
Scalable Ranked Publish/Subscribe

Ashwin Machanavajjhala∗ , Erik Vee† , Minos Garofalakis† , and Jayavel Shanmugasundaram†

∗Cornell University and †Yahoo! Research

ABSTRACT
Publish/subscribe (pub/sub) systems are designed to efficiently match in-
coming events (e.g., stock quotes) against a set of subscriptions (e.g., trader
profiles specifying quotes of interest). However, current pub/sub systems
only support a simple binary notion of matching: an event either matches a
subscription or it does not; for instance, a stock quote willeither match or
not match a trader profile. In this paper, we argue that this simple notion of
matching is inadequate for many applications where only the “best” match-
ing subscriptions are of interest. For instance, in targeted Web advertising,
an incoming user (“event”) may match several different advertiser-specified
user profiles (“subscriptions”), but given the limited advertising real-estate,
we want to quickly discover the best (e.g., most relevant) adsto display.

To address this need, we initiate a study ofrankedpub/sub systems. We
focus on the case where subscriptions correspond to interval ranges (e.g,
age in [25,35] and salary> $50, 000), and events are points that match all
the intervals that they stab (e.g., age=28, salary = $65,000). In addition,
each interval has a score and our goal is to quickly recover the top-scoring
matching subscriptions. Unfortunately, adapting existingindex structures
to solve this problem results in either an unacceptable space overhead or
a significant performance degradation. We thus propose two novel index
structures that are both compact and efficient. Our experimental evaluation
shows that the proposed structures provide a scalable basisfor designing
ranked pub/sub systems.

1. INTRODUCTION
The exploding volume of information available on the Internet

has fueled the development of middleware systems that are based
on the publish/subscribe (or pub/sub) paradigm. Such systems rely
on efficiently matching streams of published events to a large num-
ber of subscriptions that correspond to subscriber interests in spe-
cific classes of events. A canonical example of pub/sub systems
involves stock trading: publishers such as the New York Stock Ex-
change publish stock quotes and stock traders register their interest
in specific stock events, e.g., notify me when the stock price of
Apple exceeds $200.

While there has been a large body of work on building scalable
pub/sub systems (e.g., [3, 6, 13, 15, 25]), all of them rely on a sim-
ple binary notion of matching that assumes that each event either
matches a subscription or it does not, andall matching subscrip-
tions are returned. However, many emerging applications require
a more sophisticated notion of matching, where only the “best”

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

matching subscriptions are of interest. This gives rise to a new
class of pub/sub systems that we callrankedpub/sub systems. We
motivate the need for such systems using three application scenar-
ios.(Note that we are using the term “pub/sub” in a somewhat un-
conventional manner, to capture scenarios where a dynamic stream
of events must be quickly matched against a large collection of
standing subscriptions. These subscription matchings are not nec-
essarily tied to an underlying event-notification or data-dissemination
service.)

Targeted Web Advertising: An emerging trend in online adver-
tising is enabling advertisers to target users based on information
such as user demographics, profile information and online activ-
ity [1, 11, 28]. For instance, a mortgage vendor may wish to target
online users between 20 and 35 years of age, who have a credit
score between 400 and 500, and who have visited a real estate Web
site at least 3 times in the past month, and show an ad tailored to
such users when they visit an online website. This can be modeled
as a pub/sub problem, where the stream of incoming users corre-
sponds to events (e.g., a user with age = 25, credit score = 441, and
real estate count = 6), and the advertiser specifications are subscrip-
tions (e.g., 20≤ age≤ 35 and 400≤ credit score≤ 500 and real
estate count≥ 3). However, unlike traditional pub/sub systems, we
do not wish to retrieve all the subscriptions (ads) that correspond
to a given event (user) because we can only show a small number
of ads in a Web page. Rather, we only wish to retrieve the “best”
subscriptions based on some criteria such as the most targeted ads
(tightest enclosing rectangles), the most profitable ads, the most
underserved ads, etc.

Online Job Sites: Several online job sites (e.g.,HotJobs.com,
Monster.com) allow job seekers to register profiles, and also allow
job posters to specify job seeker profiles that they are interested in.
For instance, a job seeker may register a profile for nursing jobs that
pay $50 per hour and have a 25 hour work week, while a job poster
may express an interest in nurses who are willing to work between
20 and 30 hours per week for $45-60 per hour. Then, when a job
seeker visits the site, she can be presented with jobs that match her
profile. This can again be modeled as a pub/sub problem, where
the events are job seekers (e.g., job type = nursing, hourly rate =
$50 and hours per week = 25) and the subscriptions are job poster
interests (e.g., job type = nursing, 45≤ hourly rate≤ 60, and 20≤
hours per week≤ 30). However, as in the targeted advertising case,
we cannot show all the jobs that match a user profile because of the
limited real estate on the Web page. Thus, we want to retrieve only
the best jobs for a given user based on criteria such as the monetary
value to the job poster, fairness of exposure across job postings, etc.

Application-level Routers: In information dissemination applica-
tions, application-level routers are commonly used to route docu-

ments based on their content [3, 6, 25]. For instance, in a financial
news feed application, a news document can have fields such as
the date posted and average analyst ratings, and subscribers can re-
quest documents within a specified date and analyst rating range.
This corresponds to a typical pub/sub application, where the events
are news documents (e.g., date posted = 16 Nov 2007 and analyst
rating = 3) and the subscriptions are subscriber interests (e.g., date
posted> 1 Nov 2007 and analyst rating< 4). However, in high-
volume applications, an application-level router may be required to
shed some load (i.e., avoid delivering some events to certain sub-
scribers) due to CPU and/or network bandwidth limitations, and
this load shedding needs to be guided by factors such as subscriber
priority or service level agreements. This can again be modeled
as a ranked pub/sub problem, where the score of a subscription is
the subscriber priority or the deviation from the service level agree-
ment.

In this paper, we initiate a study of scalable and efficient tech-
niques for the ranked pub/sub problem. We focus on the problem
where each event is represented as a point(v1, . . . , vd) over ad-
dimensional space, and each subscription is represented as a set of
intervals(I1, . . . , Id) over that space. (It is easy to see how the
above motivating examples can be mapped to this model.) Further,
we consider two notions of matching: exact matching and relaxed
matching.

Exact Matching: A subscription(I1, . . . , Id) matches an event
(v1, . . . , vd) if and only if ∀i ∈ [1, d](vi ∈ Ii), i.e., the event is
fully contained in the subscription’s hyper-rectangle. Further, every
subscription has an associated score, and the goal is to return the top
few subscriptions ordered by the score.1 As an illustration of this
semantics, consider an application-level router where we only wish
to route messages that satisfyall the subscription constraints, and
the score of a subscription represents the priority of the subscriber.

Relaxed Matching:A subscription(I1, . . . , Id) matches an event
(v1, . . . , vd) if and only if ∃i ∈ [1, d](vi ∈ Ii), i.e., at least one
dimension of the event is contained in the corresponding interval
of the subscription. Further, a weightwd is associated witheach
dimensionof a subscription, and the score of a subscription is the
sum2 of the weights of the matching dimensions, i.e.,
Σi∈{j|j∈[1,d]∧vj∈Ij}wi. For instance, in online advertising and job
sites, it is preferable but not necessary to satisfy all the subscrip-
tion constraints (e.g., we might show an ad even if it does not fully
satisfy the user profile). Further, different dimensions of an ad may
be weighted differently (e.g., a credit score match may be more
important to an advertiser than an age match).

Given the above problem statement, a natural question arises:
How do we implement the these ranked pub/sub systems in order
to achieve scalability and efficiency? One naive approach is to use
a traditional (unranked) pub/sub system to retrieveall the subscrip-
tions that match an event, and then perform some post-processing
to retrieve the top few matches. Such a naive solution, however, is
clearly inefficient since it produces all the matching subscriptions
even though only the top few matches are desired. This issue is par-
ticularly problematic in applications like online advertising and job
sites, where the number of matches (i.e., ads, jobs) far exceeds the
number that can be shown on a single Web page, and in application-
level routers, where producing all the matches consumes already

1In our work, we assume that subscription scores are given and are inde-
pendent of the matching event/point— extending our techniques to handle
event-dependent subscription scores is a challenging areafor future work.
2More generally, the score of a subscription can described byany mono-
tonic functionof the weights.

Space

T
im

e

Scored
Segment TreeScore-Optimal

R-Tree

IR-Tree

Scored R-Tree

Scored
Interval Tree

Figure 1: Space-Time Tradeoffs for Scored Interval Indices

scarce resources.
Hence, we propose an alternative solution that works as follows.

For each dimensioni, we build aScored Interval Indexover the
subscription intervals in that dimension. A Scored Interval Index
is designed to take in a event valuevi and provide an efficient
getnext() iterator that returns the intervals containingvd in the
order of their score. (For exact matching, the score of a subscrip-
tion interval is simply the score of the subscription; for flexible
matching, the score is the weight of the subscription interval in the
given dimension.) Given these indices, an incoming event(v1, . . . ,
vn) is processed as follows. First, the indices are probed with the
event values to produce a set of iterators. Then, in the case of ex-
act matching, the intervals produced by the iterators are intersected
to produce the subscriptions in score order. In the case of flexi-
ble matching, the Threshold Algorithm [17], which is an instance-
optimal algorithm for merging multiple ranked lists with different
rank (weight) orders, is used to efficiently find the subscriptions
with the highest scores.

Our decision to use many one-dimensional Scored Interval In-
dices instead of using a single multi-dimension index warrants some
discussion. The primary reason for this choice is our requirement
to support relaxed matching, which requires the ability to drop cer-
tain subscription dimensions from consideration at event process-
ing time. While we are not aware of any multi-dimensional in-
dex with this capability, the Threshold Algorithm easily handles
this case by ignoring the weights for the dropped dimensions when
computing the overall score. The other reason for our choice is
more pragmatic: to the best of our knowledge, there are no inter-
val index structures (one-dimensional or multi-dimensional) in the
literature that are optimized for ranked retrieval of scored matches.
So, the focus of this paper is on the easier (albeit still challenging!)
problem of developing scored one-dimensional indices for process-
ing multi-dimensional events.

Given the above system architecture, the main technical chal-
lenge is devising efficient Scored Interval Indices. Existing inter-
val index structures such as interval trees [23], segment trees [12]
and (1-dimensional) R-trees [18] are not directly applicable to this
problem because they do not produce results in score order. Thus,
we propose some simple adaptations to these structures that can
produce results in score order. Unfortunately, our analytical and
experimental results show that these adaptations are either time-
inefficient (i.e., slow response time) or space-inefficient. Figure 1
pictorially depicts this qualitative tradeoff (not drawn to scale).

Based on the above observations, one of our main contributions
is the development of two new index structures – theInterval R-
tree (IR-tree) and theScore-Optimal R-Tree(SOPT-R-tree) – that

are both time- and space- efficient (Figure 1). TheSOPT-R-tree,
which relies on intelligent pre-processing of the underlying interval
set before indexing it using anR-tree, is the most efficient in terms
of both time and space. In fact, we can prove that we can retrieve
the top-k results inO(k × log n) time, wheren is the number of
subscriptions. However,SOPT-R-trees cannot handle incremental
updates easily. On the other hand, theIR-tree, which is a hybrid
between an Interval Tree and anR-tree, is marginally slower than
theSOPT-R-tree, but is incrementally updateable.

In summary, the main contributions of this paper are:

• We propose and formalize the novel problem ofranked pub-
lish/subscribe.

• While exploring simple adaptations of existing structures to
support scoring, we identify an interesting space-time trade-
off (Section 2) for ranked subscription retrieval.

• We devise new, score-aware index structures that are both
space and time efficient (Section 3).

• We give an experimental evaluation of the proposed indexing
structures that convincingly demonstrates the benefits of our
approach (Section 4)

2. RANKED RETRIEVAL USING EXISTING
INTERVAL INDEX STRUCTURES

In this section we describe three existing interval index struc-
tures, namely the Interval Tree, the Segment Tree and theR-tree.
These index structures are designed to supportinterval stabbing
queries, i.e., queries that return the set of all intervals that are
stabbed by a given query point. We, however, are interested in
top-k interval stabbing queries, i.e., queries that return the top-
k scoring intervals that are stabbed by a query point. In the latter
part of this section, we describe scored adaptations of these index
structures that support top-k interval stabbing queries.

2.1 Standard Interval Index Structures
Interval- and segment-tree indexes are the “standard” known so-

lutions for efficiently processing simple interval-stabbing queries
over the real line. We now briefly describe the key ideas behind
each index. In either case, the input comprises of a collection of
n intervalsI, where each intervalIi ∈ I is a pair of left/right
endpoints (Ii = [xl

i, x
r
i], i = 1, . . . , n).

2.1.1 Interval Trees
An interval tree[23] overI is constructed in a recursive man-

ner as follows. We pick the median endpointxmed of the interval
collection, and letI(xmed) ⊂ I denote the subset of intervals
in our collection that are stabbed byxmed. Also, let Il(xmed)
(Ir(xmed)) be the subset of intervals completely to the left (resp.,
right) of the medianxmed. Create an interval-tree nodev contain-
ing two sorted lists of the intervals inI(xmed): one sorted by inter-
val left-endpoints and one sorted by interval right-endpoints. Then,
for the left and right child subtree ofv, recurse the above construc-
tion onIl(xmed) andIr(xmed), respectively. Note that, assuming
a roughly even split of intervals across thexmed (i.e.,|Il(xmed)| ≈
|Ir(xmed)|), the height of the interval tree isO(log n). To process
a stabbing query for pointq over the interval tree, start from the
root node, and, for each visited tree nodev: If q = xmed atv, then
simply return all the intervals in thev node; else, ifq < xmed atv,
then traverse the left-endpoint-sorted list atv to return all intervals
that begin beforeq, and recurse the search on the left child ofv;
otherwise, traverse the right-endpoint sorted list atv to return all

4,8

10

2

5
6

9

1
3

4
7

8

395,9

2,7

4

816

10

0 10 30 45 55 65 75 90 100

1, 3, 10

2,4,7,85,6,9

10

2

5
6

9

1
3

4
7

8

100500 20 80

Figure 2: Interval and Segment Trees

intervals that end afterq, and recurse the search on the right child
of v.

It is not difficult to see that the space requirements of the interval
tree overI areO(n) (as each interval is stored only in a single
tree n node and replicated in two lists). The construction time for
the interval tree isO(n log n), and, lettingm(q) denote the size
of the answer set for a stabbing queryq, the time to answerq is
O(m(q) + log n).

EXAMPLE 1. Figure 2 (on the left) shows a set of ten intervals
(labeled1 through10) on a line segment between0 and100. 50
is the median end point. This partitions the intervals into the set of
intervals stabbed by50, {1, 3, 10}, the set of intervals completely
to the left of50, {5, 6, 9}, and the set of intervals to the right of50,
{2, 4, 7, 8}. The recursive construction stops at the next level after
finding medians20 and 80 that stab all the intervals in{5, 6, 9}
and{2, 4, 7, 8}, respectively. The left end-point and the right end-
point sorted lists maintained in the root node (not shown in the fig-
ure), for instance, would be{10, 1, 3} and{1, 3, 10}, respectively.

2.1.2 Segment Trees
In contrast to interval trees, asegment tree[12] overI relies on

partitioning the intervals inI into a collection ofdisjoint, atomic
segments, and then indexing these segments using a binary-tree
structure. The atomic segments are simply defined by sorting the
collection of all2n endpoints inI and taking the segments defined
by consecutive endpoints in the list (including−∞ and+∞ as the
leftmost and rightmost points, respectively); note that this results in
at most2n+1 atomic segments overI. The segment tree overI is
a balanced binary tree over the above sequence of atomic segments.
Note that each nodev of the tree can be described by a singleextent
interval interval(v) that is equal to the union of all atomic seg-
ments underv’s subtree. A nodev stores the interval ids for all in-
tervalsI ∈ I such thatinterval(v) ⊆ I but interval(u) 6⊆ I,
whereu is the parent node ofv (in other words,interval(v) is
a maximal node-extent interval in the tree that is completely con-
tained inI). Processing a stabbing query using a segment tree is
greatly simplified by the fact that the atomic segments partition the
underlying domain, which, in turn, implies that, at each level of the
segment tree, the query pointq stabsexactly oneof the node-extent
intervals. Thus, starting from the root, we only need to follow a
path of stabbed nodes to a leaf and return all the interval ids stored
at each stabbed node.

The construction time and query time requirements for a seg-
ment tree are similar to those for an interval tree:O(n log n) and
O(m(q)+log n), respectively (wherem(q) is again the size of the
answer set forq). A key difference lies in the space requirements of
the two structures: By partitioning each interval inI across node-
extent intervals, in the worst case, each interval id can be replicated
across at most two distinct (non-sibling) nodesat each levelof a
segment tree. Thus, the worst-case space requirements of the seg-
ment tree areO(n log n).

EXAMPLE 2. Figure 2 (on the right) shows the same set of in-
tervals{1, . . . , 10}when indexed by a segment tree. Letx1, . . . , x9

denote the9 distinct end points. Each segment[xi, xi+1], i =
, 1 . . . , 8, is an atomic segment. Hence, the segment tree has four
levels, with the lowest level containing one nodevxi,xi+1

for each
atomic segment. The interval9, for instance, is stored in the nodes
v10,30 andv30,45, since both[10, 30] and[30, 45] are contained in
interval 9, but none of their parent nodes are contained in9. To
illustrate query processing, let75 < q < 90. An interval stabbed
byq contains the atomic segment[75, 90] and hence should appear
in the nodev75,90 or one of its parents. Therefore, the intervals
{10, 2, 7, 4, 8} intersectq.

2.1.3 R-Trees for Stabbing Queries
Conventionally,R-trees [18] have been used for indexing hyper-

rectangles in order to efficiently search for all rectangles that over-
lap with a query rectangle. In a single dimension, intervals “over-
lap” a query pointq if and only if they are stabbed byq. Hence,
we can useR-trees to solve our problem. TheR-tree groups in-
tervals into partitions of size at mostb, whereb is thebranching
factor. Various heuristics can be used for grouping intervals, in-
cluding minimizing the size of the bounding interval for a group,
minimizing bounding interval overlap between groups, or grouping
intervals by their start or end points.

Each group of intervals is stored in aleaf nodeof the R-tree.
The leaf node is associated with anextent intervalwhich is the
minimum bounding intervalof the intervals in leaf node. Suppose
[ℓg

i , rg
i], i = 1, . . . , b, are the intervals in a leaf nodeg. ThenIg =

[ℓg, rg], whereℓg = mini ℓg
i andrg = maxi rg

i is the minimum
bounding interval. TheR-tree is constructed recursively on these
minimum bounding intervals. Finally, we add a child pointer from
the entry corresponding to intervalIg to the leaf nodeg. In order to
answer a stabbing queryq, we start from the root and keep chasing
child pointers as long asq is in the extent of each intermediate
node. Once, we reach a leaf node, we return the set of intervals
that containq. Note that intervals in multiple leaf nodes might
contain the pointq, and hence we might need to go down multiple
root-to-leaf paths. It can be shown that anR-tree only requires

O
“
n ×

“
1 + 2

b−1

””
space, but in the worst case might takeO(n)

time to return all the stabbed intervals.

EXAMPLE 3. Figure 3 shows a set of intervals indexed by an
R-tree with branching factor4. The intervals are grouped so as to
try and minimize the size of the bounding intervals. The leaf nodes
partition the intervals into groups of at most4 and each entry in the
root node is a minimum bounding interval of the leaf nodes. The
R-tree constructed in Figure 3 is especially bad since, for instance,
every node in thisR-tree needs to be visited to answer a query
q = 35.

2.2 Scored Interval Index Structures
We now describeScored Intervaltrees,Scored Segmenttrees,

andScored R-trees, simple adaptations of the three standard inter-
val indexes. Our analysis demonstrates that these scored variants

5

9

1
3

10

2

4
7

8
6

965

0-10030-1000- 45

321 8 1074

100300 10 45 55 65 75 90

Figure 3: R-Tree

of the standard index structures give rise to an interesting space/-
time tradeoff: While being very space efficient, interval trees and
R-trees require significantly more time to process top-k stabbing
queries (time linear in the number of intervals, in the worst case);
in contrast, segment trees allow for extremely efficient ranking but,
of course, can also incur aO(log n) factor blowup in space. Note
that, with subscription numbersn in the millions, suchO(log n)
can be very significant — in the worst case, they can render main-
memory indexing infeasible.

We first introduce some basic notation that will be useful for our
analysis of the scored interval- and segment-trees. Given an index
nodev (in either an interval tree or a segment tree) and a query
point q, we usenv to denote the number of intervals inI that are
stored in nodev, andmv(q) to denote the number of those intervals
that are stabbed byq. We also definemv(q̄) = nv − mv(q) (i.e.,
the number ofv’s intervals that donot containq). Finally, we let
path(q) denote the set of nodes on a root-to-leaf tree path that are
traversed when processing query pointq.

2.2.1 Scored Segment Trees
A segment-tree index can be easily adapted to return the top-k

scoring intervals ofI stabbed by a query pointq. Recall that, for
eachI stored inv, I ⊇ interval(v). Hence, the key observation
here is that if the extent interval ofv is stabbed byq (and, thus,
accessed during the basic retrieval algorithm), thenall interval ids
stored in nodev are also guaranteed to be stabbed byq.

For score-based retrieval, the intervals in each segment-tree node
are stored sorted in the order of their scores. (Note that this does not
increase the asymptotic segment-tree construction cost, which re-
mainsO(n log n).) Then, since a query point only stabsO(log n)
tree nodes along a root-to-leaf path, we can retrieve the stabbed
intervals in rank order by simply maintaining a max-heap of size
O(log n) across these stabbed nodes. Agetnext() operation sim-
ply extracts the maximum element from the heap (belonging to,
say, stabbed nodev), and then replenishes the heap by inserting
the next-best interval from nodev — the total cost of both opera-
tions is onlyO(log log n). (In fact, since this next-best interval has
a lower score, we can use the more efficientdecreaseKey() op-
eration on the heap [10].) The overall cost for retrieving the top-k
scoring stabbed intervals forq (including the cost to build the initial
max-heap) isO(log n log log n+ k log log n).

2.2.2 Scored Interval Trees
In contrast to segment trees, the intervals stored in an interval-

tree node that is explored during a (conventional) stabbing query,
arenot all guaranteed to be stabbed by the query point. Thus, to
support ranked stabbing queries, the retrieval algorithm needs to
query bothinterval end points and scoresat each interval tree node.
Hence, the interval tree can be adapted to support ranking naturally
in two ways.

Conventional (Endpoint-Sorted) Interval Tree. One approach is
to simply employ the basic interval-tree index structure. Like in the
basic stabbing query algorithm, at each visited tree nodev, we re-

trieve the intervals stabbed by the query pointq. We also keep track
of the top-k scoring intervals inv using a per-node max-heap struc-
ture of sizek. (Of course, the heap is only needed ifmv(q) > k.)
Then, to extract the global top-k stabbed intervals in the tree, we
maintain a global max-heap of sizeO(log n) to keep track of each
of the nodes onpath(q). Each call togetnext() extracts the best
interval (say, from nodev) from the global max-heap, which then
replenishes itself by inserting the next-best interval fromv (simi-
lar to the heap described for the segment-tree scheme). The over-
all (worst-case) time complexity, which includes the time to build
the per-node max-heaps as well as the time to build and probe the
traversed-path max-heap isO(m(q) log k + k(log k + log log n)).

Score-Sorted Interval Tree. Rather than sorting intervals in a
node by their endpoints, an obvious alternative is to sort intervals
by their scores (thus, essentially, favoring score ranking instead of
stabbing-based selection). Each node in thisscore-sortedinterval
tree index also maintains the minimum and maximum endpoints
across all intervals stored in the node — this allows us to quickly
determine whether the intervals in a node are potentially stabbed
by an input query point.

In order to retrieve the top-k stabbed intervals, we maintain a
global max-heap of sizeO(log n) across the nodes on the root-to-
leaf path stabbed by the query pointq (i.e. path(q)) that, at each
point, contains the next-best stabbed interval from each node. The
problem here is that, since intervals in each nodev are sorted by
score, getting the next-best interval fromv that is actually stabbed
by q might require an expensive linear scan over the score-sorted
list; in the worst case, we may need to examine (and discard)O(mv(q̄))
intervals from each nodev on the query path. Thus, we expect
this indexing scheme to perform well only if most of the inter-
vals in the stabbed nodes onpath(q) are actually stabbed byq
(i.e., themv(q̄)’s are small). The overall worst-case time com-
plexity for top-k retrieval using the score-sorted interval tree is
O(

P
v∈path(q) mv(q̄)+ (log n + k) log log n).

Our experiments have shown that the score-sorted interval tree
is typically much more efficient than the conventional interval tree
for top-k stabbing queries, since the running time only depends on
the number of intervals not stabbed along a path, rather the total
number of intervals stabbed by the query. Hence, in the rest of the
paper, we define the scored interval tree to be a score-sorted interval
tree.

2.2.3 Scored R-Trees
Recall that in anR-tree, we have the flexibility to group inter-

vals together based on different criteria. In order to answer top-k
stabbing queries, it is natural to group intervals by their scores so
that the top scored intervals are grouped together, the next lower
scored intervals are grouped together, and so on. In other words,
we order intervals in decreasing order of their scores and pick con-
secutive blocks of sizeb to form the leaf node groups. Recursively,
if (g1, . . . , gk) are the set of internal nodes at any level of theR-
tree (in that order), then every interval in the subtree ofg1 has a
score at least as large as that of every interval in the subtree ofg2.
This property ensures that the following simple[left-first] depth-
first traversal implements agetnext(): Starting with the root node
of the R-tree, at each internal node, scan each entry from left to
right and recurse on its child node only if its extent interval con-
tains the query pointq. At a leaf node, scan the intervals from left
to right and record an interval if it is stabbed byq. Return from the
recursive call either if all entries in the node have been processed
or if k intervals have been recorded.

LEMMA 2.1. Given anR-tree on a set of intervalsI arranged

5

9

1
3

10

2

4
7

8
6

321

0-1000-10030-100

654 9 1087

100300 10 45 55 65 75 90

Figure 4: ScoredR-Tree (Interval Ids Sorted by Score)

in descending order of score and a queryq, performing a [left-first]
depth-first search tillk intervals stabbed byq correctly returns the
top-k scoring intervals stabbed byq.

The problem with the above simple solution is that, in many
cases, this [left-first] depth-first search traversal ends up visiting
leaf nodes where the query point does not stabanyof the intervals.
The reason should be intuitively obvious: Recall that a scoredR-
tree groups intervals based solely on their score ranking and with
no regard to their spatial extents. Unfortunately, this implies that
the coverage of the “bounding” extent intervals for internal nodes
in the resultingR-tree often contains alarge number of “holes”—
in other words, there will often be a large number of sub-ranges in a
node’s coverage that do not intersectany actual intervalin the un-
derlying collection. As a simple example, consider the collection
of intervals depicted in Figure 4, where the ordering of intervals
on they-axis corresponds to their scores. (Thus, interval1 is the
highest-scoring interval, interval2 is the second highest, and so
on.) Figure 4 also shows an example scoredR-tree for that inter-
val collection. Note that the [left-first] depth-first traversal for, say,
q = 90 would visit all the nodesin the tree incurringO(n) time
for a singlegetnext().

In summary, our analysis quantifies parts of the qualitative space/-
time tradeoff illustrated in Figure 1. Scored segment trees are very
efficient in answering top-k stabbing queries; however, they are
space inefficient and might not allow an in-memory implementa-
tion. On the other hand, scored interval trees andR-trees are very
space efficient. However, modulo the score-sorted variant, scored
interval tree adaptations are only good at indexing the intervals but
not their score. Similarly,R-trees can only index either scores or
the intervals, but not both. Hence, these index structures are lacking
in terms of time efficiency. Nevertheless, we carry over the insights
from these simple adaptations to design two novel index structures
– theIR-tree (Section 3.1) and theSOPT-R-tree (Section 3.2) – that
are as space-efficient as interval andR-trees, and, at the same time,
can answer top-k stabbing queries as quickly as segment trees.

3. TIME AND SPACE EFFICIENT TOP- K
INTERVAL INDEXES

While requiring significantly smaller space than the segment-tree
solution (essentially, avoiding theO(log n) replication blowup),
the interval-tree schemes described above can also be significantly
more expensive in terms of computation time. Likewise, the scored
R-tree, although compact, has unpredictable performance times.
We now describe two novel scored interval indexing structures,In-
terval R-trees(IR-trees) andScore-Optimal R-trees(SOPT-R-trees),
that are provably efficient in terms of both query time and memory
requirements.

3.1 The IR-Tree Index Structure
We saw earlier that interval trees and their variants store lists

of intervals at their nodes; in the worst case, answering a query

may require traversing the entire list. The key idea inIR-trees is
to employ a more time-efficient data structure than a list — more
specifically, we index the set of intervals at each interval tree node
by an R-tree. For example, in Figure 2(a), intervals 5, 6, 9 are
indexed with anR-tree, and similarly 2, 4, 7, 8 and 1, 3, 10. As
we mentioned earlier,R-trees may still have linear search times in
the worst case. However, we are saved by a crucial technical ob-
servation: By the construction of interval-tree nodes, every interval
stored at a node is stabbed by a common point (namely, the median
point corresponding to the node). For instance, intervals 5, 6, 9 are
stabbed by a common point in Figure 2(a). This observation allows
us to guarantee efficient query times.

More formally, we can prove the following lemma, which relies
on the fact that the extent of every internal node in thisR-tree index
hasno “holes” in the node’s coverage; in other words, if theR-tree
node is stabbed by a query pointq, then at least one interval stored
in its subtree is guaranteed to containq. This fact ensures efficient
ranked retrieval.

LEMMA 3.1. Given anR-tree constructed over a set ofn in-
tervals in which every pair of intervals overlap and a queryq,
retrieving the set of top-k scoring intervals stabbed byq takes
O(bk logb

n
k
) steps.

PROOF. The extent intervalIg of an internal nodeg is the min-
imum bounding interval of all the intervals in its subtree. Since
every pair of intervals intersect, ifq stabsIg, there should exist an
intervalI in g’s subtree such thatq stabsI. If we ever go down a
child pointer, we are guaranteed that the extent interval in one of the
entries in the child node containsq. Hence, one root to leaf traversal
is enough to find the top scoring interval stabbed byq. Thereafter,
finding the next best interval involves at most traversing back up to
the root and an additional root-to-leaf traversal. Hence, this takes
at mostO(bk logb(n/k)) steps.

We construct anIR-tree overI as follows. First, we build a
score-sorted interval tree onI. Then, at each nodev of the tree,
we index the sorted list ofnv intervals atv (in order of decreasing
score) by building a (scored)R-tree index on top of the list.

The top-k interval retrieval algorithm over anIR-tree is similar
to the basic interval-tree search algorithm, but also employs the
embeddedR-tree structure at each traversed nodev to efficiently
find the top-scoring interval stored inv. More specifically, starting
with v = root of theIR-tree, we can find the top-scoring interval in
v by performing the [left-first] depth-first traversal of theR-tree at
nodev until we find an interval that is stabbed by the queryq. That
is, we callgetnext() on theR-tree at nodev. A trivial extension
of Lemma 3.1 shows that each of these calls togetnext() takes
time onlyO(b logb nv).

Once the above step for searching nodev is complete, we check
the location ofq compared to the median endpoint ofv, and recurse
on the left or right child ofv in theIR-tree as in traditional interval-
tree search. Finally, we return the best interval found from amongst
theO(log n) nodes we traversed.

To discover the next-best interval (for agetnext() operation
on theIR-tree) during top-k processing, we maintain anO(log n)-
size max-heap for the best intervals along the traversed query path
(as earlier). If we returned the best interval from nodev, then we
must replenish the heap with the next-best interval from nodev.
Hence, we callgetnext() on theR-tree associated with nodev. If
the call returns an interval, we place it into our max-heap. Other-
wise, we have exhausted nodev’s stabbed intervals. As shown in
Lemma 3.1, fetchingk items from nodev has total time complexity
of justO(bk logb(nv/k)), and, in general, is quite fast.

The time to set up the initial max-heap (which requires a traversal
of the I-tree from the root to a leaf node) takes timeO((b logb n +
log log n) log n). Each subsequent call togetnext() for the IR-
tree, along with a heap update, takes timeO(b logb n + log log n).
Hence, the worst-case running time for a top-k retrieval is bounded
by O((k + log n) b logb n).

In terms of space complexity, theIR-tree clearly requires only
O(n) space (in fact, its size is at most1.5× the size of a conven-
tional interval tree, even with anR-tree of branching factorb = 2).
Using anR-tree with branching factorb > 2 decreases the space
blow-up over score-sorted interval trees (which take even less space
than conventional interval trees) to be just1 + 2

b−1
. However, it

also increases the worst-case running time asymptotics by a factor
O(b/ log b). Due to caching affects and other overhead, perfor-
mance can actually improve for modest values ofb, while simul-
taneously decreasing memory requirements. We summarize these
performance guarantees below.

THEOREM 3.1. An IR-tree indexingn intervals has space com-
plexityO(n), and in general takes at most a factor(1+ 2

b−1
) more

space than a score-sorted interval tree, whereb is the branching
factor of theR-trees at the nodes of theIR-tree. The time to pro-
cess a top-k query is bounded byO((k + log n) b logb n).

3.2 The SOPT-R-Tree Index Structure
We now explore theSOPT-R-tree data structure which has the

memory requirements of anR-tree, but also guarantees fast query
times — its worst-case running time is justO(kb logb n) to produce
a top-k list overn items.

TheSOPT-R-tree is, in fact, a scoredR-tree, in which we care-
fully sort the intervals in such a way that we hit very few “holes”.
Recall that, in the score-sortedR-tree discussed earlier, intervals
are sorted by their score, and theR-tree is built on top of these inter-
vals. For certain distributions, this approach works well. However,
for many distributions, this will produce many “holes,” leading to
poor performance. By a clever rearrangement of the intervals, our
SOPT-R-tree index can avoid most of these holes. In fact, we prove
that,for any top-k query, we explore at most2k leaf nodes of the
tree, corresponding to hitting at mostk holes.

The main optimization idea stems from the following realization.
Suppose thatI1 andI2 are intervals that we wish to index. Further,
suppose that the score ofI1 is greater than the score ofI2, and
that no interval has a score between the score ofI2 and the score
of I1. If I1 andI2 intersect, then anyR-tree indexing them must
placeI1 beforeI2. (To see this, suppose thatq ∈ I1 ∩ I2; then,
a queryq must returnI1 beforeI2.) However, ifI1 andI2 do not
intersect, we are free to place them in either order, since no query
point can stab both intervals — their relative ordering is immaterial.
In the next section, we show how to leverage this simple property
to produce a provably good interval arrangement.

3.2.1 Generating aSOPT-R-tree
Before describing the underlying arrangement of intervals in a

SOPT-R-tree, we first define aconstraint graphfor the intervals. In
essence, this constraint graph captures the allowable arrangements
of intervals.

Consider the setI of n input intervals, each with a score, and
define eG(I) to be the directed graph(V, eE), whereV and eE are as
follows: The setV consists ofn nodes, one node for each interval
I ∈ I. We refer to the node associated withI by node(I). We
include an edge ineE from node(I1) to node(I2) if and only if
I1 ∩ I2 6= ∅ andscore(I1) > score(I2).

However, it will be useful for us to use a more efficient repre-
sentation of this simple intersection graph that, intuitively, tries to

0-55 10-100 0-100
1 3

5 6 1 9 3 2 4 7 8 10
2 4 7 8

5 6 9 10

Figure 5: SOPT-R-Tree

avoid some extraneous “transitive” edges. Formally, define graph
G = (V, E) to have the same vertex set aseG, andE defined as
follows. SupposeI1, I2 ∈ I with score(I1) > score(I2). Then,
E contains an edge fromnode(I1) to node(I2) if and only if (a)
I1 ∩ I2 6= ∅; and, (b) there exists a pointq ∈ I1 ∩ I2 such that,
for all I ∈ I with score(I1) > score(I) > score(I2), the point
q /∈ I. ClearlyG contains only a subset of the edges ineG; further-
more, it is not difficult to see that, if there is an edge fromnode(I1)

to node(I2) in eE, then there is apath from node(I1) to node(I2)
in E. Note thatG includes some unnecessary “transitive” edges;
however, we will be able to computeG extremely efficiently.

EXAMPLE 4. Figure 5 shows the constraint graphG for our
running example of intervals (see, e.g., Figure 4 — recall that the
y-axis and interval ids are sorted by score). Interval1 intersects in-
tervals3 and9, andscore(1) > score(3), score(1) > score(9);
furthermore,1 ∩ 3 and1 ∩ 9 do not intersect any other intervals
of intermediate scores. Hence, edges(1, 3) and (1, 9) appear in
G. Note that, even though interval1 also intersects interval10 and
score(1) > score(10), there is no edge(1, 10) in G; however,
this edge is “covered” by the(1, 3, 10) path inG.

We say that an arrangement of the intervals inI respectsG(I)
if for all intervals I1, I2 ∈ I such that there is an edge from
node(I1) to node(I2), the intervalI1 comes beforeI2 in the ar-
rangement. Note that, by the fact that edges ineG(I) always map
to paths inG(I), an arrangement respectsG(I) if and only if it re-
spectseG(I). Also, note that the arrangement described for scored
R-trees, in which the highest scored intervals come first, clearly
respectsG(I). The following lemma shows that anyR-tree that
groups intervals based onany arrangement respectingG(I) will
produce a ranked top-k list in the expected way.

LEMMA 3.2. LetI be a set of scored intervals, and suppose ar-
rangementA respectsG(I). LetT be theR-tree built on arrange-
mentA. Then, for any queryq, performing [left-first] depth-first
search onT to find the firstk intervals stabbed byq will produce
the topk scored intervals stabbed byq.

PROOF. An R-tree built on arrangementA, when performing
depth-first search for queryq, will simply return intervals stabbed
by q in the order they appear inA. So we only need to argue that
for all k andq, the firstk intervals appearing inA that are stabbed
by q are in fact the topk scoring intervals stabbed byq.

Suppose not. Then we can find an intervalI that is among the
first k intervals according toA stabbed byq, and an intervalJ
that is in the true topk list, but such thatscore(I) < score(J).
Thus, there is an edge fromnode(J) to node(I) in eG. That is,
A does not respecteG(I), hence does not respectG(I). This is a
contradiction.

We are now ready to describe the algorithm that builds the inter-
val arrangement forSOPT-R-trees. In a nutshell, the idea is to ex-
ploit the freedom allowed by the partial-ordering constraints spec-

ified in the constraint graphG, to ensure intervals are grouped to-
gether in terms of theirspatial proximity(as long as that does not
violateG). More specifically, letleft(I) denote the left endpoint
for interval I. The first interval in the arrangement is the inter-
val I with the smallestleft(I) value, taken over allI who have
node(I) with indegree 0. We remove thenode(I) from G(I) and
repeat this step recursively, until all intervals have been added. We
restate this algorithm below. For convenience, we defineindeg(I)
to be the indegree ofnode(I). (We set this to -1 ifnode(I) is not
in G(I).)

Algorithm 1 Arrangement forSOPT-R-trees
Require: Interval setI and constraint graphG(I).
1: while G(I) is not emptydo
2: Let I be the interval with the smallestleft(I) value, taken over all

I with indeg(I) = 0.
3: Add I to the arrangement, and removenode(I) from G(I).
4: end while
5: Output the arrangement.

For any set of intervalsI with scores, theb-waySOPT-R-tree for
I is defined to be theb-way R-tree created using the arrangement
produced using Algorithm 1. As an example, Figure 5 shows the
SOPT-R-tree created for our running-example interval collection
from its corresponding constraint graph.

Since the algorithm respects the constraint graphG(I), we know
that it produces correct results. But the key property ofSOPT-R-
trees is in the lemma below. It guarantees that while processing a
top-k query for pointq using theSOPT-R-tree, we explore at most
k leaf nodes of the tree that do not contain an interval stabbed byq.
(That is, we hit at mostk “holes.”) This translates directly into an
upper bound on the running time of any top-k query.

THEOREM 3.2. Let I be a set ofn scored intervals, and letT
be theb-way SOPT-R-tree generated forI. For any queryq, the
time to return a top-k list is at mostO(bk logb n). The total space
taken byT is the same as anR-tree onI, and can be implemented
in (1 + 2

b−1
) times the space of the original interval data.

PROOF. Fix a level of the treeT , and label the nodes on that
level from left to right byν1, ν2, ..., νm, wherem is the number of
nodes on that level. Fix any query pointq. We will first show that
if there are two nodes,νi andνj with i < j, whose extent intervals
both containq, and there are no intervening nodes whose extent
interval containsq, then eitherνi or νj (or both) index an interval
that containsq.

Suppose not. That is, suppose that neitherνi nor νj index an
interval containingq. Let A be the arrangement produced by Al-
gorithm 1. Sincei < j, all of the intervals indexed byνi appear in
A before the intervals indexed byνj . Let I be the lowest-scoring
interval indexed byνi that is entirely to the right ofq. (Since the
extent interval ofνi containsq, while no interval indexed byνi

containsq, we know such an interval exists.) LetS be the set of
all intervals that appearafter the intervals indexed byνi in arrange-
mentA, and letJ be the highest-scoring interval inS that lies
entirely to the left ofq.

By the ordering specified in Algorithm 1,J would appear before
I (since itsleft() value is smaller) unless there were a path from
node(I) to node(J) in G(I). This path consists of intervals that
intersect each other, and they stretch from the left ofq to the right
of q. Hence, one of those intervals, sayK, must crossq. Further-
more, sincenode(K) lies on the path fromnode(I) to node(J),
the arrangementA must orderK betweenI and J . Hence, an
intervening node must containK (which is stabbed byq), a contra-
diction.

So, for every two nodes the algorithm explores, at least one will
contain a stabbed interval. Hence, it will explore at most2k nodes
per level. Each node takesO(b) time to explore, and there are
O(lgb n) levels. The running time follows. The space claims fol-
low directly from the fact that theSOPT-R-tree is anR-tree.

Note that, in the worst case, this is essentially the best query time
we can hope to prove for anyR-tree structure. There are interval
sets such that for any arrangement and anyk, there will be a query
q whose stabbed intervals are contained ink different leaf nodes
of theR-tree. Hence, the top-k search will explore at leastk leaf
nodes.

Although we are primarily concerned with the query time, the
pre-processing time must be kept subquadratic, since we are fre-
quently dealing with millions of intervals. Note that Algorithm 1
runs in timeO(n log n + |E(I)|), where |E(I)| is the size of
the edge-set forG(I): The find operation in step 2 can be per-
formed using a heap (of size at mostn); it is executedn times,
taking O(n log n) time. Every time we remove anode(I) from
G(I), we touch every out-edge ofnode(I) and update the heap
by adding any nodes that now have indegree0. This takes an addi-
tionalO(|E(I)|) time overall. In the next section, we show that the
graphG(I) can be generated efficiently, and we also bound|E(I)|
by 3n. Using these ideas, we prove that the pre-processing time to
produce aSOPT-R-tree isO(n log n).

Handling Updates. While theSOPT-R-tree clearly offers the best
time/space tradeoff among the different scored interval index struc-
tures explored in this work, it also raises some issues with respect
to the update-ability of the data structure (when dealing with dy-
namic interval/subscription collections). The problem, of course, is
that our constraint-graph optimizations are highly sensitive to the
underlying interval collection: a single update could drastically al-
ter the constraint graph structure, rendering theSOPT-R-tree index
obsolete. Devising techniques for efficiently updateableSOPT-R-
tree indexes is definitely an interesting area for future work; in the
meantime,IR-tree indexes seem to offer the best tradeoff with re-
spect to time/space requirements and the ability to incrementally
update the index structure.

3.2.2 Efficient Construction of the Constraint Graph
There is an obviousO(n2) algorithm to produce the constraint

graphG(I). However, sincen may well be in the millions, this is
an unacceptably long pre-processing time. We show in this section
that G(I) can be constructed in timeO(n log n), and that it has
at most3n edges. Since Algorithm 1 runs in timeO(n log n +
|E(I)|), this immediately shows the following result.

THEOREM 3.3. Given any setI of n scored intervals, aSOPT-
R-tree forI can be constructed in timeO(n log n).

In order to describe the efficient process for constructingG(I),
we will need an additional concept. For a subsetJ ⊆ I of scored
intervals, we say an endpointp is visible with respect toJ if there
is some intervalI ∈ J for which p is an endpoint, and further,
there is no other intervalJ ∈ J with score(I) > score(J)
andp ∈ J . It may be helpful to consider the example drawn in
Figure 3. (Again, recall that intervals are numbered by decreasing
score.) Imagine looking upward from below the intervals. IfJ
consists of the intervals1 through10, then the pointp = 30 is not
a visible endpoint with respect toJ — intuitively, we may think of
interval 10 as obscuring it. However, ifJ consists of the intervals
1 through 8, thenp = 30 is a visible endpoint with respect toJ
— 30 is an endpoint of interval6, and no lower-scoring interval
contains (i.e., “obscures”)30.

The set of endpoints that are visible with respect toJ break the
real line into intervals, which we refer to asvisible blocksto avoid
confusion. We denote this set of visible blocks byvisBlks(J);
the setvisBlks(∅) contains only the interval(−∞,∞). For every
blockB ∈ visBlks(J), we say intervalI ∈ J is associated with
B if I is the lowest scoring interval inJ such thatB ⊆ I.

EXAMPLE 5. In Figure 3, visBlks({1, 2, ..., 7}) consists of
the blocks(−∞, 0],[0, 30], [30, 45], [45, 55], [55, 65],[65, 75], [75, 100],
[100,∞). Interval 6 is associated with block[0, 30]. Interval
1 is associated with block[30, 45], interval 3 with [45, 55], in-
terval 4 with [65, 75], and interval 7 with[75, 100]. The blocks
(−∞, 30], [55, 65], and[100,∞) have no associated intervals. No-
tice that each block has at most one interval associated with it.

Our algorithm uses the following key property. In essence, it says
that when considering theith intervalIi, we only need to find the
set of visible blocks thatIi intersects in order to find all edges point-
ing tonode(Ii) in G(I).

LEMMA 3.3. Let I = {I1, I2, ..., In} be a set of scored inter-
vals, labeled so thatscore(Ii) > score(Ij) for all i < j. Fur-
ther, letJℓ = {Ii|i ≤ ℓ} for ℓ ≥ 1. For any intervalI ∈ Ji−1,
there is an edge fromnode(I) to node(Ii) in G(I) if and only if
I is associated with a visible blockB ∈ visBlks(Ji−1) such that
B ∩ Ii is nonempty.

PROOF. First suppose thatI is associated withB ∈ visBlks(Ji−1)
with B ∩ Ii nonempty. Letx ∈ B ∩ Ii. Thenx ∈ I ∩ Ii as well.
Furthermore, if there were an intervalJ ∈ Ji−1 such thatx ∈ J
and score(I) > score(J) > score(Ii), it would violate the
“visibility” condition on B. Hence, there is an edge fromnode(I)
to node(Ii).

On the other hand, suppose there is an edge fromnode(I) to
node(Ii). Then there is somex ∈ I ∩ Ii such that no intervalJ
with score(I) > score(J) > score(Ii) is such thatx ∈ J . In
other words, there is a blockB containingx that is visible with
respect toJi−1.

Below, we give the algorithm to produce the constraint graph
G(I). For convenience, we assume thatI contains the interval
(−∞,∞) with score∞, so that every visible block throughout the
algorithm will have an associated interval. The algorithm works
through the intervals inI in decreasing order of their score, say
I1, I2, For each intervalIi, we determine the set of visible
blocks fromvisBlks(Ji−1) that intersectIi, whereJi−1 is de-
fined as in Lemma 3.3. We can then add all edges inG(I) pointing
to node(Ii). We repeat this until all intervals are processed.

Algorithm 2 Computing the constraint graph
Require: Interval setI = {I1, I2, ..., In}, sorted in descending order by

score.
1: Initialize J ← {I1}, and initializeG to have no edges and vertices

node(I1), .., node(In).
2: for i = 2 to n do
3: foreachblockB ∈ visBlks(J) such thatB ∩ Ii do
4: SetI to be the interval associated with blockB.
5: Add an edge fromnode(I) to node(Ii).
6: end foreach
7: Add intervalIi to setJ .
8: end for
9: Output graphG.

Note that step 3 of the algorithm can be performed in timeO(log n+
bi), wherebi is the number of visible blocks that intersectIi: At
each step, we maintain the set of visible endpoints with respect to

J , sorted by value; we may do so using a tree. Given intervalIi,
let x be its left endpoint andy be its right endpoint. We find con-
secutive visible endpoints with respect toJ , sayz1 < z2, such
that z1 ≤ x < z2. (By a natural extension, we allowz1 = −∞
or z2 = ∞.) This can be done in a tree inO(log n) time. Since
the visible endpoints are maintained in sorted order, we may then
find all visible endpoints greater thanx and less thany in time
O(bi). Note that to maintain the list of visible endpoints when we
add intervalIi, we simply insertx andy, and remove all previously
visible endpoints that lie betweenx andy.

Hence, the total running time of Algorithm 2 isO(n log n +Pn

i=1 bi). But notice thatbi is precisely the number of edges that
point tonode(Ii), by Lemma 3.3. Hence,

Pn

i=1 bi = |E(I)|. We
will show in the next lemma that|E(I)| ≤ 3n, hence the total
running time is bounded byO(n log n).

LEMMA 3.4. Let I be a set ofn scored intervals. The graph
G(I) has at most3n edges. Furthermore,G(I) can be constructed
in O(n log n) time.

PROOF. We showG(I) has at most3n edges via a charging
argument. Consider running Algorithm 2. Initially, we addI1 to
J so that there are three visible blocks. (The intervalI1 is asso-
ciated with the middle block; the other blocks have no associated
intervals.) Wechargeeach of these three blocks toI1.

In general, ifIℓ is about to be added toJ in the ℓth iteration,
Iℓ will intersect a number of visible blocks, sayB1,B2,..., Bk or-
dered by their left endpoint. WhenIℓ is added to toJ , the blocks
B2,B3,...,Bk−1 will cease to be visible. BlockB1 is reduced to
cover justB1 − Iℓ, and likewiseBk reduces toBk − Iℓ. Call these
reduced blocksB′

1 andB′
k, respectively. So the addition ofIℓ pro-

duces 3 new blocks,B′
1, B′

k, and the block whose range isIℓ. We
charge each of these three blocks toIℓ.

But note that whenever an edge is added to a graph, we remove
a visible block. (In the case outlined above, we may think of re-
movingB1 and adding blockB′

1; likewise withBk.) Every time
we add a block, it is charged to some interval, so the total number
of edges is at most the number of charged blocks. But every time
we add an interval, exactly 3 blocks are charged to it. So the total
number of edges is at most3n. The runtime thus follows from our
previous discussion.

COROLLARY 3.1. An SOPT-R-tree for interval setI can be
constructed inO(n log n) time.

4. EXPERIMENTS
In this section, we present an experimental evaluation of the data

structures we proposed for ranked pub/sub. As part of our exper-
imental setup, we consider subscriptions on ad dimensional nu-
meric domain. Recall that, each subscriptionI defines an interval
Id in each dimension (i.e., a hyper-rectangle). We focus our exper-
imental evaluation on the more general relaxed matching problem.
Accordingly, a scorefj(Ij) is associated with each dimensionk.
An event is a pointq = (q1, . . . , qd) in thed dimensional domain.
A subscription matches the event if in each dimensionqj stabsIj .
The combined score of a matching subscription is the sum of the
scores of the matched intervals

f(I) =
dX

j=1

δjfj(Ij) where, δj =


1 if q stabsIj

0 else.

We build d single-dimensional indices using each of the follow-
ing five indexes – the Scored Interval Tree, the Scored Segment
Tree, the ScoredR-tree, ourIR-tree and ourSOPT-R-tree. We also

experimented with the conventional interval tree andR-tree struc-
tures, but as expected, they were orders of magnitude slower than
their scored counterparts, and we thus do no consider them further.
Since we only deal with the scored variants of the standard struc-
tures, we will henceforth drop the ’scored’ prefix when referring
to them. All indices are implemented in main-memory in keeping
with the response time requirements for online and routing appli-
cations.

We implement Fagin’s Threshold Algorithm [17] over thed sin-
gle dimensional indices that aggregates scores based on the above
combination function. The algorithm retrieves the next best inter-
vals from each of the indexes in a round-robin fashion. On re-
trieving an interval, the algorithm finds out the scores of the sub-
scription in all the other dimensions, and computes the total score
for this subscription. The algorithm maintains a heap of sizek to
keep track of thek best subscriptions retrieved at any point of time.
Simultaneously, a threshold value, which is the sum of the scores
of the most previous best interval retrieved from every dimension,
is also updated. When thekth smallest subscription has a higher
score than the threshold, the algorithm terminates and returns the
top-k subscriptions.

Data Set: We use a synthetically generated subscription workload
for our experiments. We actually did have access to a data set of
real subscriptions from Yahoo!’s Behavioral Targeting (BT) group,
but on inspecting that data set, we found that most interval pred-
icates were on pre-specified non-overlapping intervals. This was
not due to a lack of demand for arbitrary intervals, but due to a lim-
itation of the current user interface; specifically, the interface pre-
cluded subscribers from specifying arbitrary intervals because the
underlying system did not support such intervals. Since our goal is
to enable arbitrary intervals, we decided to use a synthetic data set
instead because it illustrates the fundamental tradeoffs between the
index structures.

We generate a workload of subscriptions and queries based on a
d-dimensional Zipfian data generator [7] described in the literature.
The data generator, which we shall describe shortly, is used to gen-
erate a distribution of points. We then generate the query workload
by samplingnqueries points from this distribution. The subscrip-
tions are generated as follows. We draw a pointxmid from the data
generator. We then independently pick a lengthℓi for each dimen-
sion from a Zipfian distribution of skew controlled byskewlength.
The resulting subscription is the hyper-rectangleI = (I1, . . . , Id),
whereIi = [xmid − ℓi, xmid + ℓi].

Recall that theR-tree and, hence, theSOPT-R-tree indices are
very efficient when there is a large amount of overlap amongst the
subscriptions. On the contrary, interval trees should perform better
when there is lesser interval overlap as they allow for a finer parti-
tioning of the intervals. The Zipfian parameterskewlength controls
the overlap between intervals and, hence, is a crucial parameter that
we can vary to study the performance of our index structures across
a variety of scenarios. We believe that subscription scores are typ-
ically correlated with their selectivities. So, we set the score of the
subscription in each interval asfi(Ii) = 1 − ℓi.
The Zipfian Data Generator:The Zipfian data generator [7] as-
sumes that each dimension is discrete and finite. We simulate this
by dividing the[0, 1) interval of real numbers intoci equal parts
and numbering them0 throughci−1. The data generator randomly
selectsnregions hyper-rectangles. The number of points within
each region is bound by the parametersvmin andvmax. The points
that are generated are divided across the different regions according
to a Zipfian distribution with a parameterskewacross. Within each
region, the points are distributed again based on a Zipfian distribu-
tion with a parameterskewwithin that makes points farther away

Param Description Default
k Top-k Parameter 20

nintervals # Subscriptions 1 million
nqueries # Queries 1000

d # Dimensions 1
b Tree Branching Factor 50

skewlength Length Zipfian Param 0.75
nwarm−up # Warmup Queries 100

Zipfian Data Generator Parameters
nregions # Regions 10

ci # Points in dimensioni 100

vmin, vmax Volume (min,max) per region 100d/20

skewacross
Zipfian Parameter to partition

points across regions
0

skewwithin
Zipfian Parameter for points
distribution within a region

1

Table 1: Parameters for Synthetic Data

from the mid point of the region more unlikely. Table 1 describes
the defaults values for the various parameters.

The Zipfian data generator returns a discrete point ind dimen-
sions. We need to convert this into a point in our original domain
[0, 1)d.Recall that a point(p1, . . . , pd) corresponds to the hyper-

rectangleR = (R1, . . . , Rd), whereRi =
h

pi

ci
, pi+1

ci

”
. We return

a point chosen uniformly at random fromR.
We are now ready to describe our experimental results. In every

experiment, we first generate a subscription workload and build all
the indices. The build time for all the indices was very fast — under
a minute per dimension even when we had a million subscriptions.
We then performnwarm−up queries on the index and measure its
performance on then nextnqueries queries. We implemented these
algorithms in Java and performance measurements were made on a
dual core machine with 4 GB RAM.

100,000 200,000 500,000 1,000,000
Interval 0.92M 1.7M 4.2M 8.3M

R 1.2M 2.4M 6M 12M
Segment 40M 89M 214M 429M

IR 1.76M 3.43M 8.35M 16.5M

Table 2: Memory usage of interval indexes (in MB)

Experiment 1 Space Complexity of Data Structures: We mea-
sure the memory usage of an index structure by measuring the
amount of heap space used by the implementation just before and
just after constructing the index. Heap space measurements could
be misleading since old objects might not have been garbage col-
lected. However, such effects are eliminated by averaging over a
large number of observation. Table 2 shows the memory usage of
the index structures per dimension as we vary the number of index
intervals. We did not plot theSOPT-R-tree since it is essentially
anR-tree. As shown, the Segment Tree requires more than an or-
der of magnitude more space than the other structures, and quickly
becomes impractical when the number of intervals increases (note
that these are space requirementsper dimension). Regarding the
other structures, theIR-tree takes up more space than the interval
andR-tree indexes, but it is at most twice as large as the interval
tree. This validates our claim that theIR-tree index and theSOPT-
R-tree index have a low space overhead.

Experiment 2 Varying the number ofgetnext() calls: The

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 1 2 4 8 16 32 64 128 256 512

T
im

e
in

 m
s

(lo
gS

ca
le

)

Number of getNext() calls (logScale)

Interval
R
S

IR
SOPT-R

Figure 6: Varying the number of getnext() calls

speed of our index structures depends on the time taken for ev-
ery getnext(). Figure 6 shows the total time taken as we vary
the number ofgetnext() calls (this is equivalent to varyingk in
1 dimension). There are several interesting aspects to note from
the graph. First, as expected, the Interval Tree is the least efficient
because of the high initial processing cost to find the right interval
range (since the lists are in score order). Second, the performance
of the ScoredR-Tree degrades as the number ofgetnext() calls
increase because they encounter many “holes” in their depth-first
traversal. Third, the performance of the Segment Tree and theIR-
tree are about the same, even though theIR-tree consumes at least
an order of magnitude less space. Finally, and perhaps most inter-
estingly, theSOPT-R-tree is always the most efficient and provides
up to a factor of 2 speed-up over the other approaches. Note, how-
ever, that the difference in performance between the different index
structures decreases with the number ofgetnext() calls; this is
because almost all the intervals are retrieved when the number of
calls is large, and the index structures are roughly similar in this
case.

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 1 2 3 4 5 6 7 8

T
im

e
re

la
tiv

e
to

 O
P

T
-R

 tr
ee

numDimensions

Interval
R
S

IR
SOPT-R

Figure 7: Varying Number of Dimensions

Experiment 3Varying the number of dimensions: Figure 7 shows
the performance of a query when varying the number of dimen-
sions, and Figure 8 shows the performance of the different indices
relative to SOPT-R-treewhen varying the number of dimensions
(note the log scale on both the y axes). The first striking aspect
is that as the dimensionality increases, the performance of all the
indices converges. This is because, at higher dimensions, the num-
ber ofgetnext() operations needed to retrieve the top20 becomes
very large and hence almost all the stabbed intervals have to be re-

 1

 2

 4

 8

 16

 1 2 3 4 5 6 7 8

T
im

e
re

la
tiv

e
to

 O
P

T
-R

 tr
ee

numDimensions

Interval
R
S

IR
SOPT-R

Figure 8: Varying Number of Dimensions

trieved. Since all the index structures are roughly equally efficient
in returning the set of all matches, their performance converges
(this is one manifestation of the dimensionality curse). However,
for a reasonable number of dimensions (1, 2, 3, 4), theSOPT-R-
tree still offers significant benefits ranging from 16x to 1.5x over
other approaches. Further, theIR-tree offers roughly similar ben-
efits with the added benefit of supporting incremental subscription
insertions and deletions. Finally, while the Segment Tree has a
good response time, it ran out of memory at8 dimensions, showing
that it is not well suited for for in-memory implementations.

 30

 35

 40

 45

 50

 55

 60

 0.0625 0.125 0.25 0.5 1 2 4

T
im

e
T

ak
en

 p
er

 q
ue

ry
 (

m
s)

skew-length

Interval
R

S
IR

SOPT-R

Figure 9: Varying subscription overlap

Experiment 4Varying subscription overlap: Figure 9 shows the ef-
fect of varying subscription overlap (a lower value forskewlength

means larger hyper-rectangles and hence more overlap amongst
the subscriptions). We fix the number of dimensions to4. The
most interesting take-away from this graph is that while all the
interval indexes become faster asskewlength increases, (scored)
R-trees degrade in performance. Recall from Section 2.2.3 that
ScoredR-trees group intervals based on their score rather than
their spatial intent. Larger values ofskewlength cause “holes”
in the R-tree structure. Performance degrades as the [left-first]
depth-first traversal visits many leaf nodes which do not contain
any stabbed interval. The same problem does not affect theSOPT-
R-tree since non-overlapping intervals are intelligently rearranged
to avoid gaps. The rest of the index structures improve in perfor-
mance because it is easier to partition a space with large gaps.

In summary, theSOPT-R-tree has the best performance across
the board for a reasonable number of dimensions, while theIR-tree
comes a close second.

5. RELATED WORK
To the best of our knowledge, this is the first piece of work to ad-

dress the ranked publish/subscribe problem; still, there are several
related problems that have been studied in the research literature.
As mentioned earlier, the bulk of conventional pub/sub engines
and indexing tools (e.g., [3, 6, 13, 15, 25]) are based on the con-
cept ofstrict binary matches(i.e., find all subscriptions matching
an event), and do not incorporate notions of subscription ranking.
Of course, our ranked pub/sub problem can be naively solved by
first finding the set ofall matching subscriptions(e.g. using a sys-
tem likeLeSubscribe[15] or Gryphon[3]), and then ranking these
matches in a post-processing step. This can be a very wasteful,
time-consuming approach, especially for events that are not very
“selective” (e.g., vague job seeker profiles — common in practice),
and end up matching a very large number of standing subscriptions.
In a sense, the arguments here are very similar to those for optimiz-
ing top-k query evaluation in relational systems [20].

More recent work onsymmetric pub/sub[27] considers a set-
ting where both events and subscriptions are specified as constraints
(or, ranges for numeric attributes), and shows how they can be ex-
pressed as PostgreSQL queries using its geometricoverlap and
contains predicates. Subscription ranking is not considered in
their study. Extending our fast interval indexing schemes to the
symmetric pub/sub setting is an interesting problem. Liu and Ja-
cobsen [22] propose an interesting extension to traditional pub/sub
models by allowing forfuzzy matchingsof events to subscriptions,
using ideas from fuzzy logic and possibility theory. Still, they also
do not consider subscription ranking; instead, their schemes rely
on using auser-defined thresholdfor the fuzzy-match score and re-
turning all matches above that threshold. Investigating the applica-
bility of these ideas forrankedretrieval under such fuzzy-matching
score functions opens up a very interesting area for future work.

In traditionalNearest-Neighbor (NN) search(e.g., [9, 26]), the
goal is to find the top few points that are close to otherpoints.
In contrast, in ranked pub/sub, we are interested in finding points
close tointervals. This seemingly simple distinction requires a fun-
damental rethinking of index structures based on intervals, which
is the main focus of this paper. Some variants of NN search do
return regions that are close to a query point [24], but the defini-
tion of “close” is hard-coded based on geometric distances, and the
techniques do not generalize to the ranked pub/sub scenario where
each dimension of a subscription can have its own weighted score.
Rank-sensitive B-tree structures[5] aim to efficiently rank the re-
sult points of interval range queries by maintaining ranked lists of
data points in theB-tree nodes; similarly, inpreference queries[2,
8], the goal is to find the best data points that match a given user
query. In contrast, ranked pub/sub considers the inverse problem,
where the goal is to find the best queries (subscriptions) that match
a given data point (event). Again, this fundamental distinction of
indexing intervals as opposed to points requires the development
of new index structures. Work onbounded continuous queries[19]
considers the problem of selecting the top-k eventsfor a given sub-
scription over a specified time period. The ranked pub/sub problem,
on the other hand, considers the problem of selecting the top-k sub-
scriptionsthat match a given event.

There are other data structures that are related to our problem.
AggregateR-trees (like Ra⋆ trees [16]), that store aggregates (e.g.,
the maximum score) at each internal node can be adapted to solve
the ranked pub/sub problem if the top-k parameter is known up
front. Partially-persistent data structures(such as, multi-version
B-trees [4]) capture the evolution of a data structure (e.g., aB-tree
index) over time, and allow for query points to address any ver-
sion of the data structure in time. This work obviously has some

strong connections to our ranked pub/sub indexing problem: sub-
scriptions can be viewed as temporal intervals in a multi-version
index and stabbing events essentially query a particular version of
that index in time. At the same time, compared to, say, the optimal
multi-versionB-trees of [4], our approach exhibits some key ben-
efits for ranked pub/sub indexing. First, our winning index strate-
gies offermuch stronger space-efficiency guarantees. For instance,
in the space analysis of [4], the constants hidden in theO() fac-
tors can actually introduce up to a factor11.5 blowup in the space
requirements of the basicB-tree structure. (This is mainly due to
splitting intervals into multiple segments based on their end points
(i.e., version changes).) In contrast, the space blowup of ourSOPT-
R-tree is always upper bounded by a factor of(1 + 2

b−1
) (Theo-

rem 3.2), which is typically less that10% (for realistic values ofb).
Second, unlikeIR-trees, multi-versionB-trees do not allow for in-
cremental updates to the subscription set, since temporal intervals
(i.e., versions) can only be inserted in increasing order of their left
endpoints. We should, of course, note that it might be possible to
extend/adapt ideas from partially-persistent data structures to pro-
vide effective solutions specifically targeted to our ranked pub/sub
setting — exploring such adaptations and comparing them to the
techniques presented here is an interesting avenue for future work.

6. CONCLUSIONS AND FUTURE WORK
We have introduced the new problem of ranked pub/sub systems,

developing indexing solutions for the case where events are points
in a n-dimensional space, and subscriptions are intervals in that
space. The index structures —IR-tree andSOPT-R-tree— are com-
pact and efficient, and scale well for reasonable values ofn. We be-
lieve that this work is only the first step towards building truly flex-
ible and sophisticated ranked pub/sub systems, and that addressing
the following open issues will lead us closer to that goal:

More expressive subscriptions:Many applications such as content-
based filtering [14, 25] have subscriptions that are specified as paths
over hierarchical XML documents. Further, such applications also
mix structural and content filters. Supporting such subscriptions
would require the development of new scored subscription indexing
techniques that go beyond those for indexing intervals.

More expressive events:In applications such as online job sites,
the eventsthemselves could be intervals, e.g., a job seeker might
be interested in jobs that require 20-30 hour work weeks. A related
issue occurs in online advertising where some user behavior is in-
ferred and is hence uncertain, e.g., we might be infer an approxi-
mate probability of a user being interested in sports, but his estimate
may have an error bound. Modeling such events with intervals and
uncertainty again requires a rethinking of scored interval indices.

Score updates:Score updates can be very useful in applications
such as online advertising, where the priority of a line can depend
on how far it is from the delivery goal of, say 10,000 million im-
pressions a day, and can thus change after just a few ads are served
in a space of a few minutes. While some of our proposed index
structures can support incremental addition/deletion of subscrip-
tions, they do not support score updates, which would require the
development of new techniques.

Scaling to high dimensions:With the advent of behavioral targeting
in online advertising [1, 11, 28], there can be hundreds of dimen-
sions associated with an user (e.g., propensity for sports, propen-
sity for shopping, etc.). Scaling to such a large number of dimen-
sions requires new techniques that go beyond our current solution
of 1-dimensional indices using the Threshold Algorithm. Possible
solutions to this problem include the development of scored multi-

dimensional indices and dimensionality reduction techniques.

Acknowledgements.We would like to thank Pat O’Neil, Jun Yang,
and Pankaj Agarwal for several helpful comments and suggestions.

7. REFERENCES
[1] AOL Audience Targeting.

www.aolmedianetworks.com/index.php?id=1936
[2] R. Agrawal, E. Wimmers. A Framework for Expressing and

Combining Preferences. SIGMOD 2000.
[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao. AnEfficient

Multicast Protocol for Content-Based Publish-Subscribe Systems.
ICDCS 1999.

[4] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer. An
Asymptotically Optimal Multiversion B-Tree. The VLDB Journal
5(4), 1996.

[5] W. Bialynicka-Birula, R. Grossi. Rank-Sensitive Data Structures.
SPIRE 2005.

[6] A. Carzaniga, A. L. Wolf. Forwarding in a Content-Based Network.
SIGCOMM 2003.

[7] K. Chakrabarti, M. Garofalakis, R. Rastogi, K. Shim Approximate
Query Processing Using Wavelets VLDB 2000.

[8] J. Chomicki. Querying with Intrinsic Preferences. EDBT 2002.
[9] K. L. Clarkson. A Randomized Algorithm for Closest Point Queries.

SIAM Journal of Computing 17(4), 1988.
[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introductionto

Algorithms. MIT Press, 1990.
[11] DoubleClick Targeting Filters.

www2.doubleclick.com/dk/advertisers/brand/filters.htm
[12] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf.

Computational Geometry: Algorithms and Applications.
Springer-Verlag, Heidelberg, 2000.

[13] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, P. Fischer. Path
Sharing and Predicate Evaluation for High-Performance XML
Filtering. TODS 28(4), 2003.

[14] Y. Diao, S. Rizvi, M. J. Franklin. Towards an Internet-Scale XML
Dissemination Service. VLDB 2004.

[15] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
D. Shasha. Filtering Algorithms and Implementation for Very Fast
Publish/Subscribe. SIGMOD 2001.

[16] M. Jurgens, H. J. Lenz. The Ra*-tree: An Improved R-tree with
Materialized Data for Supporting Range Queries on OLAP-Data.
DEXA Workshop, 1998.

[17] R. Fagin, A. Lotem, M. Naor. Optimal Aggregation Algorithms for
Middleware. J. Comput. Syst. Sci. 66(4), 2003.

[18] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. SIGMOD 1984.

[19] D. Kukulenz, A. Ntoulas. Answering Bounded ContinuousSearch
Queries in the World Wide Web. WWW 2007.

[20] C. Li, K. C. Chang, I. Ilyas, S. Song. RankSQL: query algebra and
optimization for relational top-k queries. SIGMOD 2005.

[21] Z. Liu, S. Parthasarthy, A. Ranganathan, H. Yang. Scalable Event
Matching for Overlapping Subscriptions in Pub/Sub Systems.DEBS
2007.

[22] H. Liu, H.A. Jacobsen. Modeling Uncertainties in Publish/Subscribe
Systems. ICDE 2003.

[23] F. P. Preparata, M. I. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, 1985.

[24] N. Roussopoulos, S. Kelley, F. Vincent. Nearest Neighbor Queries.
SIGMOD 1995.

[25] A. C. Snoeren, K. Conley, D. K. Gifford. Mesh-Based Content
Routing using XML. SOSP 2001.

[26] R. L. Sproull. Refinements to Nearest-Neighbor Searching in
k-Dimensional Trees. Algorithmica 6, 1987.

[27] A. Tomasic, C. Garrod, K. Popendorf. Symmetric Publish/Subscribe
via Constraint Publication. ExpDB 2006.

[28] Yahoo! Advertising Targeting Options.
advertising.yahoo.com/central/marketing/targeting.html

