Scalable Ranked Publish/Subscribe

Ashwin Machanavajjhala*, Erik Veet, Minos Garofalakis', and Jayavel Shanmugasundaram?
*Cornell University and 'Yahoo! Research

ABSTRACT

Publish/subscribe (pub/sub) systems are designed to efficimatch in-
coming events (e.g., stock quotes) against a set of subisasf(e.g., trader
profiles specifying quotes of interest). However, curreumb/pub systems
only support a simple binary notion of matching: an event eithatches a
subscription or it does not; for instance, a stock quote &ilier match or
not match a trader profile. In this paper, we argue that thislsimgtion of
matching is inadequate for many applications where only tlest'tmatch-
ing subscriptions are of interest. For instance, in tadygteb advertising,
an incoming user (“event”) may match several different adsertspecified
user profiles (“subscriptions”), but given the limited adiséng real-estate,
we want to quickly discover the best (e.g., most relevantadisplay.

To address this need, we initiate a studyarfkedpub/sub systems. We
focus on the case where subscriptions correspond to imtemges (e.g,
age in [25,35] and salary $50, 000), and events are points that match all
the intervals that they stab (e.g., age=28, salary = $6%,000addition,
each interval has a score and our goal is to quickly recoetdp-scoring
matching subscriptions. Unfortunately, adapting existimipx structures
to solve this problem results in either an unacceptableespaerhead or
a significant performance degradation. We thus propose twel madex
structures that are both compact and efficient. Our experahewgluation
shows that the proposed structures provide a scalable foasiesigning
ranked pub/sub systems.

1. INTRODUCTION

The exploding volume of information available on the Internet

matching subscriptions are of interest. This gives rise to a new
class of pub/sub systems that we calhkedpub/sub systems. We
motivate the need for such systems using three application scenar-
ios.(Note that we are using the term “pub/sub” in a somewhat un-
conventional manner, to capture scenarios where a dynamic stream
of events must be quickly matched against a large collection of
standing subscriptions. These subscription matchings are not nec-
essarily tied to an underlying event-notification or data-dissemination
service.)

Targeted Web Advertising: An emerging trend in online adver-
tising is enabling advertisers to target users based on information
such as user demographics, profile information and online activ-
ity [1, 11, 28]. For instance, a mortgage vendor may wish to target
online users between 20 and 35 years of age, who have a credit
score between 400 and 500, and who have visited a real estate Web
site at least 3 times in the past month, and show an ad tailored to
such users when they visit an online website. This can be modeled
as a pub/sub problem, where the stream of incoming users corre-
sponds to events (e.g., a user with age = 25, credit score = 441, and
real estate count = 6), and the advertiser specifications are subscrip-
tions (e.g., 20< age< 35 and 400< credit score< 500 and real
estate count 3). However, unlike traditional pub/sub systems, we
do not wish to retrieve all the subscriptions (ads) that correspond
to a given event (user) because we can only show a small number

has fueled the development of middleware systems that are baseqy 4ds in a Web page. Rather, we only wish to retrieve the “best”
on the publish/subscribe (or pub/sub) paradigm. Such systems relyg, hscriptions based on some criteria such as the most targeted ads
on efficiently matching streams of published events to a large num- (tightest enclosing rectangles), the most profitable ads, the most

ber of subscriptions that correspond to subscriber interests in spe-
cific classes of events. A canonical example of pub/sub systems

underserved ads, etc.

involves stock trading: publishers such as the New York Stock Ex- Online Job Sites: Several online job sites (e.gHotJobs.com,
change publish stock quotes and stock traders register their interestlonster.com) allow job seekers to register profiles, and also allow
in specific stock events, e.g., notify me when the stock price of Job posters to specify job seeker profiles that they are interested in.

Apple exceeds $200.

For instance, a job seeker may register a profile for nursing jobs that

While there has been a large body of work on building scalable P&y $50 per hour and have a 25 hour work week, while a job poster
pub/sub systems (e.g., [3, 6, 13, 15, 25]), all of them rely on a sim- May express an interest in nurses who are willing to work between
ple binary notion of matching that assumes that each event either20 and 30 hours per week for $45-60 per hour. Then, when a job

matches a subscription or it does not, aldmatching subscrip-

seeker visits the site, she can be presented with jobs that match her

tions are returned. However, many emerging applications require Profile. This can again be modeled as a pub/sub problem, where
a more sophisticated notion of matching, where only the “best” the events are job seekers (e.g., job type = nursing, hourly rate =

Permission to copy without fee all or part of this material srded provided
that the copies are not made or distributed for direct commlediantage,
the VLDB copyright notice and the title of the publicatiortdts date appear,
and notice is given that copying is by permission of the VerygeaData
Base Endowment. To copy otherwise, or to republish, to postervers
or to redistribute to lists, requires a fee and/or speciahjgsion from the
publisher, ACM.

VLDB ‘08, August 24-30, 2008, Auckland, New Zealand

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/a/0

$50 and hours per week = 25) and the subscriptions are job poster
interests (e.g., job type = nursing, 45hourly rate< 60, and 20<

hours per weekl 30). However, as in the targeted advertising case,
we cannot show all the jobs that match a user profile because of the
limited real estate on the Web page. Thus, we want to retrieve only
the best jobs for a given user based on criteria such as the monetary
value to the job poster, fairness of exposure across job postings, etc.

Application-level Routers: In information dissemination applica-
tions, application-level routers are commonly used to route docu-

ments based on their content [3, 6, 25]. For instance, in a financial Scored
news feed application, a hews document can have fields such as Interval Tree
the date posted and average analyst ratings, and subscribers can re-
quest documents within a specified date and analyst rating range.
This corresponds to a typical pub/sub application, where the events
are news documents (e.g., date posted = 16 Nov 2007 and analyst

rating = 3) and the subscriptions are subscriber interests (e.g., date E Scored R-Tree

posted> 1 Nov 2007 and analyst rating 4). However, in high- =

volume applications, an application-level router may be required to

shed some load (i.e., avoid delivering some events to certain sub- OIR»Tree Scored O
scribers) due to CPU and/or network bandwidth limitations, and Score-Optimal Segment Tree
this load shedding needs to be guided by factors such as subscriber O™ Ree

priority or service level agreements. This can again be modeled Space ——

as a ranked pub/sub problem, where the score of a subscription is
the subscriber priority or the deviation from the service level agree-

ment Figure 1: Space-Time Tradeoffs for Scored Interval Indices

In this paper, we initiate a study of scalable and efficient tech-
niques for the ranked pub/sub problem. We focus on the problem scarce resources.
where each event is represented as a peint. . ., vq) over ad- Hence, we propose an alternative solution that works as follows.
dimensional space, and each subscription is represented as a set tfor each dimension, we build aScored Interval Indexver the
intervals(I1, ..., I4) over that space. (It is easy to see how the subscription intervals in that dimension. A Scored Interval Index
above motivating examples can be mapped to this model.) Further,is designed to take in a event value and provide an efficient
we consider two notions of matching: exact matching and relaxed getnext() iterator that returns the intervals containing in the
matching. order of their score (For exact matching, the score of a subscrip-
tion interval is simply the score of the subscription; for flexible

Exact Matching: A subscription(/1, ..., I4) matches an event . : ; AL .
g ption(7 a) matching, the score is the weight of the subscription interval in the

(v1, ..., vq) ifand only if Vi € [1,d|(v; € I;), i.e., the event is . : . ; A . .
fully contained in the subscription's hyper-rectangle. Further, every 9iven dimension.) Given these indices, an incoming event. ..,

subscription has an associated score, and the goal is to return thetoﬁ”) is processed as follows. F'rSF’ the indices are probed with the
few subscriptions ordered by the scdrés an illustration of this event valges to pr.oduce a set of iterators. '!’hen, in the case of ex-
semantics, consider an application-level router where we only wish act matching, the |nter_/al_s, pro_duced by the iterators are mtersect(_ed
to route messages that satisy the subscription constraints, and to produce the subscriptions in score order. In the case of flexi-

the score of a subscription represents the priority of the subscriber. ble_matching,_ the Threshol_d AIgoriFhm [17], Wh!Ch is an in_stance-
optimal algorithm for merging multiple ranked lists with different

Relaxed MatchingA subscription(/y, ..., Is) matches an event rank (weight) orders, is used to efficiently find the subscriptions

(v1,...,vq) ifand only if 3 € [1,d](v; € I;), i.e., atleastone ijth the highest scores.

dimension of the event is contained in the corresponding interval Qur decision to use many one-dimensional Scored Interval In-

of the subscription. Further, a weight; is associated witleach dices instead of using a single multi-dimension index warrants some

dimensiorof a subscription, and the score of a subscription is the discussion. The primary reason for this choice is our requirement
sunf of the weights of the matching dimensions, i.e., tosupport relaxed matching, which requires the ability to drop cer-
Yiegjljen,gav;er;3wi- Forinstance, in online advertising and job tajn subscription dimensions from consideration at event process-
SiteS, it is preferable but not necessary to Satisfy all the SUbSCI’ip-ing time. While we are not aware of any multi-dimensional in-

tion constraints (e.g., we might show an ad even if it does not fully dex with this capability, the Threshold Algorithm easily handles

satisfy the user profile). Further, different dimensions of an ad may thjs case by ignoring the weights for the dropped dimensions when
be weighted differently (e.g., a credit score match may be more computing the overall score. The other reason for our choice is
important to an advertiser than an age match). more pragmatic: to the best of our knowledge, there are no inter-

Given the above problem statement, a natural question arises:val index structures (one-dimensional or multi-dimensional) in the
How do we implement the these ranked pub/sub systems in orderliterature that are optimized for ranked retrieval of scored matches.
to achieve scalability and efficiency? One naive approach is to use S0, the focus of this paper is on the easier (albeit still challenging!)
a traditional (unranked) pub/sub system to retriaehe subscrip- problem of developing scored one-dimensional indices for process-
tions that match an event, and then perform some post-processingnd multi-dimensional events.
to retrieve the top few matches. Such a naive solution, however, is Given the above system architecture, the main technical chal-
clearly inefficient since it produces all the matching subscriptions enge is devising efficient Scored Interval Indices. Existing inter-
even though only the top few matches are desired. This issue is par-va! index structures such as interval trees [23], segment trees [12]
ticularly problematic in applications like online advertising and job and (1-dimensional) R-trees [18] are not directly applicable to this
sites, where the number of matches (i.e., ads, jobs) far exceeds théroblem because they do not produce results in score order. Thus,
number that can be shown on a single Web page, and in application-We Propose some simple adaptations to these structures that can
level routers, where producing all the matches consumes alreadyProduce results in score order. Unfortunately, our analytical and

experimental results show that these adaptations are either time-
Lin our work, we assume that subscription scores are given aridde- inefficient (i.e., slow response time) or space-inefficient. Figure 1

pendent of the matching event/poiatextending our techniques to handle Pictorially depicts this qualitative tradeoff (not drawn to scale).
event-dependent subscription scores is a challengindarézture work. Based on the above observations, one of our main contributions

2More generally, the score of a subscription can describesryymono- is the development of two new index structures - lttterval R-
tonic functionof the weights. tree (IR-tree) and theScore-Optimal R-Tre€SOPT-Rtree) — that

are both time- and space- efficient (Figure 1). B@PT-Rtree, \
which relies on intelligent pre-processing of the underlying inter

set before indexing it using a@Rtree, is the most efficient in term o~ o
of both time and space. In fact, we can prove that we can retr A

the top# results inO(k x logn) time, wheren is the number of | _/6\ | /l\‘ i | ,2/< |
subscriptions. HoweveGOPT-Rirees cannot handle increment 56.9 o [I59]9 [3 Jalas]]
updates easily. On the other hand, tRetree, which is a hybrid Y L TR
between an Interval Tree and &rree, is marginally slower thar] TR
the SOPT-Rtree, but is incrementally updateable. : :
In summary, the main contributions of this paper are: | 1 e 3 2 1}—H : }—Hz
I I a 3

e \We propose and formalize the novel problemariked pub- 6 5__ : 7 6 :5_|_| : | . 4!
lish/subscribe 9 mp— 810 [9 === |

. o . - [T 1 110
e While exploring simple adaptations of existing structures T T 1 T T 1T T

0 20 50 80 100 0 10 30 45556575 90 100

support scoring, we identify an interesting space-time tra

off (Section 2) for ranked subscription retrieval. .
() P Figure 2: Interval and Segment Trees

e We devise new, score-aware index structures that are |
space and time efficient (Section 3).

. intervals that end aftey, and recurse the search on the right child
¢ \We give an experimental evaluation of the proposed indexing ¢ .-

structures that convincingly demonstrates the benefits of our

- Itis not difficult to see that the space requirements of the interval
approach (Section 4)

tree overZ are O(n) (as each interval is stored only in a single
tree n node and replicated in two lists). The construction time for

2. RANKED RETRIEVAL USING EXISTING the interval tree i) (nlogn), and, lettingm(q) denote the size
INTERVAL INDEX STRUCTURES of the answer set for a stabbing querythe time to answey is
In this section we describe three existing interval index struc- O(m(q) +logn).

tures, namely the Interval Tree, the Segment Tree andRitree. . .
EXAMPLE 1. Figure 2 (on the left) shows a set of ten intervals

These index structures are designed to supipberval stabbing)
queries i.e., queries that return the set of all intervals that are (@Peled1 through10) on aline segment betweénand 100. 50
stabbed by a given query point. We, however, are interested in 'S the median end point. This partitions the intervals into the set of

top+ interval stabbing queriesi.e., queries that return the top- Intervals stabbed bgo, {1,3,10}, the set of intervals completely
k scoring intervals that are stabbed by a query point. In the latter

to the left of50, {5, 6,9}, and the set of intervals to the right &,
part of this section, we describe scored adaptations of these index{2»4: 7,8} The recursive construction stops at the next level after
structures that support tdpinterval stabbing queries.

finding median0 and 80 that stab all the intervals i{5, 6,9}

and{2,4, 7,8}, respectively. The left end-point and the right end-

2.1 Standard Interval Index Structures point sorted lists maintained in the root node (not shown in the fig-
Interval- and segment-tree indexes are the “standard” known so-Ure), for instance, would bg10, 1, 3} and {1, 3, 10}, respectively.

lutions for efficiently processing simple interval-stabbing queries

over the real line. We now briefly describe the key ideas behind

each index. In either case, the input comprises of a collection of 2-1.2 Segment Trees

n intervalsZ, where each interval; € 7 is a pair of left/right In contrast to interval trees,segment tre§l2] overZ relies on
endpoints {; = [z}, 2]],i =1, ..., n). partitioning the intervals irY into a collection ofdisjoint, atomic
segmentsand then indexing these segments using a binary-tree

2.1.1 |Interval Trees structure. The atomic segments are simply defined by sorting the
An interval tree[23] overZ is constructed in a recursive man- collection of all2n endpoints irZ and taking the segments defined

ner as follows. We pick the median endpaint,.q of the interval by consecutive endpoints in the list (includirgo and-+co as the

collection, and letZ(z.q) C Z denote the subset of intervals leftmost and rightmost points, respectively); note that this results in

in our collection that are stabbed y,cq. Also, let 7! (zmea) at most2n + 1 atomic segments ovéar. The segment tree ovéris

(Z" (zmea)) be the subset of intervals completely to the left (resp., abalanced binary tree over the above sequence of atomic segments.

right) of the median,,,.4. Create an interval-tree nodecontain- Note that each nodeof the tree can be described by a singk¢ent

ing two sorted lists of the intervals If(x.,.q): one sorted by inter- interval interval(v) that is equal to the union of all atomic seg-

val left-endpoints and one sorted by interval right-endpoints. Then, ments undet’s subtree. A node stores the interval ids for all in-

for the left and right child subtree @f recurse the above construc- tervals/ € Z such thatinterval(v) C I butinterval(u) Z I,

tion onI’(:cmed) andZ” (zmea), respectively. Note that, assuming wherew is the parent node af (in other words,interval(v) is
aroughly even split of intervals across thgcq (i.e., | Z' (Tmed)| = a maximal node-extent interval in the tree that is completely con-
|Z" (zmea)]), the height of the interval tree 3(log n). To process tained inI). Processing a stabbing query using a segment tree is
a stabbing query for point over the interval tree, start from the greatly simplified by the fact that the atomic segments partition the

root node, and, for each visited tree nadéf ¢ = z.,,.q atv, then underlying domain, which, in turn, implies that, at each level of the
simply return all the intervals in thenode; else, ify < zeq atv, segment tree, the query poipstabsexactly onef the node-extent
then traverse the left-endpoint-sorted lisbdb return all intervals intervals. Thus, starting from the root, we only need to follow a

that begin beforey, and recurse the search on the left childvof path of stabbed nodes to a leaf and return all the interval ids stored
otherwise, traverse the right-endpoint sorted list & return all at each stabbed node.

The construction time and query time requirements for a 1= P2
ment tree are similar to those for an interval tré&n log n) and 5 :_ e L.':ru | 0-45 | 30100 | 0-100 |
O(m(q) +1logn), respectively (wheren(q) is again the size of th P
answer set fog). A key difference lies in the space requirement 9 '—.—! ."!‘!‘1 8 10
the two structures: By partitioning each intervalfiracross node | L 15[6[9]]1[2[3] 14[7[8[10[
extent intervals, in the worst case, each interval id can be repli 010 30 45 5565 75 90 100
across at most two distinct (non-sibling) nodeseach levebf a
segment tree. Thus, the worst-case space requirements of tt Figure 3: R-Tree

ment tree ar@®(nlogn).

ExXAMPLE 2. Figure 2 (on the right) shows the same set of
tervals{1,...,10} whenindexed by a segmenttree. Lgt. . ., z9
denote the9 distinct end points. Each segmelnt;, zi41], ¢ =
,1...,8, is an atomic segment. Hence, the segment tree has four
levels, with the lowest level containing one nede., , for each
atomic segment. The interv@| for instance, is stored in the nodes
v10,30 @andwvso 45, Since both10, 30] and[30, 45] are contained in
interval 9, but none of their parent nodes are contained®inTo
illustrate query processing, 166 < ¢ < 90. An interval stabbed
by ¢ contains the atomic segmdfit, 90] and hence should appear

in the nodevrs o0 Or one of its parents. Therefore, the intervals . - . .
{10,2,7, 4,8} intersecty. anaIyS|s. of the scoreq interval- and segment-trees. Given an index
nodew (in either an interval tree or a segment tree) and a query

2.1.3 R-Trees for Stabbing Queries point g, we usen,, to denote the number of intervals Jhthat are
Conventionally,R-trees [18] have been used for indexing hyper- stored in node, andm, (q) to denote the number of those intervals

rectangles in order to efficiently search for all rectangles that over- that are stabbed hy. We also definen,(q) = n, — m.(q) (i.e.,

lap with a query rectangle. In a single dimension, intervals “over- the number of’s intervals that daot containg). Finally, we let

lap” a query pointg if and only if they are stabbed by Hence, path(q) denote the set of nodes on a root-to-leaf tree path that are

we can useR-trees to solve our problem. The-tree groups in- traversed when processing query paint

tervals into partitions of size at most whereb is the branching

factor. Various heuristics can be used for grouping intervals, in-

of the standard index structures give rise to an interesting space/-
time tradeoff: While being very space efficient, interval trees and
R-trees require significantly more time to process togtabbing
queries (time linear in the number of intervals, in the worst case);
in contrast, segment trees allow for extremely efficient ranking but,
of course, can also incur@(log n) factor blowup in space. Note
that, with subscription numbers in the millions, suchO(logn)
can be very significant — in the worst case, they can render main-
memory indexing infeasible.

We first introduce some basic notation that will be useful for our

2.2.1 Scored Segment Trees

cluding minimizing the size of the bounding interval for a group, A segment-tree index can be easily adapted to return thé top-
minimizing bounding interval overlap between groups, or grouping scoring intervals of stabbed by a query poigt Recall that, for
intervals by their start or end points. eachl stored inv, I O interval(v). Hence, the key observation
Each group of intervals is stored inleaf nodeof the R-tree. here is that if the extent interval ef is stabbed by (and, thus,
The leaf node is associated with artent intervalwhich is the accessed during the basic retrieval algorithm), thiémterval ids
minimum bounding intervadf the intervals in leaf node. Suppose stored in node are also guaranteed to be stabbed by
[¢9,77],i=1,...,b, are the intervals in a leaf noge Thenl, = For score-based retrieval, the intervals in each segment-tree node
[69,r9], wheretd = min; £/ andr? = max; r{ is the minimum are stored sorted in the order of their scores. (Note that this does not

bounding interval. Thek-tree is constructed recursively on these increase the asymptotic segment-tree construction cost, which re-
minimum bounding intervals. Finally, we add a child pointer from mainsO(nlogn).) Then, since a query point only stabglog n)
the entry corresponding to intervaj to the leaf nodg. Inorderto tree nodes along a root-to-leaf path, we can retrieve the stabbed
answer a stabbing quegy we start from the root and keep chasing intervals in rank order by simply maintaining a max-heap of size
child pointers as long ag is in the extent of each intermediate ~ O(logn) across these stabbed nodegge&next () operation sim-
node. Once, we reach a leaf node, we return the set of intervalsply extracts the maximum element from the heap (belonging to,
that containg. Note that intervals in multiple leaf nodes might ~say, stabbed node), and then replenishes the heap by inserting
contain the poing, and hence we might need to go down multiple the next-best interval from node— the total cost of both opera-
root-to-leaf paths. It can be shown that &rtree only requires tiolnS is onlyO(loglogn). (In fr?Ct, since tfPIS next-best intt(e;val has
2 - : a lower score, we can use the more efficieatreasekey() op-
Q (n x (1 + b*)) shace, bl_ﬁ In the worst case might taen) eration on the heap [10].) The overall cost for retrieving thetop-
time to return all the stabbed intervals. scoring stabbed intervals for(including the cost to build the initial
EXAMPLE 3. Figure 3 shows a set of intervals indexed by an max-heap) i$)(log n log log n+ kloglogn).
R-tree with branching factod. The intervals are grouped so as to
try and minimize the size of the bounding intervals. The leaf nodes 2.2.2 Scored Interval Trees
partition the intervals into groups of at mostaind each entry in the In contrast to segment trees, the intervals stored in an interval-
root node is a minimum bounding interval of the leaf nodes. The tree node that is explored during a (conventional) stabbing query,
R-tree constructed in Figure 3 is especially bad since, for instance, arenot all guaranteed to be stabbed by the query point. Thus, to
every node in thisk-tree needs to be visited to answer a query support ranked stabbing queries, the retrieval algorithm needs to

q=35. query bothinterval end points and scores each interval tree node.
Hence, the interval tree can be adapted to support ranking naturally
2.2 Scored Interval Index Structures in two ways.
We now describescored Intervalkrees,Scored Segmelttees, Conventional (Endpoint-Sorted) Interval Tree. One approach is

andScored Rrees, simple adaptations of the three standard inter- to simply employ the basic interval-tree index structure. Like in the
val indexes. Our analysis demonstrates that these scored variantbasic stabbing query algorithm, at each visited tree ngodee re-

trieve the intervals stabbed by the query paintVe also keep tras
of the top# scoring intervals in using a per-node max-heap st
ture of sizek. (Of course, the heap is only neededif (¢) > k.)
Then, to extract the global top-stabbed intervals in the tree,
maintain a global max-heap of sizglog n) to keep track of ea
of the nodes omath(g). Each call togetnext() extracts the be
interval (say, from node) from the global max-heap, which tt
replenishes itself by inserting the next-best interval froigsimi-
lar to the heap described for the segment-tree scheme). Th
all (worst-case) time complexity, which includes the time to t
the per-node max-heaps as well as the time to build and pro
traversed-path max-heapgm(q) log k + k(log k + log log n)).

Score-Sorted Interval Tree. Rather than sorting intervals ir

node by their endpoints, an obvious alternative is to sort intervals
by their scores (thus, essentially, favoring score ranking instead of

stabbing-based selection). Each node in fuisre-sortednterval

[
1 2
=N
5| mE . [30-100 | 0-100 | 0-100 |
g |
9*| 1 | |810
Ll Ll L1]2[3[[4[s[6] [7]8][9]10]
010 30 45 5565 75 90 100

Figure 4: Scored R-Tree (Interval Ids Sorted by Score)

in descending order of score and a queryperforming a [left-first]
depth-first search tilk intervals stabbed by correctly returns the
top-k scoring intervals stabbed hy

The problem with the above simple solution is that, in many
cases, this [left-first] depth-first search traversal ends up visiting

tree index also maintains the minimum and maximum endpoints |eaf nodes where the query point does not stapof the intervals.
across all intervals stored in the node — this allows us to quickly The reason should be intuitively obvious: Recall that a scé&ed
determine whether the intervals in a node are potentially stabbedtree groups intervals based solely on their score ranking and with

by an input query point.

In order to retrieve the tog-stabbed intervals, we maintain a
global max-heap of siz€(log n) across the nodes on the root-to-
leaf path stabbed by the query poinfi.e. path(q)) that, at each

no regard to their spatial extents. Unfortunately, this implies that
the coverage of the “bounding” extent intervals for internal nodes
in the resultingR-tree often contains karge number of “holes™—

in other words, there will often be a large number of sub-ranges in a

point, contains the next-best stabbed interval from each node. Thenode’s coverage that do not interseuy actual intervaln the un-

problem here is that, since intervals in each ned®e sorted by
score, getting the next-best interval franthat is actually stabbed

derlying collection. As a simple example, consider the collection
of intervals depicted in Figure 4, where the ordering of intervals

by ¢ might require an expensive linear scan over the score-sortedon they-axis corresponds to their scores. (Thus, inteivid the

list; in the worst case, we may need to examine (and dis¢cafd), (7))
intervals from each node on the query path. Thus, we expect
this indexing scheme to perform well only if most of the inter-
vals in the stabbed nodes @ath(q) are actually stabbed by

(i.e., them,(g)’s are small). The overall worst-case time com-
plexity for top+ retrieval using the score-sorted interval tree is

O(Zvepath(q) my(q)+ (logn + k) loglogn).

highest-scoring interval, interva is the second highest, and so
on.) Figure 4 also shows an example scofettee for that inter-
val collection. Note that the [left-first] depth-first traversal for, say,
g = 90 would visit all the nodesn the tree incurringD(n) time
for a singlegetnext().

In summary, our analysis quantifies parts of the qualitative space/-
time tradeoff illustrated in Figure 1. Scored segment trees are very

Our experiments have shown that the score-sorted interval treeefficient in answering to stabbing queries; however, they are
is typically much more efficient than the conventional interval tree space inefficient and might not allow an in-memory implementa-
for top-k stabbing queries, since the running time only depends on tjon. On the other hand, scored interval trees &attees are very
the number of intervals not stabbed along a path, rather the totalspace efficient. However, modulo the score-sorted variant, scored

number of intervals stabbed by the query. Hence, in the rest of the interval tree adaptations are only good at indexing the intervals but
paper, we define the scored interval tree to be a score-sorted intervahot their score. SimilarlyR-trees can only index either scores or

tree.

2.2.3 Scored R-Trees

Recall that in anR-tree, we have the flexibility to group inter-
vals together based on different criteria. In order to answerktop-

the intervals, but not both. Hence, these index structures are lacking
in terms of time efficiency. Nevertheless, we carry over the insights
from these simple adaptations to design two novel index structures
—thelR-tree (Section 3.1) and tHROPT-Rtree (Section 3.2) — that

are as space-efficient as interval @drees, and, at the same time,

stabbing queries, it is natural to group intervals by their scores so can answer to-stabbing queries as quickly as segment trees.

that the top scored intervals are grouped together, the next lower

scored intervals are grouped together, and so on. In other Words,3_ TIME AND SPACE EFFICIENT TOP- K

we order intervals in decreasing order of their scores and pick con-

secutive blocks of sizeto form the leaf node groups. Recursively,
if (g1,...,9%) are the set of internal nodes at any level of fhe
tree (in that order), then every interval in the subtregohas a
score at least as large as that of every interval in the subtrge of
This property ensures that the following simleft-first] depth-
firsttraversal implementsgetnext(): Starting with the root node

INTERVAL INDEXES

While requiring significantly smaller space than the segment-tree
solution (essentially, avoiding th@(logn) replication blowup),
the interval-tree schemes described above can also be significantly
more expensive in terms of computation time. Likewise, the scored
R-tree, although compact, has unpredictable performance times.

of the R-tree, at each internal node, scan each entry from left to We now describe two novel scored interval indexing structures,
right and recurse on its child node only if its extent interval con- terval R-treegIR-trees) andcore-Optimal R-treg SOPT-Rtrees),

tains the query poini. At a leaf node, scan the intervals from left
to right and record an interval if it is stabbed dyReturn from the

recursive call either if all entries in the node have been processed

or if k intervals have been recorded.

LEMMA 2.1. Given anR-tree on a set of interval® arranged

that are provably efficient in terms of both query time and memory
requirements.

3.1 The IR-Tree Index Structure

We saw earlier that interval trees and their variants store lists
of intervals at their nodes; in the worst case, answering a query

may require traversing the entire list. The key idedRerees is The time to set up the initial max-heap (which requires a traversal

to employ a more time-efficient data structure than a list — more of thel-tree from the root to a leaf node) takes ti@¢(b log, n +

specifically, we index the set of intervals at each interval tree node loglogn) logn). Each subsequent call getnext() for the IR-

by an R-tree. For example, in Figure 2(a), intervals 5, 6, 9 are tree, along with a heap update, takes tiohg log, n + loglogn).

indexed with anR-tree, and similarly 2, 4, 7, 8 and 1, 3, 10. As Hence, the worst-case running time for a topetrieval is bounded

we mentioned earlielR-trees may still have linear search times in by O((k + logn) blog, n).

the worst case. However, we are saved by a crucial technical ob- In terms of space complexity, tH&-tree clearly requires only

servation: By the construction of interval-tree nodes, every interval O(n) space (in fact, its size is at most x the size of a conven-

stored at a node is stabbed by a common point (namely, the mediartional interval tree, even with aR-tree of branching factdr = 2).

point corresponding to the node). For instance, intervals 5, 6, 9 areUsing anR-tree with branching factos > 2 decreases the space

stabbed by a common point in Figure 2(a). This observation allows blow-up over score-sorted interval trees (which take even less space

us to guarantee efficient query times. than conventional interval trees) to be just- % However, it
More formally, we can prove the following lemma, which relies also increases the worst-case running time asymptotics by a factor

on the fact that the extent of every internal node in fdigee index O(b/logb). Due to caching affects and other overhead, perfor-

hasno “holes” in the node’s coveragén other words, if theR-tree mance can actually improve for modest values,ofvhile simul-

node is stabbed by a query poiptthen at least one interval stored taneously decreasing memory requirements. We summarize these

in its subtree is guaranteed to containThis fact ensures efficient performance guarantees below.

ranked retrieval. THEOREM 3.1. AnIR-tree indexingn intervals has space com-

plexityO(n), and in general takes at most a factdr+ ;2) more

space than a score-sorted interval tree, whéns the branching
factor of theR-trees at the nodes of tHR-tree. The time to pro-
cess a topk query is bounded b@ ((k + logn) blog, n).

PROOF. The extent interval,, of an internal nodg is the min- 3.2 The SOPT-R-Tree Index Structure.
imum bounding interval of all the intervals in its subtree. Since ~ We now explore theSOPT-Rtree data structure which has the

every pair of intervals intersect, if stabsl,, there should existan ~ memory requirements of aR-tree, but also guarantees fast query
interval I in g's subtree such thag stabsI. If we ever go down a times — its worst-case running time is ju3txb log,) to produce
child pointer, we are guaranteed that the extent interval in one of the @ top# list overn items.

entries in the child node contaipsHence, one root to leaf traversal The SOPT-Rtree is, in fact, a scoreft-tree, in which we care-
is enough to find the top scoring interval stabbed;bihereafter, ~ fully sort the intervals in such a way that we hit very few “holes”.
finding the next best interval involves at most traversing back up to Recall that, in the score-sortef@tree discussed earlier, intervals

the root and an additional root-to-leaf traversal. Hence, this takes are sorted by their score, and thetree is built on top of these inter-
at mostO(bk log, (n/k)) steps. [vals. For certain distributions, this approach works well. However,

for many distributions, this will produce many “holes,” leading to
We construct ariR-tree overZ as follows. First, we build a Poor performance. By a clever rearrangement of the intervals, our

LeEmMA 3.1. Given anR-tree constructed over a set ofin-
tervals in which every pair of intervals overlap and a query
retrieving the set of tog- scoring intervals stabbed by takes
O(bk log, %) steps.

score-sorted interval tree ¢h Then, at each node of the tree, SOPT-Rtree index can avoid most of these holes. In fact, we prove
we index the sorted list of,, intervals atv (in order of decreasing that,for any topx query, we explore at mos2k leaf nodes of the
score) by building a (scoredj-tree index on top of the list. tree, corresponding to hitting at masholes.

The topk interval retrieval algorithm over alR-tree is similar The main optimization idea stems from the following realization.
to the basic interval-tree search algorithm, but also employs the Suppose thaf; and/ are intervals that we wish to index. Further,
embeddedR-tree structure at each traversed nade efficiently suppose that the score &f is greater than the score ¢, and

find the top-scoring interval stored in More specifically, starting ~ that no interval has a score between the scorg;afnd the score
with v = root of thelR-tree, we can find the top-scoring interval in ~ 0f I1. If I and I, intersect, then anyi-tree indexing them must
v by performing the [left-first] depth-first traversal of tiietree at placel; beforel;. (To see this, suppose thate I N I2; then,

nodew until we find an interval that is stabbed by the queryrhat a queryg must returnl; beforel,.) However, if; andI> do not

is, we callgetnext() on the R-tree at node. A trivial extension ~ intersect, we are free to place them in either order, since no query
of Lemma 3.1 shows that each of these callgéonext() takes point can stab both intervals — their relative ordering is immaterial.
time onlyO(blog, n,). In the next section, we show how to leverage this simple property

Once the above step for searching neds complete, we check to produce a provably good interval arrangement.
the location of; compared to the median endpointofand recurse ;
on the left or right child oi in thelR-tree as in traditional interval- 3.21 Gen(_ar_atmg a;OPT-R?tree))
tree search. Finally, we return the best interval found from amongst _ Before describing the underlying arrangement of intervals in a

the O(log n) nodes we traversed. SOPT-Riree, we first c_iefine eonstraint graptfor the intervals. In

To discover the next-best interval (forgetnext() operation essence, this constraint graph captures the allowable arrangements
on thelR-tree) during topk processing, we maintain a(log n)- of |nterv_a|s. _ _ _
size max-heap for the best intervals along the traversed query path Consider the sef of n input intervals, each with a score, and
(as earlier). If we returned the best interval from nadéhen we defineG/(Z) to be the directed graptV, E), whereV andE are as
must replenish the heap with the next-best interval from nade follows: The setl” consists of» nodes, one node for each interval
Hence, we calgetnext() on theR-tree associated with node If I € I. We refer to the node associated wittby node (7). We

the call returns an interval, we place it into our max-heap. Other- include an edge irE from node(I;) to node (1) if and only if
wise, we have exhausted nods stabbed intervals. As shownin I; N I # () andscore(l1) > score(l2).

Lemma 3.1, fetching items from node has total time complexity However, it will be useful for us to use a more efficient repre-
of justO(bk log, (nv/k)), and, in general, is quite fast. sentation of this simple intersection graph that, intuitively, tries to

[0-55 | 10-100 | 0-100 |

s[6]1] [s]s]2] [4]7[s]10]

Figure 5: SOPT-RTree

avoid some extraneous “transitive” edges. Formally, define graph

G = (V, E) to have the same vertex set@s and E defined as
follows. Supposd, I, € T with score(l1) > score(l2). Then,
E contains an edge fromode(I;) to node(I2) if and only if (a)
I, N I # (; and, (b) there exists a poigte I; N I such that,
forall I € 7 with score(I;) > score(l) > score(lz), the point

q ¢ I. ClearlyG contains only a subset of the edgesinfurther-
more, it is not difficult to see that, if there is an edge froode (1)
tonode(l2) in E, then there is pathfrom node(I;) to node (1)

in E. Note thatG includes some unnecessary “transitive” edges;
however, we will be able to compu@ extremely efficiently.

ExamPLE 4. Figure 5 shows the constraint graphl for our
running example of intervals (see, e.g., Figure 4 — recall that the
y-axis and interval ids are sorted by score). Intervahtersects in-
tervals3 and9, andscore(1) > score(3), score(1l) > score(9);
furthermore,1 N 3 and1 N 9 do not intersect any other intervals
of intermediate scores. Hence, eddés3) and (1,9) appear in
G. Note that, even though intervaklso intersects interval0 and
score(l) > score(10), there is no edgél, 10) in G; however,
this edge is “covered” by th¢l, 3, 10) path inG.

We say that an arrangement of the intervalgirespectsz(Z)
if for all intervals I1,I> € Z such that there is an edge from
node(/1) to node(I2), the intervall; comes beford, in the ar-
rangement. Note that, by the fact that edgeé?(rf) always map
to paths inG(Z), an arrangement respeci$Z) if and only if it re-
spects(Z). Also, note that the arrangement described for scored
R-trees, in which the highest scored intervals come first, clearly
respects7(Z). The following lemma shows that anfg-tree that
groups intervals based @mny arrangement respecting(Z) will
produce a ranked top-list in the expected way.

LEMMA 3.2. LetZ be a set of scored intervals, and suppose ar-
rangement4 respects7(Z). LetT be theR-tree built on arrange-
mentA. Then, for any query, performing [left-first] depth-first
search onT to find the firstk intervals stabbed by will produce
the topk scored intervals stabbed gy

PROOF An R-tree built on arrangemend, when performing
depth-first search for query, will simply return intervals stabbed
by ¢ in the order they appear id. So we only need to argue that
for all k£ andgq, the firstk intervals appearing il that are stabbed
by ¢ are in fact the tofk scoring intervals stabbed layy

Suppose not. Then we can find an interfghat is among the
first k intervals according tod stabbed byg, and an interval/
that is in the true tog list, but such thascore(I) < score(J).
Thus, there is an edge frombde(.J) to node(I) in G. That is,
A does not respec(Z), hence does not respe6(Z). This is a
contradiction. [

We are now ready to describe the algorithm that builds the inter-
val arrangement foBOPT-Rtrees. In a nutshell, the idea is to ex-
ploit the freedom allowed by the partial-ordering constraints spec-

ified in the constraint grapty, to ensure intervals are grouped to-
gether in terms of theigpatial proximity(as long as that does not
violate G). More specifically, leteft (/) denote the left endpoint

for interval I. The first interval in the arrangement is the inter-
val I with the smallestleft(7) value, taken over all who have
node([/) with indegree 0. We remove thede(I) from G(Z) and
repeat this step recursively, until all intervals have been added. We
restate this algorithm below. For convenience, we deffirizg(7)

to be the indegree afode(/). (We set this to -1 itode(I) is not
inG(Z).)

Algorithm 1 Arrangement foSOPT-Rtrees

Require: Interval setZ and constraint grap&'(Z).
1: while G(Z) is not emptydo
2. LetI be the interval with the smallest£t(I) value, taken over all
I with indeg(I) = 0.
Add I to the arrangement, and remavede(I) from G(Z).
end while

: Output the arrangement.

ahrw

For any set of intervalg with scores, thé-way SOPT-Rtree for
7 is defined to be thé-way R-tree created using the arrangement
produced using Algorithm 1. As an example, Figure 5 shows the
SOPT-Riree created for our running-example interval collection
from its corresponding constraint graph.

Since the algorithm respects the constraint gigh), we know
that it produces correct results. But the key propertp@PT-R
trees is in the lemma below. It guarantees that while processing a
top-k query for pointg using theSOPT-Rtree, we explore at most
k leaf nodes of the tree that do not contain an interval stabbed by
(That is, we hit at mosk “holes.”) This translates directly into an
upper bound on the running time of any tépquery.

THEOREM 3.2. LetZ be a set of: scored intervals, and I€f’
be theb-way SOPT-Rtree generated fof. For any queryg, the
time to return a topk list is at mostO(bk log, n). The total space
taken byT is the same as aR-tree onZ, and can be implemented
in (1 + ;%) times the space of the original interval data.

PROOF Fix a level of the tre€l’, and label the nodes on that
level from left to right byvy, vs, ..., vy, Wherem is the number of
nodes on that level. Fix any query point We will first show that
if there are two nodes;; andv; with i < j, whose extent intervals
both containg, and there are no intervening nodes whose extent
interval containg, then eithew; or v; (or both) index an interval
that containg;.

Suppose not. That is, suppose that neithenor v; index an
interval containing;. Let.A be the arrangement produced by Al-
gorithm 1. Since < j, all of the intervals indexed by, appear in
A before the intervals indexed by. Let I be the lowest-scoring
interval indexed by/; that is entirely to the right of. (Since the
extent interval ofy; containsg, while no interval indexed by;
containsg, we know such an interval exists.) L8tbe the set of
all intervals that appeafterthe intervals indexed by; in arrange-
ment.4, and letJ be the highest-scoring interval ii that lies
entirely to the left of;.

By the ordering specified in Algorithm 7, would appear before
I (since itsleft() value is smaller) unless there were a path from
node(I) to node(J) in G(Z). This path consists of intervals that
intersect each other, and they stretch from the lef tuf the right
of g. Hence, one of those intervals, sAy must cross;. Further-
more, sincenode(K) lies on the path fronnode(I) to node(J),
the arrangement must orderK between/ and.J. Hence, an
intervening node must contafd (which is stabbed by), a contra-
diction.

So, for every two nodes the algorithm explores, at least one will
contain a stabbed interval. Hence, it will explore at mishodes
per level. Each node take3(b) time to explore, and there are
O(lg, n) levels. The running time follows. The space claims fol-
low directly from the fact that th€OPT-Rtree is anR-tree. [

Note that, in the worst case, this is essentially the best query time
we can hope to prove for ani-tree structure. There are interval
sets such that for any arrangement and athere will be a query
q whose stabbed intervals are containedidifferent leaf nodes
of the R-tree. Hence, the top- search will explore at leadt leaf
nodes.

Although we are primarily concerned with the query time, the

The set of endpoints that are visible with respectitbreak the
real line into intervals, which we refer to asible blockgo avoid
confusion. We denote this set of visible blocks fsBlks(J);
the setrisBlks(f) contains only the intervgl-oo, o). For every
block B € visBlks(J), we say interval € J is associated with
B if I is the lowest scoring interval iff such thatB C 1.

ExXAMPLE 5. In Figure 3, visBlks({1,2,...,7}) consists of
the blockg —oc, 0],]0, 30], [30, 45], [45, 55], [55, 65],[65, 75], [75, 100],
[100,00). Interval 6 is associated with block, 30]. Interval
1 is associated with block30, 45], interval 3 with [45, 55], in-
terval 4 with [65, 75], and interval 7 with[75,100]. The blocks
(—o0, 30], [55, 65], and[100, co) have no associated intervals. No-

pre-processing time must be kept subquadratic, since we are fre-tice that each block has at most one interval associated with it.

quently dealing with millions of intervals. Note that Algorithm 1
runs in timeO(nlogn + |E(Z)|), where|E(Z)| is the size of
the edge-set fof#(Z): The find operation in step 2 can be per-
formed using a heap (of size at mosy, it is executedn times,
taking O(nlogn) time. Every time we remove gode(Z) from
G(Z), we touch every out-edge abde(Z) and update the heap
by adding any nodes that now have indedgre&his takes an addi-
tional O(|E(Z)|) time overall. In the next section, we show that the
graphG(Z) can be generated efficiently, and we also boldii) |

by 3n. Using these ideas, we prove that the pre-processing time to
produce éSOPT-Rtree isO(n logn).

Handling Updates. While the SOPT-Rtree clearly offers the best
time/space tradeoff among the different scored interval index struc-

Our algorithm uses the following key property. In essence, it says
that when considering thi¢h interval I;, we only need to find the
set of visible blocks tha; intersects in order to find all edges point-
ing tonode(I;) in G(Z).

LEmmMA 3.3. LetZ = {I1, I, ..., I, } be a set of scored inter-
vals, labeled so thaécore(I;) > score(l;) forall ¢ < j. Fur-
ther, let 7, = {I;]: < ¢} for ¢ > 1. For any intervall € J;_1,
there is an edge fromode(I) to node(I;) in G(Z) if and only if
I is associated with a visible blodR € visBlks(7;—1) such that
B N I; is nonempty.

PROOF First suppose thdtis associated witl? € visBlks(Ji—1)
with B N I; nonempty. Lett € BN I;. Thenx € I N I; as well.

tures explored in this work, it also raises some issues with respect g, iharmore. if there were an intervéle 7, such thate € J

to the update-ability of the data structure (when dealing with dy-
namic interval/subscription collections). The problem, of course, is
that our constraint-graph optimizations are highly sensitive to the
underlying interval collection: a single update could drastically al-
ter the constraint graph structure, rendering3@PT-Rtree index
obsolete. Devising techniques for efficiently update@@PT-R

tree indexes is definitely an interesting area for future work; in the
meantime IR-tree indexes seem to offer the best tradeoff with re-
spect to time/space requirements and the ability to incrementally
update the index structure.

3.2.2 Efficient Construction of the Constraint Graph

There is an obviou®)(n?) algorithm to produce the constraint
graphG(Z). However, sincer may well be in the millions, this is
an unacceptably long pre-processing time. We show in this section
that G(Z) can be constructed in tim@(n logn), and that it has
at most3n edges. Since Algorithm 1 runs in tin@(nlogn +
|E(Z)]), this immediately shows the following result.

THEOREM 3.3. Given any sef of n scored intervals, &OPT-
R-tree forZ can be constructed in tim@(n logn).

In order to describe the efficient process for constructifid),
we will need an additional concept. For a suhgeC 7 of scored
intervals, we say an endpoiptis visible with respect tq7 if there
is some intervall € 7 for which p is an endpoint, and further,
there is no other interval € J with score(l) > score(J)
andp € J. It may be helpful to consider the example drawn in
Figure 3. (Again, recall that intervals are numbered by decreasing
score.) Imagine looking upward from below the intervals.71f
consists of the intervals through10, then the poinp = 30 is not
a visible endpoint with respect t@ — intuitively, we may think of
interval 10 as obscuring it. However, jf consists of the intervals
1 through 8, themp = 30 is a visible endpoint with respect (@
— 30 is an endpoint of interva, and no lower-scoring interval
contains (i.e., “obscures’30.

and score

“

(I) > score(J) > score(l;), it would violate the
visibility” condition on B. Hence, there is an edge framde(7)
tonode(/;).

On the other hand, suppose there is an edge fiode(/) to
node(I;). Then there is some € I N I; such that no intervall
with score(I) > score(J) > score(l;) is such that € J. In
other words, there is a blocB containingx that is visible with
respecttQf;—1. [

Below, we give the algorithm to produce the constraint graph
G(Z). For convenience, we assume tlatontains the interval
(—o0, 00) with scoreso, so that every visible block throughout the
algorithm will have an associated interval. The algorithm works
through the intervals i in decreasing order of their score, say
I, I, For each intervall;, we determine the set of visible
blocks fromvisBlks(J;—1) that intersect/;, whereJ;_; is de-
fined as in Lemma 3.3. We can then add all edge&s(i) pointing
tonode(I;). We repeat this until all intervals are processed.

Algorithm 2 Computing the constraint graph

Require: Interval setZ = {I, I», ..., I, }, sorted in descending order by
score.
. Initialize 7 — {I:}, and initializeG to have no edges and vertices
node(I1),..,node(l).
: fori=2tondo
foreachblock B € visBlks(J) such thatB N I; do
Set] to be the interval associated with blogk
Add an edge fromnode(I) to node(/;).
end foreach
Add intervalI; to set.”.
end for

. Output graphG.

1

©CoNoORwWN

Note that step 3 of the algorithm can be performed in kg n+
bi), whereb; is the number of visible blocks that intersdgt At
each step, we maintain the set of visible endpoints with respect to

J, sorted by value; we may do so using a tree. Given intefyal experimented with the conventional interval tree dttree struc-
let = be its left endpoint ang be its right endpoint. We find con- tures, but as expected, they were orders of magnitude slower than

secutive visible endpoints with respect 8 sayz: < z2, such their scored counterparts, and we thus do no consider them further.
thatz; < z < z2. (By a natural extension, we alloyy = —oo Since we only deal with the scored variants of the standard struc-
or zo = oo.) This can be done in a tree @(logn) time. Since tures, we will henceforth drop the 'scored’ prefix when referring
the visible endpoints are maintained in sorted order, we may thento them. All indices are implemented in main-memory in keeping
find all visible endpoints greater thanand less thary in time with the response time requirements for online and routing appli-
O(b;). Note that to maintain the list of visible endpoints when we cations.
add intervall;, we simply insertz andy, and remove all previously We implement Fagin’s Threshold Algorithm [17] over ttisin-
visible endpoints that lie betweanandy. gle dimensional indices that aggregates scores based on the above
Hence, the total running time of Algorithm 2 8(nlogn + combination function. The algorithm retrieves the next best inter-
>, bi). But notice thab; is precisely the number of edges that vals from each of the indexes in a round-robin fashion. On re-
point tonode([;), by Lemma 3.3. Hencé,_|_, b; = |E(Z)|. We trieving an interval, the algorithm finds out the scores of the sub-
will show in the next lemma thatE(Z)| < 3n, hence the total scription in all the other dimensions, and computes the total score
running time is bounded b (n logn). for this subscription. The algorithm maintains a heap of &ize

keep track of thé: best subscriptions retrieved at any point of time.
LEMMA 3.4. LetT be a set ofr scored intervals. The graph Simultaneously, a threshold value, which is the sum of the scores
G(Z) has at mosBn edges. Furthermore;(Z) can be constructed of the most previous best interval retrieved from every dimension,
in O(nlogn) time. is also updated. When thg” smallest subscription has a higher
score than the threshold, the algorithm terminates and returns the

PrROOE We show(G(Z) has at mosBn edges via a chargin e
(Z) n ecd ding top-k subscriptions.

argument. Consider running Algorithm 2. Initially, we adidto

J so that there are three visible blocks. (The interials asso- Data Set: We use a synthetically generated subscription workload
ciated with the middle block; the other blocks have no associated for our experiments. We actually did have access to a data set of
intervals.) Wechargeeach of these three blocks fo. real subscriptions from Yahoo!’s Behavioral Targeting (BT) group

In general, ifl, is about to be added tg in the /th iteration, but on inspecting that data set, we found that most interval pred-
I, will intersect a number of visible blocks, s&,Bs,..., By, or- icates were on pre-specified non-overlapping intervals. This was
dered by their left endpoint. Wheh is added to tq7, the blocks not due to a lack of demand for arbitrary intervals, but due to a lim-
B>,Bs,...,.Br—1 Will cease to be visible. BlockB; is reduced to itation of the current user interface; specifically, the interface pre-
cover justB; — I, and likewiseB;, reduces tdB;, — I,. Call these cluded subscribers from specifying arbitrary intervals because the
reduced blockd3; and By, respectively. So the addition df pro- underlying system did not support such intervals. Since our goal is
duces 3 new blocks3!, B;,, and the block whose range fs. We to enable arbitrary intervals, we decided to use a synthetic data set
charge each of these three blockd to instead because it illustrates the fundamental tradeoffs between the

But note that whenever an edge is added to a graph, we removeindex structures.
a visible block. (In the case outlined above, we may think of re- We generate a workload of subscriptions and queries based on a
moving B; and adding blockB}; likewise with By.) Every time d-dimensional Zipfian data generator [7] described in the literature.
we add a block, it is charged to some interval, so the total number The data generator, which we shall describe shortly, is used to gen-
of edges is at most the number of charged blocks. But every time erate a distribution of points. We then generate the query workload
we add an interval, exactly 3 blocks are charged to it. So the total by samplingrngyeries points from this distribution. The subscrip-
number of edges is at mast. The runtime thus follows from our tions are generated as follows. We draw a peint,; from the data
previous discussion. (] generator. We then independently pick a lengtfor each dimen-

sion from a Zipfian distribution of skew controlled b¥ewiengtn-
COROLLARY 3.1. An SOPT-Rtree for interval setZ can be The resulting subscription is the hyper-rectarigle (11, ..., I4),

constructed irO(n logn) time. wherel; = [&mia — li, Tmia + Li).
Recall that theR-tree and, hence, thBOPT-Rtree indices are
4., EXPERIMENTS very efficient when there is a large amount of overlap amongst the

subscriptions. On the contrary, interval trees should perform better
when there is lesser interval overlap as they allow for a finer parti-
tioning of the intervals. The Zipfian parametéfew;c,, 4.1 CONtrols
the overlap between intervals and, hence, is a crucial parameter that
we can vary to study the performance of our index structures across
a variety of scenarios. We believe that subscription scores are typ-
ically correlated with their selectivities. So, we set the score of the
subscription in each interval g5(1;) = 1 — ¢;.
The Zipfian Data GeneratorThe Zipfian data generator [7] as-
sumes that each dimension is discrete and finite. We simulate this
by dividing the[0, 1) interval of real numbers into; equal parts
J and numbering themthroughe; — 1. The data generator randomly
1 if g stabsl; selectsn,cgions hyper-rectangles. The number of points within

= Z 03 (13) where, 9; = { 0 elsqe. ’ each regiogn is bound by the parameters, andvmq.. The points

7=t that are generated are divided across the different regions @ugord
We build d single-dimensional indices using each of the follow- to a Zipfian distribution with a parametekewqcross. Within each
ing five indexes — the Scored Interval Tree, the Scored Segmentregion, the points are distributed again based on a Zipfian distribu-
Tree, the Scoredk-tree, ourlR-tree and ouSOPT-Riree. We also tion with a parameteskew,,ithin that makes points farther away

In this section, we present an experimental evaluation of the data
structures we proposed for ranked pub/sub. As part of our exper-
imental setup, we consider subscriptions od dimensional nu-
meric domain. Recall that, each subscriptiodefines an interval
I, in each dimension (i.e., a hyper-rectangle). We focus our exper-
imental evaluation on the more general relaxed matching problem.
Accordingly, a scoref;(I;) is associated with each dimensién
An event is a pointy = (qu, - - ., q4) in thed dimensional domain.

A subscription matches the event if in each dimensgjipstabsi;.
The combined score of a matching subscription is the sum of the
scores of the matched intervals

Param Description Default 2 S
k Top-k Parameter 20 ’\M.%f_,ﬂﬂka.#’%
— oTH 2+ R ——>¢--
Nintervals # Subscriptions 1 million S ¥
; i = IR {3
Ngueries #_Querl(_es 1000 © 1l SoPTR -
d # Dimensions 1 & 05 e
b Tree Branching Factor 50 8 ' [
skewiength Length Zipfian Param 0.75 @ 0.25 i e
- = -
Nwarm—up # Warmup Queries 100 = 0.125 X -
Zipfian Data Generator Parameters g e %%Q SR
- = 0.0625 $-=
Nregions # Regions 10 PRI
ci # Points in dimension 100 003125 &~ s
Umin, Umaz | Volume (min,max) per region| 1007/20 0.015625
& Zipfian Parameter to partition 0 1 2 4 8 16 32 64 128 256 512
SRE€Wacross points across regions Number of getNext() calls (logScale)
i o Zipfian Parameter for points 1
SREWwithin distribution within a region Figure 6: Varying the number of getnext() calls

Table 1: Parameters for Synthetic Data])
speed of our index structures depends on the time taken for ev-

. . . . _ ery getnext(). Figure 6 shows the total time taken as we vary
from the mid point of the region more unlikely. Table 1 describes the number ogetnext() calls (this is equivalent to varying in

the defaults values for the various parameters. 1 dimension). There are several interesting aspects to note from
The Zipfian data generator returns a discrete point dimen- the graph. First, as expected, the Interval Tree is the least efficient
sions. We need to convert this into a point in our original domain because of the high initial processing cost to find the right interval
[0,1)%.Recall that a pointps, . . .,pa) corresponds to the hyper- range (since the lists are in score order). Second, the performance
rectangleR = (Ri, ..., Ra), whereR; = |, mT:rl) We return of the ScoredR-Tree degrades as the numbergeftnext() calls

increase because they encounter many “holes” in their depth-first
traversal. Third, the performance of the Segment Tree antRthe
tree are about the same, even thoughlR¥#ree consumes at least

an order of magnitude less space. Finally, and perhaps most inter-
estingly, theSOPT-Rtree is always the most efficient and provides
up to a factor of 2 speed-up over the other approaches. Note, how-
ever, that the difference in performance between the different index

tructures decreases with the numbegetnext() calls; this is

a point chosen uniformly at random froR

We are now ready to describe our experimental results. In every
experiment, we first generate a subscription workload and build all
the indices. The build time for all the indices was very fast— under
a minute per dimension even when we had a million subscriptions.
We then performiqrm—up queries on the index and measure its
performance on then nextycries queries. We implemented these
algorithms in Java and performance measurements were made on

dual core machine with 4 GB RAM. ecause almost all the intervals are retrieved when the number of
calls is large, and the index structures are roughly similar in this
100,000| 200,000| 500,000 1,000,000 case.
Interval | 0.92M 1.7M 4.2M 8.3M
R 1.2M 2.4M 6M 12M 1024 &//%
Segment| 40M 89M 214M 429M . 256
IR 1.76M | 3.43M | 8.35M 16.5M g
@ 64
Y
Table 2: Memory usage of interval indexes (in MB) % 10
= 4
Experiment 1 Space Complexity of Data Structuréd/e mea- ‘Ei 1L
sure the memory usage of an index structure by measuring the £ £ s %
amount of heap space used by the implementation just before and a 0.25 IR =f]
just after constructing the index. Heap space measurements could 0.0625 SOPTR &
be misleading since old objects might not have been garbage col- 1 2 3 4 5 6 7 8
lected. However, such effects are eliminated by averaging over a numDimensions
large number of observation. Table 2 shows the memory usage of
the index structures per dimension as we vary the number of index Figure 7: Varying Number of Dimensions

intervals. We did not plot th&OPT-Rtree since it is essentially

an R-tree. As shown, the Segment Tree requires more than an or- Experiment 3 Varying the number of dimensiarfsigure 7 shows

der of magnitude more space than the other structures, and quicklythe performance of a query when varying the number of dimen-

becomes impractical when the number of intervals increases (notesions, and Figure 8 shows the performance of the different indices

that these are space requiremegoes dimensiop Regarding the relative to SOPT-Rtreewhen varying the number of dimensions

other structures, thER-tree takes up more space than the interval (note the log scale on both the y axes). The first striking aspect

andR-tree indexes, but it is at most twice as large as the interval is that as the dimensionality increases, the performance of all the

tree. This validates our claim that the-tree index and th€OPT- indices converges. This is because, at higher dimensions, the num-

R-tree index have a low space overhead. ber ofgetnext() operations needed to retrieve the fipbecomes
Experiment 2 Varying the number ofetnext() calls. The very large and hence almost all the stabbed intervals have to be re-

5. RELATED WORK

16

Interval —‘0— L . .
N R ---%--- To the best of our knowledge, this is the first piece of work to ad-
8 u§ ’5) dress the ranked publish/subscribe problem; still, there are several
SOPT-R -4 related problems that have been studied in the research literature.

As mentioned earlier, the bulk of conventional pub/sub engines
and indexing tools (e.g., [3, 6, 13, 15, 25]) are based on the con-
cept ofstrict binary matchegi.e., find all subscriptions matching

an event), and do not incorporate notions of subscription ranking.
2’_7;.7,,,_ - x Of course, our ranked pub/sub problem can be naively solved by

Time relative to OPT-R tree
N

first finding the set o&ll matching subscriptionée.g. using a sys-
tem like LeSubscribg15] or Gryphon[3]), and then ranking these
matches in a post-processing step. This can be a very wasteful,

numbimensions time-consuming approach, especially for events that are not very
)))) “selective” (e.g., vague job seeker profiles — common in practice),
Figure 8: Varying Number of Dimensions and end up matching a very large number of standing subscriptions.

In a sense, the arguments here are very similar to those for optimiz-
ing top+ query evaluation in relational systems [20].
trieved. Since all the index structures are roughly equally efficient ~ More recent work orsymmetric pub/suf27] considers a set-
in returning the set of all matches, their performance converges ting where both events and subscriptions are specified as constraints
(this is one manifestation of the dimensionality curse). However, (or, ranges for numeric attributes), and shows how they can be ex-
for a reasonable number of dimensions (1, 2, 3, 4),SPT-R pressed as PostgreSQL queries using its geoneiee | ap and
tree still offers significant benefits ranging from 16x to 1.5x over cont ai ns predicates. Subscription ranking is not considered in
other approaches. Further, tHietree offers roughly similar ben- their study. Extending our fast interval indexing schemes to the
efits with the added benefit of supporting incremental subscription symmetric pub/sub setting is an interesting problem. Liu and Ja-
insertions and deletions. Finally, while the Segment Tree has a cobsen [22] propose an interesting extension to traditional pub/sub
good response time, it ran out of memorgatimensions, showing models by allowing fofuzzy matchingef events to subscriptions,
that it is not well suited for for in-memory implementations. using ideas from fuzzy logic and possibility theory. Still, they also
do not consider subscription ranking; instead, their schemes rely
on using auser-defined thresholfdr the fuzzy-match score and re-

(2]
o

- *\\/H/ X tgr_ning all ma_tches above that threshold. Investigating the applica—

E 55 3 bility of these ideas forankedretrieval under such fuzzy-matching

§ 50 ﬁ’> score functions opens up a very interesting area for future work.

- KEQ S—— ok In traditional Nearest-Neighbor (NN) searde.g., [9, 26]), the

= 4 R Nt 5%\% goal is to find the top few points that are close to otheints

%; 40 RN In contrast, in ranked pub/sub, we are interested in finding points

S a5 S close taintervals This seemingly simple distinction requires a fun-

£ T damental rethinking of index structures based on intervals, which
30 is the main focus of this paper. Some variants of NN search do
00625 0125 025 05 1 2 4

return regions that are close to a query point [24], but the defini-
skew-length . « " i
tion of “close” is hard-coded based on geometric distances, and the
Interval —+— S K- SOPT-R —-A-- . . .

R -~ IR [techniques do not generalize to the ranked pub/sub scenario where
each dimension of a subscription can have its own weighted score.
Rank-sensitive B-tree structurfs aim to efficiently rank the re-
sult points of interval range queries by maintaining ranked lists of
data points in thd-tree nodes; similarly, ipreference querief,

Experiment 4 Varying subscription overlagFigure 9 shows the ef- 8], the goal is to find the best data points that match a given user

Figure 9: Varying subscription overlap

fect of varying subscription overlap (a lower value fdfewien g:n query. In contrast, ranked pub/sub considers the inverse problem,
means larger hyper-rectangles and hence more overlap amongstthere the goalis to find the best queries (subscriptions) that match
the subscriptions). We fix the number of dimensionsttoThe a given data point (event). Again, this fundamental distinction of

most interesting take-away from this graph is that while all the indexing intervals as opposed to points requires the development
interval indexes become faster aew;.nq:n increases, (scored) Of new index structures. Work dyounded continuous querigk9]
R-trees degrade in performance. Recall from Section 2.2.3 that considers the problem of selecting the topventsfor a given sub-
Scored R-trees group intervals based on their score rather than Scription over a specified time period. The ranked pub/sub problem,
their spatial intent. Larger values ekew;.ny:n cause “holes” onthe otherhand, considers the problem of selecting thé sfs-
in the R-tree structure. Performance degrades as the [left-first] SCriptionsthat match a given event.
depth-first traversal visits many leaf nodes which do not contain There are other data structures that are related to our problem.
any stabbed interval. The same problem does not affe@@RT- AggregateR-trees (like Ra trees [16]), that store aggregates (e.g.,
R-tree since non-overlapping intervals are intelligently rearranged the maximum score) at each internal node can be adapted to solve
to avoid gaps. The rest of the index structures improve in perfor- the ranked pub/sub problem if the top-k parameter is known up
mance because it is easier to partition a space with |arge gaps. front. Partially-persister‘lt data Stl’ucture(SUCh as, multi-version

In summary, theSOPT-Rtree has the best performance across B-trees [4]) capture the evolution of a data structure (e.@-teee

the board for a reasonable number of dimensions, whiléRieee ~ index) over time, and allow for query points to address any ver-
comes a close second. sion of the data structure in time. This work obviously has some

strong connections to our ranked pub/sub indexing problem: sub- dimensional indices and dimensionality reduction techniques.

scriptions can be viewed as temporal intervals in a multi-version K | Id lik hank Neil
index and stabbing events essentially query a particular version of Acknowledgements.We would like to thank Pat O'Neil, Jun Yang,

that index in time. At the same time, compared to, say, the optimal and Pankaj Agarwal for several helpful comments and suggestions

multi-version B-trees of [4], our approach exhibits some key ben-
efits for ranked pub/sub indexing. First, our winning index strate- /. REFERENCES

gies offermuch stronger space-efficiency guarantdes instance, [1] AOL Audience Targeting.

in the space analysis of [4], the constants hidden in(ig fac- www.aolmedianetworks.com/index.php?id=1936

tors can actually introduce up to a factar.5 blowup in the space [2] R. Agrawal, E. Wimmers. A Framework for Expressing and
requirements of the basiB-tree structure. (This is mainly due to Combining Preferences. SIGMOD 2000.

splitting intervals into multiple segments based on their end points [3] G- Banavar, T. Chandra, B. Mukherjee, J. NagarajaracEficient

. . Multicast Protocol for Content-Based Publish-Subscripst@ns.
(i.e., version changes).) In contrast, the space blowup cSQRT- ICDCS 1999

Rree is always upper bounded by a factor(df+ b—%) (Theo- [4] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer. A
rem 3.2), which is typically less tha0% (for realistic values 0b). Asymptotically Optimal Multiversion B-Tree. The VLDB Journa
Second, unlikéR-trees, multi-versiorB-trees do not allow for in- 5(4), 1996.

cremental updates to the subscription set, since temporal intervals [5] W. Bialynicka-Birula, R. Grossi. Rank-Sensitive Dataugtures.
(i.e., versions) can only be inserted in increasing order of their left SPIRE 2005.

o

] A. Carzaniga, A. L. Wolf. Forwarding in a Content-BasedtiNork.
SIGCOMM 2003.
[7] K. Chakrabarti, M. Garofalakis, R. Rastogi, K. Shim Apgimate

endpoints. We should, of course, note that it might be possible to [

extend/adapt ideas from partially-persistent data structures to pro-

vide effective solutions specifically targeted to our ranked pub/sub Query Processing Using Wavelets VL DB 2000.

setting — exploring such adaptations and comparing them to the [8] J. Chomicki. Querying with Intrinsic Preferences. EDBIU2.

techniques presented here is an interesting avenue for future work. 9] k. . Clarkson. A Randomized Algorithm for Closest Pointi€ies.
SIAM Journal of Computing 17(4), 1988.

10] TH.C ,CE.Lei , R.L. Rivest. Introducti
6. CONCLUSIONS AND FUTURE WORK []Algoritﬁg‘s‘?r"\m Preseé?iggg. vest. Introduction

We have introduced the new problem of ranked pub/sub systems, [11] poubleClick Targeting Filters.
developing indexing solutions for the case where events are points www2.doubleclick.com/dk/advertisers/brand/filters.htm
in a n-dimensional space, and subscriptions are intervals in that [12] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf.
space. The index structures lR-tree andSOPT-Rtree— are com- Computational Geometry: Algorithms and Applications.
pact and efficient, and scale well for reasonable values e be- Springer-Verlag, Heidelberg, 2000.
lieve that this work is only the first step towards building truly flex- [13] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, P. Fischétath
ible and sophisticated ranked pub/sub systems, and that addressing ~ >1a"ing and Predicate Evaluation for High-Performance XML

the followi . | load | to that aoal: Filtering. TODS 28(4), 2003.
€ following open issues will 1ead us closer o that goal: [14] Y. Diao, S. Rizvi, M. J. Franklin. Towards an Interneteie XML

More expressive subscriptionstany applications such as content- Dissemination Service. VLDB 2004. _

based filtering [14, 25] have subscriptions that are specified as paths[15] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. s&

over hierarchical XML documents. Further, such applications also gua?sflgi'bzl:tﬁgg'gsf‘g&ggmzsoggd Implementation for Vergt-a
mix structu_ral and content filters. Supporting such_sgbsgrlptlo_ns [16] M. Jurgens, H. J. Lenz. The Ra*-tree: An Improved R-trétaw
Would_ require the development of new scor_ed s_,ubscrlptlon indexing Materialized Data for Supporting Range Queries on OLAPaDat
techniques that go beyond those for indexing intervals. DEXA Workshop, 1998.

More expressive eventsn applications such as online job sites, [17] ,\Rﬂ'i(;:;gwég 'EOtSL”ﬁM'tNSOS“t Ospcti'”éag (/i)ggzrgggtlon Algomts for
the eventsthemselves could be intervals, e.g., a job seeker might (18] A Guttman. é-TreeguA D));na.\mic-lndex ’Structﬁre for Sgatia
_be interested in Job_s that require 20-30 hour work weeks. A. rel_atgd Searching. SIGMOD 1984

issue occurs in online adver_tlsmg where some user behavior is iN- [19] D. Kukulenz, A. Ntoulas. Answering Bounded Continu&esarch
ferred and is hence uncertain, e.g., we might be infer an approxi- Queries in the World Wide Web. WWW 2007.

mate probability of a user being interested in sports, but his estimate [20] C. Li, K. C. Chang, I. llyas, S. Song. RankSQL: query &igeand
may have an error bound. Modeling such events with intervals and optimization for relational top-k queries. SIGMOD 2005.

uncertainty again requires a rethinking of scored interval indices. [21] Z. Liu, S. Parthasarthy, A. Ranganathan, H. Yang. Sxal&vent

. o Matching for Overlapping Subscriptions in Pub/Sub SystddiBS
Score updatesScore updates can be very useful in applications 2007.

such as online advertising, where the priority of a line can depend [22] H. Liu, H.A. Jacobsen. Modeling Uncertainties in PehfiSubscribe
on how far it is from the delivery goal of, say 10,000 million im- Systems. ICDE 2003.

pressions a day, and can thus change after just a few ads are serve{R3] F. P. Preparata, M. |. Shamos. Computational Geometry: An

in a space of a few minutes. While some of our proposed index Introduction. Springer-Verlag, 1985.

structures can support incremental addition/deletion of subscrip- [24] N. Roussopoulos, S. Kelley, F. Vincent. Nearest NetgtQueries.

tions, they do not support score updates, which would require the SIGMOD 1995.)
development of new techniques. [25] A. C. Snoeren, K. Conley, D. K. Gifford. Mesh-Based Gantt

Routing using XML. SOSP 2001.

Scaling to high dimensionsVith the advent of behavioral targeting ~ [26] R. L. Sproull. Refinements to Nearest-Neighbor Seaghin

in online advertising [1, 11, 28], there can be hundreds of dimen- k-Dimensional Trees. Algorithmica 6, 1987.

sions associated with an user (e.g., propensity for sports, propen-[27] A. Tomasic, C. Garrod, K. Popendorf. Symmetric Publishiuibe
sity for shopping, etc.). Scaling to such a large number of dimen- via Constraint Publication. ExpDB 2006.

sions requires new techniques that go beyond our current solution (28] Ya_hOO! Advertising Targeting Op.tlons')

of 1-dimensional indices using the Threshold Algorithm. Possible advertising.yahoo.com/central/marketing/targeting.html

solutions to this problem include the development of scored multi-

