParentRow refers to the row number of the tuple
in ST corresponding to the parent substring of si,j .
(ParentRow = 0 if si,j is a root substring.)

• RelLevel is the relative level of si,j (i.e., relLevel(si,j)).
• Rank is the rank of si,j (i.e., Rank = k if si,j is the kth

child substring of its parent substring.)
• NumChild is the total number of child substrings of si,j .
• Next, which is a “pointer” for a singly linked list, is the

row number of the next tuple in ST that belongs to the
same logical block as the current row. If the current row is
the last row in the linked list, then Next = 0.

4.3 The Trie

The trie T is a rooted tree constructed from the set of distinct
substrings S, where each edge in T is labeled with some el-
ement name. Each node N in T is associated with a label,
denoted by label(N), which is the string formed by concate-
nating the edge labels along the path from the root node of T

2 Note that clustering the rows by XPEs in ST simplifies its main-
tenance. If updates are very infrequent, an alternative scheme is to
cluster rows that correspond to the same substring together. In this
way, ST becomes more space-efficient since we can effectively elim-
inate the next pointers required for the linked lists.
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to node N (the label of the root node is the empty string). The
construction of T ensures that: (1) for each s ∈ S, there is a
unique node N in T such that label(N) = s; and (2) for each
leaf node N in T , label(N) ∈ S. In addition to the pointers to
nodes at the next level of the trie, each node N in T has two
special pointers:

• The Substring pointer (denoted by α(N)) points to some
row in ST (i.e., α(N) is a row number) determined as
follows: if label(N) ∈ S, then α(N) points to the first
row of the linked list associated with substring label(N);
otherwise, α(N) = 0.

• The Max-suffix pointer (denoted by β(N)) points to some
internal node in T and its purpose is to ensure the correct-
ness of the matching algorithm. Specifically, β(N) = N ′
if label(N ′) is the longest proper suffix of label(N) among
all the internal nodes in T ; if N ′ does not exist, then β(N)
points to the root node of T .

Example 4.1 : Figure 5 depicts the XTrie index structures
for a set of four XPEs P = {p1, p2, p3, p4} (shown in the
figure), where their respective simple decompositions are as
follows: S1 =< aabc, ab >, S2 =< ab, abce, bcd >, S3 =<
ab, abc, d, bc >, and S4 = < cb, cd, d >. The number within
each trie node N in Fig. 5a represents the node’s identifier, and
the values of α(N) and β(N) are shown to the left and right of
N , respectively. Fig. 5b depicts the corresponding substring-
table with the rows clustered in the order of the XPEs in P .
	�

4.3.1 Maintaining the XTrie index

The maintenance of the XTrie index structure when XPEs are
inserted into or deleted from it is rather straightforward, with
the exception of maintaining the max-suffix pointers in the trie
which is slightly more involved. One approach to efficiently
maintain these pointers is to build an auxiliary suffix trie struc-
ture Trev on the set of reversed substrings so that for each
node N in T , there exists an unique node N ′ in Trev such that
label(N) = reverse(label(N ′)). By enhancing Trev with
special node pointers γ(.) so that γ(N ′) points to its associ-
ated node in T (i.e., γ(N ′) = N iff label(N) =
reverse(label(N ′))), the max-suffix pointer value of a node
N in T can be determined easily by traversing Trev us-
ing reverse(label(N)): if N ′ is the last node reached by
reverse(label(N)) in Trev , and N ′′ is the closest ancestor
node of N ′ that has a non-null value for γ(.), then β(N) is
given by γ(N ′′). The details of the auxiliary structure and the
XTrie maintenance algorithms can be found in Appendix A.

4.4 The XTrie matching algorithm

Our XTrie indexing scheme is designed to support on-line
filtering of streaming XML data and is based on the SAX
event-based interface that reports parsing events. Fig. 7 depicts
the search procedure for the XTrie, which accepts as input an
XML document D and an XTrie index (ST, T ), processes the
parsing events generated by D, and returns the identifiers of
all the matching XPEs in the index.
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The basic idea of our search algorithm is as follows. We
use the trie T to detect the occurrence of matching substrings
as the input document is parsed. For each matching substring s
detected, we iterate through all the instances of s in the indexed
XPEs (by traversing the appropriate linked list of rows in the
substring-table ST associated with s) to check if the matched
substring s corresponds to any non-redundant matching. Since
ST only stores static information on the XPE substrings, we
need to maintain some additional dynamic run-time informa-
tion to ensure that we check only for non-redundant matchings.
Of course, we also need to appropriately update this dynamic
information as the parsing of the document progresses and
new substring matchings are discovered.

Our XTrie matching algorithm maintains run-time infor-
mation using two arrays B and C each of which is a two-
dimensional array of size |ST | × Lmax, where |ST | denotes
the number of rows in the substring-table ST , and Lmax is the
maximum number of levels in an XML document3.

3 Note that the value for the Lmax parameter can be set to a suf-
ficiently large value by exploiting a priori knowledge of incoming
XML documents. In the event that the Lmax value is exceeded at
run-time, more space for the run-time information can be dynami-
cally reallocated.
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• The first array B is an integer-array such that B[ri,j , �] =
n, n > 0, if there is a non-redundant matching of si,j

(represented by a node mapping f ) at level � such that the
nth child substring of si,j is the leftmost child substring of
si,j for which a subtree-matching has not yet been detected
(i.e., f defines a subtree-matching of the (n − 1)th child
substring of si,j). Intuitively, B[ri,j , �] records the rank of
the next child subtree of si,j that we need to match for
this non-redundant occurrence of si,j at level l. Thus, we
know that an XPE pi matches the input document when
B[ri,1, �] = m + 1 for some value of �, where m is the
number of child substrings of the root substring si,1. Each
B[ri,j , �] is initialized to 0, and is incremented to 1 after
a non-redundant matching of si,j at level � is detected.
As more substring matchings are detected, the value of
B[ri,j , �] is incremented from n to n + 1, n ≥ 1, when
there is a subtree-matching of the nth child substring of
si,j . The value of B[ri,j , �] is reset to 0 when the end-tag
corresponding to the start-tag at level � is parsed.

• The second array C is a bit-array that is used to ensure
that sibling substrings match along distinct branches (as
defined in Sect. 2) for an ordered matching. Each entry
C[ri,j , �] corresponds to a matching of the substring si,j

at level �, and is initialized with a value of 0. Whenever
the value of B[ri,j , �] is incremented to some value k > 1,
indicating that a subtree-matching of the (k − 1)th child
substring of si,j has been detected, C[ri,j , �] is set to 1.
C[ri,j , �] is then reset back to 0 right before the next docu-
ment node at level � is to be parsed (i.e., when an end-tag
corresponding to a start-tag at level � is parsed in the input
XML document). Informally, a value of C[ri,j , �] = 1 indi-
cates that the nodes parsed in the input document are along
the same branch as the one that matched the (k − 1)th child
substring of si,j ; therefore, any matching of the kth child
substring of si,j (with si,j matching at level �) detected
during this period can not be considered a valid partial
matching.

To understand how the arrays B and C are used to detect
non-redundant matchings, suppose that a matching of sub-
string si,j at level � has been detected, and si,j is the nth

child substring of si,k. This matching is a partial matching of
si,j if there exists a matching of si,k at level �′ such that: (1)
C[ri,k, �′] has a value of 0; (2) � − �′ ∈ relLevel(si,j) (i.e.,
the positional constraint between si,j and si,k is satisfied); and
(3) B[ri,k, �′] ≥ n (i.e., we have subtree matchings for at least
the n−1 left-siblings of si,j rooted at si,k). If, in addition, the
value of B[ri,k, �′] is exactly n, then this partial matching is
non-redundant; otherwise, we have already discovered a sub-
tree matching for si,j , so the current matching is redundant
and can safely be ignored. Note that since both B and C are
large sparse arrays, their implementation can be optimized to
minimize space (e.g., using linked lists)

As an example of how the B array is used to detect non-
redundant matchings, consider the substring-subtree (consist-
ing of substrings s1 to s8) in Fig. 6a, which shows a partial
matching of s5. A shaded node for si means that there is a par-
tial matching of si; and for notational convenience, assume
that the partial matching of si (1 ≤ i ≤ 6) is at some node
at level �i of some XML document. The number to the right
of each node si represents its B[si, �i] value. For instance, in
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Fig. 6. Propagation of subtree-matchings

Fig. 6a, the B array value for s2 is equal to 2 since only its first
child substring (i.e., s3) is part of a subtree-matching. Sub-
sequently, when a partial matching of s6 is detected (shown
in Fig. 6b), it also trivially follows that there is a subtree-
matching of s6 since s6 is a leaf substring. In order to correctly
maintain the B array values, we need to propagate information
about the subtree-matching of s6 up to its parent substring (i.e.,
s4) to indicate that a subtree-matching has been detected for
its second child substring. This update propagation (indicated
by an up arrow from s6 to s4 in Fig. 6b) therefore increments
s4’s B array value by one to 3, which in turn indicates that
there is a subtree-matching of s4. Consequently, we need to
further propagate the update upwards to s2 and increment its
B array value by one to 3. The update propagation stops at
this point since there is no subtree-matching of s2. Given the
updated B array values in Fig. 6b, it is clear that a subsequent
partial matching of s4 would be considered redundant since
B[s2, �2] is now greater than the rank of s4. For a similar rea-
son, a subsequent partial matching of either s3, s5, or s6 is
also considered redundant. Figures 6c and d, show how the B
array values are updated after a partial matching of s7 and s8,
respectively.

As a more concrete example to illustrate how the B array
values are updated and used, Table 2 depicts an execution trace
of the changes to the B array when matching XPE p against
the XML document D in Fig. 1. The second column of the
table describes the changes to the B array after processing the
start tag indicated in the first column4. For instance, after the
first c node in D is parsed, a partial matching of c, which is

4 For simplicity, we have omitted showing the changes to B after
the processing of end tags.
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Table 2. Execution trace of changes to B array for the matching of p
on D in Fig. 1

Start Tag Changes to B array after processing start tag
g
a B[a, 2] = 1.
b B[b, 3] = 1.
b B[b, 4] = 1.
e
c B[c, 6] = 1, B[b, 4] = 2.
d B[bd, 5] = 1, B[b, 4] = 3, B[a, 2] = 2, B[b, 3] = 3.
h
c Redundant matching of c since B[b, 3] is greater than

the rank of c.
b Redundant matching of b since B[a, 2] is greater than

the rank of b.
f B[af, 3] = 1, B[a, 2] = 3, Complete matching of p.

also a subtree-matching, is detected; and this is propagated to
its to its parent substring b resulting in updates to both B[c, 6]
and B[b, 4].

4.4.1 Details of matching algorithm

Our XTrie SEARCH algorithm (depicted in Fig. 7) begins by
initializing the search node N to be the root node of the trie T
(Step 6). For each start-tag t encountered, if there is an edge
out of N with the label t (to another trie node N ′ in T ), the
search continues on node N ′. For each trie node N ′ visited, a
matching substring (corresponding to label(N ′)) is detected
if α(N ′) �= 0; in this case, Algorithm MATCH-SUBSTRING
is invoked to process the matching substring using the sub-
string table ST . Furthermore, for each trie node N ′ visited,
we also need to check for other potential matching substrings
that are suffixes of label(N ′); this is achieved by using the
max-suffix pointer (i.e., β(N ′)) in Step 17. On the other hand,
if there is no edge out of a node N with the current tag t, this
means that the concatenation of label(N) and t is not a match-
ing substring. Therefore, we need to check for other potential
matching substrings, which are formed by the concatenation of
some suffix of label(N) and t, by using the max-suffix pointer
in Step 11. For each end-tag t encountered (corresponding to
some start-tag at level �), the run-time information B is up-
dated by resetting B[r, �] to 0 for all rows r (Step 19), and the
search node is re-initialized to its previous location before the
tag t was encountered (Step 20). This is achieved by using an
array Node to keep track of the location of the search node at
each document level (Step 13).

AlgorithmMATCH-SUBSTRING (Fig. 8) is invoked when
a substring s (matching at level �) is detected. The algorithm
checks for non-redundant matchings of s, updates the run-time
information B, and returns the identifiers of all the matching
XPEs that have s as their last substring. More specifically,
the algorithm iterates through each instance of s in ST (i.e.,
each row in the linked list associated with s) to check for
non-redundant matchings of s. There are two scenarios for the
instance of the matching substring (say si,j) corresponding to
row r. For the special case where si,j is a root substring (Steps
5-9), if its positional constraint is satisfied (Step 6), then the

matching is a partial matching (and obviously non-redundant,
since it is a root substring), and B[r, �] is updated to 1 (to indi-
cate that we can start looking for matchings of child subtrees).
If, in addition, si,j is a leaf substring, then we have a matching
of pi (Step 9). For the general case where si,j is a non-root
substring (Steps 10-15), if there is a non-redundant matching
of si,j (Step 11), then B[r, �] is updated to 1. If, in addition, si,j

is a leaf substring, then Algorithm PROPAGATE-UPDATE is
called to update the run-time information arrays B and C, and
check for a matching of the full XPE pi. We should point out
that, since we are not interested in finding multiple matches
of the same XPE, we should eliminate unnecessary process-
ing and checking in MATCH-SUBSTRING for XPEs that have
already been matched. This can be easily achieved by using
a bit-mask (consisting of one bit per XPE); we have omitted
details of this additional filtering step from Fig. 8 to simplify
the presentation.

Algorithm PROPAGATE-UPDATE (depicted in Fig. 9)
is used to implement such “update propagations” and cor-
rectly update both B and C whenever a non-redundant subtree-
matching of some non-root substring (si,j matching at level
� corresponding to row r in ST ) is detected. The algorithm
iterates through each matching of si,j’s parent substring (at
level �′ ∈ [�′

min, �′
max]) and updates its B and C entries

if the matching forms a non-redundant matching of si,j . If
this matching is also a subtree-matching for the parent sub-
string of si,j (Step 13), then there are two cases to consider.
If the parent substring is a root substring (Step 14), then we
have found a matching of pi; otherwise, we recurse the up-
date propagation of the B and C entries for the ancestor sub-
strings of si,j as well (Step 17). The algorithm returns true if
a matching of pi has been detected; otherwise, if it is possible
to have multiple matchings of the parent substring of si,j (i.e.,
relLevel(si,j) = [�min,∞] for some �min), then, to avoid
any subsequent redundant matchings of descendants of si,j ,
the algorithm updates the B entries of all the earlier matchings
of si,j (Steps 19 to 22), and returns false.

4.4.2 Space and time complexity

The space requirement of the XTrie index is dominated by
the total number of substrings in P; that is, the space com-
plexity is O(

∑|P|
i=1 |pi|), where |pi| denotes the number of

substrings in the simple decomposition of pi. To analyze the
search-time complexity, let P denote the length of the longest
root-to-leaf path in the trie T , let L denote the maximum
length of a linked list in ST (i.e., the number of distinct oc-
currences of any substring), and let H denote the maximum
height of a substring-tree. The worst-case time complexity of
Algorithm PROPAGATE-UPDATE is O(H Lmax). Since Al-
gorithmMATCH-SUBSTRINGmakes at most L calls toAlgo-
rithm PROPAGATE-UPDATE, the complexity of Algorithm
MATCH-SUBSTRING is O(L H Lmax). For each start-tag
in the input document, Algorithm SEARCH makes at most P
calls toAlgorithmMATCH-SUBSTRING; thus, the worst-case
complexity of processing each start-tag in an input document
is O(P L H Lmax). Finally, it is easy to see that processing
an end-tag takes O(|ST |) time; thus, the overall (worst-case)
time complexity of processing each tag in an input XML doc-
ument is O (max{P L H Lmax , |ST |}).
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Algorithm SEARCH (D, ST , T )
Input: D is an input XML document. (ST , T ) is an XTrie index.
Output: R is the set of XPEs that matches D.
1) Initialize R to be empty;
2) Initialize Node[i] = root node of T for i = 0 to Lmax;
3) Let B be a |ST | × Lmax integer-array with all values initialized to 0;
4) Let C be a |ST | × Lmax bit-array with all values initialized to 0;
5) Initialize � = 0; // � is the current document level
6) Initialize N to be the root node of T ; // N is the current trie node
7) repeat
8) if (a start-tag t is parsed in D) then
9) � = � + 1;
10) while ((there is no edge labeled "t" from N ) and

(N is not the root node of T )) do
11) N = β(N);
12) if (there is an edge labeled "t" from N to N ′ in T ) then
13) Node[�] = N ′; N = N ′;
14) while (N ′ is not the root node) do
15) if (α(N ′) > 0) then
16) R = R ∪ MATCH-SUBSTRING (ST, B, C, α(N ′), �);
17) N ′ = β(N ′);
18) else if (an end-tag is parsed in D) then
19) Reset B[i, �] to 0 for i = 1 to |ST |;
20) Node[�] = root node of T ;
21) � = � − 1;
22) Reset C[i, �] to 0 for i = 1 to |ST |;
23) N = Node[�];
24) until (D has been completely parsed);
25) return R; Fig. 7. Algorithm to search XTrie

Algorithm MATCH-SUBSTRING (ST , B, C, r, �)
Input: ST is the substring-table of an XTrie index. B is a 2-dimensional integer-array.

C is a 2-dimensional bit-array.
r refers to the first row in ST that corresponds to some substring
that is matched at level �.

Output: Set of matching XPEs.
1) Initialize R to be empty;
2) while (r �= 0) do
3) r′ = ST [r].ParentRow;
4) Initalize match = false;
5) if (r′ == 0) then
6) if (� ∈ ST [r].RelLevel) then
7) B[r, �] = 1;
8) if (ST [r].NumChild == 0) then
9) match = true;
10) else
11) if (∃ �′ ∈ [1, � − 1] such that � − �′ ∈ ST [r].RelLevel,
12) B[r′, �′] == ST [r].Rank, and C[r′, �′] == 0) then
13) B[r, �] = 1;
14) if (ST [r].NumChild == 0) then
15) match = PROPAGATE-UPDATE (ST, B, C, r, �);
16) if (match) then
17) Insert the id. of the XPE corresponding to row r into R;
18) r = ST [r].Next;
19) return R; Fig. 8. Algorithm to process a matched sub-

string
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Algorithm PROPAGATE-UPDATE (ST , B, C, r, �)
Input: ST is the substring-table of an XTrie index. B is a 2-dimensional integer-array.

C is a 2-dimensional bit-array. r refers to a row in
ST that corresponds to some substring s of p
for which there is a subtree-matching of s at level �.

Output: Returns true if there is a matching of p; false otherwise.
1) r′ = ST [r].ParentRow;
2) [�min, �max] = ST [r].RelLevel;
3) if (�max == ∞) then
4) [�′

min, �′
max] = [1, � − �min];

5) else
6) [�′

min, �′
max] = [� − �min, � − �min];

7) Initialize match = false;
8) Initialize �′ = �′

max;
9) while (match == false) and (�′ ∈ [�′

min, �′
max]) do

10) if (B[r′, �′] == ST [r].Rank) then
11) B[r′, �′] = B[r′, �′] + 1;
12) C[r′, �′] = 1;
13) if (B[r′, �′] == ST [r′].NumChild + 1) then
14) if (ST [r′].ParentRow == 0) then
15) match = true;
16) else
17) match = PROPAGATE-UPDATE (ST , B, C, r′, �′);
18) �′ = �′ − 1;
19) if (match == false) and (�max == ∞) then
20) for i = 1 to � − 1 do
21) if (B[r, i] > 0) then
22) B[r, i] = ST [r].NumChild + 1;
23) return match;

Fig. 9. Algorithm to update run-time informa-
tion arrays and detect complete matchings

4.5 Dealing with unordered matching

We now describe how our XTrie indexing scheme can handle
an unordered matching model. For convenience, we refer to the
two variants of XTrie as ordered XTrie and unordered XTrie.

Recall that in the ordered matching model, since the child
substrings of each parent substring are matched in a specific
order (based on their ranks), it is sufficient, for each parent
substring, to keep track of only its “leftmost” child substring
for which a subtree-matching has not been detected using the
integer-array B. However, in the unordered matching model,
since child substrings can be matched in any order, it becomes
necessary to explicitly keep track of the subset of child sub-
strings for which subtree-matchings have been detected. Thus,
the first main difference between the two variants of XTrie lies
in the type of run-time information maintained in B. Specifi-
cally, for unordered XTrie, B is a bitstring-array instead of an
integer array, where each bitstring consists of (w+1) bits, and
w is the maximum number of child substrings over all sub-
strings in an XPE-tree. For notational convenience, we number
the bits in a bitstring from zero to w such that the leftmost bit
is the 0th bit, and the rightmost bit is the wth bit. The bitstring
values in B are initialized and updated as follows:

(1) For each �, B[ri,j , �] is initialized to all zero bits except for
the leftmost (k + 1) bits which are all set to one, where k
denotes the number of child substrings of si,j .

(2) The 0th bit of B[ri,j , �] is reset to 0 when a partial matching
of si,j at level � is detected.

(3) The nth bit of B[ri,j , �], n > 0, is reset to 0 when a subtree-
matching of the nth child substring of si,j at level � is
detected.

(4) Each B[ri,j , �] is re-initialized (as explained in (1)) when
an end-tag (corresponding to a start-tag at level �) is parsed.

It follows that, when there is a subtree-matching of si,j at level
�, the value of B[ri,j , �] is 0. The second main difference is
that the C array is not required for unordered matching, since
the matchings for two sibling substrings can in fact be along
the same branch of the XML document.

The algorithms for unordered matching are very similar to
those for order matching (shown in Figs. 7, 8, and 9) except that
there is no need for the C array, and the operations/checks on
the B array have to be modified accordingly based on the above
discussion. (The detailed changes to our XTrie algorithms are
straightforward and omitted here for the sake of brevity.)

4.6 Dealing with hybrid matching

We now discuss how our XTrie scheme can be extended
to handle hybrid matchings involving a combination of or-
dered and unordered matchings. An example of an XPE
that requires hybrid matching is p = /a[b[following-
sibling::c]][d[following-sibling::e]/f , where the root ele-
ment a has a set of five child elements {b, c, d, e, f} such that
b must precede c and d must precede e.

We first consider the simpler scenario where, for each
non-leaf substring s of an XPE p, the matchings required for
its child substrings are either completely unordered or com-
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pletely ordered; we refer to s as an unordered substring and or-
dered substring, respectively. (Leaf substrings are considered
ordered substrings.) To handle the matching of such XPEs,
we need to enhance XTrie with the following two extensions.
First, to indicate whether a substring is an unordered or or-
dered substring, one simple approach is to store the rows in
the substring-table ST such that ST is partitioned into a block
of consecutive rows for ordered substrings and another block
of consecutive rows for unordered substrings. Second, since
the type of run-time information needed for unordered and
ordered matchings is different, instead of maintaining a sin-
gle B array, we now need to use two smaller arrays, Bordered

and Bunordered, for ordered and unordered substrings, respec-
tively. Specifically, Bordered is an (Nordered ×Lmax) integer-
array and Bunordered is an (Nunordered × Lmax) bitstring-
array, where Nordered and Nunordered denote the number of
ordered and unordered substrings, respectively. Similarly, C
is now a smaller (Nordered × Lmax) bit-array to be used only
for ordered substrings. The search algorithms need to update
Bordered, Bunordered, and C accordingly for ordered and un-
ordered substrings.

We now briefly explain how the above approach can
be further extended to handle the most general case of hy-
brid matchings, where a parent substring is allowed to have
both unordered and ordered child substrings. The basic idea
is to introduce additional “dummy” nodes to the XPE-tree
so as to transform the complex case to the simpler case
that we have just described. To illustrate our approach, con-
sider again the earlier example with p = /a[b[following-
sibling::c]][d[following-sibling::e]/f . For this example, we
will create a modified XPE-tree by adding two dummy nodes
πbc and πde (each with an empty string as its label), such that
the root node a now has three child nodes: πbc, πde, and f ,
where πbc is the parent node of b and c; and πde is the parent
node of d and e. The substring-tree for this modified XPE-tree
consists of eight substrings: s1 = a is the root substring with
three child substrings: s2 = a, s5 = a, and s8 = af , where
s2 has two child substrings s3 = ab and s4 = ac, and s5 has
two child substrings s6 = ad and s7 = ae. Among these eight
substrings, only the root substring is an unordered substring.
Thus, by adding two dummy nodes, we have reduced the prob-
lem to the simpler scenario of ordered/unordered substrings
that we have already addressed.

4.7 Attributes, text data, and composite XPath expressions

So far, our discussion of XTrie has been limited to XPEs that
do not refer to any attributes or text data, and that are not
composite XPEs (i.e., Boolean combinations of XPEs). In this
section, we explain how XTrie can be easily extended to handle
attributes, text data, and composite expressions.

To handle XPEs with attributes, we just need to
extend the substring-table ST with an additional col-
umn, Attribute, which is a pointer to a list of attributes
(including any predicates) associated with the elements
in a substring. For example, consider the XPE p =
/a[@name][@address]/b[@cost ≤ 500]/c[d], where ele-
ment a must have two attributes “name” and “address”, and
element b must have an attribute “cost” with a value of no
more than 500. The simple decomposition of p consists of

three substrings: s1 = ab, s2 = abc, and s3 = abd. Let r1, r2,
and r3 denote the rows in ST that correspond to s1, s2, and
s3, respectively. Then, the Attribute value of row r1 points to
a linked list consisting of two entries with information about
the attributes associated with the elements a and b. (Note that
this information will not be repeated in rows r2 and r3 to
avoid redundancy.) In addition, since both elements c and d
are not associated with any attributes, their values for Attribute
is a null value representing an empty attribute list. By keeping
track of the attributes (and their values if any) associated with
the elements as they are parsed in an input XML document,
the additional constraints on attributes can be easily verified
for each matching substring. Thus, a matching for a substring
s is considered to be a partial matching of s if all the attribute
constraints associated with s are also satisfied.

Note that predicates that involved text values are handled
in a similar manner as described for predicates involving at-
tributes; where the substring-table is extended with an addi-
tional column, Text, which is a pointer to a list of predicates
on the text values associated with the elements in a substring.
Essentially, in XTrie, we used the SAX parser to generate a
single event for each start-element tag which consists of the
element name, all the attributes specified in the start-element
tag, and any text value enclosed after the start-element tag.
In this way, any predicates associated with an element can be
checked after its start-element event is reported by the SAX
parser.

To handle composite XPEs, a simple and efficient ap-
proach is to split each composite XPE into its constituent sim-
ple XPEs and index these simple XPEs. The matching of each
composite XPE can be checked by examining the matching
results of its constituent XPEs after the document has been
completely parsed. (A similar approach is also adopted by
XFilter [2].) For example, the composite XPE p = //a/b
OR //c/d can be split into two basic XPEs p1 = //a/b and
p2 = //c/d so that there is a matching of p if and only if there
is a matching of p1 or p2.

Furthermore, absolute path expressions in predicate ex-
pressions that do not involve join expressions are easily sup-
ported by XTrie. For example, the XPE p = //a/b[/c/d =
2]//e is treated as two XPEs p1 = //a/b//e and p2 = /c[d =
2].

5 Optimizations for XTrie

In this section, we describe two optimizations for XTrie. Our
first optimization is based on a “lazy” XTrie variant that aims
to further reduce the number of unnecessary index probes.
Our second optimized XTrie variant tries to improve the per-
formance for the special case where all the indexed XPEs are
single-path XPEs. For simplicity, we shall discuss these opti-
mizations under the ordered matching model.

5.1 Lazy XTrie

The XTrie variant that we have presented so far (referred to as
Eager XTrie) probes the substring-table ST for every match-
ing substring detected in the input document. Our optimized
Lazy XTrie variant (described in this section) tries to reduce
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the number of unnecessary index probes by postponing the
probing of the substring-table ST so that ST is probed for a
matching substring s only if s appears as a leaf substring in
some XPE; otherwise, Lazy XTrie only updates information
about the level at which s is matched in the input document. In
this section, we explain the main differences between the lazy
and eager variants of XTrie; the details of the search algorithm
for Lazy XTrie are given in Appendix B.

An important consequence of this optimization is that the
order in which substring matchings are processed in Lazy
XTrie follows a bottom-up approach as opposed to Eager
XTrie which follows the pre-order traversal of the XPE’s
substring-tree. To illustrate this difference, consider again the
substring-tree in Fig. 6. For Eager XTrie, the order of the par-
tial matchings for the substrings follow the sequence s1, s2,
· · ·, s8. On the other hand, for Lazy XTrie, it first processes the
matching of the leaf substring s3 and then propagates upwards
to process the matchings of substrings s2 and s1 (if they exist).
Next, it detects and processes the matching of the second leaf
substring s5 followed by an upward propagation to process the
matching of s4 (if it exists). The remaining substrings (which
are all leaf substrings) are detected and processed in the order
s6, s7, and s8. Thus, Lazy XTrie does not always immediately
check if a matched substring constitutes a partial matching,
but only does so in a bottom-up manner when the matched
substring is a leaf substring. This difference in operation in-
troduces a number of structural and algorithmic differences
between Eager and Lazy XTrie.

Structurally, Eager and Lazy XTrie are almost equiva-
lent except for the following three differences. First, since
Lazy XTrie only probes the substring-table when the matched
substring s is some leaf substring, we need to “remember”
all the matched substrings that have been detection prior to
the matching of a leaf substring. For this book-keeping, we
maintain an additional data structure, denoted by M, which
is a (|S| × Lmax) bit-array such that M[i, �] is set to 1 if
and only if the substring s is matched at level � of the in-
put document, where i ∈ [1, |S|] represents the identifier
of s. For ease of access to the substring identifiers, we ex-
plicitly store the substring identifiers in a new attribute, de-
noted by SID, in the substring-table such that ST [ri,j ].SID
is the identifier of the substring si,j . Second, in order to en-
sure that the substring-table is only probed for a matching
leaf substring, we need to distinguish between leaf and non-
leaf substrings. This is achieved by simply negating the val-
ues of α(N) in the trie if label(N) does not correspond to
a leaf substring. Finally, unlike Eager XTrie, where there are
|S| linked lists in ST (with one list per distinct substring in
S); Lazy XTrie has only |Sleaf | linked lists in ST , where
Sleaf = {s ∈ S | s is a leaf substring in some XPE}; with
one linked list for each substring in Sleaf such that a row ri,j

in ST belongs to a linked list for substring s if and only if si,j

is a leaf substring of pi and si,j = s. Thus, many of the rows
in ST would not belong to any linked list at all.

Algorithmically, the main search algorithm for Lazy XTrie
is almost equivalent to that for Eager XTrie (in Fig. 7) except
that it now records occurrences of all matched substrings and
probes the substring-table only when the matched substring
is a leaf substring. However, checking if a matched substring
s constitutes a partial matching in Lazy XTrie is more com-
plex than in Eager XTrie due to the bottom-up approach of

processing matched substrings in Lazy XTrie. In contrast to
Eager XTrie, where the B array information about the ancestor
substrings of a matched substring s have already been properly
initialized to be used for processing s, this is not necessarily
the case in Lazy XTrie. In particular, if s is the first child sub-
string of its parent substring s′, then the B array information
on s′ has not been initialized and we first need to determine
that there is a partial matching of s′ itself, which might in turn
lead to further propagation up the chain of ancestor substrings.

5.2 XTrie for single-path XPEs

We now present an optimized variant of XTrie for the spe-
cial case where all the indexed XPEs are single-path XPEs.
Since single-path XPath expressions are simpler, we believe
that they could be typical in applications where, for exam-
ple, the users do not have sophisticated requirements. More-
over, since matching single-path XPath expressions is more
efficient than tree-structured ones, even in a general scenario
where only some of the indexed XPEs are single-path ones, it
might be more efficient to separately index the single-path and
tree-structured patterns. By exploiting the simple structure of
such XPEs, both the data structures as well as the algorithms
of XTrie can be further fine-tuned. In the following, we fo-
cus on the optimized Lazy XTrie for single-path XPEs; the
details of the single-path-optimized Eager XTrie are given in
Appendix C. Note that, for single-path XPEs, ordered and un-
ordered matchings are equivalent.

Lazy XTrie for single-path XPEs differs from Lazy XTrie
for tree-structured XPEs in the following ways. First, since
each substring in a single-path XPE has at most one child
substring, the substring-table ST for single-path XPEs is sim-
pler than that for tree-structured XPEs. Specifically, each row
in ST (corresponding to some substring si,j) is a 4-tuple
(RelLevel, RootSubstr, SID, Next), where RelLevel,
SID, and Next are defined as earlier (Sects. 4.2 and 5.1),
and RootSubstr is a single bit that is set to 1 if and only if
si,j is the root substring of pi (i.e., j = 1). Note that the at-
tributes Rank and NumChild, which are necessary for tree-
structured XPEs, are redundant for single-path XPEs. Further-
more, for each XPE, by ordering a parent substring before its
child substring in ST , the attribute ParentRow need not be
explicitly stored, since each parent substring is always located
in the row preceding the row of its (only) child substring.
Second, since each parent substring has exactly one child sub-
string, there is no need to maintain the run-time information
arrays B and C.

The main search algorithm for single-path XPEs is equiv-
alent to that for tree-structured XPEs (shown in Fig. 21)
except that the B and C arrays are not needed; the de-
tailed matching algorithms are depicted in Fig. 10. Al-
gorithm LAZY-MATCH-SUBSTRING for single-path XPEs
is almost equivalent to that for tree-structured XPEs (in
Fig. 21) except that it involves fewer parameters. Al-
gorithm MATCH-SUBSTRING-SUB for single-path XPEs,
however, is clearly significantly simpler than its general-
case counterpart. For each substring si,j ∈ Sleaf (corre-
sponding to row r in ST ) matching at level �, Algorithm
LAZY-MATCH-SUBSTRING is invoked to check whether or
not this matching forms a complete matching of pi. The algo-
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Algorithm LAZY-MATCH-SUBSTRING (ST , M, r, �)
Input: ST is the substring-table of an XTrie index. M is a 2-dimensional bit-array.

r refers to the first row in ST that corresponds
to some leaf substring that matches at level �.

Output:Set of matching XPEs.
1) Initialize R to be empty;
2) while (r �= 0) do
3) match = MATCH-SUBSTRING-SUB (ST, M, r, �);
4) if (match) then
5) Insert the id. of the XPE corresponding to row r into R;
6) r = ST [r].Next;
7) return R;

Algorithm MATCH-SUBSTRING-SUB (ST , M, r, �)
Input: ST is the substring-table of an XTrie index. M is a 2-dimensional bit-array.

r refers to a row in ST that corresponds to some substring si,j

that matches at level �.
Output:Returns true if there is a complete matching of pi; false, otherwise.
1) Initialize match = false;
2) if (ST [r].RootSubstr) then //r corresponds to a root substring
3) if (� ∈ ST [r].RelLevel) then
4) match = true;
5) else //r corresponds to a non-root substring
6) r′ = r − 1;
7) parentSid = ST [r′].SID;
8) Initialize �′ = � − �min, where ST [r].RelLevel = [�min, �max];
9) while (match == false) and (�′ > 0) and (� − �′ ∈ ST [r].RelLevel) do
10) if (M[parentSid, �′]) then
11) match = MATCH-SUBSTRING-SUB (ST , M, r′, �′);
12) �′ = �′ − 1;
13) return match; Fig. 10. Algorithm to process a matching sub-

string in Lazy XTrie for single-path XPEs

rithm recursively looks for a matching of the parent substring
of si,j at level �′ that is consistent with the matching of si,j

(i.e., � − �′ ∈ ST [r].RelLevel); the algorithm returns true if
and only if the root substring of pi is finally matched, implying
a complete matching of pi.

6 Related work

Earlier work has proposed various approaches for the prob-
lem of filtering data using “flat patterns” in the form of con-
junctions of simple predicates on data attributes. This in-
cludes research on rule/trigger processing systems [10,12] and
publish-subscribe systems [1,11,15]. In contrast, our work fo-
cuses on filtering XML documents based on tree patterns (i.e.,
XPath expressions), which demands more sophisticated index-
ing techniques, since such patterns comprise both data content
and structure.

The only work that is closely related to ours is the XFil-
ter index which is also designed for filtering XML documents
with XPath expressions [2]. While our XTrie index is based on
decomposing tree patterns into collections of substrings (i.e.,
sequences of element names) and indexing them using a trie,
XFilter essentially treats each tree pattern as a set of finite state
automata, with each automaton responsible for the matching
of some path in the tree pattern. Each automaton is represented
by a linked list of nodes, where each node represents a state
in the automaton; and each link, which is labeled with an ele-
ment name, represents a state transition. Note that each node

has at most one out-going link labeled with an element name;
and the collection of linked lists of nodes is indexed using a
hash table on the element names (i.e., automata transitions)
such that nodes whose incoming links share the same element
name label are chained together in the hash table. Specifically,
each hash table entry (corresponding to some element name
t) consists of two linked lists: a dynamic candidate-list and a
static wait-list. The candidate-list for element name t consists
of nodes representing potential next states that are reachable
by a transition on element name t, and it is initialized with
states that are reachable from start states; the wait-list con-
sists of all the remaining states reachable with a transition on
element name t from non-start states. As the input XML doc-
ument is parsed, the potential next-states of the automata are
updated by copying nodes from the appropriate wait-lists to
their corresponding candidate-lists or deleting nodes from the
candidate-lists.

XTrie is more space-efficient than XFilter since the space
cost of XTrie is dominated by the number of substrings in
each tree pattern, while the space cost of XFilter is dominated
by the number of element names in each tree pattern. In the
worst case, a candidate-list in XFilter can grow to a length
of |P|2L after an element at level L is parsed, where |P| is
the total number of XPEs being indexed. We illustrate this
exponential space complexity of XFilter with the following
example. Consider a set of n XPEs P = {p1, p2, · · · , pn},
where each of the n XPEs shares the same prefix expression
given by “//x[y = v1]//x[y = v2]// · · · //x[y = vm]”. The
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prefix expression essentially consists of a sequence of m num-
ber of element x that are separated by descendant operators
such that each element x is associated with a distinct pred-
icate “y = vi”, where y is another element and each vi is
a distinct constant value. Therefore, for element x, its initial
candidate list consists of n nodes (one node for each XPE),
and its wait list consists of n(m − 1) nodes (m − 1 nodes
for each XPE); while for element y, its initial candidate list
is empty, and its wait list consists of nm nodes (m nodes for
each XPE). Consider an XML document tree D that consists
of only a single path of element names all of which are labeled
x. Since the first element x in D matches the first x element in
all the XPEs (i.e., all the nodes in the candidate list of element
x are matched), the candidate list for element x is updated
by copying n nodes from its wait list (corresponding to the
second element x in each XPE). Similarly, the candidate list
for element y is updated by copying n nodes from its wait
list (corresponding to the expression “y = v1” in each XPE).
Subsequently, when the second element x in D is parsed, it
again matches all the nodes in the candidate list of element x
(i.e., it matches both the first and second element x of each
XPE); therefore, the candidate list for element x is updated
by copying 2n nodes (corresponding to the second and third
element x in each XPE) from the wait list of element x into
its candidate list. Similarly, the candidate list for element y is
updated by copying 2n nodes from its wait list (corresponding
to both the expressions “y = v1” and “y = v2” in each XPE)
thereby increasing its number of nodes to 3n. At this point,
each XPE pi is associated with two nodes that correspond to
the expression “y = v2” in the candidate list for element y.
It is important to note that these two nodes are not equivalent
(and therefore the second copy is not redundant) because they
are associated with different meta information; in particular,
their values for the “level” attribute (which indicates the level
at which the nodes should be matched) are 2 and 3. Thus, it
follows that the candidate list for element y would have a total
of 2i−1n distinct nodes after the element x at the ith level in
D is parsed.

By indexing on substrings instead of single element names,
the substring-table entries in XTrie are also probed less often
than the hash table entries in XFilter. Furthermore, while XTrie
ignores partial matchings of tree patterns that are redundant,
XFilter keeps track of all instances of partially-matched tree
patterns, which results in higher processing overheads.

7 Experimental study

To determine the effectiveness of XTrie, we have conducted
exhaustive experiments with the various variants of the XTrie
algorithm, as well as XFilter, under a wide range of XML
document and XPath expression workloads. Note that our im-
plementation of XFilter is based on the description in [2]. Our
results indicate that XTrie scale well to high workloads and
consistently outperforms XFilter by significant margins.

7.1 Testbed and methodology

Table 3. Characteristics of the default XML data sets (100 documents
per set)

DTD 10 DTDs NITF
Number of tags T :

avg [min, max] 120.3 [85, 180] 108.5 [45, 132]
Number of levels:

avg [min, max] 16.65 [5, 36] 18.11 [7, 24]

7.1.1 XML documents

For the experiments presented here, we have used two distinct
data sets. The first one measures the effectiveness of the al-
gorithms with multiple DTDs. This “aggregate” data set was
created from 10 real-world DTDs used in major commercial
applications. Among the 10 DTDs, the smallest DTD contains
77 elements with 1, 377 attributes, while the largest DTD has
2, 727 elements with 8512 attributes. Each DTD was equally
represented in the data set, i.e., we generated 1/10 of the XML
documents and XPEs with each DTD.

The second data set was used to precisely measure how
the different algorithms react to slight variations of the work-
load. We have used the News Industry Text Format (NITF)
DTD[8], developed as a joint standard by news organizations
and vendors worldwide, and supported by most of the world’s
major news agencies. The NITF DTD (version 2.5) contains
123 elements with 513 attributes. Note that the same DTD was
used in [2] for XFilter’s performance study.

Our data set of XML documents has been generated using
IBM’s XML Generator tool [9]. The NITF DTD and most
of the other DTDs contain recursive structures, which can be
nested to produce XML documents with arbitrary number of
levels. We have generated sets of 100 XML documents with
similar characteristics. The documents of the default data sets
have approximately 100 tags and 20 levels.5 The default data
sets are used in all experiments, except when measuring the
scalability of the filtering algorithms with respect to the size of
the documents. For the latter experiment, we have generated
additional data sets by varying the number of tags. Table 3
shows the main characteristics of our default XML document
data sets.

7.1.2 XPath expressions

We implemented an XPath expression generator that takes a
DTD as input and creates a set of valid XPath expressions
based on the input parameters shown in Table 4. The param-
eter P controls the size of the set of indexed XPEs. The pa-
rameter L controls the maximal “depth” of the XPEs in terms
of the maximum number of levels. The average depth is ap-
proximately equal to half the maximal depth. The parameters
p∗ and p//, respectively, control the probabilities of having
a wildcard “/∗” or a descendant “//” operator at each node;
therefore, the probability of the child operator “/” is given by
(1 − p∗ − p//). The parameter pλ controls how “bushy” are
the XPE-trees of the XPEs; a value of 0 will generate only

5 Note that in the context of data dissemination, documents are
generally small. For instance, a typical XML document describing a
stock quote has approximately 10 tags and 3 levels.
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Table 4. Parameters in XPath expression generator

Parameter Meaning Values
P Number of XPath expressions. 10K to 200K
L Maximum number of levels in the XPEs. 8 to 20
p∗ Probability of having a wildcard “/∗”

operator.
[0, 0.5]

p// Probability of having a descendant “//”
operator.

[0, 0.5]

pλ Probability of branching. [0, 0.1]
θ Skewness of element names. [0, 5]

single-path XPEs, while a higher value will increase the num-
ber of branches in the XPE-trees. The parameter θ controls
the skewness of the Zipf distribution [22] used for selecting
element names. When set to 0, element names are randomly
chosen according to a uniform distribution from the set of al-
lowed elements. When set to positive values, the choice of the
element names is skewed.

7.1.3 Algorithms

We compare the performance of the XFilter algorithms and
the XTrie algorithms. We have implemented two variants of
XFilter for single-path XPEs as described in [2]: the basic
variant (referred to as XFilter) and the variant with the list
balancing optimization (referred to as XFilter-LB). We have
also added support for unordered matching of tree-structured
XPEs to XFilter, without the list balancing optimization, ac-
cording to the informal description in [2]. We have tested all
variants of the XTrie algorithms: eager and lazy, single-path
and tree-structured, ordered and unordered. Unless explicitly
mentioned, we use for XTrie the simple decomposition intro-
duced in Sect. 3 to split XPEs into substrings. Note that we did
not apply the prefiltering optimization [2] to XFilter because
this optimization is orthogonal to the index approach and is
applicable to XTrie as well.

We implemented the algorithms in C++ and compiled them
using GNU C++ version 2.96. Experiments were conducted
on a 1.5 GHz Intel Pentium 4 machine with 512MB of main
memory running Linux 2.4.2. All the index structures were
resident in main-memory for all the experiments. For each ex-
periment, the query evaluation time that we measured includes
the CPU time to parse the input XML document, probe and
update the index, and report matches to the application. XML
file parsing was performed using the SAX parser of theApache
Foundation [5]. The average parsing time per document when
no filtering takes place was approximately 6ms for the default
XML document data sets.

7.2 Experimental results

7.2.1 Scalability

We first compared the scalability of XTrie and XFilter with
single-path XPEs by varying the number P of XPEs up to
200, 000. The results with both data sets (Figs. 11a and b)
show that the filtering time of the XTrie algorithms increases

linearly with the number of XPEs, with the lazy variant be-
ing 2–3 times faster than the eager variant. The performance
of the XFilter algorithm decreases linearly with P when us-
ing the NITF DTD, and logarithmically with the 10 DTDs.
This can be explained by the fact that the aggregate data set
contains a large number (more than 5, 000) distinct element
names. Therefore, the lists of candidates managed by the XFil-
ter algorithm remain small and never exceeds about one tenth
of P at any given time. With the NITF DTD, lists can be-
come prohibitely long and, unsurprisingly, the list balancing
optimization yield a much bigger performance improvement
with that DTD. Note that the XTrie algorithms consistently
outperforms XFilter by almost one order of magnitude.

We then compared the performance of the XTrie and XFil-
ter algorithms with tree-structured XPEs (Figs. 12a and b). The
filtering time of the XTrie algorithms increases linearly with
the number of XPEs. Unlike with single-path XPEs, the lazy
variants of the XTrie algorithms do not perform better than
their eager counterparts. With the aggregate data sets, the ea-
ger variant performs slightly better, while the lazy variant has
a thin edge with the NITF DTD. This can be explained by the
fact that, since tree-structured expressions have several leaf
substrings, the benefits of making fewer accesses to the sub-
string table in the lazy variant are balanced – and sometimes
even surpassed – by the higher costs of these accesses. Lazy
XTrie is expected to perform better than Eager XTrie when
leaf substrings occur infrequently in XML documents. The
results also show that the unordered XTrie algorithms are less
efficient that the ordered algorithms, because the unordered
algorithms use more complex data structures and must keep
track of a larger number of partial matches.

With the aggregate data set, the performance of the un-
ordered XFilter algorithm degrades linearly with P . When
using the NITF DTD, however, the performance of XFilter is
extremely poor and degrades exponentially6 with the number
of XPEs. This gap between the aggregate and NITF data sets is
analoguous to the behavior observed with single-path XPEs.
With tree-structured XPEs, XFilter further suffers from the
branching factor, which can dramatically increase the number
nodes copied to the candidate lists.

Figures 13a and b, and 14a and b analyze the scalability of
the filtering algorithms with respect to the average length of the
XML documents for single-path and tree-structured XPEs.7 It
appears clearly that the processing time increases linearly with
the number of tags for all algorithms, with both types of XPEs.
Remarkably, it appears that the list balancing optimization of
XFilter becomes useless and even penalizes performance with
large XML documents. This can be explained by the fact that
large documents use many of tags in a DTD, some of which
correspond to short candidate lists. The use of large documents
indirectly yields an optimization similar to list balancing, but
without the extra overhead.

In the rest of this section, unless explicitly mentioned, we
present the results obtained with the NITF DTD.

6 We could not represent this behavior in Fig. 12b as it would have
required scaling down the vertical axis by two orders of magnitude.

7 The data points of Unordered XFilter for tree-structured XPEs
do not appear on the Fig. 14b due to the scale and the extremely slow
performance of the algorithm.
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Fig. 11. Varying P for Single-path XPEs (L = 20, p∗ = 0.1, p// = 0.1, pλ = 0, θ = 0, T ≈ 100)
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Fig. 13. Varying document length T for single-path XPEs (P = 100K, L = 20, p∗ = 0.1, p// = 0.1, pλ = 0, θ = 0)

7.2.2 Effect of decomposition

As previously mentioned, XTrie is expected to perform better
as the length of substrings grows, because the substring table
is accessed only when an entire substring has been matched.
To measure the gain from matching substrings instead of sin-
gle elements, we have compared the performance of XTrie
with two different decompositions: the simple decomposition
(indicated as Simple) introduced in Sect. 3 that generates a
small number of long substrings, and a simplistic decompo-
sition called maximal decomposition (indicated as Maximal)

that basically generates a substring for each individual ele-
ment (hence giving rise to a maximal number of substrings).As
shown in Fig. 15a, XTrie performs significantly better with the
simple decomposition. The improvement is more noticeable
for Eager XTrie than for Lazy XTrie, because the former algo-
rithm accesses the substring table for each matching substring
(i.e., for each element when using the maximal decomposi-
tion) while the latter only accesses the substring table when
encountering a leaf substring; therefore, the gain from using
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Fig. 16. Varying p∗ and p// with NITF DTD (P = 100, 000, L = 20, pλ = 0, θ = 0, T ≈ 100)

longer substrings is proportionally larger for Eager XTrie than
for Lazy XTrie.

7.2.3 Effect of algorithm specialization

We have presented different variants of the XTrie filtering al-
gorithm, adapted to different types of XPEs (single-path, tree-
structured ordered and unordered). While the tree-structured

variants can be used to filter single-path XPEs, the variants op-
timized for single-path XPEs are expected to be more efficient.
We have measured the gain of using specialized algorithms
(indicated with SP for single-path algorithms) instead of their
generic counterparts (indicated with TS for tree-structured al-
gorithms) for filtering single-path XPEs. The results, shown
in Fig. 15b (for clarity, we only represented the results for
the lazy algorithms as the eager ones had a similar behav-
ior), clearly demonstrate the benefits of using the optimized
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algorithms. The tree-structured algorithms suffer from more
complex data structures and matching procedures, which de-
grade their performance.

7.2.4 Effect of wildcards and descendant operators

Figures 16a and b show the influence of wildcard and de-
scendant operators on filtering speed. Interestingly, XFilter
performs slightly better as the number of wildcards increases,
while the performance of XTrie degrades. This can be ex-
plained by the fact that XFilter does not use nodes for repre-
senting wildcards; thus, the number of nodes decreases when
the percentage of wildcards increases. The performance of
XTrie degrades because substrings become shorter when the
number of wildcard increases; as previously mentioned, XTrie
degenerates to a hash table when substrings become single
elements. Both XFilter and XTrie are affected by the proba-
bility of descendant operators, but the performance of XTrie
degrades slightly more than XFilter. As with wildcards, this
can be explained by the shorter length of the substrings. Lazy
XTrie is less affected by higher probabilities of wildcard and
descendant operators than Eager XTrie, because Lazy XTrie
only incurs the cost of accessing the substring table when
reaching a leaf node, and the number of leaf nodes remains
constant as the number of substring grows. We observed the
same behavior with tree-structured XPEs and (un)ordered
XTrie.

7.2.5 Effect of XPE depth

We have measured the influence of the XPEs’ average depth
on the performance of the filtering algorithms. As show in
Fig. 17a, the performance of all algorithms degrades as the
number of levels grow. The basic variant of XFilter is the most
affected, because longer substrings result is a larger number of
elements and yields longer candidate lists. The list balancing
optimization attenuates this problem. Similarly, the perfor-
mance of XTrie degrades because the number of substrings
increases with the XPEs’ depth.

7.2.6 Effect of skew

Figure 17b shows the behavior of the filtering algorithms when
element names are skewed (note that the XML documents are
not skewed). The graph shows that the performance of XFil-
ter (without the list balancing optimization) increases sharply
with highly skewed XPEs. This is due to the fact only a small
number of candidate lists become large – those associated with
skewed elements. All other lists remain small. As XML doc-
uments are not skewed, all lists are accessed approximately
the same number of times, and small lists improve the al-
gorithm’s performance. With the list balancing optimization,
XFilter strives to keep candidate lists small and is less affected
by skewed data. As expected, XTrie is also less sensitive to
skew because it indexes substrings rather than element names,
and the number of identical substrings remains significantly
smaller than the number of identical element name with high
skew. The performance of Lazy XTrie even improves signifi-
cantly with highly skewed XPEs.As explained before, the lazy

algorithm only accesses the substring table upon matching of
a leaf substring, and since the XML data is not skewed, this
happens less frequently with higher skew.

7.3 Space analysis

Since XTrie essentially uses bounded data structures at run-
time, its space requirement depends only on the set of XPEs. In
contrast, XFilter makes extensive use of dynamic lists for stor-
ing candidate path nodes and its space requirements depends
on both the XPEs and the input XML documents. Figures 18a
and b compare the memory usage of the various algorithms8

as a function of the number of XPEs for single-path XPEs
and tree-structured XPEs, respectively. It appears clearly that
XTrie has lower memory requirements than XFilter, and that
the algorithms specialized for single-path XPEs use less re-
sources. Interestingly, the faster variants (Lazy XTrie and
XFilter-LB) are also those that use less memory. Although
the space requirements of XFilter can be asymptotically very
large, in practice they remain reasonable and none of the al-
gorithms had problems maintaining their index structures in
main memory.

8 Conclusions

In this paper, we have proposed a novel index structure, termed
XTrie, that supports the efficient filtering of streaming XML
documents based on XPath expressions. Our XTrie index of-
fers several novel features that make it especially attractive for
large-scale publish/subscribe systems. First, the XTrie is de-
signed to support effective filtering based on complex XPath
expressions (as opposed to simple, single-path specifications).
Second, our XTrie structure and algorithms are designed to
support both ordered and unordered matching of XML data.
Third, by indexing on sequences of XML element names (i.e.,
substrings) organized in a trie structure and using a sophisti-
cated matching algorithm, the XTrie is able to both reduce the
number of unnecessary index probes as well as avoid redun-
dant matchings, thereby providing extremely efficient filter-
ing. Our experimental results over a wide range of XML doc-
ument and XPath expression workloads have clearly demon-
strated the benefits of our approach, showing that our XTrie in-
dex consistently outperforms earlier approaches by wide mar-
gins.

Acknowledgements. We would like to thank the anonymous review-
ers for their detailed comments which helped significantly to improve
the presentation of this paper.

A Maintenance algorithms for XTrie

In this section, we present the maintenance algorithms for
XTrie. The maintenance of XTrie is overall rather straightfor-
ward except for the maintenance of the max-suffix pointers in
the trie T which is more involved. One approach to efficiently

8 Ordered and unordered XTrie have the same memory usage, and
are not represented separately in the figures.
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maintain these pointers is to build an auxiliary trie structure,
denoted by Trev , on the set of reversed substrings, which we
now describe.

The auxiliary structure Trev is basically a suffix trie on
the set of reverse substrings9 in S; i.e., Trev is a trie on the
set {s′ | s ∈ S, s′ is a suffix of reverse(s)}10. The nodes
in T and Trev are related by the following invariant condi-
tion: for each node node N in T , there exists a unique node
N ′ in Trev such that label(N) = reverse(label(N ′)). We
explicitly maintain this association between the nodes in T
and Trev by enhancing Trev with additional pointers as fol-
lows: for each node N ′ in Trev , we maintain a special pointer,
denoted by γ(N ′), that points to the node N in T (if it ex-
ists in T ) such that label(N) = reverse(label(N ′)); other-
wise, γ(N ′) is initialized to a null pointer value. Note that
for the root node N ′

root of T ′, γ(N ′
root) points to the root

node of T . Given Trev , the max-suffix pointer value of a
node N in T , β(N), can be easily computed as follows. Let
P =< N ′

1, N
′
2, · · · , N ′

k > denote the unique path of nodes in

9 The reverse of a substring s, denoted by reverse(s), is defined
to be en.en−1. · · · .e1 if s = e1.e2. · · · .en is a concatenation of n
element names.

10 Note that since the set of suffixes of s′ is a proper subset of
the set of suffixes of s if s′ is a proper prefix of s, it is suffi-
cient to construct the suffix trie Trev on the reverse substrings in
{label(N) | N is a leaf node in T}.

Trev beginning from the root node N ′
1 down to some node N ′

k
such that label(N ′

k) = reverse(label(N)). Then, the value
of β(N) is given by γ(N ′

i), where N ′
i (1 ≤ i < k) is the

bottom-most node in P (excluding node N ′
k) that has a non-

null pointer value. Note that such a node always exists since
γ(N ′

1) points to the root node of T .

A.1 Maintenance algorithm for new insertions

This section presents an algorithm (shown in Fig. 19) to update
XTrie and the auxiliary structure Trev when a new set of
XPEs Pnew is to be added. The maintenance algorithm to
handle insertion of new XPEs consists of three main phases.
The first phase expands T with new nodes (if required) and
updates ST with a new entry for each substring in the simple
decomposition of each new XPE. The second phase expands
Trev with new nodes if new nodes have been inserted into T
during the first phase, and updates their γ() pointer values;
this phase also updates the max-suffix pointers of some of
the existing nodes in T . Finally, the third phase updates the
max-suffix pointers of the new nodes that were added to T in
the first phase. We now elaborate on the details of these three
phases.

In the first phase (Steps 1 to 11), for each substring s in
the simple decomposition of each new XPE, we traverse T
using s to first check if there exists a node N in T such that
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Algorithm INSERT-XPE (Pnew, ST , T )
Input: Pnew is a set of XPEs to be inserted; (ST , T ) is an XTrie index.
Output: An updated XTrie.
1) Initialize Nodenew to be empty;
2) for each p ∈ Pnew do
3) for each substring s in the simple decomposition of p do
4) Traverse T using s and let N be the last node visited in T ;
5) if (label(N) �= s) then
6) Append a new path of nodes < N1, N2, · · · , Nk > to N

such that label(Nk) = s;
7) Initialize α(Ni) = null for i = 1, 2, . . . , k − 1;
8) Initialize α(Nk) to point to a new entry in ST ;
9) Initialize β(Ni) to point to the root node of T for i = 1, 2, . . . , k;
10) Nodenew = Nodenew ∪ {N1, N2, · · · , Nk};
11) Insert a new entry into ST for s;
12) for each N ∈ Nodenew do
13) Traverse Trev using reverse(label(N)) and

let N ′ be the last node visited in Trev;
14) if (label(N ′) �= reverse(label(N))) then
15) Append a new path of nodes < N ′

1, N
′
2, · · · , N ′

j > to N ′

such that label(N ′
j) = reverse(label(N));

16) Initialize γ(N ′
i) to point to the root node of T for i = 1, 2, . . . , j − 1;

17) Initialize γ(N ′
j) to point to node N ;

18) else
19) Update γ(N ′) to point to N ;
20) Let Nodemax = {N ′′ is a descendant node of N ′ | γ(N ′′) �= null,

γ(X) = null for each node X between N ′ and N ′′ };
21) for each node N ′′ ∈ Nodemax do
22) Let Nt be the node in T pointed to by γ(N ′′);
23) Update β(Nt) to point to N ;
24) for each N ∈ Nodenew do
25) Traverse Trev using reverse(label(N)) and

let P =< N ′
1, N

′
2, · · · N ′

m > denote the path of nodes visited;
26) Update β(N) to γ(N ′

j), where j is the maximum value in [1, m − 1]
such that γ(N ′

j) �= null;
Fig. 19. Algorithm to maintain XTrie for inser-
tion of a set of XPEs

label(N) = s. If not, an appropriate path of new nodes is
inserted into T so that a leaf node in T is reachable using s. A
new entry corresponding to s is also inserted into the substring-
table ST . The α(.) pointer values are updated appropriately,
while the β(.) are simply initialized to point to the root node
of T at this point.

In the second phase (Steps 12 to 23), we update Trev to
maintain the invariant condition for the newly inserted nodes
in T . Therefore, for each newly inserted node N in T , we tra-
verse Trev using reverse(label(N)) to check if there exists a
node N ′ in Trev such that label(N) = reverse(label(N ′)).
There are two possible cases. In the first case, if N ′ does
not exist in Trev , then an appropriate path of new nodes
(with leaf node N ′) is inserted into Trev so that label(N) =
reverse(label(N ′)). The γ(.) pointer values for the newly
inserted nodes in Trev are updated appropriately. In the sec-
ond case, if N ′ already exists in Trev , then it is necessary that
γ(N ′) has a null pointer value (otherwise, it would imply that
node N already exists in T contradicting the fact that N is a
newly inserted node in T ); thus, what remains to be done is to
simply update γ(N ′) to point to N . Since there might be some
existing nodes in T whose max-suffix pointer values were ini-
tialized to γ(N ′), we therefore need to update the max-suffix
pointer values of such nodes to point to N instead. This update
is performed in Steps 20 to 23. The set of nodes in Trev asso-

ciated with the affected nodes in T are represented by the set
Nodemax; i.e., for each node N ′′ ∈ Nodemax, we need to up-
date the max-suffix pointer of the node pointed to by γ(N ′′).
Note that the number of such affected nodes is bounded by the
branching degree of node N ′ in Trev . Finally, the third phase
(Steps 24 to 26), updates the max-suffix pointers for the newly
inserted nodes in T as described in the previous section.

A.2 Maintenance algorithm for deletions

This section presents an algorithm (shown in Fig. 20) to up-
date XTrie when an existing XPE p is to be deleted. The
maintenance algorithm consists of two main phases. The first
phase deletes the appropriate entries in the ST that correspond
to the substrings in the simple decomposition of p; nodes in
T that have become “useless” as a result of the changes in
ST are also deleted. The second phase deletes nodes in Trev

that have become “useless” and also updates those max-suffix
pointers in T that are now pointing to non-existing nodes as a
consequence of the nodes deleted in the first phase.

In the first phase (Steps 1 to 11), for each substring s in
the simple decomposition of p, we delete the corresponding
entry to s in ST by navigating to T via Trev; that is we first
traverse Trev using reverse(s) to reach a node N ′ in Trev and
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Algorithm DELETE-XPE (p, ST , T )
Input: p is a XPE to be deleted; (ST , T ) is an XTrie index.
Output: An updated XTrie.
1) Let Sp be the set of distinct substrings from the simple decomposition of p;
2) Let Ssort be the sorted sequence of substrings in Sp in

descending order of the substring length;
3) for each substring s in Ssort do
4) Traverse Trev using reverse(s) to reach node N ′;
5) Let N be the node in T pointed to by γ(N ′);
6) Access ST using α(N) to delete the entry corresponding to s;
7) if (the deleted entry is the last entry for s) then
8) Update α(N) to the null pointer value;
9) if (N is a leaf node) then
10) Delete N from T ;
11) Mark the node N ′ ;
12) for each substring s in Ssort do
13) Traverse Trev using reverse(s) to reach node N ′;
14) if (N ′ is marked) then
15) Let Nanc be the closest ancestor node of N ′ such that

Nanc is not marked and γ(Nanc) �= null;
16) Let Nodemax = {N ′′ is a descendant node of N ′ | γ(N ′′) �= null,

N” is not marked,
for each node X between Nanc and N ′′, X is marked or γ(X) = null};

17) for each node N ′′ ∈ Nodemax do
18) Let N be the node in T pointed to by γ(N ′′);
19) Update β(N) to point to γ(Nanc);
20) if (N ′ is a leaf node) then
21) Delete N ′ from Trev;
22) else
23) Update γ(N ′) to a null pointer value; Fig. 20. Algorithm to maintain XTrie for an

XPE deletion

then navigate to its associated node N in T using γ(N ′). The
reason for this indirect navigation is because we need to “take
note” of node N ′ in Trev (by marking that node) if the node
N in T is deleted. Note that a node N in T will be deleted
if has become “useless”; i.e., N has become a leaf node and
the value of α(N) has become a null pointer value. In order to
efficiently ensure that all the useless nodes in T are deleted, we
need to visit these to-be-deleted nodes in a bottom-up manner;
otherwise, we would have missed deleting an internal node that
later becomes a useless leaf node. For this reason, we iterate
through the to-be-deleted substrings in descending order of
their lengths by first sorting them into the sequence Ssort. For
each node in T that is deleted, its associated node in Trev is
marked for further processing in the second phase.

The second phase (Steps 12 to 23) begins once all the rel-
evant entries in ST and useless nodes in T have been deleted.
The purpose of this phase is to delete useless nodes in Trev

and update the max-suffix pointers in T using the updated
Trev . For each deleted node N in T , we first navigate to its
associated marked node N ′ in Trev . Node N ′ is deleted from
Trev if N ′ is a leaf node; otherwise, we update γ(N ′) to a null
pointer value. The updating of the affected max-suffix pointers
in T , which is performed in Steps 15 to 19, is similar to the
procedure described earlier for the second phase in Algorithm
INSERT-XPE.

B Search algorithm for lazy XTrie

In this section, we present the detailed search algorithm for
Lazy XTrie. The main algorithm is shown in Fig. 21; a com-
parison between the lazy and eager variants was described in
Sect. 5.1.

Algorithm LAZY-MATCH-SUBSTRING (shown in
Fig. 22) is called to iterate through each instance of s in the
indexed substrings via the linked list associated with s when
a matching leaf substring s is detected; the input parameter r
refers to the first row in the substring-table that corresponds
to s. For each matching substring si,j ∈ Sleaf (matching
at level � and corresponding to row r in ST ), Algorithm
MATCH-SUBSTRING-SUB (shown in Fig. 23) is invoked
to check if this matching is a partial matching of si,j and,
if so, whether it also completes the matching of pi. The
algorithm returns one of the following three status values:
completeMatch if there is a matching of pi, partialMatch
if there is a partial matching of si,j at level �, or noMatch oth-
erwise. The input parameter subpatternMatch is a Boolean
variable indicating whether or not there is a matching of the
subpattern11 rooted at si,j (with si,j matching at level �); and
the input parameter childSubpatternMatch is a Boolean
variable indicating whether or not there is a matching of the
subpattern rooted at the most recently detected child sub-
string of si,j . For the non-trivial case where si,j is a non-root

11 The subpattern rooted at a substring s of a XPE p refers to a
XPE p′ is derived from p that consists of only all the substrings in
the subtree rooted at s in p.
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Algorithm LAZY-SEARCH (D, ST , T )
Input: D is an input XML document. (ST , T ) is an XTrie index.
Output: R is the set of XPEs that matches D.
1) Initialize R to be empty;
2) Initialize Node[i] = root node of T for i = 0 to Lmax;
3) Let B be a |ST | × Lmax integer-array with all values initialized to 0;
4) Let C be a |ST | × Lmax bit-array with all values initialized to 0;
5) Let M be a |S| × Lmax bit-array with all values initialized to 0;
6) Initialize � = 0; // � is the current document level
7) Initialize N to be the root node of T ; // N is the current trie node
8) repeat
9) if (a start-tag t is parsed in D) then
10) � = � + 1;
11) while ((there is no edge labelled "t" from N ) and

(N is not the root node of T )) do
12) N = β(N);
13) if (there is an edge labelled "t" from N to N ′ in T ) then
14) Node[�] = N ′; N = N ′;
15) while (N ′ is not the root node) do
16) r = ABS(α(N ′)); // r is the absolute value of α(N ′)
17) if (r �= 0) then
18) Set M[ST [r].SID, �] to 1;
19) if (α(N ′) > 0) then
20) R = R ∪

LAZY-MATCH-SUBSTRING (ST, B, C, M, α(N ′), �);
21) N ′ = β(N ′);
22) else if (an end-tag is parsed in D) then
23) Reset B[i, �] to 0 for i = 1 to |ST |;
24) Reset M[i, �] to 0 for i = 1 to |S|;
25) Node[�] = root node of T ;
26) � = � − 1;
27) Reset C[i, �] to 0 for i = 1 to |ST |;
28) N = Node[�];
29) until (D has been completely parsed);
30) return R; Fig. 21. Algorithm to search lazy XTrie

Algorithm LAZY-MATCH-SUBSTRING (ST , B, C, M, r, �)
Input: ST is the substring-table of an XTrie index. B is a 2-dimensional integer-array.

C is a 2-dimensional bit-array.
M is a 2-dimensional bit-array.
r refers to the first row in ST that corresponds to
some leaf substring that matches at level �.

Output: Set of matching XPEs.
1) Initialize R to be empty;
2) while (r �= 0) do
3) status = MATCH-SUBSTRING-SUB (ST, B, C, M, r, �, true, true);
4) if (status == completeMatch) then
5) Insert the id. of the XPE corresponding to row r into R;
6) r = ST [r].Next;
7) return R;

Fig. 22. Algorithm to process a matching sub-
string in lazy XTrie

substring, the algorithm checks if the matching of si,j at level
� is a partial matching by iterating through each possible level
�′ for which the parent substring of si,j (corresponding to row
r′ in ST ) can be matched (i.e., � − �′ ∈ ST [r].RelLevel) in
Steps 13 to 27. There are three possible cases to consider. In
the first case, if B[r′, �′] > ST [r].Rank, then the matching
is a redundant matching of si,j and it can be ignored. In the
second case, if B[r′, �′] = ST [r].Rank, then the matching is
a non-redundant matching of si,j ; in addition, if the matching
is also a subtree-matching of si,j (Step 16), then Algorithm
PROPAGATE-UPDATE (in Fig. 9) is invoked to check if

this leads to subtree-matchings of the ancestor substrings
of si,j and possibly a complete matching of pi. In the third
and final case, where B[r′, �′] < ST [r].Rank, we have two
possible sub-cases to consider. If B[r′, �′] > 0, then there
exists at least one preceding sibling substring of si,j that has
not been matched yet, which implies that the matching of
si,j is not a partial matching and can therefore be ignored.
Otherwise, if B[r′, �′] = 0, then in order for the matching
of si,j to be a partial matching, it is necessary that there is a
partial matching of the parent substring of si,j at level �′ and
si,j is its first child substring. Therefore, a recursive call to
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Algorithm MATCH-SUBSTRING-SUB
(ST , B, C, M, r, �, subpatternMatch, childSubpatternMatch)
Output: Returns one of the following status values:

(1) completeMatch if there is a matching of pi,
(2) partialMatch if there is a partial matching of si,j at level �, or
(3) noMatch, otherwise.

1) Initialize status = noMatch;
2) r′ = ST [r].ParentRow;
3) if (r′ == 0) then //r corresponds to a root substring
4) if (� ∈ ST [r].RelLevel) then
5) status = partialMatch;
6) else //r corresponds to a non-root substring
7) if (subpatternMatch and (ST [r′].NumChild == ST [r].Rank)) then
8) parentSubpatternMatch = true;
9) else
10) parentSubpatternMatch = false;
11) parentSid = ST [r′].SID;
12) Initialize �′ = � − �min, where ST [r].RelLevel = [�min, �max];
13) while (status �= completeMatch) and (�′ > 0) and

(� − �′ ∈ ST [r].RelLevel) do
14) if (B[r′, �′] == ST [r].Rank) and (C[r′, �′] == 0) then
15) status = partialMatch;
16) if (parentSubpatternMatch) then
17) B[r′, �′] = ST [r′].NumChild + 1;
18) if (ST [r′].ParentRow == 0) or

(PROPAGATE-UPDATE (ST, B, C, r′, �′)) then
19) status = completeMatch;
20) else if (subpatternMatch) then
21) B[r′, �′] = B[r′, �′] + 1;
22) C[r′, �′] = 1;
23) else if (M[parentSid, �′] and (B[r′, �′] == 0) and

(ST [r].Rank == 1)) then
24) ret = MATCH-SUBSTRING-SUB

(ST , B, C, M, r′, �′, parentSubpatternMatch, subpatternMatch);
25) if (ret �= noMatch) then
26) status = ret;
27) �′ = �′ − 1;
28) if (status == partialMatch) then
29) if (subpatternMatch) then
30) B[r, �] = ST [r].NumChild + 1;
31) if (r′ == 0) then
32) status = completeMatch;
33) else
34) if (B[r, �] == 0) then
35) B[r, �] = 1;
36) if (childSubpatternMatch) then
37) B[r, �] = B[r, �] + 1;
38) C[r, �] = 1;
39) return status; Fig. 23. Auxiliary algorithm to process a

matching substring in lazy XTrie

Algorithm MATCH-SUBSTRING-SUB is made in Step 24 to
check if there is a partial matching of its parent substring at
level �′. Depending on the status of the matching of si,j , its
B entry is updated accordingly in Steps 28 to 38.

C Eager XTrie for single-path XPEs

We discuss how Eager XTrie can be optimized for the special
case where the indexed XPEs are all single-path XPEs. Ba-
sically, Eager XTrie for single-path XPEs differs from Eager
XTrie for tree-structured XPEs in the following ways. First,

since each substring in a single-path XPE has at most one
child substring, the substring-table ST for single-path XPEs
is simpler than that for tree-structured XPEs; specifically, each
row in ST (corresponding to some substring si,j) is a 3-tuple
(RelLevel, RootSubstr, Next), where RelLevel and Next
are defined equivalently as before; and RootSubstr is a single
bit that is set to 1 if and only if si,j is the root substring of pi

(i.e., j = 1). Similar to Lazy XTrie for single-path XPEs, the
attributes Rank, NumChild, and ParentRow, which are
necessary for tree-structured XPEs, are not needed for single-
path XPEs. Furthermore, it is sufficient for the run-time in-
formation B of Eager XTrie to be a bit-array (rather than an
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Algorithm MATCH-SUBSTRING(ST, B, r, �)
Input: ST is the substring-table of an Eager XTrie index.

B is a 2-dimensional bit-array. r refers to the first row in ST that
corresponds to some substring that matches at level �.

Output:Set of matching XPEs.
1) Initialize R to be empty;
2) while (r �= 0) do
3) match = false;
4) if (ST [r].RootSubstr == 1) then
5) if (� ∈ ST [r].RelLevel) then
6) match = true;
7) else if ( ∃ �′ ∈ [1, � − 1] such that � − �′ ∈ ST [r].RelLevel and

B[r − 1, �′] == 1 ) then
8) match = true;
9) if (match ) then
10) Set B[r, �] to 1;
11) if ((r == |ST |) or (ST [r + 1].RootSubstr == 1)) then
12) Insert the id. of the XPE corresponding to row r into R;
13) r = ST [r].Next;
14) return R;

Fig. 24. Algorithm to process a matching sub-
string in eager XTrie (for single-path XPEs)

integer-array) such that B[ri,j , �] = 1 if and only if there is a
partial matching of si,j at level �.

The main search algorithm for single-path XPEs is similar
to that for tree-structured XPEs (in Fig. 7) except that B is
now a bit-array. The matching algorithm is, however, simpler
for single-path XPEs and is shown in Fig. 24.
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