
BAYESSTORE: Managing Large, Uncertain Data Repositories
with Probabilistic Graphical Models

Daisy Zhe Wang∗ , Eirinaios Michelakis∗ , Minos Garofalakis†∗ , and Joseph M. Hellerstein∗
∗Univ. of California, Berkeley EECS and † Yahoo! Research

ABSTRACT
Several real-world applications need to effectively manage and reason about
large amounts of data that are inherently uncertain. For instance, perva-
sive computing applications must constantly reason about volumes of noisy
sensory readings for a variety of reasons, including motion prediction and
human behavior modeling. Such probabilistic data analyses require so-
phisticated machine-learning tools that can effectively model the complex
spatio/temporal correlation patterns present in uncertain sensory data. Un-
fortunately, to date, most existing approaches to probabilistic database sys-
tems have relied on somewhat simplistic models of uncertainty that can be
easily mapped onto existing relational architectures: Probabilistic informa-
tion is typically associated with individual data tuples, with only limited
or no support for effectively capturing and reasoning about complex data
correlations. In this paper, we introduce BAYESSTORE, a novel probabilis-
tic data management architecture built on the principle of handling statis-
tical models and probabilistic inference tools as first-class citizens of the
database system. Adopting a machine-learning view, BAYESSTORE em-
ploys concise statistical relational models to effectively encode the correla-
tion patterns between uncertain data, and promotes probabilistic inference
and statistical model manipulation as part of the standard DBMS opera-
tor repertoire to support efficient and sound query processing. We present
BAYESSTORE’s uncertainty model based on a novel, first-order statistical
model, and we redefine traditional query processing operators, to manip-
ulate the data and the probabilistic models of the database in an efficient
manner. Finally, we validate our approach, by demonstrating the value of
exploiting data correlations during query processing, and by evaluating a
number of optimizations which significantly accelerate query processing.

1 Introduction
There is growing acknowledgment among database researchers and
practitioners that modern database systems need to routinely deal
with large amounts of uncertain information, be it incorrect, incom-
plete, or internally inconsistent. Work on Probabilistic Database
Systems (PDBSs) has the goal of addressing this problem with tech-
niques to help quantify, explain, and manage uncertainty — all
within the familiar context of relational database models and lan-
guages, and without sacrificing scalability over the stored data col-
lections.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ’08 New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Of course, the fundamental mathematical tools for managing un-
certainty come from probability and statistics. In recent years, these
tools have been aggressively imported into the computational do-
main under the rubric of Statistical Machine Learning (SML). Of
special note here is the widespread use of Graphical Modeling tech-
niques, including the many variants of Bayesian Networks (BNs)
and Markov Random Fields (MRFs) [12]. These techniques can
provide robust statistical models that capture complex correlation
patterns among variables, while, at the same time, addressing some
computational efficiency and scalability issues as well. Graphical
models have been applied with great success in applications as di-
verse as signal processing, information retrieval, sensornets and
pervasive computing, robotics, natural language processing, and
computer vision.

Recent research efforts in PDBSs have injected new excitement
into the area of uncertainty management in database systems. Un-
fortunately, the bulk of this work has, to date, relied on somewhat
simplistic models of uncertainty, placing the focus on simple prob-
abilistic extensions that can be easily mapped to existing relational
database architectures, and essentially ignoring the state-of-the-art
in SML. For instance, existing PDBSs typically associate probabil-
ities directly with data at the level of individual tuples or tuple val-
ues. While such fine-grained probabilistic information may be war-
ranted in certain scenarios (e.g., data integration), they also often
give rise to intractably large probabilistic reasoning problems [6].
Furthermore, in several application domains, including pervasive
computing and sensornets, the granularity of uncertainty can be
much coarser depending on the underlying random process being
observed (e.g., all readings from sensor-1 follow the same distri-
bution pattern). Existing PDBSs also offer very limited or no sup-
port for effectively modeling and reasoning about complex corre-
lation patterns — unfortunately, as SML work demonstrates, such
correlation patterns abound in real-world data. In short, existing
PDBSs simply cannot support realistic, state-of-the-art probabilis-
tic reasoning within the database system: Such reasoning currently
needs to occur outside the database and its results can only be ap-
proximately mapped to and stored within the simplified uncertainty
models supported by the PDBS; see, for instance, [10] for such an
approximate mapping in the context of MRF-based information ex-
traction.

Related Work. While traditional SML has provided well-founded
mathematical tools for uncertainty management, such tools are not
targeted at the declarative management and processing of large-
scale data sets. Since the early 80’s, a number of PDBSs have been
proposed in an effort to address this issue [11, 4, 2, 9, 6, 3, 16, 1].
Moving away from statistical approaches, this work extends the re-
lational model with probabilistic information captured at the level
of individual tuple existence (i.e., a tuple may or may not exist in

the DB) [4, 6, 9, 16] or individual tuple-value uncertainty (i.e., an
attribute value in a tuple follows a probabilistic distribution) [2, 3,
1]. The Trio [3] and MayBMS [1] efforts, in particular, try to adopt
both types of uncertainty, with Trio focusing on promoting data
lineage as a first-class citizen in PDBSs and MayBMS aiming at
more efficient tuple-level uncertainty representations through effec-
tive relational table decompositions. In all cases, probabilities are
directly associated (and, stored) with individual tuples and/or tuple
values and are processed using standard relational query operators
over uncertain tables — this is another major departure from SML,
that typically imposes a clear separation between observed data
(i.e., evidence) and uncertainty models (e.g., BNs or MRFs) [12].

Query processing in PDBSs is typically based on the standard
possible worlds semantics, where a PDB is viewed as encoding
a probability distribution over all possible deterministic instances.
As demonstrated by Dalvi and Suciu [6], such query processing
quickly gives rise to computationally-intractable probabilistic in-
ference problems, as complex correlation patterns can emerge dur-
ing processing even if naive independence assumptions are made
on the base data tables. In fact, modulo a restricted class of “safe”
query execution plans, query processing in tuple-uncertain PDBSs
is #P -complete in the size of the database [6]. This clearly raises
some serious practicality concerns for PDBSs, which, in our view,
are largely due to the intractably fine granularity of uncertainty
modeling in current PDBS architectures. The same is true for more
recent proposals that employ either (a) BNs with tuple-existence
random variables to model tuple correlations in the possible-worlds
distribution [16] or (b) schema decompositions and tuple random
variables to factor the possible-worlds distribution [1]: The size of
the underlying probability model (e.g., tuple-existence BN) is linear
in the size of the database, raising serious scalability concerns for
complex query processing and probabilistic reasoning over proba-
bilistic data.

At the same time, as exemplified by recent research on statistical
relational learning, the SML community has also been moving in
the direction of higher-level, more declarative probabilistic model-
ing tools. In a nutshell, the key idea lies in learning and reasoning
with First-Order (FO) (or, relational) probabilistic models, where
the random variables in the model representation correspond to sets
of random parameters in the underlying data [8, 14, 15]. Proba-
bilistic Relational Models (PRMs) [8] are a good example of such
models, formed as a FO extension of traditional (propositional)
BNs over a relational DB schema: Random variables in the PRM
directly correspond to attributes in the schema; thus, PRMs can
capture correlation structure across attributes of the same or differ-
ent relations (through foreign-key paths) at the schema level. The
idea, of course, is that this correlation structure is shared (or, FO-
quantified) across all data tuples in the relation(s); for instance, in a
Person database, a PRM can specify a correlation pattern between
Person.Weight and Person.Height (e.g., a conditional proba-
bility distribution Pr[Person.Weight = x|Person.Height = y]
that is shared across all Person instances. Such shared correlation
structures not only allow for more concise and intuitive statistical
models, but also enable the use of more efficient lifted probabilis-
tic inference techniques [15] that work directly off the concise FO
model.

Our Contributions. In this paper, we present a model and ini-
tial implementation of a novel PDBS we call BAYESSTORE, which
treats rich graphical models as first class objects, alongside a tra-
ditional relational storage. Building on seminal work incorporat-
ing graphical models and relations [8, 7, 16], we have developed a
scalable and statistically robust PDBS, with a number of key dis-
tinguishing features:

• A new data uncertainty model based on a set of novel First-
Order (FO) extensions to graphical models, that enable declar-
ative specifications of both tuple, and attribute level correla-
tions, among populations of data items.1

• Seamless integration of state-of-the-art SML techniques with
relational query processing, to directly support both relational
queries and probabilistic model reasoning and manipulations,
inside the PDBS.

• Query optimizations able to provide significant performance
benefits, by exploiting graphical models to filter out unlikely
tuples, without impairing the soundness or accuracy of the
result.

In this paper we describe the BAYESSTORE system, its current
state of implementation, and initial experiments demonstrating the
importance of our approach from the perspectives of both perfor-
mance and statistical robustness.

2 The BAYESSTORE Data Model
BAYESSTORE is founded on a novel data model that treats (uncer-
tain) relational data and statistical models of uncertainty as first-
class citizens of the PDBS. In this section, we outline the system’s
data model, focusing, in particular, on a novel, declarative FO
extension of BN models that is able to capture complex possible-
worlds distributions of large PDB instances in a compact and scal-
able manner. Based on the solid probabilistic foundation of BNs,
BAYESSTORE can model the complex correlation patterns present
in real-world uncertain applications; in addition, through our novel
FO extensions, such correlations can be declaratively expressed
(and learned) at the appropriate level of granularity, with random
variables (RVs) specified in a very flexible and schema-independent
manner.2 (This is in contrast to PRMs, where RVs correspond only
to schema-level attributes; PRMs are a simple special case of the
BAYESSTORE FO statistical model.)

2.1 Incomplete Relations and Possible Worlds.

Abstractly, a BAYESSTORE probabilistic database DBp=<R, F>
consists of two key components: (1) A collection of incomplete re-
lations R, and (2) A probability distribution function F that quan-
tifies the uncertainty associated with all incomplete relations inR.

An incomplete relationR ∈R is defined over a schemaAd ∪Ap

comprising a (non-empty) subset Ad of deterministic attributes
(that includes all candidate and foreign key attributes in R), and a
subset Ap of probabilistic attributes. Deterministic attributes have
no uncertainty associated with any of their values — they always
contain a legal value from their domain, or the traditional SQL
NULL. On the other hand, the values of probabilistic attributes may
be present or missing from R. Given a tuple t ∈R, non-missing
values for probabilistic attributes are considered evidence, repre-
senting our partial knowledge of t. Missing values for probabilis-
tic attribute Ai ∈Ap capture attribute-level uncertainty; formally,
each such missing value is missing value is associated with a RV
Xj ranging over dom(Ai) (the domain of attribute Ai). (Note that
applications requiring tuple-existence uncertainty can incorporate
a probabilistic boolean attribute Existp to capture the uncertainty

1In a recent workshop paper, Sen et al. [17] also discuss the use of FO
probabilistic models in PDBSs. Still, their FO model is quite different from
ours; furthermore, the interaction of relational query processing and FO
model reasoning is not explored in their paper.
2While our focus here is on directed graphical models (i.e., BNs), our key
ideas are also applicable to the undirected case; due to space constraints,
details are deferred to the full paper [19].

of each tuple’s existence in an incomplete relation. As discussed
later, this requirement can also arise during query processing in
BAYESSTORE.)

The second component of a BAYESSTORE database DBp=<R,
F > is a probability distribution function F , that models the joint
distribution of all missing-value RVs for relations in R. Thus, as-
suming n such RVs, X1, . . . ,Xn, F denotes the joint probability
distribution Pr(X1, . . . ,Xn). The association of F with conven-
tional PDB possible- worlds semantics [6] is now straightforward:
every complete assignment of values to all Xi’s maps to a single
possible world for DBp.

Note that, unlike most PDB work to date [4, 9, 6, 3, 1], the
BAYESSTORE data model employs a clean separation of the re-
lational and probabilistic components: Rather than attaching prob-
abilities to uncertain database elements, BAYESSTORE maintains
the probability distribution F over the incomplete relations as a
separate entity. This design has a number of benefits. First, it al-
lows us to expose all probabilistic information as a separate, first-
class database object that can be queried and manipulated by users/-
applications. Second, and perhaps most important, it allows us to
leverage ideas from state-of-the-art SML techniques in order to ef-
fectively represent, query, and manipulate the joint probability dis-
tribution F . Thus, the BAYESSTORE data model directly captures
the PDB possible-worlds semantics, while exposing the (poten-
tially complex) probabilistic and correlation structures in the data
as as first-class objects that can be effectively modeled and manip-
ulated using SML tools.

From our definition of F , it is evident that it is a potentially
huge mathematical object — the straightforward method for rep-
resenting and storing this n-dimensional distribution F is essen-
tially linear in the number of possible worlds of DBp. We discuss
two representation techniques that help capture this information far
more compactly. First, we describe Bayesian Networks (BNs), a
traditional SML tool that exploits conditional independence of RVs
to obtain more efficient, factored representations of joint distribu-
tions. Then, we discuss a set of novel FO extensions to BN models
that enable BAYESSTORE to obtain even more compact probabilis-
tic model representations through a flexible, declarative model for
specifying shared probabilistic and correlation structures. We first
take some time to introduce a simple example that will be used to
illustrate some key concepts in what follows.

EXAMPLE 1. Suppose there are two sets of environmental sen-
sors in different rooms of a hotel. The first set of sensors monitors
temperature and light levels; while the second monitors humidity
and light levels. Sensor readings are inherently noisy – readings
may be dropped due to sensor malfunctions or power fluctuations,
or even garbled by radio interference from other equipment. For
the ease of exposition, we assume that sensor readings are dis-
cretized into binary values; Cold and Hot for temperature, Drk
(Dark) andBrt (Bright) for light, andHigh andLow for humidity
levels. We regard all collected readings from the two sets of sen-
sors being stored in a database DBpof two incomplete relations:
Sensor1(Time(T), Room(R), Sid, tempp(Tp), lightp(L)), and
Sensor2(Time(T), Room(R), humidityp(H), lightp(L)), respectively.
Probabilistic attributes are denoted with superscript p, while the
attributes constituting the primary key are underlined. In this ex-
ample, neither relation is associated with tuple-level existence un-
certainty. Figure 1(a) depicts an instance of these relations. Blank
cells correspond to missing values, and are represented by a RV for
each, taking values from the domain of the corresponding proba-
bilistic attribute. Each RV can be referred to by its tuple identifier
and attribute name (e.g. ε1.Tp is the RV of the missing value of
tuple ε1). In this snapshot ofDBp, the possible worlds distribution

ε1.L ε1.Tp p

Brt Hot 0.8
Drk Hot 0.2
Drk Cold 0.8

Brt Cold 0.2

MBN: Bayesian Network

ε1.Tp

ε2.Lε2.Tp

ε1.L

CPT (ε1.L | ε1.Tp)

(a)

(b)
Hot321

Brt
Drk

Lp

221
121

Cold311
Cold211

111

TppSidRT

Incomplete Relation: Sensor1p

ε1
ε2
ε3
ε4

ε5
ε6

Incomplete Relation: Sensor2p

Drk

Lp

High21
11

HpRT

ε1’
ε2’

ε1

ε2

ε3

ε4

ε5

ε6

(b)

ε2’

ε1’

(c)

Figure 1: (a) Incomplete Relations Sensor1 and Sensor2. Each
tuple is referred to by its identifier (εi). (b) An example
Bayesian Network representation of the probabilistic distribu-
tion of tuples {ε1, ε2}, and the CPT associated with RV ε1.L.
(c) The mapping between the entity sets of two stripes, STp and
SH , from Sensor1 and Sensor2 respectively, involved in a child-
parent relationship.

F can be captured by an 8-dimensional distribution table, over the
8 RVs associated with the uncertain quantities of the relations.

2.2 Bayesian Networks: A Quick Primer

Over the past 20 years, Bayesian Networks (BNs) have emerged as
a widely-used SML model to efficiently represent and reason about
multi-variate probabilistic distributions [12]. A BN is a directed
acyclic graph G = (V,E) with nodes representing a set of RVs
{X1, X2, . . . , X|V |}, and edges denoting conditional dependence
relationships between RVs. In a nutshell, the structure of the BN en-
codes the assertion that each node is conditionally independent of
its non-descendants, given its parents. This allows us to model the
probability distribution of a RV Xi, locally, as a Conditional Prob-
ability Table (CPT) or factor Pr[Xi|Pa(Xi)] that specifies howXi

depends probabilistically on the values of its parent nodes Pa(Xi).
It is not difficult to see that the overall joint probability distribution
can be factored into the product of all local models in the DAG; that
is, Pr[X1, ..., X|V |] =

Q|V |
i=1 Pr[Xi|Pa(Xi)]. Given that the di-

mensionality of local correlation models is typically much smaller
than |V |, this factored BN representation can be orders of magni-
tude more efficient than a straightforward |V |-dimensional proba-
bility distribution.

Thus, a natural, first approach to compress the multi-variate dis-
tribution F of a BAYESSTORE database DBp, is to encode it using
a BN: Every probabilistic attribute value in DBpis represented by
one RV in the BN, and local CPT models capture probabilistic cor-
relations across these values. Here, note that we are slightly gen-
eralizing our earlier description of the BAYESSTORE probabilistic
model by associating a RV with every probabilistic attribute value,
either missing or not. Such a generalized model essentially ac-
knowledges the potential for uncertainty in all probabilistic values,
and is closer to the traditional SML point of view where models for
all random quantities are learned from historical training quantities
and further manipulated on the basis of current observations. In ad-
dition, note that the required possible-worlds distribution function
F over just missing-value RVs can be obtained using conventional
SML techniques for conditioning the BN on the observed evidence
values provided in the incomplete relations3.

3BNs can also accommodate continuous, or combinations of con-

Finally, we make a conceptual distinction between two types of
correlations (i.e., edges in the BN). A correlation involving RVs
mapping to attribute values in the same tuple, is termed a hori-
zontal correlation; otherwise (i.e., if the correlation associates RVs
from distinct tuples), it is termed a vertical correlation. As we will
see, the distinction between the two is sometimes important during
query processing in BAYESSTORE.

EXAMPLE 2. Figure 1(b) depicts a simple BN, representing the
joint Pr[ε1.Tp, ε1.L, ε2.Tp, ε2.L] of the 4 RVs that correspond
to the probabilistic values of tuples ε1 and ε2. The local model
for each RV is given by a conditional probability table (CPT). The
figure shows only the CPT of RV ε1.L. The RV ε2.Tp is consid-
ered an observed RV, as its value is fixed to Cold, from the evi-
dence provided in Sensor1. The joint distribution F of Sensor1 can
be computed by calculating the probability Pr[ε1.Tp, ε1.L, ε2.L|
ε2.Tp = Cold] over the BN. The edge between ε1.Tp and ε2.Tp
constitutes a vertical correlation; the rest are horizontal.

2.3 The BAYESSTORE FO Bayesian Network Model

Even with the use of a factored representation that exploits condi-
tional independence among tuple variables, the size of the resulting
tuple-based BN model (also referred to as a propositional BN) re-
mains problematic: The model requires one RV per probabilistic
attribute, per tuple, per relation! Such huge propositional BN mod-
els are clearly not useful as an intuitive representation of the uncer-
tainty in the data; furthermore, the cost of probabilistic reasoning
over these models is bound to be prohibitive for non trivially-sized
domains [16].

To overcome these problems, BAYESSTORE employs a novel re-
finement of recent ideas in the area of First-Order (FO) probabilis-
tic models [8, 14, 15]. More specifically, the BAYESSTORE prob-
abilistic model is based on a novel class of First-Order Bayesian
Network (FOBN) models. In general, a FOBN model MFOBN

extends traditional (propositional) BN structures by capturing inde-
pendence relationships between sets of RVs. This allows correlation
structures that are shared across multiple propositional RVs to be
captured in a concise manner. More formally, aMFOBN encodes
a joint probability distribution by a set of FO factors MFOBN

= {φ1, ..., φn} — each such factor φi represents the local CPT
model of a population of (propositional) RVs. For instance, the
popular Probabilistic Relational Models (PRMs) [8] are an instance
of FOBN models specified over a given relational schema: First-
order RVs in a PRM directly correspond to schema attributes, and
the correlation structure specified is shared across all propositional
instances in the relation (which are assumed to be independent
across tuples — i.e., no vertical correlations). Attributes in differ-
ent relation schemas can also be correlated along key/foreign-key
paths [8].

The BAYESSTORE FOBN model is based on a non-trivial exten-
sion to PRMs that allows correlation structure to be specified and
shared across first-order RVs corresponding to arbitrary, declara-
tively specified, sub-populations of tuples in a relational schema.
Thus, unlike PRMs, shared correlation structures in BAYESSTORE
can be specified in a very flexible manner, without being tied to a
specific relational schema design. This flexibility can, in turn, en-
able concise, intuitive representations of probabilistic information.
The key, of course, is to ensure that such flexibly-defined FO cor-
relation structures are also guaranteed to map to a valid probabilis-
tic model over the base (propositional) RVs in the BAYESSTORE

tinuous and discrete RVs. In the interest of space, we restrict our
attention to discrete distributions, and refer the interested reader to
standard textbooks on the subject [5].

database. (Such a mapping is known as FO model “grounding” in
the SML literature.) In what follows, we give a brief overview of
some of the key concepts underlying the BAYESSTORE FOBN un-
certainty model, and how they ensure a valid mapping to a possible-
worlds distribution.

First-Order RVs in BAYESSTORE: Entities, Entity Sets, and
Stripes. The following definition provides a declarative means of
specifying arbitrary sub-populations of tuples by selecting “slices”
of the deterministic part of an incomplete relation R.

DEFINITION 2.1. [Entity Set R.E] An Entity Set (R.E) of an
incomplete relation R with deterministic attributes K1, . . . ,Kn, is
the deterministic relation R.E (K′) (where K′ ⊆ {K1, . . . ,Kn}),
defined as a relational algebra query which performs a selection
and a subsequent projection on any part K′ of {K1, . . . ,Kn}:
R.E def

= πK′(σcondition onK′(R)).

The elements of an entity set essentially identify a number of
“entities” at arbitrary granularities – tuples or tuple groups – which
contain some probabilistic attributes that we intend to model. Note
that, in general, since entity sets are defined as projections on parts
of R’s superkey, a particular entity ε can correspond to a set of
tuples in R. The probabilistic attribute RV associated with ε corre-
sponds, in fact, to the same RV across all R tuples corresponding
to ε; in other words, in any possible world, a probabilistic attribute
associated with an entity is instantiated to the same value for all tu-
ples in the entity’s extent. Thus, intuitively, entities define the gran-
ularity of the base, propositional RVs in the BAYESSTORE model.
An entity set then naturally specifies the granularity of first-order
RVs (quantified over all entities in the set).

Various entity sets can be specified for the same relation, de-
pending on the level in which entities are captured. Among those,
the maximal entity set of R, which associates an entity with each
tuple in R, can be obtained by projecting on any key of R— for
our Sensor1 table example: Sensor1 .EM = π{R,T,Sid}(Sensor1).
Each entity ε in Sensor1 .EM (i.e. each sensor reading tuple) is as-
sociated with two uncertain quantities, its temperature (ε.Tp) and
light readings (ε.L), which can be represented by the RVs ε.XTp

and ε.XL, that model the stochastic process of assigning values to
ε.Tp and ε.L, respectively.

Coarser entity definitions are also useful when we need to asso-
ciate the same RV for several tuples in an incomplete relation, i.e.,
tuples that always have the same probabilistic attribute value in any
possible-world instantiation. Such situations arise naturally, for in-
stance, when values of a probabilistic attribute are redundantly re-
peated in a table or during the processing of cross-product and join
operations over probabilistic attributes (Section 3.3).

Having specified the concept of entity sets, we can now naturally
define the notion of first-order RVs in BAYESSTORE. Such FO RVs
(termed stripes) represent the values of a probabilistic attribute for
a population of entities that share the same probabilistic character-
istics.

DEFINITION 2.2. [Stripe S <R.Ap, E >] A stripe S <R.Ap,
E > over an entity set E of an incomplete relation R, represents a
set of random variables, one per entity from E , which models the
stochastic process of assigning values to the probabilistic attribute
Ap of that entity.

First-Order Factors and FOBNs in BAYESSTORE. As men-
tioned earlier, a FO factor in a FOBN captures the shared cor-
relation structure (CPT) for a group of underlying propositional
RVs (i.e., entities). Using our earlier definitions, we can define

BAYESSTORE FO factor φ (S|Pa(S)), as a local CPT model that
describes the conditional dependence relationship between a child
stripe S and its parent stripes Pa(S). For example, if for all en-
tities in of the incomplete relation Sensor1 , the RV corresponding
to light, Li, conditionally depends on the temperature, Tpi, of the
same entity εi (i.e., Tpi → Li), and this correlation pattern (i.e.,
CPT) is shared across all entities, then this situation can be captured
concisely by two stripes: STp =< Sensor.Tp, {πR,T,SidSensor} >
and SL =< Sensor.L, {πR,T,SidSensor} >, and a FO factor
over them: φ (SL|STp).

In the above example, we implicitly assumed the existence of a
one-to-one mapping between entities in the child stripe (SL) and
entities in its parent stripe (STp); i.e., each (propositional) RV Li ∈
SL will have as a parent its corresponding Tpi ∈ STp. Although
this is often the case, non-bijective types of stripe mappings can be
defined as well.

DEFINITION 2.3. [Mapping between Stripes f [Sp, Sc]] A map-
ping f between two stripes – a child stripe Sc < R.Ap

c , Ec > and
a parent stripe Sp < R.Ap

p, Ep >, is a surjective function from the
entity set Ec to Ep, f[Sp, Sc]: Ec → Ep, expressed as a first-order
logic formula over the schemata Kc and Kp of the entity sets Ec

and Ep, whereKp ⊆ Kc. For the mapping to be valid, the selection
predicates of the relational algebra expressions used to define Ec

and Ep respectively, need to be the same.

Definition 2.3 formalizes the association of the individual ele-
ments (RVs) of two stripes involved in a “child-parent” relationship
(Sp → Sc) at a per-instance level. In essence, it requires that every
RV from Sc will have a single corresponding parent RV from Sp. In
addition, it ensures the minimality of the parent stripe Sp, through
the constraint of surjectivity, as every RV in Sp has to be associated
with at least one RV from Sc. From the above, while it is permis-
sible for an RV from Sp to be parent of more than one RV from
Sc, a child RV from Sc cannot have more than one parent (since
such multi-variable correlations cannot be captured by a single FO
edge).

The last requirement of definition 2.3 essentially states that be-
tween the entity set attributes of the child and the parent stripes,
there is a key-foreign key relationship, so that the entities between
the two sets can be unambiguously associated with each other. To
continue the previous example, the “1-1” mapping between the
stripe SL and its parent STp, can be expressed as:

(∀εL ∈ SL.E , ∀εTp ∈ STp.E)Pa(r.εL) = r.εTp, s.t.:
εL.T = εTp.T ∧ εL.R = εTp.R ∧ εL.Sid = εTp.Sid

(1)

where r.εL signifies the RV associated with the entity εL from
stripe SL’s entity set, and Pa(r.εL) the parent RV of r.εL.

Up to this point we have tacitly assumed that we can express
correlations only among stripes of the same incomplete relation.
Nevertheless, conditional dependence relationships can be formed
between stripes of different relations. As noted earlier, the two rela-
tions must be involved in a key-foreign key relationship, the foreign
key of the parent incomplete relation should be part of the primary
key of the child, and the selection predicates (if any), populating
the entity sets of the stripes must be the same, for the last condition
of Definition 2.3 to be satisfied.

Following the running example of Figure 1, we assume that at-
tributes T and R of Sensor form a foreign key for Sensor2. More-
over, assume that for each room and timestamp, the temperature
readings of the 3 different sensors in that room depend condition-
ally on the (single) humidity reading for that timestamp (i.e., H →
Tp), and that this correlation pattern is quantified by the same CPT

MFOBN: First-order Bayesian Network

S1:<Sensor1.Tp,
{� T,R,Sid (σSid≠2 Sensor1)}>

S2:<Sensor1,Tp,
{� T,R,Sid Sensor1}>

S3:<Sensor1.L,
{� T,R,Sid Sensor1}>

φ1 (S1):
φ2 (S3|S2):

CPT2

CPT1S1 S2 S3

S5:<Sensor1.Tp,
� T,R,Sid (σSid=2 Sensor1)}>

S4:<Sensor.Tp,
{� T,R,Sid (σSid=1 Sensor1)}>

φ3 (S5|S4):
CPT3

S4 S5

Figure 2: First-order Bayesian Network model over the incom-
plete relation Sensor1 in Figure 1.

across all such groups of RVs. That can be expressed by defining
2 stripes, STp =< Sensor.Tp, {πR,T,SidSensor} > for temper-
ature and SH =< Sensor2.H, {πR,TSensor2} > for humidity,
and a first order factor φ(STp|SH) which is made explicit through
the one-to-many mapping:

(∀εTp ∈ STp.E ,∀εH ∈ SH .E)Pa(r.εTp) = r.εH , s.t.
εTp.T = εH .T ∧ εTp.R = εH .R

(2)

The mapping f [STp, SH] is graphically depicted in Figure 1(c). In
this example we can see the application of Definition 2.3 in its full
generality; each entity of the parent stripe SH is associated with its
3 corresponding entities from the child stripe STp, which can be
uniquely defined because of the key-foreign key relationships that
characterize the two entity sets.

We are now ready to formally define a first-order factor.

DEFINITION 2.4. [First-order Factor φ ({Si},{fi},CPT)] A first-
order factor φ represents the conditional dependency of a child
stripe Sc on a set of parent stripes Pa(Sc) = {Sp1 , . . . , Spn},
φ (Sc|π(Sc)). It consists of:

• A child stripe Sc and a (possibly empty) ordered list of parent
stripes {Sp1 , . . . , Spn}.

• A (possibly empty) ordered list of stripe mappings {fi[Sc,
Spi]}, (i = 1, . . . , n), each one associating the entities of
the child stripe with those of the corresponding parent stripe.

• A conditional probability table (CPT), quantifying the com-
mon local model, that holds for all the RV associations that
are defined by the set of mappings {fi[Sc, Spi]}, among the
entities of the stripes involved, P (Sc|π(Sc)).

A BAYESSTORE FOBN modelMFOBN can now be defined as
a set of first-order factors Φ = {φ1, ..., φn}, where each φi de-
fines a local CPT model for the corresponding child stripe. Note
that our definitions of stripes and stripe mappings are sufficient to
guarantee that each individual FO factor can be grounded to a valid
collection of local CPTs over propositional RVs (entities). In the
presence of multiple FO factors (and possible connections across
factors), ensuring that the globalMFOBN model can be grounded
to a valid probabilistic distribution over entities is a little trickier.
More specifically, note that even distinct stripes in factors can over-
lap (see Example 3 below), and additional structural constraints
must be imposed on the model to guarantee grounding to an acyclic
BN model. Due to space constraints, details are deferred to the full
version [19] of this paper.

EXAMPLE 3. Figure 2 shows an exampleMFOBN for our sen-
sornet probabilistic database. There are three first-order factors:

{φ1, φ2, φ3}. For φ1, the child stripe φ1.S1 is defined over the at-
tribute Tpp, and with an entity set of all the entities with Sid 6= 2.
For φ2, both the child and parent stripes are defined over the maxi-
mal entity set of the Sensor1 relation (i.e. for all tuples in Sensor1).
Finally, for φ3, the child stripe is defined over the attribute Tpp of
all the entities with Sid = 2, and the parent stripe is defined over
Tpp of all the entities with Sid = 1. In all cases, “1-1” mapping
functions are assumed, which along with the corresponding CPTs,
are omitted from the figure in the interest of space.

Learning the shared correlation structure and the parameters of
a FO probabilistic model from data is known to be a challenging
task [18]. In an earlier workshop paper [13], we have discussed the
complications of the learning process, and how it can be facilitated
over a hierarchical version of FOBNs. Developing a complete, ef-
ficient learning solution for the BAYESSTORE FOBN model is in
our immediate plans.

3 Query Processing
Having presented BAYESSTORE’s probabilistic model, in this sec-
tion we consider basic query processing algorithms from the stan-
dard SQL repertoire, namely selection, projection and join, ex-
tended with inference operations over the incomplete relations in
a probabilistic database DBp=< R, F >.

Unlike their relational counterparts, which operate only over de-
terministic relations, operators over aDBphave to process both the
data in the incomplete relations and the possible-worlds distribu-
tion. A naive approach to query processing is to perform tradi-
tional relational operations on the set Ω of the exponentially many
worlds, to compute a new set of possible worlds Ω′, and correctly
map probabilities from F to F ’. Since this computation is clearly
intractable, the core challenge is to develop query execution tech-
niques which, prior to operating on the data of DBp’s incomplete
relations, manipulate the first-order model accordingly. This pre-
processing step guarantees that the resulting probability distribu-
tion F ’, encoded by the modified MFOBN , will be compatible
with the new state of DBp.

3.1 Selection
We focus our discussion on the use of a selection predicate %, that
is a conjunction of atomic predicates (% = ∧%i), whose operators
involve arithmetic comparisons Θ ∈ {<,>,6,>,=} between a
probabilistic or deterministic attribute and a constant (% = AΘct).
BAYESSTORE also supports other forms of atomic predicates, such
as % = ApΘBp (presented in Section 3.3, where probabilistic joins
are discussed), as well as boolean expressions involving disjunc-
tions and negations, but details are omitted due to space restric-
tions.

The techniques for performing selection over the model (as we
call the MFOBN modification process) which will be discussed
next, have proven to be quite fundamental for all the relational op-
erations described in this section. On the other hand, selection over
the tuples of R is not a trivial process either, as the filtering of the
incompatible to % tuples is no longer deterministic. Section 3.1.2
introduces a basic algorithm for selecting incomplete data tuples,
as well as two optimizations, which attempt to reduce the size of
the resulting incomplete relation R’, without affecting the validity
of the selection output.

3.1.1 Selection over ModelMFOBN

In a deterministic DB, selection over a relation R reduces it to con-
tain only the tuples that satisfy the selection predicate. Should R
be an incomplete relation (e.g., the Sensor1 relation of Figure 1, in
which some temperature and light readings are missing), a selection

with predicate % : (Sensor1 .Lp = Brt), apart from removing the
tuples that have a light value different than Brt, affects the distri-
bution of possible worlds F as well, since worlds where L = Drk

cannot be generated by %.
In statistical model terms, this probabilistic selection operation

resembles that of computing the conditional distribution Pr[
−→
X |Y1 =

y1, . . . , Yn = yn] of a set of RVs
−→
X , given that RVs {Yi}n1 ∈

−→
X ,

have specific values {y1, . . . , yn}. Thus, it seems tempting to cal-
culate the new possible-worlds distributionF ’ over the set of exam-
ple RVs

−→
XSensor = {Tp1, . . . , Tpn, L1, . . . , Ln}, by condition-

ing on all the RVs that correspond to Sensor1 .L = Brt. Unfortu-
nately, this operation does not result in the correct possible worlds
distribution: In a nutshell, the problem here is that conditioning
(and other standard model manipulations, such as marginalization)
cannot by themselves express possible worlds with different num-
bers of tuples — even under the conditioned/marginalized model,
the number of tuples in each possible completion of an incomplete
relation R is going to be the same (i.e., |R|). In contrast, apply-
ing the selection operation over the possible worlds can obviously
result in worlds with different numbers of tuples, by filtering out
tuples that do not satisfy the selection predicate; essentially, prob-
abilistic selection introduces tuple-existence uncertainty (i.e., the
existence of a tuple in a possible world becomes uncertain).

Continuing with our example, a given tuple t ∈ Sensor1 appears
only in the possible worlds where the attribute L = Brt, and in
all the rest it is filtered out completely. On the other hand, by sim-
ply calculating the conditional Pr[

−→
XSensor|L1 = Brt, . . . , Ln =

Brt] directly over the model, the possible worlds corresponding
to the resulting joint pdf all have the same number of tuples (i.e.,
the number of tuples in Sensor1 with L 6= Drk) all having L =
Brt. (It should also be intuitively clear that this (conjuctive) con-
ditioning does not have the right semantics for our selection op-
eration.) The fact that the cardinality of tuples between possible
worlds can vary cannot be directly expressed by standard condi-
tioning/marginalization operations on the model.

We capture tuple existence uncertainty by introducing the prob-
abilistic attribute Existp in the schema of the incomplete rela-
tion being selected, if it is not contained already. Depending on
whether the selection predicate % involves a deterministic Ad, or a
probabilistic attributeAp, the corresponding selection over a model
σ(MFOBN) behaves differently.

The atomic predicate % : (AdΘct), restricts the entity set to
which the predicate % applies. For example, % : (Sid = 3 ∧ Tp =
Hot) restricts the entity set of predicate % to only include the enti-
ties with Sid equals 3. Entities with Sid 6= 3 cannot exist in the
resulting relation (i.e., their Existp=0).

Existence uncertainty is introduced in the model when % involves
a probabilistic attribute Ap. For example, if a predicate Tp = Hot

is applied to a tuple t with a missing Tp value, the presence of t
in the output becomes probabilistically dependent on t.Tp’s value.
Intuitively, this operation corresponds to changing the local model
of the factor that corresponds to R’s Existp attribute, to be depen-
dent on that probabilistic attribute (for our example, Tp).

Figure 3 shows the select-model algorithm, based on a predi-
cate % of the formAdΘ1ct1∧ApΘ2ct2. For example, % = (Sid =
3 ∧ Tp = Hot). The algorithm can be easily extended to process
a conjunctive predicate % with any number of atomic predicates.
(Join predicates (e.g., AΘB) are discussed in Section 3.3.)

Lines 1-2 define the entity set on which the selection predicate
applies: %.E . The presence of the deterministic attribute inside %
(Sid = 3) essentially restricts its entity set %.E (e.g., to all tuples
with Sid = 3); otherwise, the predicate applies to any entity within

SELECT-MODEL (R,MFOBN , % = AdΘ1ct1 ∧ApΘ2ct2)
1 MFOBN ’←MFOBN

2 %.E ←< AdΘ1ct1 >
3 // Modification of pre-existing factors φ ∈MFOBN if φ.Sc

4 // over Existp – Step omitted due to space constraints.
5 if %.E 6= ∅ then
6 φ.Sc ←< R.Existp, %.E >
7 φ.Sp ←< R.Ap, %.E >
8 φ.f ← a one-to-one mapping between Sp and Sc

9 φ.CPT ← {Existp = 1 iff %.ApΘ2ct2 == true}
10 MFOBN ’←MFOBN ’ ∪ φ
11 endif
12 if %.E 6= R.E then
13 φ.Sc ←< R.Existp, (R.E − %.E) >
14 φ.CPT ← {Existp = 0}
15 MFOBN ’←MFOBN ’ ∪ φ
16 endif
17 returnMFOBN ’

Figure 3: Algorithm for selection over model with predicate
% = (AdΘ1ct1 ∧ApΘ2ct2)

R’s entity set.
If %.E is non-empty, a new first-order factor φ is added to the

model MFOBN (lines 5-11). φ represents the local model of an
Existp attribute stripe over the entity set %.E : S c < Existp, %.E
>. ApΘ2ct2 determines the parent stripe, φ.Sp, of Sc. The lat-
ter is defined over the probabilistic attribute Ap in % (e.g., a stripe
on attribute Tpp becomes a parent of a stripe on the Existp at-
tribute, with the same entity set, which in this example contains all
the tuples with Sid = 3). A one-to-one mapping is established
between φ.Sc and its parent stripe φ.Sp, in line 8 (e.g., the value
of the Existp attribute in entity ε maps to the value of Tpp in the
same ε). Finally, the CPT table of φ is set to represent the deter-
ministic conditional distribution: Existp = 1 with probability 1,
iff ApΘ2ct2 = true.

Lastly, lines 12-16 deal with the residual entity set (e.g., the en-
tities with Sid 6= 3), which contains all the entities of R that are
not included in %.E : (R.E- %.E). A second first-order factor φ is
defined over the Existp attribute of the residual entity set, which
specifies that none of these entities exists.

In the interest of space, the pseudocode of Figure 3 omits a pre-
processing step that examines if there exist first-order factors in
MFOBN that are defined over attributeExistp. Such a case might
arise if R is a result of a previous selection. For such an existence
factor φ, the entity sets of its stripes are restricted to contain the en-
tities that lie in the intersection of φ.Sc.E and %.E . The correctness
of the final possible-worlds distribution, follows trivially from the
existence RVs added to the FOBN model.

EXAMPLE 4. As an example, suppose the selection predicate
of σSid=3∧Tpp=Hot(Sensor) is applied on the model MFOBN

in Figure 2. The selection operation first extends the schema of
Sensor1 with a probabilistic attribute Existp, which represents
the existence uncertainty of every tuple in Sensor1. It then mod-
ifies the model by adding two first-order factors over two different
stripes of the Existp attribute. The first specifies that for all enti-
ties with Sid = 3, Existp’s value is dependent on Tpp’s value:
if Tpp = Hot then Existp = 1, and 0 otherwise. The second
specifies that for all entities with Sid 6= 3, Existp = 0.

3.1.2 Selection over Incomplete Relation σ(R)

In a traditional deterministic relation, a selection with predicate %
filters out exactly those tuples that do not satisfy the predicate. For
an incomplete relation R, such a naive filtering operation would

SELECT-DATA-BASE (R,MFOBN , %)
1 S ← SELECT(R, %);R′ ← ∅;E1 ← S; i← 1;
2 while Ei 6= ∅ do
3 Ei+1 ← ∅;
4 for each t ∈ Ei do
5 R′ ← R′ ∪ t;Ecorr ← ∅;
6 // Locate correlated tuples to t by traversingMFOBN

7 for each φ ∈MFOBN do
8 // If t is associated with an entity in one of φ’s
9 // parent stripes...
10 if ∃j(j ∈ {1, . . . , n}) : t ∈ φ.Spj .E then
11 Ecorr ← Ecorr ∪ f−1

j (t);

12 // or child stripe...
13 else if t ∈ φ.Sc.E then
14 for each φ.fj do
15 Ecorr ← Ecorr ∪ fj(t);
16 endfor endif endfor
17 Ei+1 ← Ei+1 ∪ Ecorr;
18 endfor
19 i← i+ 1;
20 endwhile
21 return R′

Figure 4: Base Algorithm for select-over-data

produce incorrect results. The first problem lies in whether to se-
lect the tuples with missing values in the predicate attribute: if the
missing value has zero probability to satisfy the predicate, then the
tuple should be filtered. A conservative approach would select all
such tuples. The second problem is that there may be tuples in R
that do not satisfy the predicate, but are still relevant, due to their
correlation with another tuple that has non-zero probability of satis-
fying the predicate. The absence of these evidence tuples will lead
to incorrect probabilistic inference computations later on.

As an example, consider two sensors, one placed on the exterior
of a building, the other placed in a heating duct. The sensors are
anti-correlated: when the exterior sensor is cold, the duct sensor is
more likely to be hot. A query that asks for the temperatures of all
sensors detecting heat, must retain the Cold temperature reported
by the exterior sensor, if the duct’s sensor temperature reading in a
given tuple is missing.

Thus, selection over an incomplete relation σ(R) has to be suf-
ficient, in retaining evidence tuples in R, which are relevant to any
tuple that may satisfy the predicate with non-zero probability. On
the other hand, selection should also be minimal, in deleting any
tuple that neither satisfies the predicate nor is correlated with other
“candidate” tuples. The “minimum” incomplete relation can be
achieved by computing the marginal probability distribution over
all the Existp attribute values, and filtering all the tuples that have
0 probability of having Existp = 1. The complexity of this infer-
ence computation is known to be NP-hard, in general. We proceed
to describe a base algorithm for σ(R), and two optimizations that
reduce the former’s complexity, while being as economical in re-
taining evidence tuples as possible.

Base Algorithm. Figure 4 displays the basic version of the data
selection algorithm. According to the two objectives stated ear-
lier, it selects tuples which either satisfy the predicate or contain
missing values (tuple set T), while retaining all the tuples that are
correlated with at least one tuple from T . The latter are determined
by computing a transitive closure operation over T , using a tuple
correlation graph – an undirected graph in which nodes correspond
to R’s tuples, and undirected edges represent correlations between
pairs of tuples (“vertical” correlations).

In particular, the data selection algorithm initially uses the input

Figure 5: An example illustrating the Base Select-over-data Al-
gorithm for σTp=‘Cold′(Sensor).

predicate % to select the tuples in the incomplete relation R, which
either contain evidence satisfying the predicate, or their probabilis-
tic attribute value in the predicate is missing (line 1).

In lines 4-20, the transitive closure of the tuple set E1 is com-
puted, using semi-naive evaluation, over the tuple correlation graph.
At the end of each iteration, a new set of tuples Ei+1 is generated,
containing the parents and children of each tuple t ∈ Ei, as defined
in the correlation graph. At each iteration, the newly chased tuples
are added to Ecorr , the set of all correlated tuples with t.

Lines 7-16, represent the chasing of t’s correlated tuples. All
first-order factors φ inMFOBN are traversed: if one of the parent
stripes’ entity sets φ.Spj .E contains an entity that maps to t (or
more formally, if the projection of t on φ.Spj .E’s schema belongs
in φ.Spj .E), then the entity(ies) in the child stripe φ.Sc to which it
maps, are computed through the reverse mapping f−1

j (t) and added
to Ecorr; if t can be associated with an entity of φ.Sc.E , then all
its corresponding entities from each of φ.Sc’s parents are chased as
well.

EXAMPLE 5. Figure 5 depicts the modelMFOBN of Sensor1,
and the latter’s tuple correlation graph. Tuples {t1, t2}, {t4, t5}
indicate correlated pairs. As a first step, the algorithm selects tu-
ples from Sensor1 which satisfy the predicate or contain missing
values. Consequently, it computes the incomplete relation Sen-
sor1’, calculating the transitive closure of the tuples generated from
the first step, given the tuple correlation graph. Note that in the lat-
ter step, t2 is added, because even though it does not satisfy the
predicate, it has a vertical correlation with t1.

Evidence-Based Early-Stopping Optimization. The transitive clo-
sure computation that the base algorithm utilized to collect all ver-
tically correlated tuples, despite its correctness, might conserva-
tively select more tuples than necessary. However, two tuples t1
and t2 may be conditionally independent, even if there exists a ver-
tical correlation between them. Consequently, we can accelerate
the computation, by stopping early when encountering condition-
ally independent tuples, and thus reduce the number of resulting
tuples.

Identifying conditionally independent tuples is done by means of
the “Bayes Ball” algorithm [12]. Bayes Ball is a standard Graphical
Model algorithm that takes as input a Bayesian Network and evi-
dence values for some of its random variables, and determines pairs
of nodes in the network that are independent, given the evidence.
The details can be found in [19]

EXAMPLE 6. Continuing our example from Figure 5, let us sup-
pose that another vertical correlation exists between tuples t2 and
t6 (t2 → t6), which is reflected with a dotted line in the tuple cor-
relation graph. Although t6 is correlated with t2, the Bayes Ball

algorithm indicates that it is conditionally independent with t1, and
therefore, the transitive closure stops at t2; t6 doesn’t need to be
chased.

Factor-Based Data Filtering Optimization. Recall that the base
algorithm conservatively maintained all the tuples that contained a
missing value for the attribute mentioned in %, assuming that the
probability for such a tuple to have a value that satisfies % is non-
zero. Nevertheless, we could have used theMFOBN model, con-
ditioning on the evidence present in R, to verify if this holds for
every such tuple. In particular, we have not yet utilized the prob-
ability distribution encoded in MFOBN , to actually verify if the
probability of satisfying the predicate is non-zero, conditioning on
the evidence present in the incomplete relation.

As an example, let us examine the following query over the Sen-
sor1 relation of Figure 5: σL=Drk(Sensor). Suppose the local model
of L, φ2, has a conditional probability table φ2.CPT, indicating that
probability of L = Drk is zero when Tp = Hot. Thus t2, with its
L value missing, has zero probability satisfying the predicate.

Since probabilistic inference is an expensive operation, as a re-
laxation, we avoid computing the conditional probability of the RV
of every missing value, given all the available evidence in R and
%. Instead, we focus on tuples with RVs that are involved only in
horizontal correlations. In particular, for each RV r corresponding
to such tuples, we don’t calculate the conditional over the whole
model, Pr[r|

−→
X ev ∪ %.Ap = ct], where

−→
X ev represents the vector

of evidence data in R, but rather Pr[r|
−→
Y ev ∪ %.Ap = ct], where

−→
Y ev is the vector of RVs from the same tuple as r, instantiated
with the evidence in the tuple. This probability can be obtained by
the CPT of the horizontal factor φ in which r belongs (as part of
φ.Sc). Should Pr[r|

−→
Y ev ∪%.Ap = ct] = 0, the tuple can be safely

removed from the result set, and not chased for other correlated
tuples to it.

3.2 Projection
In this section, we concentrate on projection πΠ(R) without dupli-
cate elimination, where the projection list Π = {A1, .., An} con-
tains the primary key. This assumption guarantees that there will
be no duplicates generated from the project operation, because all
the primary key attributes remain in the resulting relation.

The inherent difficulty with duplicate elimination lies in the fact
that it is inherently not a first-order operation. To be able to ac-
count for duplicates, we should model the uncertain quantities of
the probabilistic DB at the tuple level, which would necessitate that
we ground the first order model associated with the DB. We are ac-
tively exploring more concise probabilistic representations for the
task of modeling duplicates, which is left as future work.

Traditional projection semantics over a deterministic relation,
would result in retrieving each tuple from the relation, while keep-
ing only a subset of its attributes. Such an operation over an in-
complete relation though would generate incorrect results, because
deleting the attributes that are not in the subset A may lead to loss
of evidence, which is needed to generate the correct probabilistic
distribution function F .

Not unlike selection, projection over an incomplete relationR re-
tains some attributes A∗ that are not in the projection list Π, if they
are correlated with other attributes in Π, and deletes only the un-
correlated attributesB = Sch(R)−Π−A∗, where Sch(R) is the
schema (attribute list) of R. The project operation over the model
MFOBN deletes the first-order factors that involve attributes in the
set B only.

The project algorithm is shown in Figure 6. In lines 1-5, the
algorithm traverses all first-order factors φ in the modelMFOBN .

PROJECT (R,MFOBN ,Π)
1 MFOBN ’←MFOBN

2 for each φ ∈MFOBN do
3 if ∃i, j : φ.Si.A

p ∈ Π && φ.Sj .B
p /∈ Π then

4 Π← Π ∪Bp

5 endif endfor
6 for each φ ∈MFOBN do
7 if ∀i, φ.Si.A

p /∈ Π then
8 MFOBN ’←MFOBN ’− φ;
9 endif endfor
10 R′ ← ∅
11 for each t ∈ R do
12 R′ ← R′ ∪ t(Π)
13 endfor
14 returnR′,MFOBN ’

Figure 6: Projection algorithm over Incomplete Relations

If φ involves two attributes Ap and Bp, where Ap belongs in the
project list (Ap ∈ Π), and Bp does not (Bp /∈ Π), then Ap and Bp

are correlated by factor φ. Thus, on line 3, the algorithm retains
Bp in project attribute set Π. In lines 6-9, the algorithm traverses
all the first-order factors a second time, and processes the model
MFOBN ’ to remove first-order factors that only involve attributes
which are not in the newly computed set Π. In lines 11-13, the
algorithm iterates through every tuple in the incomplete relationR,
and performs a traditional projection of each tuple on the attributes
that remained in Π.

EXAMPLE 7. Using the example in Figure 5, suppose we have
a new probabilistic attribute Humidity H , and a new first-order
factor φ4, which represents a prior probability table for all at-
tribute values in H . Suppose we are to perform the projection
π{T,R,Sid,L} on this modified incomplete relation Sensor1. Since
the first-order factor φ2 encodes a correlation between attributes
Tp and L, Tp is then included in the projection attribute set Π. At-
tributeH is not included in Π, because it is not correlated with any
attribute in Π. Thus, the model of Sensor1 is modified by deleting
φ4, because it only involves attribute H . Finally, the new incom-
plete relation is generated by projecting every tuple of Sensor1 on
the subset of attributes Π = {T,R, Sid, Tp, L}.

3.3 Join
We now turn our attention on binary selection predicates. In par-
ticular, we will examine how the join operator (./%) between two
incomplete relations R1 and R2, whose entities’ correlation pat-
terns are captured by the first order model MFOBN , determines
the contents of the resulting incomplete relation R = R1 ./% R2,
as well as the necessary modifications toMFOBN . We will con-
centrate on join predicates of the form: % = (R1.A

pΘR2.B
p),

where attributes A and B are probabilistic.

3.3.1 Join over ModelMFOBN

The modifications toMFOBN which are required to maintain the
consistency of the probability distribution F with respect to R, are
quite similar to those that the selection over the model algorithm
performs. As in Section 3.1.1, we need to capture the existence un-
certainty of every joinable pair of tuples r1 ∈ R1 and r2 ∈ R2, in
the final result. The possible universe of these pairs corresponds to
R1×R2. Nevertheless, these possibilities are restricted by the join
predicate %. Hence, the challenge, as in selection, lies in capturing
the existence uncertainty of all probable tuple pair combinations in
a first order fashion.

To accomplish this, we extendMFOBN by adding a first-order
factor overR.Existp, which depends on the probabilistic attributes

JOIN (R1(K, . . . , Ap), R2(K
′
, . . . , Bp),MFOBN , %)

1 R← R1 ./% R2;
2 %.E ← π

K∪K
′ (R1 ×R2)

3 // Assign unique names to the stripes of the factors inMFOBN

4 for each φ ∈MFOBN do
5 φ.Sc ← RENAME(φ.Sc, Sch(R))
6 for each parent stripe φ.Spi , i = {1, . . . , n} do
7 φ.Spi ← RENAME(φ.Spi , Sch(R))
8 endfor endfor
9
10 // Create an existence factor
11 φ.Sc ←< R.Existp, %.E >
12 φ.Sp1 ←< R1.Ap, R1.E >
13 φ.Sp2 ←< R2.Bp, R2.E >
14 φ.f1 ← ∀εc ∈ φ.Sc.E , ∃ε1 ∈ φ.Sp1 .E , φ.f1(εc) = ε1 : εc.K = ε1.K

15 φ.f2 ← ∀εc ∈ φ.Sc.E , ∃ε2 ∈ φ.Sp2 .E , φ.f2(εc) = ε2 : εc.K
′

= ε2.K
′

16 φ.CPT ← {Existp = 1 iff % == true}
17 M′FOBN ←MFOBN ∪ φ
18 return R,M′FOBN

Figure 7: Join algorithm over ModelMFOBN .

Ap and Bp that participate in %. The algorithm is described in Fig-
ure 7. Initially, as a preprocessing step (lines 4–8), we rename the
attributes in the schema of R, Sch(R), to be able to refer to each
attribute of R by a unique name. This renaming step needs to be
carried over the attributes of the stripes of each first-order factor in
MFOBN as well, so that the correspondence ofMFOBN ’s stripes
with the probabilistic attributes of R is maintained.

Lines 10–17 define the new existence first-order factor φ. Essen-
tially, the entity set of φ’s child stripe, φ.Sc.E corresponds to the
cross product of the entities of the relations to be joined,R1(K, . . . , Ap)

and R2(K, . . . , Bp), where K and K
′

are the sets of attributes
comprising the primary keys of R1 and R2 respectively, as indi-
cated by line 2. φ.Sc’s parents are the stripes φ.Sp1 and φ.Sp2 ,
representing the populations of RVs for the join attributes R1.A

p

andR1.B
p. Each entity εc from φ.Sc.E is associated with the orig-

inal “copies” of the two entities, ε1 and ε2, from which it was gen-
erated – one from each respective parent stripe. This many-to-one
association between an entity of one of the two initial relations, and
its multiple copies in the entity set of φ.Sc, is captured by the map-
ping functions φ.f1 and φ.f2 (lines 14–15). Finally, the CPT of
this new factor represents the deterministic conditional distribution
Existp = 1 with probability 1, iff R1.A

pΘR2.B
p = true.

As a special case, if R1 or R2 are a result of a previous selec-
tion, in which caseMFOBN contains existence factor(s) already,
a similar process takes place, which extends the entity sets of the
child and parent stripes involved, as well as the condition defining
the factors’ CPTs, to the resulting cross-product domain of the join.
A detailed description of this special case can be found in the full
version of the paper, [19].

3.3.2 Joining Incomplete Relations

As in the case of selection, the presence of missing values for the
probabilistic attributes of an incomplete relation, causes compli-
cations when the latter is to participate in a join. In particular,
when the attributes participating in a join predicate are probabilistic
(R1.A

pΘR2.B
p), each tuple of R1 (equivalently for R2) that has

a missing value for Ap, may satisfy % and thus participate in the
join result, depending on the possible values it can take, according
to theMFOBN and the evidence present in R1 and R2. Following
the same intuition as in section 3.1.2, all such tuples from both re-
lations should be considered “joinable” conservatively, as the join
operation per se becomes uncertain.

Figure 8: The join operation over the model of two incomplete
relations, Sensor1 and Sensor2.

In addition, we might also need to include in the result the join
of two tuples r1 ∈ R1 and r2 ∈ R2 that do not satisfy the join
predicate, for the same reason this problem arises in selection; this
resulting tuple might be correlated with another tuple from R =
R1 ./% R2 that satisfies %, and hence its absence from R can er-
roneously interfere with probabilistic inference operators, should
they later be run over it. Therefore, the set of these seemingly “dis-
qualified” join tuples needs to be transitively calculated from the
tuples of R′ that satisfy %, using the probabilistic information pro-
vided inMFOBN .

In essence, the above can be phrased as a direct extension of
the selection over a single incomplete relation, studied in section
3.1.2. Taking advantage of the techniques developed there, as well
as common Relational Algebra equivalences, we first compute the
cross product of the relations to be joined, on top of which we apply
our probabilistic selection operator, using the same predicate as in
%: R1 ./% R2 = σ%=(R1.AΘR2.B)(R1 ×R2).

EXAMPLE 8. Given the example in Figure 8, the query we want
to evaluate over these two incomplete relations is:
SELECT * FROM Sensor1 R1, Sensor2 R2

WHERE R1.L = R2.L

The algorithm initially renames the attributes in the definition of
each factor’s stripe Si, so that they coincide with the resulting rela-
tion’s schema: R(Sid1, Sid2, Tpp, L1p, L2p, Existp). A deter-
ministic first-order factor φ4 for R.Existp is added toMFOBN .
Its child stripe’s entity set, S7.E is defined as: {πSid1,Sid2R},
while the parent stripes associated with it, S5 and S6, over the
attributes R.L1 and R.L2 included in the join predicate, have en-
tity sets: {πSid1R} and {πSid2R} respectively. Each entity in the
parent stripe S5.E (likewise for S6) has a unique Sid1 value, s1,
which is mapped with a set of children entities from S.E , all having
Sid1 = s1 and Sid2 ∈ dom(Sid2). Finally, the CPT of φ4 is
defined as:(R.Existp = 1, iff R.L1 = R.L2).

3.4 Inference

We have studied two alternatives for incorporating probabilistic in-
ference operators in BAYESSTORE. According to the first, rather
naive alternative, one needs to ground theMFOBN to a flat BN, on
which standard inference algorithms are applicable [12]. A high-
level description of our grounding algorithm is provided in Section
2.3. Although by taking this route we gain in algorithmic sim-
plicity, we lose the advantage of the compact representation that a
first-order model has to offer.

The second approach involves performing inference directly on
theMFOBN . Its basis lies on an adaptation of a first-order infer-
ence algorithm, introduced by Poole in [15]. The first-order infer-
ence algorithm, operates on whole populations of random variables
at once. Essentially, instead of multiplying the CPTs of a particular
RV population individually, since all CPTs are the same, it raises
their common CPT to the power of the population sizes; the ex-
istence of evidence tuples slightly complicates the above process.
This technique avoids repetitive computation for random variables
with the same local model, as in the case of inference over a stan-
dard BN. Our system already includes a small number of first-order
optimizations, inspired by Poole’s work. Nevertheless, a complete
implementation of first-order inference inside BAYESSTORE is among
our top priorities.

4 Experimental Evaluation
We have implemented a prototype version of BAYESSTORE that
supports the selection variants, presented in section 3.1, and lim-
ited First-Order inference optimizations over FOBNs. The main
findings of our experimental study can be summarized as follows:

• The aggressive data filtering performed by the proposed se-
lection algorithms, reduces the sizes of the output relation
(i.e., evidence tuples), thus enhancing inference efficiency.

• The utilization of First-Order inference techniques results
in even further, dramatic acceleration of the inference stage
over the FOBN.

Our implementation is based on Postgres 8.2.4 (www.postgresql.-
org) and uses Murphy’s BNT Toolbox (www.cs.ubc.ca/∼murphyk/-
Bayes/bnt.html) for inference. In this section we will describe
the results of our experimental evaluation, which focused primar-
ily on selection algorithms. All experiments were run on a 2.8Gz
CPU, 1GB RAM system running the Fedora Linux Core 5.

4.1 Methodology
For our evaluation we are using an extension of the example sce-
nario of Section 2 – a hotel DB with 10 rooms, each instrumented
with 8 environmental sensors, measuring temperature and light level
readings, which are all stored in the incomplete relation Sensor.
The distribution F of this probabilistic database is captured by a
MFOBN . In the interest of space, we chose not to show, but
rather describe the model. Thus, MFOBN contains 4 first-order
factors: a prior for all temperature readings of the 1st, 3rd and 5th

– 8th sensor for every room φ(Tp), one capturing the same cor-
relation pattern between the light and temperature readings over
every sensor in the hotel φ(L|Tp), and two first-order factors mod-
eling the correlation of the temperature readings between the 1st

and 2nd, and 3rd and 4th sensor pairs in every room, φ(Tp2|Tp1)
and φ(Tp4|Tp3). The selection query Q1, that we use in all the
experiments, was: ‘SELECT * FROM Sensor WHERE L=’Drk’’.

Data Generation. We generated a synthetic dataset, by forward
sampling on the model described earlier. To assess our algorithms’
efficiency, we varied a number of parameters related to properties
of the MFOBN used during query processing, and the relation
Sensor. For the latter, we controlled its size ‘size’ in number of ev-
idence tuples generated, the ratio of missing values ‘mratio’ among
them, and the selectivity ‘sel ’ of Q over the data, by appropriately
manipulating the CPTs of the first order factors φ(Tp2|Tp1) and
φ(Tp4|Tp3). As far as the model is concerned, we experimented
with its connectivity ratio ‘cratio’ – the number of vertical corre-
lations between tuples over the total number of tuples in Sensor.
‘cratio’ was expressed by adding more first-order factors, on dif-
ferent stripes of Sensor, than the ones described in par. 4.1.

Execution Time
SELECT * FROM Sensor WHERE L='Dark' INFER joint-distr

0

10

20

30

40

50

60

NaiveSel PlainSel FactorSel EvidenceSel FullSel

tim
e(

se
c)

Inference Inference with First-order Sharing

Figure 10: Inference execution time for query Q′. size =10000,
sel =0.01, cratio =7/8, mratio =0.01.

Algorithms and Metrics. In this section, we present our experi-
mental setting, which includes four selection algorithms over in-
complete relations, incorporating the optimizations presented in
Section 3.1.2. Algorithm PlainSel filters data tuples of an incom-
plete relation R using the traditional selection operator, and gener-
ates evidence tuples, resorting to full transitive closure over R and
the model structure. EvidenceSel uses the “evidence-based early-
stopping” technique on top of PlainSel, while FactorSel ex-
tends PlainSel by incorporating the “factor-based early-stopping”
technique. Lastly, FullSeluses both optimizations.

We also use two baseline algorithms; NaiveSel, which keeps all
tuples in the incomplete relation as evidence, and DetSel, which
applies a traditional over R. As we argued in Section 3, DetSel
will not produce correct answers. Nevertheless, we included it in
our experimentation to compare its execution time (expected to be
the smallest) against the proposed algorithms.

4.2 Scalability

In this first experiment, we varied the size of Sensor, while keep-
ing the selectivity (0.01), the connectivity (7/8), and the ‘mratio’
(0.01) constant. Because “evidence-based early-stopping” reduces
the cost of the transitive closure computation and the size of the
result relation, EvidenceSel and FullSel have shorter execution
times (as in Fig. 9(a)) and smaller result sizes (as in Fig. 9(b)) than
the PlainSel and FactorSel variants. By comparing FactorSel
and PlainSel, we observe that the “factor-based data-filtering”
technique employed by the former decreases the result size, but it
increases the execution time. As expected, DetSel, has always the
lowest cost, yet producing incorrect results.

4.3 Data Uncertainty

We also experimented by varying the ratio of missing values ‘mra-
tio’ in Sensor, while keeping its size to 10000 tuples, Q’s selec-
tivity to 0.01, and MFOBN ’s connectivity ratio to 0.5. As indi-
cated in Fig. 9(c), the execution time of the algorithms utilizing
the “evidence-based early-stopping” technique grows more rapidly
than the rest, as ‘mratio’ increases. This behavior is justifiable,
as a higher number of missing values indicates less evidence on
which these algorithms can be based. Thus, on the higher end of
the spectrum, EvidenceSel proves to be more expensive than the
NaiveSel, and likewise FullSel is more expensive than FactorSel.

4.4 Model’s Connectivity Ratio

The third parameter we varied was the model’s connectivity ratio,
keeping this time Sensor’s size (10000) and ‘mratio’ (0.1), andQ’s
selectivity (0.1) constant. Figures 9(e) and 9(f) clearly demonstrate
that the execution time and the result relation’s size of PlainSel
and FactorSel increase linearly with respect to connectivity, be-
cause they do not utilize the “evidence-based early-stopping” tech-

nique. On the other hand, ‘cratio’ of the model has little effect on
EvidenceSel and FullSel, with a minimal increase in the result
size of around 10%.

4.5 Inference

One of BAYESSTORE’s major objectives is the integration of rela-
tional queries with probabilistic inference operators. In our final
experiment, we make use of an SQL extension which computes
the joint distribution F of the RVs that correspond to the miss-
ing values of Sensor, for all the readings that satisfy the condition
L=’Drk’. A presentation of our proposed SQL extension can be
found in the extended version of our paper. Thus, we are execut-
ing the query Q′: ‘SELECT * FROM Sensor WHERE L=’Dark’

INFER joint-distr’, which according to our query semantics,
will produce a new incomplete relation Sensor’ and modelMFOBN ’.

The selection of Q′ operates both on the modelMFOBN , using
the Select-Model algorithm of paragraph 3.1.1, and on Sensor,
using the different data selection algorithms of our experimental
framework. The resulting model MFOBN ’ is grounded to a flat
Bayesian Network, so that standard inference algorithms can be
applied. Due to time limitations, rather than integrating an infer-
ence operator in our prototype, we used the implementation of the
Variable Elimination algorithm from Kevin Murphy’s BNT tool-
box. On top of it, as we briefly describe in Section 3.4, we im-
plemented one of the First-Order inference techniques discussed
in [15] (FirstorderSharing technique), which allow us to share
the inference computation over a population of instances with the
same model template, without fully grounding the model. Suppose
a sensor deployment, where every sensor has an independent and
identical probabilistic model. The inference computation is identi-
cal, and thus can be shared among all sensor readings with the same
probabilistic attribute values.

Fig. 10 shows the total execution time of Q′, using our vari-
ous data selection algorithms, with and without our first-order op-
timizations. The latter result to reduction on the query execution
time. The execution time decreases as we apply more complicated
optimizations in the selection algorithm. With FirstorderSharing,
NaiveSel, which keeps the full incomplete relation as evidence,
takes the most processing time. FullSel completes in only half
the time, compared to NaiveSel. The decrease is more dramatic
without first-order optimization. These results indicate that data
and evidence filtering techniques manage to reduce the time of the
inference operator, as a welcome effect of the incomplete relation’s
size reduction. The increased cost for the select operation is almost
ten times less than the reduced cost for the inference operation.

5 Conclusions and Future Work
In this paper we presented BAYESSTORE, a Probabilistic Database
System that draws results from the Statistical Learning literature, to
efficiently express and reason about correlations among uncertain
data items, in a concise and statistically sound way. BAYESSTORE
is based on a novel data model, comprised of a set of Incomplete
Relations and a probability distribution over those relations. Thus,
our PDBS manages to fully expose both the incomplete relations
and their distribution to the user, as a unified, robust probabilis-
tic representation that can be jointly manipulated. Furthermore, it
represents one of the first successful attempts to seamlessly inte-
grate state of the art Statistical Machine Learning techniques with
relational query processing.

To represent probability distributions compactly, we use First-
Order Bayesian Networks (FOBNs), which use a small set of first-
order factors to capture correlation patterns between entire popula-
tions of uncertain entities. Furthermore, we have illustrated both al-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

20 40 60 80 100
size (1000s)

tim
e(

se
c)

PlainSel
EvidenceSel
FactorSel
FullSel
DetSel

(a) Execution time, varying R’s size,
while keeping {sel = 0.01, cratio =
7/8, mratio = 0.01} constant.

0

2

4

6

8

10

12

14

16

20 40 60 80 100
size (1000s)

tu

pl
es

 (1
00

0s
)

PlainSel
EvidenceSel
FactorSel
FullSel

x

(b) Result size, varying R’s size, while
keeping {sel = 0.01, cratio = 7/8, mra-
tio = 0.01} constant.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 3 4 5 6 7 8
missing value ratio

tim
e(

se
c)

PlainSel
EvidenceSel
FactorSel
FullSel
DetSel

(c) Execution time, varying the miss-
ing values’ ratio, while keeping {size
= 10000, sel = 0.01, cratio = 1/2}
constant.

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.6 0.8 1
missing value ratio

tu

pl
es

 (1
00

0s
) PlainSel

EvidenceSel
FactorSel
FullSel

(d) Result size, varying the missing
values’ ratio, while keeping {size =
10000, sel = 0.01, cratio = 1/2}
constant.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0/8 1/8 1/4 3/8 1/2 5/8 3/4 7/8
connectivity ratio

tim
e(

se
c)

PlainSel
EvidenceSel
FactorSel
FullSel
DetSel

(e) Execution time, varying the
model’s connectivity ratio, while
keeping {size = 10000, sel = 0.1,
mratio = 0.1} constant.

0
1
2
3
4
5
6
7
8
9

0/8 1/8 1/4 3/8 1/2 5/8 3/4 7/8
connectivity ratio

tu

pl
es

 (1
00

0s
) PlainSel

EvidenceSel
FactorSel
FullSel

(f) Result size, varying the model’s
connectivity ratio, while keeping {size
= 10000, sel = 0.1, mratio = 0.1}
constant.

Figure 9: Experimental results for varying the incomplete relation’s size (a-b), the predicate’s selectivity (c-d), and the model’s
connectivity ratio (e-f).

gorithmically and experimentally, how FOBNs can be used to expe-
dite query processing in large-scale datasets, by establishing prob-
abilistic inference as a first class citizen in the operators repertoire
that a PDBS needs to support. We present a significant first step
toward integrating traditional query optimization techniques with
inference, by showing how to do aggressive early selection on both
evidence and probability models. Simple experiments illustrate that
this can easily lead to an order of magnitude performance improve-
ment over schemes that do not reason about the probability model,
and the conditional independence of data items.

Our query processing results are suggestive, and more remains
to be done. As we discuss, an open challenge is to come up with
efficient algorithms for first-order, duplicate-free projections, that
do not need to work on the tuple level. In addition, our evaluation
motivates the implementation of efficient first-order inference al-
gorithms as a new class of probabilistic query operators, that can
be tightly integrated with the rest of the query processing engine,
so that they can be made optimizer-aware, and reuse some of the
existing functionality, provided by traditional relational operators.

6 References
[1] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple

relational processing of uncertain data. In ICDE, 2008.
[2] D. Barbará, H. Garcia-Molina, and D. Porter. The management of

probabilistic data. IEEE TKDE, 4(5), 1992.
[3] O. Benjelloun, A.D. Sarma, A. Halevy, and J. Widom. ULDB:

Databases with Uncertainty and Lineage. In VLDB, 2006.
[4] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In

VLDB, 1987.
[5] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter.

Probabilistic Networks and Expert Systems. Springer, 1999.

[6] N. Dalvi and D. Suciu. Efficient Query Evaluation on Probabilistic
Databases. In VLDB, 2004.

[7] A. Deshpande and S. Madden. MauveDB: Supporting Model-based
User Views in Database Systems. In SIGMOD, 2006.

[8] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
Probabilistic Relational Models. In IJCAI, 1999.

[9] N. Fuhr and T. Rolleke. A Probabilistic Relational Algebra for the
Integration of Information Retrieval and Database Systems. In ACM
TOIS, 15(1), 1997.

[10] R. Gupta and S. Sarawagi. Curating probabilistic databases from
information extraction models. In VLDB, 2006

[11] T. Imieliński and W. Lipski. Incomplete information in relational
databases. JACM, 31(4), 1984.

[12] M.I. Jordan. Graphical models. Statistical Science (Special Issue on
Bayesian Statistics), 19:140–155, 2004.

[13] E. Michelakis, D.Z. Wang, M. Garofalakis, and J.M. Hellerstein.
Granularity conscious modeling for probabilistic databases. In
DUNE, 2007.

[14] A. Pfeffer. Probabilistic Reasoning for Complex Systems. PhD thesis,
Stanford, 2000.

[15] D. Poole. First-order Probabilistic Inference. In IJCAI , 2003.
[16] P. Sen and A. Deshpande. Representing and Querying Correlated

Tuples in Probabilistic Databases. In ICDE, 2007.
[17] P. Sen, A. Deshpande, and L. Getoor. Representing tuple and

attribute uncertainty in probabilistic databases. In DUNE, 2007.
[18] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic

models for relational data. In UAI, 2002.
[19] D. Wang, E. Michelakis, M. Garofalakis, and J.M. Hellerstein.

BayesStore: Managing Large, Uncertain Data Repositories with
Probabilistic Graphical Models.
(http://www.cs.berkeley.edu/∼daisyw/bs-tr.pdf), 2008.

