
Large-Scale Collective Entity Matching

Vibhor Rastogi
Yahoo! Research

rvibhor@yahoo-inc.com

Nilesh Dalvi
Yahoo! Research

ndalvi@yahoo-inc.com

Minos Garofalakis
∗

Technical University of Crete
minos@acm.org

ABSTRACT
There have been several recent advancements in Machine Learn-
ing community on the Entity Matching (EM) problem. However,
their lack of scalability has prevented them from being applied in
practical settings on large real-life datasets. Towards this end, we
propose a principled framework to scale any generic EM algorithm.
Our technique consists of running multiple instances of the EM al-
gorithm on small neighborhoods of the data and passing messages
across neighborhoods to construct a global solution. We prove for-
mal properties of our framework and experimentally demonstrate
the effectiveness of our approach in scaling EM algorithms.

1. INTRODUCTION
Entity Matching (EM) is the problem of determining if two enti-

ties in a data set refer to the same real-world object. Entity match-
ing is a complex and ubiquitous problem that appears in numerous
application domains (including image processing, information ex-
traction and integration, and natural language processing), often
under different terminology (e.g., coreference resolution, record
linkage, and deduplication). As an example, consider the following
instance of the problem - this will be our running example through-
out the paper.

EXAMPLE 1. Consider a collection of paper publications ob-
tained from multiple bibliography databases. Our goal is to deter-
mine which papers and authors from the different databases are
the same entities. Each paper p has a subset of the attributes
p.title, p.journal, p.year, p.category, while each author a has
attributes a.fname, a.lname. We also have a set of relations de-
fined over these entities: R = {Authored, Cites, Coauthor},
where Authored(a, p) denotes that a is an author of paper p,
Cites(p1, p2) states that paper p1 cites p2, and Coauthor(a1, a2)
denotes that authors a1 and a2 have co-authored some paper. (Note
that the Coauthor relation can actually be easily derived through
a self-join on Authored.)

∗Work partially supported by the European Commission under
FP7-PEOPLE-2009-RG-249217 (HeisenData).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 4
Copyright 2011 VLDB Endowment 2150-8097/11/01... $ 10.00.

Based on the above example, we formalize the entity matching
problem as follows.

ENTITY MATCHING (EM) PROBLEM : Let E denote a collec-
tion of entities (e.g. set of papers and authors). Each element e in
E is characterized by a set of attributes, e.A1, e.A2, · · · , e.Ak (e.g.
title and journal for paper, and name for author). Furthermore,
we have a set of relations, R = R1, · · · , Rm over E (e.g. Au-
thored and Cites). The objective is to determine, given ei, ej ∈ E,
whether ei and ej are the same entity in real world.

Conventional approaches to EM (dating back to the seminal work
of Newcombe [15] and Fellegi and Sunter [8]) focused on discov-
ering independent pair-wise matches of entities using a variety of
attribute-similarity measures. These approaches ignored the rela-
tional information R. Recently, several collective entity matching
techniques have been developed that use the relational information
like Cites and Coauthor to make all the matching decisions col-
lectively. They have been shown to significantly outperform the
conventional approaches in terms of accuracy. State-of-the-art Col-
lective EM methods typically rely on sophisticated Machine Learn-
ing (ML) tools, e.g. Conditional Random Fields (CRFs) [14, 16],
relational Bayesian networks [17], latent Dirichlet models [4, 9],
and Markov Logic Networks [18]. We urge the reader to refer to
Appendix D) for a comprehensive classification of EM algorithms
that have been considered in the literature along with their accu-
racy/efficiency trade-offs, and merits of collective algorithms.

Unfortunately, the collective EM techniques suffer from a funda-
mental problem: their poor scalability. The high cost of probabilis-
tic inference over large EM graphs renders these methods compu-
tationally infeasible for large data sets.

Our Contributions. In this paper, we propose a principled frame-
work for scaling state-of-the-art, Collective EM algorithms to large
data sets. Our framework allows for general EM algorithms to be
modeled as “blackboxes” that take in a set of entities along with a
collection of evidence, and output a set of matches. Our framework
approximates the run of the matcher on the entire data set by: (1)
running multiple instances of the matcher on several small subsets
of the entities, and (2) Message-Passing, i.e., passing a judiciously-
built message-set across the instances to exchange information be-
tween different runs of the matcher. We present a formal anal-
ysis of our framework, demonstrating that, for a broad class of
“well-behaved” entity matchers (satisfying natural “monotonicity”
properties), the approach is provably sound. We also consider the
case of Collective EM based on probabilistic models, and propose
novel message-passing schemes that significantly improve EM re-
call without compromising soundness. The salient properties of our
EM framework can thus be summarized as follows.

208

1. Generic: Any (deterministic or probabilistic) EM algorithm
can be incorporated in our framework.

2. Accurate & Provably Sound: Our formal analysis show sound-
ness for a broad class of EM techniques, while novel message-
passing schemes guarantee high recall.

3. Scalable & Parallelizable: By running EM instances on small
subsets of entities together with intelligent message passing,
our framework is highly scalable and also suitable for a par-
allel implementation.

Our experimental study over real data sets verifies the effectiveness
of our approach, demonstrating the ability to scale a state-of-the-art
Collective EM algorithm based on Markov Logic Network [18] to
real-life data sets of more than 58,000 references involving around
1.3 million matching decisions with little or no impact on the accu-
racy of the results.

2. OVERVIEW
In this section, we give an overview of our framework for scal-

ing collective entity matchers. We illustrate our approach using the
Markov Logic Network (MLN)-based entity matcher [18], which
is a state-of-the-art collective EM technique. Section 2.1 gives
an intuitive introduction to MLN matchers, describing how such
a matcher works on a simple example. In Section 2.2, we use this
MLN matcher to explain informally our scaling framework. Then,
in Sections 3–5, we give the formal descriptions of the various com-
ponents of our framework in more detail.

2.1 The MLN Entity Matcher
Consider a set of entities given in Figure 1, where each entity rep-

resents an author reference, and an edge between two entities rep-
resent a Coauthor relationship. Thus, we have Coauthor(a1, b2),
Coauthor(a2, b3) etc. Further, using a string-similarity function,
we define a relation called Similar on the entities. In this exam-
ple, we have Similar(a1, a2), Similar(bi, bj) and Similar(ci, cj)
for i, j = 1, 2, 3.

We want to use the relations Similar and Coauthor to derive a
relation Match, which tells us the entities that should be matched.
Intuitively, we want to match two entities if they are similar and
they have a matching coauthor. We can express this as the following
two rules:

R1 : Similar(x, y) ⇒ Match(x, y)
R2 : Similar(x1, y1) ∧ Coauthor(x1, x2) ∧ Coauthor(y1, y2)

∧ Match(x2, y2) ⇒ Match(x1, y1)

Note that these rules are not hard constraints, but rules which
we believe are likely to hold. In the MLN matcher, one can write
arbitrary rules and the system assigns a weight (a number) to each
one of them. (These MLN rule weights are typically learned by
using (labeled) training data.) The weights are used to assign a
score to each possible set of entity matches: the score of a set is
given by the total weight of all the rules in that set that become
true. Although we will not go into the technical details of MLN,
it is important to note that these MLN rule weights have a natu-
ral probabilistic interpretation, and the score assigned to a set of
matches can be normalized to obtain a valid probability measure
over possible match decisions [18]. Thus, the system tries to find
the highest-scoring set of entity matches (which is also the set of
matches with the highest probability).

As an example, let us assume that the system assigns a weight of
-5 to R1 and a weight of 8 to R2. A negative weight for R1 implies
that the Similar relation by itself is not sufficient to match the two

Figure 1: An Instance of Entity Matching Problem: Nodes are
author references and edges are coauthor relationships.

entities. On the other hand, since −5 + 8 = 3 is positive, entities
that are similar and share a coauthor are matched. To see this, con-
sider the entities c1, c2 for which Similar(c1, c2) holds; Consider
two possible sets of matches: (i) the set {Match(c1, c2)}, and (ii)
the empty set {}. For the first set, R1 is true (by putting x = c1

and y = c2) and R2 is also true (by putting x1 = c1,y1 = c2, and
x2 = y2 = d1)1. Thus, the score assigned to this set is −5+8 = 3.
On the other hand, the second (empty) set makes R1 and R2 both
false, and is assigned a score of 0. So, the first set is assigned a
larger score, and the system declares c1 and c2 to be matches.

In the above deduction, just by looking at c1, c2, and d1, we de-
cided that assigning Match(c1, c2) leads to optimal solution. But,
how do other entities in the graph affect this decision? One nice
property of our MLN-based matcher is that Match(c1, c2) is still
the right decision in the globally-optimal solution, even as more en-
tities are added to the graph. We call this the monotonicity property
(formally defined in Section 3). It turns out that monotonicity is a
general property that real-life entity matchers often exhibit, and our
EM framework is designed to exploit this.

Continuing with our example in Figure 1, having matched c1, c2,
the matcher also infers Match(b1, b2) for similar reasons, since
the match further increases the total weight by 8 − 5 = 3. At this
point, we cannot further increase the total weight of the solution by
adding any new single match. However, the pairs (a1,a2), (b1,b2)
and (c1,c2) show an interesting property, which truly illustrates the
collective nature of MLN. Setting any one of them as a match just
adds a weight of -5; but, setting all three of them collectively in-
creases the total weight, as R1 fires three times (once on each pair)
leading to a weight of -15 but R2 also fires two times contributing
16. The net result is an increase in total weight by +1. Thus, our
MLN matcher decides to match all three pairs. In general, MLN-
based matchers consider all matching decisions collectively, and
there could be large collections of entity pairs, where matching all
the pairs in the set leads to an increase in the total score, but the
advantage can only be seen when looking at the set of pairs as a
whole (as in the example above).

2.2 Our Framework
We now give an overview of our scalable EM framework. It

consists of three key components: (i) modeling an entity matcher
as a black box (ii) running multiple instances of the matcher on
small subsets of the entities (termed neighborhoods), and (iii) using
message passing across the instances to control the interaction be-
tween different runs of the matcher. Below, we present these three
key components informally, and also outline some key theoretical
properties.

1Our MLN also specifies the trivial reflexivity rule (i.e., each entity
is equal to itself), so that Match(d1, d1) holds.

209

Figure 2: A Cover of Entities.

Black-box EM Abstraction. We consider a very generic abstrac-
tion for an entity matcher that takes a set of entities and outputs a
set of matches. We define two kinds of matchers : a deterministic
matcher that simply outputs a set of matches, and a probabilistic
matcher that also outputs a set of matches, but uses a complete
probability distribution over the set of matches to do so. (Formal
definitions are in Section 3.) We also list a set of desirable proper-
ties of an entity matcher, which we can exploit in our framework.
We call a matcher well-behaved if it satisfies these properties.

The deterministic abstraction is very general and can model any
entity matcher. The probabilistic abstraction is a special case of
a deterministic matcher, where the final output of the probabilistic
matcher is the set of matches that has the highest probability. The
reason for defining the probabilistic abstraction as a special case
is that we can apply additional techniques when we know that the
matcher is backed by a probability distribution. All known, state-
of-the-art purely-collective matchers (which are the main focus of
our scaling effort), are indeed probabilistic.
Neighborhoods. A neighborhood is simply a subset of the entities
E and a cover is a set of (potentially overlapping) neighborhoods
whose union is E. An example cover of entities in Figure 1 is given
in Figure 2: it describes a cover consisting of three neighborhoods,
C1, C2, and C3.

There is a vast amount of literature on blocking techniques [13],
whose objective is to efficiently group together entities that are sim-
ilar. The notion of cover extends the notion of blocking to group
entities based on not just their similarity, but also on their relational
closeness. For instance, in neighborhood C3 shown in Figure 2, en-
tities d1 and c1 are in the same neighborhood not because they are
similar, but because they share a coauthorship edge. More gener-
ally, a neighborhood may even have entities of different types, e.g.
an “Author” and a “Paper”. Section 4 describes covers formally.
Message Passing. We now come to the most important component
of the framework : message passing. We start by analyzing how
the MLN matcher described in Section 2.1 runs when applied sep-
arately to each of the three neighborhoods in Figure 2. In neigh-
borhood C1, MLN will not output any match. This is because
none of the pairs (a1, a2) and (b1, b2) have enough evidence to
get matched. If we try to match both pairs, we will incur a weight
of +8 by rule R2 but a weight of -10 by rule R1 (which fires twice).
So, it will decide not to match either of them. Similarly, it will not
produce any match in C2. In C3, it matches the pair (c1, c2) as

shown in Section 2.1. Thus, the total set of matches produced by
all the neighborhoods is simply {(c1, c2)}.

We notice that MLN misses several matches when run separately
on each neighborhood. To recover these misses, we pass messages
between neighborhoods. A simple message is just a set of matches
found by a neighborhood. For instance, after C3 runs, it passes a
message to the neighborhood C2 stating Match(c1, c2). When C2

runs MLN again with the new evidence Match(c1, c2) added to
its input, it is now able to match Match(b1, b2). Thus, we recover
one of the missed messages. The resulting scheme is called simple
message passing scheme and is formally described in Section 5.

However, the simple message passing scheme cannot recover
matches (a1, a2), (b2, b3) and (c2, c3). This is because, as we
showed earlier, matching the three pairs increases the overall score
only if all three of them are matched. Thus, neither C1 nor C2

alone can match any of the pairs. Furthermore, simple messages
are no help as no matches are found in either neighborhood. To
overcome this problem, we extend the notion of a simple message.
Although C2 cannot match pairs (b2, b3) and (c2, c3), it can de-
duce that matching any one of them also results in the other pair
being matched; thus, either both pairs should be matched or none
of the two pairs should be matched. This is called a maximal mes-
sage: It consists of a set of correlated matches, such that either all
of them are true or none of them are. Intuitively, it represents a
“partial inference” by a neighborhood, waiting to be completed.
C2 thus generates a maximal message {(b2, b3), (c2, c3)}. Simi-
larly, C1 generates a maximal message {(a1, a2), (b2, b3)}. These
two messages, when combined, essentially “complete the chain”,
and result in all three pairs being matched. The resulting scheme is
termed maximal message passing scheme, denoted by MMP, and
is developed in detail in Section 5.2.

2.2.1 Theoretical Properties
We now describe some key properties of the framework that we

want to analyze, theoretically and empirically. Let E denote an en-
tity matcher, E(E) denote the set of matches produced by E on
entities E. Let M ∈ {SMP, MMP} be a message passing tech-
nique and let M(E) denote the set of matches produced by our
framework using M . Note that the absolute precision/recall num-
bers of M are not the right metric to evaluate our framework, since
these numbers are tied to the underlying entity matcher E . Instead,
we define the following four properties.

1. Soundness : this is the fraction of matches in M(E) that are
also in E(E). We say that M is sound if it has soundness 1,
i.e., M(E) ⊆ E(E).

2. Completeness : this is the fraction of matches in E(E) that
are also in M(E). we say that M is complete if it has com-
pleteness 1, i.e., E(E) ⊆ M(E).

3. Consistency : we say that M is consistent if the final set of
matches do not depend on the order in which neighborhoods
are evaluated and messages are exchanged.

4. Scalability : we want the time complexity of M to be low,
preferably linear in the number of neighborhoods. Here, we
assume that the sizes of neighborhoods are bounded, and
study scalability with respect to the number of neighborhoods.

In Section 3, we define certain natural, intuitive properties on
entity matchers and say that a matcher is well-behaved if it satisfies
these properties. Our main result is as follows.

THEOREM 1. If E is a well-behaved entity matcher, then both
SMP and MMP are sound, consistent, and have time complexity
linear in the number of neighborhoods.

210

While there are no theoretical guarantees on completeness, we
demonstrate empirically that our framework is in fact complete on
the data sets we consider. In the following sections, we formally
define entity matchers, the notion of well-behaved matcher, various
message passing schemes, and revisit Theorem 1.

3. BLACK-BOX ABSTRACTION
We define two blackbox abstractions for an entity matcher. The

first, which we call a Type-I matcher, is a deterministic matcher
that outputs a set of matches. This is the most general abstraction
that models any entity matching algorithm. The second abstraction,
which we call a Type-II matcher, gives a probability distribution on
sets of possible matches. As we shall see, a Type-II matcher is a
special kind of Type-I matcher. However, we introduce the sec-
ond abstraction because we can apply additional techniques in our
framework when the matcher is probabilistic. We describe below
the two abstractions.

3.1 Type-I Matcher
Recall from Section 1 that an instance of entity matching prob-

lem consists of a set of entities E along with a set of attributes for
each entity and a set of relationships R defined on them. In the rest
of the paper, we will use E to denote a set of entities and implicitly
assume the presence of attributes and relationships on entities.

DEFINITION 1 (TYPE-I MATCHER). A Type-I matcher is a fu-
nction E : E × 2(E×E) × 2(E×E) �→ 2(E×E).

The first argument to E is a set of entities, the next two arguments
are sets V+ ⊆ (E × E) and V− ⊆ (E × E), which are called the
evidence sets. The set V+ is a set of entity pairs that are known to
be matches, while the set V− is a set of entity pairs that are known
to be non-matches. The output of the function O ⊆ E × E is the
set of pairs of entities declared as matches by the algorithm.

This definition treats the entity matching module as a complete
black box except for a mechanism to provide evidence, which we
need in our framework. We can model any entity matcher as a
Type-I matcher: the sets V+ and V− are simply ignored if not used
by the entity matcher. We use E(E) to denote the output of the
matcher when there is no evidence, i.e. when V+ = V− = ∅. Also,
we use E(E, V+) to denote the output when V− = ∅.

We assume certain properties constraining how a matcher can
use its evidence sets. First, we assume idempotence: the output of
a matcher should not change if the output is itself again given as
the positive evidence. We call this property idempotence.

DEFINITION 2 (IDEMPOTENCE). A Type-I matcher is idem-
potent if for all E,V+ and V−, denoting O = E(E, V+, V−), the
following holds: E(E,O, V−) = O

Obviously a matcher that ignores its evidence sets, satisfies idem-
potence. In fact, we expect every matcher to satisfy idempotence.
In addition to idempotence, we assume another monotonicity prop-
erty: if we add more entities to the input entity set E or give more
positive evidence V+, we get more matches in the output, while
if we give more negative evidence V−, we get less matches in the
output.

DEFINITION 3 (MONOTONICITY). A Type-I entity matcher is
monotone if for any inputs E, V+, V− and inputs E�

, V+
�
, V−

� such
that E� ⊇ E, V+

� ⊇ V+, and V−
� ⊇ V− the following hold: (i)

E(E�
, V+, V−) ⊇ E(E, V+, V−), (ii) E(E, V+

�
, V−) ⊇ E(E, V+,

V−), and (iii) E(E, V+, V−
�) ⊆ E(E, V+, V−).

We illustrate using examples in the Appendix A that many entity
matching techniques in the literature satisfy monotonicity. At the
same time, it should be noted that even non-monotone matchers can
be scaled in our framework albeit without the theoretical soundness
guarantee.

DEFINITION 4. We say that a matcher is well-behaved if it sat-
isfies idempotence and monotonicity.

3.2 Type-II Matcher

DEFINITION 5 (TYPE-II MATCHER). A Type-II matcher E is
a function that takes as input a set of entities E and associates a
probability distribution PE on the set 2E×E .

The probability of a set S ⊆ E × E, PE(S), is the probability
that exactly the pairs in S are matches.

Note that we have not specified an explicit mechanism to spec-
ify the initial evidence sets. This is because, since the matcher
gives a complete probability distribution, any evidence sets V+, V−
can easily be incorporated by conditioning the distribution PE on
matches in V+ to be true and V− to be false.

The output of a Type-II matcher E is the set S ∈ 2E×E that
has the highest probability according to the distribution PE . We
denote it by E(E). There can be more than one most likely set,
in which case, we will prefer a set with the largest size. More
precisely, E(E) is any set S ⊆ 2E×E that satisfies the following
two properties : (i) for all S�, PE(S) ≥ PE(S

�) and (ii) for all S�

such that PE(S) = PE(S
�), we have |S| ≥ |S�|.

In presence of evidence sets V+ and V−, we can incorporate it in
the entity matcher by simply conditioning the probability distribu-
tion PE on V+ and V−. Thus, we define E(E, V+, V−) to denote
any set among the largest most likely sets that contains all matches
in V+, but none from V−.

PROPOSITION 1. A Type-II matcher is also a Type-I matcher,
i.e. it satisfies the idempotence axiom.

We also define a supermodularity property on Type-II matchers
that is related to the monotonicity property of Type-I matchers.

DEFINITION 6 (SUPERMODULARITY). An entity matcher E
is supermodular if for all entity pair sets S, T ⊆ E × E such that
S ⊆ T , and for all entity pairs p ∈ E × E, we have

PE(T ∪ {p})
PE(T)

≥ PE(S ∪ {p})
PE(S)

Intuitively, supermodularity says that the matches are positively
correlated: increasing the set of matches from S to to a larger set
T only increases the likelihood of another match p. Thus super-
modularity is essentially just the monotonicity requirement stated
for probabilistic matchers.

PROPOSITION 2. Let E be a supermodular Type-II matcher. Th-
en, E is a monotone Type-I entity matcher.

Supermodularity is a well-studied property of probability distri-
butions (see [11]). In fact, exact inference techniques are known
for Markov Networks when the clique potentials are supermodu-
lar [11]. However, these work only if the cliques are edges (while
we support any general entity matcher), and have super-linear com-
plexity (quadratic or worse). Thus such techniques are not well-
suited for extremely large data sets that we are interested in.

211

4. COVERING
In this section, we define the notion of a cover, and introduce a

class of covers called total covers, which are especially suited for
our framework. Given a set of entities E, a cover of E is simply a
set C = {C1, C2, · · · , Ck} such that E = C1 ∪ · · ·∪Ck. Each Ci

is called a neighborhood.
For example, consider the set of entities shown in Figure 1 with

relations R = {Coauthor, Similar} over E as defined in Sec-
tion 2.1. Let C1, C2 and C3 be the sets as shown in Figure 2. Then,
C1 = {C1, C2, C3} is a cover. The set C2 = {C1, C3} is also a
cover.

Next we define the notion of total cover that extends the notion
of a cover. Given a relation R over E, and a subset C ⊆ E, let
R(C) denote the subset of the relation induced by C, i.e. the set of
tuples in R that solely consists of entities from C. Thus, R(E) is
the complete relation.

DEFINITION 7 (TOTAL COVER). A cover C = C1, · · · , Ck is
a total cover of a set of entities E w.r.t a set of relations R if for all
relations R ∈ R, we have R(E) = R(C1) ∪ · · · ∪R(Ck)

For example, in Figure 2, C2 = {C1, C3} is not a total cover,
since the tuple Coauthor(b1, c1) is not contained in either of the
two neighborhoods. However, one can verify that the cover C1 =
{C1, C2, C3} is a total cover.

Total cover is a desirable property in our framework, since tuples
in R that are not included in any neighborhood get “lost”, as they
do not participate at all in the matching process. Given any cover,
we can make it a total cover as follows: Define the boundary of
a neighborhood C to be the set of entities e for which there is an
entity e

� in C such that both e and e
� occur together in some tuple

in R. Then, by expanding each neighborhood to also include its
boundary, we obtain a total cover. Total covering is a natural ex-
tension of the notion of blocking, used extensively in entity match-
ing [13]. Blocking divides entities into neighborhoods such that
for any pair of similar entities, there is a neighborhood that con-
tains the pair. Thus, blocking is a total covering over the Similar
relation. When we have other relations, like Coauthor and Cites,
we can have neighborhoods containing entities that are not similar,
and even entities of different types, e.g an author and a paper.

In this work, we construct a total cover by first constructing a
total cover over Similar relation using the Canopies algorithm [13],
and then taking the boundary of each neighborhood with respect to
other relations. Because of the boundary, a neighborhood will have
entities of multiple types and entities which are dissimilar. E.g. the
use of Coauthor edges brings together authors whose names are
very dissimilar to the same neighborhood.

5. MESSAGE PASSING
Now we describe the message passing algorithm, which is at the

heart of our framework. The input is a cover C = C1, C2, · · ·Ck

of entities E and an entity matcher E . We describe two message
passing schemes: SMP, that works for any matcher, and MMP,
that is more advanced but only works with probabilistic matchers.

5.1 Simple Message Passing Scheme (SMP)
We described the algorithm informally in Section 2.2. The al-

gorithm maintains a set A of active neighborhoods, which are the
neighborhoods that can potentially produce new matches. A is ini-
tialized to the set of all neighborhoods. As the matcher E is run on
a neighborhood C, the neighborhood is removed from A. For the
run, the matches found so far are given as evidence. If the run finds
new matches, all the neighborhoods that are affected by the new

Algorithm 1 SMP Inputs: Entity Matcher E , A cover
{C1, . . . , Cs}
1: A ← {C1, . . . , Cs} // set of active neighborhoods
2: M+ ← ∅ // set of matches found
3: while A �= ∅ do
4: C ← remove a neighborhood from A

5: MC = E(C,M+)
6: A = A ∪Neighbor(MC −M+)
7: M+ = M+ ∪MC

8: end while
9: return M+ as the set of final match.

matches are put back into the set of active neighborhoods. The al-
gorithm terminates when A becomes empty. The pseudo-code for
the algorithm is given in Algorithm 1.

THEOREM 2. Let E be any well-behaved Type-I matcher. Then,

1. (Convergence) SMP terminates after finite steps.
2. (Soundness) The set of matches produced ⊆ E(E).
3. (Consistency) The output of SMP is invariant under the or-

der in which neighborhoods are evaluated.

Running Time Let n be the number of neighborhoods, k be the
maximum size of each neighborhood, and let f(k) be the running
time of E on a neighborhood of size k. For a neighborhood C,
the maximum set of matches it can produce is C × C, which has
cardinality at most k2. Each time C is added to the set A, the set
(C × C) − M+ strictly decreases. Thus C can be added to A at
most k2 times. Hence, we get the following result:

THEOREM 3. The time complexity of SMP is O(k2
f(k)n), wh-

ere n is the number of neighborhoods, k is the maximum size of a
neighborhood and f(k) is the running time of E .

Assuming that the size of neighborhoods is bounded, the time
complexity is linear in the number of neighborhoods (and hence,
linear in the number of entities). In practice, a neighborhood is
never evaluated k

2 times, and the running time is much lower than
the theoretical upper bound.

5.2 Maximal Message Passing Scheme (MMP)
Now we describe the maximal message passing scheme (MMP)

for Type-II probabilistic matchers.
Motivation Consider the pairs (a1, a2), (b2, b3) and (c2, c3) in
Figure 2. We showed in Section 2.1 that matching all the three pairs
increases the overall score if and only if all the three of them are
matched. Thus applying SMP leads to a ‘chicken and egg’ prob-
lem : (i) MLN can match (a1, a2) and (b2, b3) when run on C1

if and only if it is given (c2, c3) as evidence, and (ii) MLN can
match (b2, b3) and c2, c3) when run on C2 if and only if it is given
the match (a1, a2). For SMP to discover the three matches, we
need both (i) to happen before (ii), and (ii) to happen before (i).
Consequently, none of the three matches are output by the SMP
algorithm. The maximal message passing scheme described below
overcomes this problem.
Maximal messages A maximal message is a set of pairs such that
either all of them will be matched by the matcher E or none of
them will be matched. Thus the set {(a1, a2), (b2, b3),(c2, c3)} in
the above example is a maximal message.

DEFINITION 8 (MAXIMAL MESSAGE). A maximal message
w.r.t matcher E is a set of pairs M ⊆ E ×E such that M ⊆ E(E)
or M ∩ E(E) = ∅.

212

The following proposition follows from the definition.
PROPOSITION 3. (i) If M is a maximal message then so is any

M
� ⊆ M . (ii) If M and M

� are two maximal messages s.t. M ∩
M

� �= ∅, then M ∪M
� is also a maximal message.

Algorithm 2 COMPUTEMAXIMAL (Inputs: Entity Matcher E ,
Neighborhood C, Evidence M+)
1: For each pair p = (e1, e2) of entities in C, compute

E(C,M+ ∪ {p})
2: Construct a graph G(V,E) defined as follows:

- V contains a node corresponding to each pair p of entity ref-
erences in C.
- E contains an edge between pairs p and p

� if p ∈ E(C,M+∪
{p�}) and p

� ∈ E(C,M+ ∪ {p}).
3: For each connected component of G, output a message con-

sisting of all the pairs in the component.

Computing maximal messages Next we describe an algorithm
that computes a set of maximal messages for a neighborhood C.
Intuitively, for each pair of matches, using a call to E with the pair
as evidence, all other pairs entailed by it are computed. Groups of
pairs connected by this process constitute the maximal messages.
The pseudo-code is given in Algorithm 2.
Passing maximal messages The MMP algorithm passes maximal
messages between neighborhoods. The idea is that two maximal
messages can combine to produce a set of sound (i.e. correct)
matches, if they together increase the probability of the solution.
In our example, neighborhood C2 produces a maximal message
{(b2, b3), (c2, c3)} and neighborhood C1 produces a maximal mes-
sage {(a1, a2), (b2, b3)}. When these two messages are combined,
the new maximal message has enough evidence to match all its
three pairs.

Algorithm 3 MMP Inputs: Entity Matcher E , cover C =
{C1, . . . , Ck}
1: A ← {C1, . . . , Cs} // set of active neighborhoods
2: M+ ← ∅ // set of matches found

T ← ∅ // set of maximal messages found
3: while A �= ∅ do
4: C ← remove a neighborhood from A

5: MC = E(C,M+)
TC = ComputeMaximal(C,M+)

6: M+ = M+ ∪MC

T = (T ∪ TC)
∗

7: Find sound maximal messages: Check if there exists M ∈
T s.t. PE(M+∪M) ≥ PE(M+). If yes, then update M+ =
M+ ∪M .

8: A = A ∪Neighbor(MC ∪M −M+)
9: end while

10: return M+ as the set of final match.

We now formally define the MMP algorithm. The pseudo-code
for the algorithm is given in Algorithm 3. The algorithm, similar
to SMP, maintains a set of active neighborhoods. It maintains a set
M+ of matches found so far. In addition, it maintains a set T of
maximal messages found so far. When a neighborhood is processed
(step 5), we find both the new matches MC and the new maximal
messages TC (using Algorithm 2). Then (step 6), we use Propo-
sition 3 to combine maximal messages from two neighborhoods.
Proposition 3 says that a set of maximal messages can be equiv-
alently represented by replacing overlapping messages with their
unions. Given a set of (possibly overlapping) maximal messages

T , let T ∗ denote the set obtained from T by repeatedly picking two
messages from T that overlap and replacing them with their union,
until all the messages are disjoint. Thus, we update the set T by
taking its union with the new maximal messages TC and then tak-
ing (T ∪ TC)

∗. Finally (step 7), we check if a maximal message
can be converted to a sound message.

Step 7 is the only step that requires E to be a probabilistic matcher,
as it involves a check PE(M+ ∪M) ≥ PE(M+).

Algorithm 3 assumes that we can efficiently compute PE for any
set of inputs. This condition, in general, is true for probabilistic
models, where finding the optimal solution, i.e. argmaxS PE(S)
is a very expensive operation that involves searching over a large
space, but computing PE(S) for a specific S is very cheap using
the parameters of the model.
Theoretical Guarantees We revisit Theorem 1 for MMP.

THEOREM 4. Let E be a supermodular Type-II matcher. Then,
MMP exhibits convergence, soundness, and consistency.

Running Time Let n denote the number of neighborhoods, k be
the maximum size of each neighborhood, and let f(k) be the run-
ning time of E on a neighborhood of size k. As in the case of
SMP, each neighborhood can be processed at most k2 times. How-
ever, unlike SMP, processing a neighborhood is more expensive for
MMP. It involves two things: a call to COMPUTEMAXIMAL and a
computation of (T ∪ TC)

∗. We prove:

THEOREM 5. MMP runs in time O(k4
f(k)n), where n is the

number of neighborhoods, k is the maximum size of a neighbor-
hood and f(k) is the running time of E .

Similar to SMP, the time complexity is linear in the number of
neighborhoods. Again, in practice, a neighborhood is never evalu-
ated k

2 times, and the running time is much lower than the theoret-
ical upper bound.

6. EXPERIMENTS
We evaluate the performance, both accuracy and efficiency, of

our message passing schemes. For evaluation, we use the col-
lective entity matching algorithm of Singla et al. [18], which is a
state of the art algorithm, and uses Markov Logic Networks. We
call this matcher MLN. Additionally, in Appendix C, we evalu-
ate a second matcher based on the declarative framework for entity
matching [2] that uses soft collective rules written in a datalog like
language. We call that RULES. RULES is a Type-I matcher, since
its not probabilistic, while MLN is a Type-II probabilistic matcher.
Appendix B contains the exact set of rules, entity types and rela-
tions used by each matcher. Appendix A analyses the properties of
various matchers. In particular, the matchers we use are monotonic
and supermodular.

For covers, we use the Canopy algorithm given by McCallum
et al. [13]. Our message passing algorithms are written in Java.
All our experiments are run on an Intel Xeon R� 2.13GHz machine
running linux with 4GB RAM.

Datasets We use two datasets. The HEPTH dataset is a dataset
used in the 2003 KDD Cup and available for download from the
KDD website. It contains information on papers in theoretical high-
energy physics. It has 58,515 author references mentioned across
29,555 unique papers and 13,092 unique authors. It contains com-
pletely labeled ground truth.

Since no other large labeled dataset is publically available, we
manually prepared a second dataset, DBLP, as follows. From the

213

 0.7

 0.8

 0.9

 1

 1.1

 1.2

P R F1

NO-MP
SMP
MMP

UB

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

P R F1

NO-MP
SMP
MMP

UB

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

HEPTH DBLP

NO-MP
SMP
MMP

3(a): Precision/Recall/F1 for
HEPTH

3(b): Precision/Recall/F1 for
DBLP

3(c): Completeness of Message
Passing Schemes

 600

 700

 800

 900

 1000

 1100

 1200

MMPSMPNO-MP

S
e
c.

Running times

 6

 8

 10

 12

 14

 16

 18

 20

MMPSMPNO-MP

S
e
c.

Running Times

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14

S
e
c.

of Covers (K)

Running Times

Full EM
M-MP

3(d): Running time comparison
for HEPTH

3(e): Running time comparison
for DBLP

3(f): Running Times on HEPTH

Figure 3: Results for MLN matcher

DBLP Computer Science Bibliography [12], we obtained publica-
tions corresponding to a large number of Database and AI confer-
ences. We compiled 19,408 papers with a total of 50,195 author
references, with 21,278 distinct authors. However, since DBLP
data is clean, we manually add noise by randomly adding small
mutations to author names. Thus, the original names serve as the
ground truth in evaluating this dataset.

6.1 Accuracy of message passing schemes
Precision/Recall for MLN Matcher. In the HEPTH dataset, the

covering algorithm results in 13K neighborhoods containing a to-
tal of 1.3M entity pairs. We compare three algorithm: NO-MP
is the no message passing scheme, where MLN is run on each
neighborhood but no messages are exchanged. SMP is the simple
message passing scheme. MMP is the maximal message passing
scheme. For each scheme, we compute the precision, recall and the
F1 score, which is the harmonic mean of their precision and recall.

We also want to compare these numbers with those for running
MLN on the whole dataset. However, running MLN at this scale is
infeasible. For instance, on HEPTH, it involves creating an Markov
Logic Network with 1.3M nodes and running inference over it. In-
stead, we use the following technique to obtain an upper bound on
the set of matches that MLN can produce. For each entity pair,
we give the MLN algorithm the ground truth about all other entity
pairs and run the matcher to decide the given entity pair. Since our
matcher satisfies the supermodularity property, we can show that
this is indeed an upper bound on the set of matches that MLN can
produce. We call this scheme UB. Note that this is not an algorithm
since it uses the ground truth.

Recall of UB is a provable upper bound on the recall of full run
of MLN, because of the supermodularity property. However, the
precision of UB might be lower. So, to compute an upper bound
on F1, we take the recall value of UB and a maximum precision 1.

Fig. 3(a) plots these scores for various schemes on HEPTH. In
each of the message passing schemes, the precision is very high
and close to 1. This is because all the message passing schemes are

sound, and the original MLN algorithm itself has a high precision.
The precision of the MLN is however not 1, and this explains why
MMP can have lower precision than SMP, and even lower preci-
sion than NO-MP. As we approach the true output of MLN, the
precision also approaches the true precision of MLN.

The F1 of MMP comes close to UB. Note that the UB need not
be attainable by any message passing scheme, as the original EM
may have a recall less than that of UB and precision less than 1.

Figure 3(b) shows the same graph for DBLP. The DBLP dataset
produces 30K neighborhoods containing a total of 0.5M entity pairs.
Note that while both the datasets have roughly the same number of
author references, DBLP produces twice the number of neighbor-
hoods as HEPTH, with a much smaller average neighborhood size
(as evident by the less number of entity pairs). This is due to the
fact that DBLP always contains the full author names as opposed to
HEPTH, where names are often abbreviated, leading to more name
clashes and fewer neighborhoods of larger size.

Soundness/Completeness for MLN Matcher. We know that
our message passing schemes are sound, but not necessarily com-
plete. Hence, we study the completeness of various algorithms em-
pirically. Note that completeness is different from recall: recall is
measured with respect to the ground truth, and is an intrinsic prop-
erty of the underlying matcher. Completeness is the fraction of the
matches found by a particular message passing scheme compared
to running EM on the entire dataset holistically, and is a property of
our framework. Again, since we do not have the true set of matches
given by MLN on the whole dataset, we use the matches of UB
to obtain a lower bound on completeness. Figure 3(c) shows the
completeness for various schemes with respect to UB. We see that
MMP has completeness 1 for HEPTH. Thus, MMP is both sound
and complete and hence, gives the exact same output as running the
EM on the whole HEPTH dataset. Similarly, for DBLP, MMP has
completeness nearly 1.

6.2 Running Times
Figure 3(d) shows the running times of the various message pass-

214

ing schemes on HEPTH using MLN matcher. We observe an inter-
esting and counter-intuitive behavior. SMP, which does the ex-
tra work of passing messages as well as running neighborhoods
multiple times, has a lower running time than NO-MP, that does
not do message passing at all. MMP, that passes more messages,
has an even lower running time. This apparent paradox can be
explained as follows. In all the three schemes, the total running
time is dominated by the sum of running times of MLN on all the
neighborhoods. The actual overhead of message passing is mini-
mal. However, SMP wins over NO-MP because, since neighbor-
hoods share entities, messages often reduce the active size of the
neighborhoods. All the pairs in a neighborhood that have already
been matched by other neighborhoods are not part of inference any-
more. Hence, MLN runs faster. For instance, if a neighborhood
has 100 entity pairs to consider, and each pair has already been
matched by some previous neighborhood, EM does not need to do
any work on this neighborhood. Since MLN has a non-linear com-
plexity, multiple small neighborhoods can be processed much faster
that a single big neighborhood. The net result is that even though
SMP has to revisit neighborhoods multiple times, the active sizes
of neighborhoods keep getting lower, and the total running time is
lower. MMP, by a more effective message passing, achieves an
even lower running time by the same principle. Thus a better mes-
sage passing scheme not only increases the precision/recall of the
matching, it also results in a lower running time.

Figure 3(e) shows the running times for MLN on DBLP dataset.
DBLP exhibits a similar behavior. However, we observe an inter-
esting difference. While both the datasets have roughly the same
size, the running times on DBLP is an order of magnitude lower.
This is because the neighborhoods in DBLP are much smaller, ow-
ing to reasons explained earlier. As a result, MLN runs signifi-
cantly faster on the neighborhoods in DBLP.

We also analyze the running time as a function of the size of the
input. Figure 3(f) shows, for each k, the total running time of MLN
when run on the first k neighborhoods together. The graph shows
an exponential behavior of MLN, and it becomes prohibitively ex-
pensive to run MLN on more that 2500 neighborhoods. On the
other hand, our message passing scheme, MMP, exhibits a linear
behavior for the whole 13,000 neighborhoods. At certain points,
we see jumps in the curve of MMP. This is because some of the
neighborhoods are large, and whenever a new large neighborhood
is included, the running time shows a small jump.

6.3 Parallelizing EM
We now demonstrate how to parallelize our EM framework. The

idea is to run it in rounds. All neighborhoods are marked active at
the beginning. In each round, EM is run on all the active neighbor-
hoods in parallel, then the new evidence from the runs is collected,
and used to obtain active neighborhoods for the next round. E.g.,
suppose we have 10000 neighborhoods, and 10 available machines.
We randomly assign 1000 neighborhoods to each machine, and run
EM. Suppose at the end of first round 500 neighborhoods are ac-
tive. We redistribute them again among the 10 machine, so that
each runs 50 neighborhoods in parallel.

We implemented this parallel framework on Hadoop, which is
an open-source Map-Reduce based grid framework. Each round of
our algorithm is run using one Map and one Reduce job as follows.
The Map job assigns each neighborhood to a grid machine where
EM is run on it. The output is used by the Reduce job to bring all
the new evidence for each neighborhood together. Each new Map
job redistributes the active neighborhoods to grid machines.

To evaluate the parallel implementation, we constructed a third
dataset much bigger that the previous two datasets. This dataset

consists of the entire collection of publications from DBLP bibliog-
raphy data, which we call DBLP-BIG. The dataset has 4,606,712
author references among 2,303,254 publications. DBLP-BIG pro-
duces 1,723,190 neighborhoods, with a total of 41,713,259 entity-
pairs that need to be resolved. We used the grid implementation of
our framework to run MLN on DBLP-BIG over a Hadoop instal-
lation in Yahoo! with 30 machines. We also ran DBLP-BIG over
a single machine to compare the speedup due to parallelism. The
following table summarizes the running time of our algorithms.

NO-MP SMP MMP
Single Machine 208 329 285
Grid (30 machines) 18 30 27

Table 1: Running Times on Grid (minutes)
On all the three variants of message passing, the speedup is around

11. There are couple of reasons we do not see a perfect speedup of
30. First, the grid has some overhead in setting up the mapper and
reducer jobs on all the nodes. The second reason is purely statisti-
cal. Since neighborhoods are “randomly” assigned to nodes, there
is a statistical skew in the assignment, and some nodes get multi-
ple bigger than average neighborhood. There is ongoing research
in the community on reducing skew in MapReduce that can further
improve our speedup. Nevertheless, we have demonstrated that our
techniques can run efficiency on grid and achieve good speedup.

7. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy

duplicates in data warehouses. In VLDB, pages 586–597, 2002.
[2] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with

constraints using dedupalog. In ICDE, pages 952–963, 2009.
[3] B. Babcock and S. Chaudhuri. Towards a robust query optimizer: a

principled and practical approach. In SIGMOD, pages 119–130,
2005.

[4] I. Bhattacharya and L. Getoor. A latent dirichlet model for
unsupervised entity resolution. In SDM, pages 47–58, 2006.

[5] I. Bhattacharya and L. Getoor. Collective entity resolution in
relational data. ACM TKDD, 1(1), 2007.

[6] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in
complex information spaces. In SIGMOD, pages 85–96, 2005.

[7] S. Euijong Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative blocking. In
SIGMOD, pages 219–232, 2009.

[8] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of
the American Statistical Society, 64(328):1183–1210, 1969.

[9] R. Hall, C. Sutton, and A. McCallum. Unsupervised deduplication
using cross-field dependencies. In KDD, pages 310–317, 2008.

[10] D. V. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting
relationships for domain-independent data cleaning. In ICDM, 2005.

[11] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts. ECCV (3), pages 65–81, 2002.

[12] M. Ley. dblp.xml - a documentation:
http://dblp.uni-trier.de/xml/docu/dblpxml.pdf.

[13] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of
high-dimensional data sets with application to reference matching. In
KDD, pages 169–178, 2000.

[14] A. McCallum and B. Wellner. Conditional models of identity
uncertainty with application to noun coreference. In NIPS, pages
905–912, 2004.

[15] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James.
Automatic Linkage of Vital Records. Science, 130:954–959, 1959.

[16] Parag and P. Domingos. Multi-relational record linkage. In KDD
Workshop on Multi-Relational Data Mining, pages 31–48, 2004.

[17] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity
uncertainty and citation matching. In NIPS, pages 1401–1408, 2002.

[18] P. Singla and P. Domingos. Entity resolution with markov logic. In
ICDM, pages 572–582, 2006.

215

APPENDIX
A. MONOTONICITY OF MATCHERS

Many of the entity matching algorithms proposed in the litera-
ture satisfy our monotonicity properties. Recall that monotonicity
says that the output of the matcher changes monotonically if new
entities are added to the entity set E or new evidence is added to
the evidence sets V+ and V−. However, note that we do not require
monotonicity to hold when new relationships are added between
existing entities.

The non-probabilistic matchers in [5] and [6] use an iterative
approach in which newly found matches can only lead to more
matches. These matchers satisfy the monotonicity properties.

Further, the state-of-the-art Markov Logic based matcher [18],
referred to as MLN(B) in [18], satisfies the monotonicity and super-
modularity properties. The proof for MLN(B) follows from the
following general result.

PROPOSITION 4. If the rules in a Markov Logic Network have
only one Match term in the implicant, then the resulting matcher
satisfies the monotonicity and super-modularity properties.

For example the rule R2 (See 2.1) has only one Match term on
the implicant side and hence satisfies monotonicity. Other variants
of the MLN matcher were also proposed in [18] by using different
rules. We note that all the rules in [18] except for the transitivity
rule (i.e. equals(A,B)∧equals(B,C) ⇒ equals(A,C)) satisfy
the condition above, and hence all variants that do not include this
rule are monotonic. The transitivity rule is not monotonic and our
framework does not provide formal soundness guarantee for this
rule. However, if transitive closure is applied at the end of match-
ing, it maintains the monotonicity property of the matcher. In other
words, the transitive closure of any monotonic matcher is mono-
tonic. Thus, transitive closure can be supported by taking a simple
transitive closure at the end of each iteration of message passing.

Several works have looked at using rules to collectively match
entities. In a recent work [2], a declarative framework called Dedu-
palog was proposed, where datalog rules are specified by the user
which act as constraints for entity matching. Rules can be hard,
such as the first rule below that matches two authors x and y if they
are known to be equal based on an externally specified predicate
AuthorEQ. Rules can also be soft, such as the second rule below,
which says that if two entities do not have a matching coauthor,
then they are unlikely to be the same.

equals(x, y) ⇐ AuthorEQ(x, y)

¬equals(x, y) ⇐ ¬(Wrote(x, P1),Wrote(y, P2),

Wrote(x�
, P1),Wrote(y�, P2),

equals(x�
, y

�))

Given a set of rules, the goal of the dedupalog matching algo-
rithm is to instantiate the Match predicate such that (i) no hard rule
is violated, (ii) the number of violated soft rules is minimized, and
(iii) Match is transitively close, i.e. equals(x, y)∧equals(y, z) ⇒
equals(x, z).

Again, the transitive closure property as a constraint may vio-
late the monotonicity of the entity matcher. However, we have the
following proposition.

PROPOSITION 5. Let Dedupalog∗ be the fragment of dedupa-
log without negation and transitivity constraint. Then, Dedupalog∗

is monotone.

Note that negation does not always lead to non-monotonicity.
E.g., if we have a rule ¬a ⇐ ¬b containing negations, we can

rewrite it to an equivalent rule b ⇐ a that does not have negations.
In fact, all the rules discussed in [2] are monotone.

B. DETAILS OF MLN AND RULES
In this section, we mention the rules used in the experimental

evaluation for both MLN and RULES. Both the matchers have three
predicates: (i) similar(e1, e2, score), which gives the similarity
score between a pair of authors, (ii) coauthor(e1, e2), which con-
tains pairs of entity references that have coauthored a paper, and
(ii) equals(e1, e2) which is the predicate that we want to compute.
The similarity scores between two authors was computed using the
JaroWrinkler distance, and was discretized to the set {1, 2, 3} with
3 being the highest possible similarity.

MLN For the MLN matcher, we used the Alchemy [18] system
to learn the weights of the rules using training data. Below we give
the rules along with the weights that were learnt.

1 similar(e1, e2, 1) ⇒ equals(e1, e2) -2.28
2 similar(e1, e2, 2) ⇒ equals(e1, e2) -3.84
3 similar(e1, e2, 3) ⇒ equals(e1, e2) 12.75
4 coauthor(e1, c1) ∧ coauthor(e2, c2) 2.46

∧ equals(c1, c2) ⇒ equals(e1, e2)

The first three rules describe the effect of string similarity on the
match decision if we ignored co-author relationships. A similarity
score of 1 and 2 is not enough to match the pair p, as evident by the
negative weights associated with the first two rules, while a score
of 3 means that the names are very similar and we get a positive
weight leading to a match. The final rule explains the effect of co-
authors relationship. It gives a positive weight for matching a pair
of authors if they have a pair of matching coauthors. Section 2.1
explains how an MLN works using these type of rules.

Rules Unlike in MLN, where predicates have potentials and a set
of predicates are selected if their joint potential is positive, we need
to give explicit set of rules in RULES. We specify the following set
of rules, inspired by the learnt MLN model.

1. similar(e1, e2, 3) ⇒ equals(e1, e2)

2. similar(e1, e2, 2) ∧ coauthor(e1, c1) ∧ coauthor(e2, c2)

∧ equals(c1, c2) ⇒ equals(e1, e2)

3. similar(e1, e2, 1) ∧ coauthor(e1, c1) ∧ coauthor(e2, c2)

equals(c1, c2) ∧ coauthor(e1, c3) ∧ coauthor(e2, c4)

equals(c3, c3) ∧ {c1, c2} �= {c3, c4} ⇒ equals(e1, e2)

The first rule says that similarity 3 is a good evidence for match-
ing. For similarity 2, we need at least one common coauthor and
for similarity 1 we need at least two common coauthors. Finally,
we use the 3-approxiamte algorithm in [2] to evaluate the above set
of rules without transitive closure, followed by a transitive closure
at the end.

C. EXPERIMENTS ON RULES MATCHER
Precision/Recall/Completeness We now evaluate our framework

with the RULES matcher on the two datasets. Recall that since
RULES is a Type-I matcher, and does not generate probabilities, the
MMP scheme is not applicable here. Hence, we evaluate the results
of NO-MP and SMP. Although RULES is a collective matcher, it
runs much faster than MLN, and we were easily able to run it on

216

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

P R F1

NO-MP
SMP
FULL

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

P R F1

NO-MP
SMP

FULL

 0

 5

 10

 15

 20

Hepth DBLP

S
e
c.

NO-MP
SMP

FULL

4(a): Precision/Recall/F1 for
HEPTH

4(b): Precision/Recall/F1 for
DBLP

4(c): Running Times

Figure 4: Results for RULES matcher

the entire datasets. Thus, we were able compute the soundness and
completeness of the message passing schemes exactly. Figure 4(a)
and (b) show the precision, recall, and the F1 measure for RULES
on HEPTH and DBLP respectively. Here, FULL denotes running
the matcher on the entire datasets holistically. On both the datasets,
the precision and recall of SMP matched the full run, i.e. SMP
was able to achieve completeness. The overall accuracy of RULES
matcher is a bit lower than MLN.

Running times Figure 4(c) shows the running time of RULES on
the two datasets. We would like to point out here that RULES is al-
ready a fast matcher and can be run directly on the whole data. Our
main purpose of studying RULES was to demonstrate that SMP
can easily handle rule-based matchers with soundness and com-
pleteness. However, even for a fast matcher like RULES, there is
merit in running it with SMP, as it gives a natural way to paral-
lelize any EM algorithm, and run it on grid on really huge datasets.
In Appendix. 6.3, we have experiments showing the ability of our
framework to run parallelly on a grid of computers. Implementing
RULES directly on grid is non-obvious. Also note that RULES was
designed with efficiency as the goal, and hence can only support
a small fragment of datalog. Message passing opens up the possi-
bility for supporting more complex rules by providing support for
non-linear algorithms. Finally, unlike in the case of MLN, the run-
ning time of SMP is not lower than that of NO-MP, since RULES
have linear complexity, and the savings due to running on neighbor-
hoods with smaller active sizes does not compensate for the cost of
revisiting neighborhoods.

D. A BRIEF SURVEY OF ENTITY MATCH-
ING TECHNIQUES

In this section, we give a brief survey of existing EM techniques
and examine their accuracy/efficiency trade-offs. We use Exam-
ple 1 to illustrate the principles behind various techniques.

• Non-Relational Approaches: Initial approaches to EM focused
on pair-wise attribute similarities between entities. Newcombe [15]
and Fellegi and Sunter [8], gave the problem a probabilistic founda-
tion by posing EM as a classification problem (i.e., deciding a pair
to be a match or a non-match) based on attribute-similarity scores.
The bulk of follow up work on EM then focused on constructing
good attribute-similarity measures (e.g., using approximate string-
matching techniques) [3]. For instance, in Example 1, an attribute-
based matcher decides to match two authors by estimating the sim-
ilarity of their fname and lname strings. A fundamental short-
coming of attribute-based matchers is that they cannot perform dis-
ambiguation, e.g., if there are two different authors with the same
name “J. Doe”, they cannot be identified as separate entities.

• Simple Relational Approaches: Entity matching can be signif-
icantly improved by using relational information in addition to at-

tribute similarities. Simple relational techniques take the attributes
of related entities into account when computing the similarity scores
of entity pairs [1, 10]. For instance, in Example 1, when attempt-
ing to match two authors, looking at the attribute values of their co-
authors and the set of authors that they cite can improve the predic-
tion accuracy by a large margin. For example, two authors “J. Doe”
and “John Doe” are more likely to be the same person if they have
written papers with “M. Smith” and “Mark Smith”, respectively.
While still making matching decisions in a pair-wise manner, the
use of relational information can help alleviate the problem of dis-
ambiguation. However, one potential pitfall is that “M. Smith” and
“Mark Smith” might actually be two different authors with similar
names.

• Collective Approaches: Collective approaches to EM make use
of the fact that various matching decisions are interrelated. For in-
stance, in the scenario described above, the match decision for “J.
Doe” and “John Doe” is closely tied to the match decision for “M.
Smith” and “Mark Smith”. Thus, collective approaches do not just
look at additional attribute values obtained through relational infor-
mation; instead, they exploit related match decisions when trying
to determine a given entity match.

Collective EM techniques can be further classified into two sub-
lasses, iterative and purely-collective approaches. As their name
suggests, iterative approaches [5, 6] iterate over the set of current
matches, and, as match decisions are made, they are used to trigger
further match decisions. For instance, if there is strong evidence
to match “M. Smith” and “Mark Smith”, this decision in turn can
be used to match “J. Doe” and “John Doe” by exploiting the co-
authorship relation. While intuitively simple, iterative approaches
have the problem of bootstrapping: if we initially start from an
empty set of matches, we might never have enough evidence to per-
form any match. On the other hand, purely-collective approaches
avoid the bootstrapping problem by building sophisticated models
of the interrelationships of related match decisions, and using these
models to make match decisions in a truly-collective manner. For
example, while neither of the (“M. Smith”, “Mark Smith”) and (“J.
Doe”, “John Doe”) pairs might have strong evidence by itself to
be declared a match, a purely-collective matcher may be able to
declare both of them as matches collectively, due to their mutually-
reinforcing relation (through co-authorship). Purely-collective ap-
proaches represent the current state-of-the-art in terms of matching
quality (i.e., the accuracy of matches), and are typically based on
recent ML advances in statistical relational learning. Such state-
of-the-art EM tools rely on various various advanced probabilistic
models, including Conditional Random Fields (CRFs) [14, 16], re-
lational Bayesian networks [17], latent Dirichlet models [4, 9], and
Markov Logic Networks [18]. Probabilistic models and inference
provide a clean and principled way to model relational information
and perform purely-collective EM; unfortunately, the high cost of

217

probabilistic inference over large EM models has hitherto rendered
such methods infeasible for large data sets.

Scaling EM Algorithms The issue of scalability arises even in
the simple case of independent pair-wise entity matchers, due to
the obviously quadratic complexity of the all-pairs comparisons.
This problem has been addressed in the literature using techniques
that rely on blocking [13]. Blocking methods try to group entities
together based on simple, heuristic grouping criteria (e.g., by the
initial letter of authors’ last names), so that matching entities are
very likely to fall under the same group. Instances of the EM algo-
rithm are then run on each group individually and matching results
are collected across all the groups. In general, blocking groups can
overlap, and several different grouping criteria can be used (to in-
crease the probability that matching entities are paired-up in some
EM instance). For independent pair-wise entity matchers, block-
ing helps avoid the quadratic cost of all-pairs comparisons, essen-
tially reducing the complexity of EM on n entities from O(n2)
to O(kn), where k � n denotes the average size of a group [13].
More recently, Whang et al. [7] have proposed an iterative blocking
framework, where the key idea is to allow blocks to communicate
their “local” EM results in an iterative manner (until a fixpoint is
reached). As they demonstrate, sharing local matches allows for
both better accuracy (by enabling some collective EM decisions
across groups) and better runtimes (by avoiding duplicated match-
ing effort); still, their development is, for the most part based on
heuristics and does not provide any formal guarantees on the qual-
ity of the EM results. In addition, [7] does not consider the more
complex case of probabilistic Collective EM, that, as discussed ear-
lier, significantly exacerbates the scalability issues involved.

E. PROOFS

E.1 Simple Message Passing
We now give the proof for Theorem 2. We first restate it below

THEOREM 6 (THEOREM 2). Let E be any well-behaved Type-
I matcher. Then the following hold for SMP:

1. (Convergence) SMP terminates after finite steps.
2. (Soundness) The set of matches produced ⊆ E(E).
3. (Consistency) The output of SMP is invariant under the order

in which covers are evaluated.

Proof: Part (1) follows easily, since every time a cover is added
to the set A of active covers, the set M strictly increases. Since the
size of M is bounded by |E × E|, the algorithm must terminate.

To show (2), we need more results. We first define the notion
of a sound message. Given a set M ∈ E × E, we say that M is
sound if M ⊆ E(E), i.e. M represents correct set of matches with
respect to the matcher. Next we state the following result.

PROPOSITION 6. Let E be a well-behaved matcher, C be any
neighborhood, and M

+ be a sound set of matches. Then MC =
E(C,M+) is sound.

Proof of Prop. 6: As E is monotone and C ⊆ E, we know that
E(C,M+) ⊆ E(E,M+). As M+ is sound, we know that M+ ⊆
E(E). Thus, using monotonicity, we get

E(E,M+) ⊆ E(E, E(E)) = E(E)

where the last equality follows from the idempotence property. Com-
bining, we get MC = E(C,M+) ⊆ E(E,M+) ⊆ E(E) showing
that MC is sound.

Finally, using Proposition 6, we prove part (2) of Theorem 2.
We use an induction argument. Assume that M+ is sound at the
beginning of some iteration (base case is true as M+ = ∅ for the
first iteration). The above Proposition guarantees that the MC =
E(C,M+) is sound. Thus the new M+, which is the union of M+

and MC is again sound proving the induction step and completing
the proof of part (2).

E.2 Maximal Message Passing
We now give the proof for Theorem 4. We first restate it below

THEOREM 7 (THEOREM 4). Let E be a supermodular Type-
II matcher. Then, MMP always terminates. Moreover on termina-
tion, the output M+ is sound (i.e. M+ ⊆ E(E)) and consistent
(i.e. invariant under the order in which covers are run)

As the MMP algorithm uses the COMPUTEMAXIMAL algorithm
to compute the maximal messages, we first show the correctness of
the COMPUTEMAXIMAL algorithm.

LEMMA 1. Let E be any well-behaved type-I matcher, M+ be
any sound evidence set, and C be any neighborhood. Then all the
messages produced by COMPUTEMAXIMAL are maximal.

PROOF. Let M be any message in the output corresponding to
a connected component CC of the graph G. We shall show that M
is maximal. For this we use induction.

Base case: The set M = {p, p�} is maximal if there is an edge
between p and p

� in G. To prove this recall the definition of maxi-
mality. For showing maximality of a two element set M = {p, p�},
w.l.o.g, it is sufficient to show that: p ∈ E(E,M+) implies p

� ∈
E(E,M+). Assume the contradiction, i.e. p ∈ E(E,M+) but
p
�
/∈ E(E,M+). Since p ∈ E(E,M+), the set {p} is sound.

Moreover M+ is also sound implying that the set M+ ∪ {p} is
sound. Since p and p

� are connected by an edge in G, we know that
p
� ∈ E(C,M+ ∪ {p}). Applying Proposition 6(b) for the sound

message M+ ∪ {p} and neighborhood C, we get that p� is also
sound. This means that p� ∈ E(E,M+), which contradicts our as-
sumption that p� /∈ EN(E,M+). Thus, the set M+ = {p, p�} is
maximal.

Inductive hypothesis: Assume M is maximal for all connected
components CC having at most k nodes.

Inductive Step: Decompose any connected component CC of
k+1 nodes into two connected components of CC1 and CC2, such
that CC1 and CC2 share a node and have at most k nodes each.
This is always possible for any connected component CC. By in-
ductive hypothesis MCC1 and MCC2 are both maximal. More-
over since CC1 and CC2 share a node, the messages MCC1 =
∪p∈CC1{p} and MCC2 = ∪p∈CC2{p} have non-empty intersec-
tion. Applying Proposition 3, we obtain that M = MCC1 ∪MCC2

is also maximal. Hence proved.

Using Lemma 1, we give an informal proof of the Theorem 4.
Proof of Theorem. 4 (Informal) The proof is similar to the in-

ductive proof of soundness of for the SMP Algorithm. In MMP,
there is just one extra step (Step 7) that affects M+. In Step 7, we
add the pairs in M to the existing sound message M+. All we need
to show is that M is sound. Then we ensure that the update done in
Step 6 preserves the soundness of M+, and hence the theorem will
follow in a way similar to the proof for SMP.

To show M is sound, note that PE(M+ ∪M) ≥ PE(M+). Let
O = E(E). By supermodularity of E , we know that PE (O∪M)

PE (O) ≥
PE (M+∪M)

PE (M+) ≥ 1. Thus PE(O ∪M) ≥ E(O), which is only possi-
ble if M ⊆ O. Hence M is sound. This completes the proof.

218

