
Sketching Streams Through the Net:
Distributed Approximate Query Tracking

Graham Cormode
Bell Labs, Lucent Technologies

cormode@bell-labs.com

Minos Garofalakis
�

Intel Research, Berkeley
minos@acm.org

Abstract

Emerging large-scale monitoring applications require
continuous tracking of complex data-analysis queries
over collections of physically-distributed streams. Ef-
fective solutions have to be simultaneously space/time
efficient (at each remote monitor site), communication
efficient (across the underlying communication net-
work), and provide continuous, guaranteed-quality ap-
proximate query answers. In this paper, we propose
novel algorithmic solutions for the problem of con-
tinuously tracking a broad class of complex aggregate
queries in such a distributed-streams setting. Our track-
ing schemes maintain approximate query answers with
provable error guarantees, while simultaneously opti-
mizing the storage space and processing time at each
remote site, and the communication cost across the net-
work. They rely on tracking general-purpose random-
ized sketch summaries of local streams at remote sites
along with concise prediction models of local site be-
havior in order to produce highly communication- and
space/time-efficient solutions. The result is a power-
ful approximate query tracking framework that readily
incorporates several complex analysis queries (includ-
ing distributed join and multi-join aggregates, and ap-
proximate wavelet representations), thus giving the first
known low-overhead tracking solution for such queries
in the distributed-streams model.

1 Introduction
Traditional data-management applications typically require
database support for a variety of one-shot queries, includ-
ing lookups, sophisticated slice-and-dice operations, data
mining tasks, and so on. One-shot means the data pro-
cessing is essentially done once, in response to the posed
query. This has led to a very successful industry of database
engines optimized for supporting complex, one-shot SQL

�

Work done while at Bell Labs, Lucent Technologies.
Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

queries over large amounts of data. Recent years, how-
ever, have witnessed the emergence of a new class of large-
scale event monitoring applications that pose novel data-
management challenges. In one class of applications, mon-
itoring a large-scale system is a crucial aspect of system op-
eration and maintenance. As an example, consider the Net-
work Operations Center (NOC) for the IP-backbone net-
work of a large ISP (such as Sprint or AT&T). Such NOCs
typically need to monitor hundreds or thousands of net-
work elements (e.g., routers, links) and events at blistering
speeds, continuously tracking and correlating data from a
multitude of points in the network in order to quickly detect
and react to hot spots, floods, element failures, and attacks.
A different class of applications is one in which monitor-
ing is the goal in itself. For instance, consider a wireless
network of sensors deployed for habitat and environmen-
tal monitoring or inventory tracking. The key objective for
such systems is to continuously monitor and correlate sen-
sor measurements for trend analysis, detecting moving ob-
jects, intrusions, or other adverse events.

A closer examination of such monitoring applications
allows us to abstract a number of common characteristics.
First, monitoring is continuous, that is, we need real-time
tracking of measurements or events, not merely one-shot
responses to sporadic queries. Second, monitoring is in-
herently distributed, that is, the underlying infrastructure
comprises several remote sites (each with its own local
data source) that can exchange information through a com-
munication network. This also means that there typically
are important communication constraints owing to either
network-capacity restrictions (e.g., in IP-network monitor-
ing, where the volumes of collected utilization and traffic
data can be huge [7]), or power and bandwidth restrictions
(e.g., in wireless sensor networks, where communication
overhead is the key factor in determining sensor battery
life [18]). Furthermore, each remote site may see a high-
speed stream of data and has its own local resource limita-
tions, such as storage-space or processing-time constraints.
This is certainly true for IP routers (that cannot possibly
store the log of all observed packet traffic at high network
speeds), as well as wireless sensor nodes (that, even though
they may not observe large data volumes, typically have
very little memory onboard).

Another key aspect of large-scale event monitoring is
the need for effectively tracking queries that combine

and/or correlate information (e.g., IP traffic or sensor
measurements) observed across the collection of remote
sites. For instance, tracking the result size of a join (the
“workhorse” correlation operator in the relational world)
over the streams of fault/alarm data from two or more IP
routers (e.g., with a join condition based on their observed
timestamp values) can allow network administrators to ef-
fectively detect correlated fault events at the routers, and,
perhaps, also pinpoint the root-causes of specific faults
in real time. As another example, consider the track-
ing of a two- or three-dimensional histogram summary of
the traffic-volume distribution observed across the edge
routers of a large ISP network (along axes such as time,
source/destination IP address, etc.); clearly, such a his-
togram could provide a valuable visualization tool for ef-
fective circuit provisioning, detection of anomalies and
DoS attacks, and so on. Interestingly, when tracking sta-
tistical properties of large-scale systems, answers that are
precise to the last decimal are typically not needed; in-
stead, approximate query answers (with reasonable guaran-
tees on the approximation error) are often sufficient, since
we are typically looking for indicators or patterns, rather
than precisely-defined events. This works in our favor, al-
lowing us to effectively tradeoff efficiency with approxima-
tion quality.

Prior Work. Given the nature of large-scale monitor-
ing applications, their importance for security as well
as daily operations, and their general applicability, sur-
prisingly little is known about solutions for many ba-
sic distributed-monitoring problems. The bulk of recent
work on data-stream processing has focused on developing
space-efficient, one-pass algorithms for performing a wide
range of centralized, one-shot computations on massive
data streams; examples include computing quantiles [15],
estimating distinct values [13], counting frequent elements
(i.e., “heavy hitters”) [4, 20], approximating large Haar-
wavelet coefficients [14], and estimating join sizes and
stream norms [1, 2, 11]. All the above methods work in
a centralized, one-shot setting and, therefore, do not con-
sider communication-efficiency issues. More recent work
has proposed methods that carefully optimize site com-
munication costs for approximating different queries in a
distributed setting, including quantiles [16] and heavy hit-
ters [19]; however, the underlying assumption is that the
computation is triggered either periodically or in response
to a one-shot request. Such techniques are not immedi-
ately applicable for continuous-monitoring, where the goal
is to continuously provide real-time, guaranteed-quality es-
timates over a distributed collection of streams.

Closest in spirit to our work are the recent results of
Olston et al. [3, 21], Das et al. [8], and our recent work
on distributed quantile tracking [6]. All these efforts con-
sider the tradeoff between accuracy and communication for
monitoring a limited class of continuous queries (at a co-
ordinator site) over distributed streams (at remote sites).
More specifically, Olston et al. [3, 21] consider tracking ap-
proximate top-

�
values and simple aggregates (e.g., AVER-

AGE or MAX) over dynamically-changing numeric values
spread over multiple sources, whereas Das et al. [8] dis-
cuss monitoring of approximate set-expression cardinali-
ties over physically-distributed element streams. Similarly,
our recent work [6] attacks the problem of approximately
tracking one-dimensional quantile summaries of a global
data distribution spread over the remote sites. All these
earlier papers focus solely on a narrow class of distributed-
monitoring queries (e.g., one-dimensional quantiles), re-
sulting in special-purpose solutions applicable only to the
specific form of queries at hand. It is not at all clear if/how
they can be extended to more general settings (such as,
tracking distributed joins or multi-dimensional data sum-
maries).
Our Contributions. In this paper, we tackle the problem
of continuously tracking approximate, guaranteed-quality
answers to a broad, general class of complex aggregate
queries over a collection of distributed data streams. Our
contributions are as follows.

� Communication- and Space-Efficient Approximate
Query Tracking. We present the first known algorithms
for tracking a broad class of complex data-analysis queries
over a distributed collection of streams to specified ac-
curacy, provably, at all times. In a nutshell, our track-
ing algorithms achieve communication and space effi-
ciency through a combination of general-purpose random-
ized sketches for summarizing local streams, and concise
sketch-prediction models for capturing the update-stream
behavior at local sites. The use of prediction models, in
particular, allows our schemes to achieve a natural notion
of stability, rendering communication unnecessary as long
as local data distributions remain stable (or, predictable).
The end result is a powerful, general-purpose approximate
query tracking framework that readily incorporates several
complex data-analysis queries (including join and multi-
join aggregates, and approximate wavelet/histogram repre-
sentations in one or more dimensions), thus giving the first
principled, low-overhead tracking solution for such queries
in the distributed-streams model. In fact, as our analy-
sis demonstrates, the worst-case communication cost for
simple cases of our protocols is comparable to that of a
one-shot computation, while their space requirement is not
much higher than that of centralized, one-shot estimation
methods for data streams.

� Time-Efficient Sketch-Tracking Algorithms, and Ex-
tensions to Other Streaming Models. When dealing with
massive, rapid-rate data streams (e.g., monitoring high ca-
pacity network links), the time needed to process each up-
date (e.g., to maintain a sketch summary of the stream) be-
comes a critical concern. Traditional approaches that need
to “touch” every part of the sketch summary can quickly
become infeasible. The problem is further compounded in
our tracking schemes that need to continuously track the
divergence of the sketch from an evolving sketch predic-
tion. We address this problem by proposing a novel struc-
ture for randomized sketches that allows us to guarantee
small (i.e., logarithmic) update and tracking times (regard-

less of the size of the sketch), while offering the same (in
fact, slightly improved) space/accuracy tradeoffs. Further-
more, we discuss the extension of our distributed-tracking
schemes and results to different data-streaming models that
place more emphasis on recent updates to the stream (using
either sliding-window or exponential-decay mechanisms).

� Experimental Results Validating our Approach. We
perform a thorough set of experiments with our schemes
over real-life data to verify their benefits in practical sce-
narios. The results clearly demonstrate that our algorithms
can result in dramatic savings in communication — reduc-
ing overall communication costs by a factor of more than��� for an approximation error of only � � %. The use of so-
phisticated, yet concise, sketch-prediction models is key to
obtaining the best results. Furthermore, our numbers show
that our novel schemes for fast local sketch updates and
tracking can allow each remote site to process many hun-
dreds of thousands of updates per second, matching even
the highest-speed data streams.
Throughout, we have chosen to omit all proof arguments
due to space constraints.

2 Preliminaries
System Architecture. We consider a distributed-
computing environment, comprising a collection of

�
re-

mote sites and a designated coordinator site. Streams
of data updates arrive continuously at remote sites, while
the coordinator site is responsible for generating approxi-
mate answers to (possibly, continuous) user queries posed
over the unions of remotely-observed streams (across all
sites). Following earlier work in the area [3, 6, 8, 21], our
distributed stream-processing model does not allow direct
communication between remote sites; instead, as illustrated
in Figure 1, a remote site exchanges messages only with
the coordinator, providing it with state information on its
(locally-observed) streams. Note that such a hierarchical
processing model is, in fact, representative of a large class
of applications, including network monitoring where a cen-
tral Network Operations Center (NOC) is responsible for
processing network traffic statistics (e.g., link bandwidth
utilization, IP source-destination byte counts) collected at
switches, routers, and/or Element Management Systems
(EMSs) distributed across the network.

1,1
f

s,1
f

1,k
f

s,k
f

s
f

1
f

local update streams local update streams

Site 1 Site k
State−Update

CoordinatorGlobal Streams

Approximate Answer

User Query Q(fi, fj, ...)

for Q(fi, fj, ...)

Messages

Figure 1: Distributed Stream Processing Architecture.

Each remote site �����	�	
������
 ���
observes local update

streams that incrementally render a collection of (up to) �
distinct frequency distribution vectors (equivalently, multi-
sets) ����� ��
������
������ � over data elements from correspond-
ing integer domains � �"!$#&%'� �
(����(
��"!�)*� �

, for +,%-��

�����
.� ; that is, � ! � �	� /	# denotes the frequency of element
/0�1� ��!2# observed locally at remote site � . As an example,
in the case of IP routers monitoring the number of TCP con-
nections and UDP packets exchanged between source and
destination IP addresses, � � � #3%4� ��56# denote the domain
of 7�8 -bit (source, destination) IP-address pairs, and �9�6� � ,
� 5 � � capture the frequency of specific (source, destination)
pairs observed in TCP connections and UDP packets routed
through router � . (We use � ! � � to denote both the +;:2< update
stream at site � as well as the underlying element multi-
set/frequency distribution in what follows.) Each stream
update at remote site � is a triple of the form =>+�
?/�
�@A�3B ,
denoting an insertion (“ CA� ”) or deletion (“)3� ”) of element
/D�E� �"!$# in the � ! � � frequency distribution (i.e., a change
of @A� in / ’s net frequency in � ! � �). All frequency distri-
bution vectors � ! � � in our distributed streaming architec-
ture change dynamically over time — when necessary, we
make this dependence explicit, using � ! � �GF2H?I to denote the
state of the vector at time H (assuming a consistent notion
of “global time” in our distributed system). (The unquali-
fied notation � ! � � typically refers to the current state of the
frequency vector.)
Problem Formulation. For each +J�*�	�	
������
�� �

, we de-
fine the global frequency distribution vector � ! for the +K:2<
update stream as the summation of the corresponding local,
per-site vectors; that is, � ! %DLNM�POQ� � ! � � . Note that, in gen-
eral, the local sub-streams for a stream � ! may only be ob-
served at a subset of the

�
remote sites – we use sites FR� ! I

to denote that subset, and write
� !S%UT sites FR� ! I�T (hence

� !�V �
). Our focus is on the problem of effectively answer-

ing user queries over this collection of global frequency
distributions ����
W�����.
���� at the coordinator site. Rather
than one-time query evaluation, we assume a continuous-
querying environment which implies that the coordinator
needs to continuously maintain (or, track) the approximate
answers to user queries as the local update streams � ! � �
evolve at individual remote sites. More specifically, we fo-
cus on a broad class of user queries XY%ZX[FK�9�\
������.
]����I
over the global frequency vectors, including:

� Inner- and Tensor-Product Queries (i.e., Join and Multi-
Join Aggregates). Given a pair of global frequency vectors
� � , � 5 over the same data domain � �&# , the inner-product
query X[FR��� , � 5 I^%E�"�`_a� 5 % L*bdc �e O(f ����� /�#�_g� 5 � /�# is the
result size of an (equi)join query over the corresponding
streams (i.e., T �9�NhRij� 5 T). More general, tensor prod-
uct queries X[FR� ! , �Qk;
W��lA
"�����Im%Y� ! _Q�Qkn_W�Wlo__�_ over
multiple (domain-compatible) frequency vectors � !
p� k

�WlA
����� capture the result size of the corresponding multi-
join query � ! hRio�QkShRiq�Wlo__�_ (see, e.g., [11]); here the
notion of a “frequency vector” is generalized to capture a
(possibly) multi-dimensional frequency distribution (i.e., a
tensor). For instance, in the three-way join query �p�_r� 5 _

��� % L�� L e �"�`� �a#._	� 5 � �Q
?/	#�_G���G� /	# , the � 5 vector cap-
tures the joint distribution of the two attributes of stream � 5
participating in the join. Without loss of generality, we con-
tinue to view such multi-dimensional frequency tensors as
vectors (e.g., assuming some standard linearization of the
tensor entries, such as row-major). In the relational world,
join and multi-join queries are basically the “workhorse”
operations for correlating two or more data sets. Thus, they
play a crucial role in any kind of data analysis over mul-
tiple data collections. Our discussion here focuses primar-
ily on join and multi-join result sizes (i.e., COUNT aggre-
gates), since our approach and results extend to other ag-
gregate functions in a relatively straightforward manner (as
discussed in [11]).

��� 5 -Norm Queries (i.e., Self-Join Sizes). The self-join size
query for a (global) stream � ! is defined as the square of the� 5 norm (T T6_T T) of the corresponding frequency vector; that
is, X[FK� ! I"%ZT T � ! T T 5 % � ! _\� ! % L e FK� ! � /	#$I 5 . The self-join
size represents important demographic information about a
data collection; for instance, its value is an indication of the
degree of skew in the data [2].

� Range Queries, Point Queries, and Heavy Hitters. A
range query with parameters � ��
	��# over a frequency dis-
tribution � ! is the sum of the values of the distribution
in the given range; that is,
 FR� !
��a
	� IN% L

�
e O� � ! � /�# .

A point query is the special case of a range query when
� %�� . The heavy hitters are those points /q� ��! satisfy-
ing
 FR� !
P/a
P/gI����A_�
 FR� !
 �
�� !)m� I (i.e., their frequency
exceeds a � -fraction of the overall number of stream ele-
ments) for a given � =*� [4, 5].

� Histogram and Wavelet Representations. A histogram
query �1FR� !
��AI or wavelet query �'FR� !
��JI over a fre-
quency distribution � ! asks for a � -bucket histogram rep-
resentation, or a � -term (Haar) wavelet representation of
the � ! vector, respectively. The goal is to minimize the er-
ror of the resulting approximate representation, typically
defined as the � 5 norm of the difference between the
�oFK� !
��AI or �'FR� !
��AI approximation and either the true
distribution � ! , or the best-possible � -term representation
of � ! [14, 22].

The distributed nature of the local streams comprising
the global frequency distributions �`� ! �

raises difficult al-
gorithmic challenges for our approximate query tracking
problems. Naı̈ve schemes that accurately track query an-
swers by forcing remote sites to ship every remote stream
update to the coordinator are clearly impractical, since
they not only impose an inordinate burden on the underly-
ing communication infrastructure (especially, for high-rate
data streams and large numbers of remote sites), but also
drastically limit the battery life of power-constrained re-
mote devices (such as wireless sensor nodes) [10, 18]. A
main part of our approach is to adopt the paradigm of con-
tinuous tracking of approximate query answers at the coor-
dinator site with strong guarantees on the quality of the ap-
proximation. This allows our schemes to effectively trade-
off communication efficiency and query-approximation ac-

curacy in a precise, quantitative manner; in other words,
larger error tolerances for the approximate answers at the
coordinator imply smaller communication overheads to en-
sure continuous approximate tracking.
Randomized Stream Sketching. Techniques based on
small-space pseudo-random sketch summaries of the data
have proved to be very effective tools for dealing with mas-
sive, rapid-rate data streams in a centralized setting [2, 1, 5,
14, 11]. The key idea in such sketching techniques is to rep-
resent a streaming frequency vector � using a much smaller
sketch vector (denoted by sk FR��I) that can be easily main-
tained as the updates incrementally rendering � are stream-
ing by. Typically, the entries of the sketch vector sk FR��IPI
are appropriately-defined random variables with some de-
sirable properties that can provide probabilistic guarantees
for the quality of the data approximation.

More specifically, consider the AGMS (or, “tug-of-
war”) sketches proposed by Alon, Gibbons, Matias, and
Szegedy in their seminal papers [2, 1]:1 The +K:2< entry in
an AGMS sketch sk FK�"I is defined as the random variable
L*bdc �e O(f � � /	#�_�� ! � /	# , where ��� ! � /	#��	/q� � �&# � is a family of
four-wise independent binary random variables uniformly
distributed in �G)3��
�CA� �

(with mutually-independent fam-
ilies used across different entries of the sketch). The key
here is that, using appropriate pseudo-random hash func-
tions, each such family can be efficiently constructed on-
line in small (i.e., � F�� �"! �^I) space [2]. Note that, by
construction, each entry of sk FR�"I is essentially a random-
ized linear projection (i.e., an inner product) of the � vec-
tor (using the corresponding � family), that can be eas-
ily maintained over the input update stream: Start with
each counter sk FR��I � + # % � and, for each + , simply set
sk FR��I�� +R#"% sk FK��I � +R# C#�!P� /�# (sk FK��I � +R#�% sk FR��I�� +R#K)$�!�� /	#)
whenever an insertion (resp., deletion) of / is observed in
the stream. Another critical property is the linearity of such
sketch structures: Given two “parallel” sketches (built us-
ing the same � families) sk FR�9��I and sk FR� 5 I and scalars%
'& , then sk F % � � C(&Q� 5 I"% % sk FR� � I	C)& sk FK� 5 I (i.e., the
sketch of a linear combination of streams is simply the lin-
ear combination of their individual sketches). The follow-
ing theorem summarizes some of the basic estimation prop-
erties of AGMS sketches (for centralized streams) that we
employ in our study. (Throughout, the notation * �qF�+"@-,GI
is equivalent to T *).+�TgV$, .)

Theorem 2.1 ([1, 2]). Let sk FK� � I and sk FK� 5 I denote two
parallel sketches comprising � F �/10 �2�3!aFn��4�5�IPI counters,
built over the streams ��� and � 5 , where 6 , �)75 de-
note the desired bounds on error and probabilistic confi-
dence, respectively. Then, with probability at least �S)85 ,
T T sk FR����I�) sk FR� 5 IT T 5 �qF?�p@86�IT T �"�p)1� 5 T T 5 and sk FR����IW_
sk FR� 5 I �EFK�"�S_G� 5 @�6`T T �"��T T T T � 5 T T I . The processing time
required to maintain each sketch is � F �/ 0 �2�3!aFn��4�5�IPI per up-
date.

1Our techniques and results can also be extended to other randomized
stream sketching methods, such as the Count-Min sketches [5]; due to
space constraints, details are omitted.

Thus, the self-join of the difference of the sketch vec-
tors gives a high-probability, 6 relative-error estimate
of the self-join of the difference of the actual streams
(so, naturally, T T sk FK�9� IT T 5 � Fn�[@ 66I�T T �9��T T 5); similarly,
the inner product of the sketch vectors gives a high-
probability estimate of the join of the two streams to
within an additive error of 6\T T � � T T T T � 5 T T . 2 To provide
6 relative-error guarantees for the binary join query �p�^_
� 5 , Theorem 2.1 can be applied with error bound 6 � %
F16`T T � � T T T T � 5 T T I�4]FK� � _�� 5 I , giving a total sketching space re-
quirement of � F

��� ������� 0 ��� � 0 ��� 0/ 0	� �
��� � 0� 0 �2�3!aFn��4�5�IPI counters [1].
The results in Theorem 2.1 can be extended in a natu-

ral manner to the case of multi-join aggregate queries [11]:
Given an � -way join (i.e., tensor-product) query X[FR� �\

�����
 � l IE% � � _d� 5 _�_�_6� l , and corresponding paral-
lel AGMS sketch vectors sk FK�9��I , �����
 sk FR��lSI of size
� F �/ 0 � �"!�Fn��4�5�I?I (built based on the specific join predi-
cates in the query [11]), the inner product of the sketches� l! Od� sk FR� ! I can be shown to be within an additive error of
6\F � l c �) � I 5 � l! Od� T T � ! T T of the true multi-join result size.
The full development can be found in [11].

3 Our Query-Tracking Solution
The goal of our tracking algorithms is to ensure strong er-
ror guarantees for approximate answers to queries over the
collection of global streams ��� ! �p+ % �	
.�����
(� �

at the
coordinator, while minimizing the amount of communi-
cation with the remote sites. We can also identify other
important design desiderata that our solution should strive
for: (1) Minimal global information exchanges — schemes
in which the coordinator distributes information on the
global streams to remote sites would typically need to re-
broadcast up-to-date global information to sites (either pe-
riodically or during some “global resolution” stage [3, 8])
to ensure correctness; instead, our solutions are designed
to explicitly avoid such expensive “global synchronization”
steps; (2) Summary-based information exchange — rather
than shipping complete update streams � ! � � to the coordi-
nator, remotes sites only communicate concise summary
information (e.g., sketches) on their locally-observed up-
dates; and, (3) Stability — intuitively, the stability property
means that, provided the behavior of the local streams at re-
mote sites remains reasonably stable (or, predictable), there
is no need for communication between the remote sites and
the coordinator.

Our solution avoids global information exchange en-
tirely by each individual remote site � continuously moni-
toring only the � 5 norms of its local update streams �`� ! � � �

2We note that the above “inner product” operator over sketch vectors
is slightly more complex, involving both averaging and median-selection
operations over the sketch-vector components [1, 2]. — formally, each
sketch vector can be viewed as a two-dimensional ����� array, where���������� 0
� , ����� �"!�#�$%�'&�(*) �'� , and the “inner product” in the sketch-
vector space for both the join and self-join case is defined as

sk �,+ � �.- sk �/+10 � �32547698;:*<=�> �@? A A A@? B
C &�

DE F > � sk �/+ � �7G HJI/K�L9- sk �,+M0 �7G HJI,K�LON	P

+,%-��
(����(
a� �
. When a certain amount of change is ob-

served locally, then a site may send a concise state-update
message in order to update the coordinator with more re-
cent information about its local update stream, and then re-
sumes monitoring its local updates (Figure 1). Such state-
update messages typically comprise a small sketch sum-
mary of the offending local stream(s) (along with, possi-
bly, additional summary information), to allow the coor-
dinator to continuously maintain accurate approximate an-
swers to user queries. Our tracking scheme depends on
two parameters 6 and Q , where: 6 captures the error of the
local sketch summaries communicated to the coordinator;
and, Q captures (an upper bound on) the deviation of the
local-stream � 5 norms at each remote site involved in the
query since the last communication with the coordinator.
The overall error guarantee provided at the coordinator is
given by a function R(F16
SQGI , depending on the specific form
of the query being tracked. It is important to note, how-
ever, that the local constraints at each remote site are es-
sentially identical (i.e., simply tracking � 5 -norm deviations
for individual streams), regardless of the specific (global)
query being tracked; as our results demonstrate, the combi-
nation of small sketch summaries and local constraints on
the stream � 5 norms at individual sites is sufficient to pro-
vide high-probability error guarantees for a broad class of
queries over the global streams ��� ! �]+ % ��
�����(
�� �

. To
the best of our knowledge, this work is the first to provide
such a general-purpose distributed-tracking mechanism for
approximate query answers.

Intuitively, larger Q values allow for larger local devi-
ations since the last communication and, so, imply fewer
communications to the coordinator. But, for a given er-
ror tolerance, the size of the 6 -approximate sketches sent
during each communication is larger (since R�F 6
SQ	I is in-
creasing in both parameters). We provide some analysis
that allows us to optimally divide the allowed query-error
tolerance in simple cases, and provide empirical guidelines
for more complex scenarios based on our experimental ob-
servations.

A local sketch summary sk FR� ! � �	F2H?I?I communicated to
the coordinator gives an (6 -approximate) picture of the
snapshot of the � ! � � stream at time H .3 To achieve stability,
a crucial component of our solutions are concise sketch-
prediction models that may be communicated from remote
sites to the coordinator (along with the local stream sum-
maries) in an attempt to accurately capture the anticipated
behavior of local streams. The key idea here is to enable
each site � and the coordinator to share a prediction of how
the stream � ! � � evolves over time. The coordinator employs
this prediction to answer user queries, while the remote site
checks that the prediction is close (within Q bounds) to the
actual observed distribution � ! � � . As long the prediction
accurately captures the local update behavior at the remote
site, no communication is needed. Taking advantage of the

3To simplify the exposition, we assume that communications with the
coordinator are instantaneous. In the case of non-trivial delays in the un-
derlying communication network, techniques based on time-stamping and
message serialization can be employed to ensure correctness, as in [21].

linearity properties of sketch summaries allows us to rep-
resent the predicted distribution using a concise predicted
sketch; thus, our predictions are also based solely on con-
cise summary information that can be efficiently exchanged
between remote site and coordinator when the model is
changed. A high-level schematic of our distributed tracking
scheme is depicted in Figure 2. The key insight from our
results is that, as long as local constraints are satisfied, the
predicted sketches at the coordinator are basically equiva-
lent to R(F16
�Q	I -approximate sketch summaries of the global
data streams.

tracked by sites

Distribution

coordinator for
query answering

Prediction used by

True Distribution
True Sketch

Sketch
Predicted

Prediction error

Predicted

Figure 2: Schematic of Sketch-Prediction-Based Tracking.

In the remainder of this section, we discuss the details of
our distributed query-tracking schemes, and our proposed
sketch-prediction models for capturing remote-site behav-
ior. In addition, we introduce a simple, yet very effective,
improvement of the basic AGMS sketching technique that
plays a crucial role in allowing remote sites to track their
local constraints over massive, rapid-rate streams in guar-
anteed small time per update.

3.1 The Basic Tracking Scheme

We present our tracking scheme focusing primarily on
inner-product and generalized, tensor-product (i.e., multi-
join) queries, since our results for the other query classes
discussed in Section 2 follow as corollaries of the inner-
product case (Section 3.4). We focus on a single inner-
product (i.e., join) query X[FK���`
�� 5 I % �"�,_�� 5 over our
distributed-tracking architecture. Consider a remote site
� participating in the distributed evaluation of X[FK� �
6� 5 I
(i.e., � � sites FR�9��I�� sites FR� 5 I) — we assume that
each such site maintains AGMS sketches on its locally
observed sub-streams �9��� � and/or � 5 � � . (we often omit
the “AGMS” qualification in what follows). If each par-
ticipating site sends the coordinator its up-to-date local-
stream sketches sk FK����� �	F2H?I?I and/or sk FK� 5 � �	F2H?I?I , then, by
sketch linearity, the coordinator can simply compute the
up-to-date sketches of the global streams sk FR� ! F H?IPI %
L � sk FR� ! � �	F H?I?I (+W%Z�	
 �), and provide an approximate an-
swer to the join query at time H with the error guarantees
specified in Theorem 3.5.4

4This also assumes an initial “coordination” step where each remote
site obtains the size parameters for its local sketches and the corresponding

In our tracking scheme, to minimize the overall commu-
nication overhead, remote sites can also potentially ship a
concise sketch-prediction model for their local updates to
� ! (in addition to their local-stream sketches) to the co-
ordinator. The key idea behind a sketch-prediction model
is that, in conjunction with the communicated local-stream
sketch, it allows the coordinator to construct a predicted
sk �rFR� ! � �	F H?IPI for the up-to-date state of the local-stream
sketch sk FK� ! � �	F2H?I?I at any future time instant H , based on the
locally-observed update behavior at the remote site. The
coordinator then employs these collections of predicted
sketches sk �rFR� ! � � I to continuously track an approximate
answer to the distributed-join query. (We discuss different
options for sketch-prediction models in Section 3.2). Fix a
site �*� sites FR� ! I (where + �j�	�	
 � �

). After shipping
its local sketch sk FK� ! � � I and (possibly) a corresponding
sketch-prediction model to the coordinator, site � contin-
uously monitors the � 5 norm of the deviation of its local,
up-to-date sketch sk FR� ! � �GF2H?I?I from the corresponding pre-
dicted sketch sk ��FR� ! � �	F2H?I?I employed for estimation at the
coordinator. The site checks the following condition at ev-
ery time instant H :
T T sk FR� ! � � F2H?I?I�) sk � FR� ! � � F H?IPI�T TrV Q� � ! T T sk FR� ! � � F2H?I?I�T T F���I

that is, a communication to the coordinator is triggered only
if the relative � 5 -norm deviation of the local, up-to-date
sketch sk FR� ! � �	F H?IPI from the corresponding predicted sketch
exceeds �� M	� (recall,

� ! % T sites FK� ! IT). The pseudo-
code for processing stream updates and tracking local con-
straints at remote sites, as well as providing approximate
answers at the coordinator is depicted in Figure 3. The
following theorem demonstrates that, as long as the local� 5 -norm deviation constraints are met at all participating
sites for the distributed ���&_	� 5 join, then we can provide
strong error guarantees for the approximate query answer
(based on the predicted sketches) at the coordinator.

Theorem 3.1. Assume local-stream sketches of size
� F �/ 0 � �"!�Fn��4�5�I?I , and let
� ! % L ��� sites � � � sk �]FK� ! � � I
(+,�Z�	�	
 � �

). Also, assume that, for each remote site �1�
sites FK� ! I (+ � �	��
 � �

), the condition (*) is satisfied.
Then, with probability at least �) � F � � C � 5\I 5 ,

� � _�
� 5 � � � _ � 5 @NF 6WC Fn�9C 66I 5 F?Fn� C�Q	I 5)D� I?IT T � � T T T T � 5 T T �

In other words, using local sketches of size
� F �/ 0 � �"!�F M

��
M 0� I?I , satisfying the local � 5 -norm devi-

ation constraints at each participating remote site ensures
that the approximate answer for the join size �p�p_�� 5 com-
puted using only the predicted sketches at the coordinator
is within an absolute error of @ R�� F 6
SQ	IT T ����T T T T � 5 T T of the
exact answer. Note that these error guarantees are very
similar to those obtained for the much simpler, centralized
case (Theorem 2.1), with the only difference being the
approximation-error bound of R � F 6
�Q	I % 6 C4Fn� C�66I 5
hash functions (same across all sites) from the coordinator.

Procedure SiteUpdate(�����������	��
���������������
F
)

Input: Site index � , stream index � , inserted/deleted value ����� ��� ;
sketch error, confidence, and local-deviation parameters �������� ;
“distribution factor” �

F
for stream � .

1. UpdateSketch(sk ���
F
? =�� �	 !����������
#") //update current and

2. UpdatePredictedSketch(sk $%���
F
? = �'& ���) //predicted sketches

3. if ()(sk ���
F
? = �+* sk $%���

F
? = �'& ��� ()(," -. /

�
()(sk ���

F
? = � (0(then

4. Compute sketch-prediction model predModel ���
F
? = �5. Send 12������� sk ���

F
? = � � predModel ���

F
? = ��3 to coordinator

Procedure EstimateJoin(id ��� � � � id ��� 0 �)Input: Global-stream identifiers id ��� � � � id ��� 0 � .Output: Approximate answer to join-size query � �54 � 0 .1. for � :=
 to 6 do
2. Set sk $7���

F
�'& ��� := 8

3. for each ��� sites ���
F
� do

4. sk $ ���
F
�'& ��� := sk $ ���

F
�'& ���:9 sk $ ���

F
? = �'& ���5. return sk $ ��� � �'& ��� 4 sk $ ��� 0 �'& ���

Figure 3: Procedures for (a) Sketch Maintenance and Tracking
at Remote Site �;� sites ���

F
� (�<�=1>
��	6 3), and (b) Join-Size

Estimation at the Coordinator. (& denotes current time)

F?F?� C Q	I 5)Z� I�?76 C � Q (ignoring quadratic terms in 6 ,Q which are typically very small since 6
SQA@ �). The
following corollary gives the adaptation of our tracking
result for the special case of a self-join query X FR�9��I %
T T � � T T 5 % L e FR� � � /	# I 5 .

Corollary 3.2. Assume local-stream sketches of size
� F �/10 � �"!�Fn��4�5�I?I , and let
� � % L ��� sites � �
� sk �]FK� �6� � I . If
each remote site �[� sites FK� � I satisfies the condition (*),
then with probability at least �) � � ! 5 , T T
� � T T 5 �q� � @*F16 C
Fn�9C 66I 5 F?F?�pC�QGI 5)D� IPIK#nT T ����T T 5 ?ZFn�9@ F16 C � Q	I?IT T ����T T 5 .

Extension to Multi-Joins. The analysis and results for
our distributed-tracking scheme can also be extended to the
case of distributed multi-join (i.e., tensor-product) queries.
More formally, consider an � -way distributed join X[FR� �\

�����
"��l ID%U�"�[_(� 5 _�__��Wl and corresponding parallel
sketches sk FK� ! � �\I built locally at participating sites �j�
� l! Od� sites FR� ! I (based on the specific join predicates in
X , as detailed in [11]). As shown in the following theo-
rem, simply monitoring the � 5 -norm deviations of local-
stream sketches is sufficient to guarantee error bounds for
the predicted-sketch estimates at the coordinator that are
very similar to the corresponding bounds for the simple,
centralized case (see Section 2).

Theorem 3.3. Assume parallel local-stream sketches of
size � F �/ 0 �2�3!�F?� 4 5�I?I , and let
� ! % L ��� sites � � � sk �]FK� ! � � I
(+ % ��
 ����(
 �). If each remote site � � sites FR� ! I
satisfies the condition (*), then with probability at least
�J) � L l! Od� � ! 5 , the predicted-sketch estimate

� l! Od�
� ! at
the coordinator lies in the range

� l! Od� � ! @'F16 CjF?� C�66I l
F?F?�[C QGI l)j� IPI6_ F � l c �)j� I 5 � l! Od� T T � ! T T�? � l! OQ� � ! @
F16WC�� Q	IpF � l c �)D� I 5 � l! Od� T T � ! T T .

3.2 Sketch-Prediction Models

We give different options for the sketch-prediction mod-
els employed to describe local update behaviors at remote
sites. Such models are part of the information exchanged
between the remote sites and the coordinator so that both
parties are “in-sync” with respect to predicted query results
and local-constraint monitoring. If our prediction models
result in predicted sketches sk �rFR� ! � � I that are sufficiently
close to the true state of the local sketches at site � , then
no communication is required between site � and the coor-
dinator. Thus, it is critical to keep sketch-prediction mod-
els concise and, yet, powerful enough to effectively cap-
ture stability properties in our distributed-tracking environ-
ment.5 In each case, our prediction models consider how
the local distribution � ! � � changes (as a function of time)
between the time of the last communication to the coordi-
nator H �CBED e and the current time H ; then, we show how to
translate this model to a model for predicting the change
in the sketch of � ! � � over time (Figure 2). As we will see,
the linearity properties of sketches play a crucial role in
the design of space-, time-, and communication-efficient
sketch-prediction models.
Static Model. Our simplest prediction model is the static
model, which essentially assumes that the local-stream dis-
tribution � ! � � remains static over time; in other words, our
prediction for the distribution � ! � � at the current time in-
stant H (denoted by � � ! � � F H?I) does not change over the time
interval H9)>H �CBFD e , or � � ! � � F2H?IJ% � ! � �GF H �CBFD e I . This implies
that the predicted sketch sk � FK� ! � �	F H?I?I employed at both
the coordinator and remote site � is exactly the sketch last
shipped from site � ; that is, sk �rFR� ! � �	F2H?I?I�% sk ��FR� � ! � � F2H?I?I"%
sk FR� ! � �	F2H �2BFD e IPI . Such a prediction model is trivial to im-
plement, essentially requiring no additional information to
be exchanged between the coordinator and remote sites
(besides the sites’ local sketches).
Linear-Growth Model. Due to its simplistic nature, the
static model can only achieve stability in very “easy” and
somewhat unrealistic scenarios, namely when all frequency
counts in the � ! � � remain reasonably stable. This is clearly
not the case, for instance, when local frequency counts are
growing as more updates arrive at remote sites. In such
cases, a reasonable “strawman” model is to assume that
the future of the local distribution will resemble a scaled-
up version of its past; that is, assume that � ! � �	F H?I has the
same shape as � ! � � F H �CBFD e I with proportionately more ele-
ments. Our second, linear-growth model is based on this
assumption, setting � � ! � � F2H?IJ% ::'G	H�I�J � ! � �GF2H �CBED e I , i.e., using
a linear scaling of � ! � �	F H �CBFD e I to predict the current state
of the distribution. (Scaling by time makes sense, e.g., in
a synchronous-updates environment, where updates to re-
mote sites arrive regularly at each time tick.) By sketch

5A similar notion of prediction models was introduced for the specific
problem of tracking one-dimensional quantiles in [6]; instead, we focus on
tracking general-purpose randomized sketch summaries of data distribu-
tions. Such notions of models are very different from those in [10]: there,
models are used in a sensor network to optimize the cost of evaluating
one-shot queries by polling specific sensors.

linearity, this easily implies that the corresponding pre-
dicted sketch is simply sk �rFR� ! � � F2H?I?I % sk FK� � ! � � F H?IPI %

::'G	H�I�J sk FK� ! � � F H �CBFD e I?I , a linear scaling of the most recent lo-
cal sketch of ��/ ! � � shipped to the coordinator (and no ad-
ditional information need be exchanged between sites and
the coordinator).

Velocity/Acceleration Model. Although intuitive, our
linear-growth model suffers from at least two important
shortcomings. First, it predicts the future behavior of the
stream as a linear scaling of the entire history of the dis-
tribution, whereas, in many real-life scenarios, only the re-
cent history of the stream may be relevant for such predic-
tions. Second, it imposes a linear, uniform rate of change
over the entire frequency distribution vector, and, thus, can-
not capture or adapt to shifts and differing rates in the
distribution of updates over the vector. Our final, veloc-
ity/acceleration model addresses these shortcomings by ex-
plicitly attempting to build a richer prediction model that
uses more parameters to better fit changing data distribu-
tions; more specifically, letting �AH % H�)�H �CBED e , our veloc-
ity/acceleration model predicts the current state of the � ! � �
distribution as � � ! � � F H?I"%*� ! � �	F2H �CBED e I]C��,H�� ! � � CoF��AH?I 5�� ! � � ,
where the vectors � ! � � and � ! � � denote a velocity and ac-
celeration component (respectively) for the evolution of
the � ! � � stream. Again, by sketch linearity, this implies
the predicted sketch sk �rFR� ! � �	F2H?I?IZ% sk FK� ! � �	F H �CBFD e I?I C
�AH sk F���! � � I CYF��AH?I 5

sk F � ! � � I � Thus, to build a predicted
sketch at the coordinator under a velocity/acceleration
model, we need a velocity sketch sk F	� ! � � I and an accel-
eration sketch sk F � ! � � I . A concrete scheme for comput-
ing these two sketches at site � is to maintain a sketch on
a window of the � most recent updates to � ! � � ; scaling
this sketch by the time difference between the newest and
oldest updates stored in the window gives an appropriate
velocity sketch to be shipped to the coordinator, whereas
the acceleration sketch can be estimated as the difference
between the recent and previous velocity sketches scaled
by the time difference. In detail, when remote site � de-
tects a violation of its local � 5 -norm constraint for � ! � � at
time H , it computes a new velocity sketch sk F��d! � � I based
on the window of the � most recent updates to � ! � � , and
estimates a new acceleration sketch sk F � ! � � I as the dif-
ference between sk F	� ! � � I and the corresponding velocity
sketch at time H �CBED e , scaled by �

: c :'G	H�I�J . Note that, the only
additional model information that needs to be communi-
cated to the coordinator from site � is the new velocity
sketch sk F	� ! � � I (since the coordinator already has a copy
of the previous velocity sketch and so can independently
compute the acceleration sketch). Thus, while our richer
velocity/acceleration model can give a better fit for dy-
namic distributions, it also effectively doubles the amount
of information exchanged (compared to our simpler predic-
tion models). Furthermore, the effectiveness of our veloc-
ity/acceleration predictions can depend on the size of the
update window � . While it is possible to set � adaptively
for different stream distributions, this problem lies beyond

the scope of this paper; instead, we evaluate different set-
tings for � experimentally over real-life data (Section 5).

The following table summarizes the key points for each
of our three sketch-prediction models (namely, the model
information exchanged between the sites and the coordina-
tor, and the corresponding predicted sketches).

Model Info. Predicted Sketch
Static
 sk ���

F
? = �'& $����� ���Linear-Growth
 �� G	H�I�J sk ���
F
? = �'& $����� ���

Velocity/ sk ���
F
? = � sk ���

F
? = �'& $����� ��� 9�� & sk ���

F
? = �

Acceleration 9 � � & � 0 sk ���
F
? = �

Analysis. We analyze the worst-case communication cost
of our inner-product tracking scheme as a function of the
overall approximation error at the coordinator under some
simplifying assumptions.

Theorem 3.4. Assume our static prediction model for an
inner-product query X[FR�9�`
6� 5 I % �"�,_a� 5 (with 6 , 5 , Q ,
and

� ! as defined earlier), and let �Z% R � F 6
SQ	I ?#6�C � Q
denote the error tolerance at the coordinator. Then, for
appropriate settings of parameters 6 and Q (specifically,
6 % 5��� , Q�% � �

), the worst-case communication cost for
a remote site � processing � � local updates to stream � ! � �
is � F

�
M	���� �2�3!aF M �� I � �"!�� � I .

That is, assuming that the “distribution factors”
� ! of

streams in the join query are reasonably small, the worst-
case communication cost even for our simplest prediction
model is comparable to that of a one-shot sketch-based ap-
proximate query computation with the same error bounds
(Theorem 2.1). (Note, of course, that each counter in the
sketches for site � is of size � F�� �"! � � I .) This analysis
extends in a natural manner to the case of multi-join ag-
gregates. Providing similar analytical results for our more
complex linear-growth and velocity/acceleration models is
more complex; instead, we experimentally evaluate differ-
ent strategies for setting 6 and Q to minimize worst-case
communication over real-life streams in Section 5.

3.3 Time-Efficient Tracking: The Fast-AGMS Sketch

A drawback of AGMS randomized sketches (Section 2) is
that every streaming update must “touch” every compo-
nent of the sketch vector (to update the corresponding ran-
domized linear projection). Since sketch-summary sizes
can vary from tens to hundreds of Kilobytes, especially
when tight error guarantees are required, e.g., for join or
multi-join aggregates [1, 11], touching every counter in
such sketches is simply infeasible when dealing with large
data rates (e.g., monitoring a high-capacity network link).
This problem is compounded in our distributed-tracking
scenario where, for each streaming update, a remote site
needs to track the difference between a sketch of the up-
dates and an evolving predicted sketch.

Our proposed Fast-AGMS sketch structure solves
this problem by guaranteeing logarithmic-time (i.e.,

� F�� �"!�Fn��4�5�IPI) sketch update and tracking costs, while of-
fering essentially the same (in fact, slightly improved)
space/accuracy tradeoff as basic AGMS sketches. Our dis-
cussion is brief since the structure bears similarities to ex-
isting techniques proposed in the context of different (cen-
tralized) streaming problems (e.g., [4, 12]), although its ap-
plication over the bacic AGMS technique for join/multi-
join aggregates is novel and requires a different analysis.

A Fast-AGMS sketch for a stream � over � �S# (also de-
noted by sk FK�"I) comprises ��� �

counters (i.e., linear pro-
jections) arranged in

�
hash tables, each with � hash buck-

ets. Each hash table �9% ��
a�����
 � is associated with (1) a
pairwise-independent hash function � k FRI that maps incom-
ing stream elements uniformly over the � hash buckets (i.e.,
� k �&� �&#�� � ��#); and, (2) a family ��� k � /	# �9/ � � �&# � of
four-wise independent �G)3��
6CA� �

random variables (as in
basic AGMS). To update sk FK��I in response to an inser-
tion/deletion of element / , we use the � k F I hash functions
to determine the appropriate buckets in the sketch, setting
sk FR��I�� � k F2/gI
�� #p% sk FK��I � � k F /]I6
��$#�@$� k � /	# , for each � % �	

�����
 � . Note that the required time per update is only � F � I ,
since each update touches only one bucket per hash table.
Now, given two parallel Fast-AGMS sketches sk FK�9��I and
sk FR� 5 I (using the same hash functions and � families), we
estimate the inner product ���	_ � 5 by the sketch “inner prod-
uct”:

sk ��� � � 4 sk ��� 0 �
	������������ > �@? A A A ? � 1
�� F > � sk ��� �

� � ����� � 4 sk ��� 0 � � �����0� 3��
In other words, rather than averaging over independent lin-
ear projections built over the entire � �&# domain, our Fast-
AGMS sketch averages over partitions of � �&# generated
randomly (through the � k F I hash functions). As the fol-
lowing theorem shows, this results in essentially identical
space/accuracy tradeoffs as basic AGMS sketching, while
requiring only � F � I�% � F�� �"!�Fn��4�5�IPI processing time per
update.

Theorem 3.5. Let sk FK���I and sk FR� 5 I denote two paral-
lel Fast-AGMS sketches of streams � � and � 5 , with pa-
rameters � % � F �/ 0 I and

� % � F1�2�3!�F?� 4 5�I?I , where 6 ,
�)85 denote the desired bounds on error and probabilis-
tic confidence, respectively. Then, with probability at least
�^)�5 , T T sk FK�"�I) sk FK� 5 I�T T 5 � Fn�S@ 66I�T T ���S) � 5 T T 5 and
sk FR� � IW_ sk FK� 5 I �qFR� � _\� 5 @ 6`T T � � T T T T � 5 T T I . The process-
ing time required to maintain each sketch is � F�� �"!�Fn��4�5�IPI
per update.

Note that tighter error tolerances only increase the size �
of each hash table, but not the number of hash tables

�
(which depends only on the required confidence). Finally,
for given 6 and 5 , our Fast-AGMS sketch actually requires
less space than that of basic AGMS; this is because basic
AGMS requires a total of � F �/ 0 � �"!�Fn� 4 5�I?I hash functions
(one for each � family), whereas our Fast-AGMS sketch
only needs a pair of hash functions per hash table for a to-
tal of only � F�� �"!�Fn��4�5�IPI hash functions.

In our solution, each update to the local � ! � � at site �
requires checking the local sketch-tracking condition on

the � 5 norm of the divergence of the site’s true sketch
from the corresponding predicted sketch. Implementing
such a sketch-tracking scheme directly over local sketches
of size � F �/ 0 �2�3!aF?� 4�5�IPI would imply a time complexity
of � F �/ 0 � �"!�Fn��4�5�I?I per update (to recompute the required
norms) — this complexity can easily become prohibitive
when dealing with rapid-rate update streams and tight
error-bound requirements. Fortunately, as the following
theorem demonstrates, we can reduce the sketch-tracking
overhed in only � F�� �"!�Fn��4�5�I?I per update by computing
the tracking condition in an incremental fashion over the
input stream. Our tracking algorithm makes crucial use
of the Fast-AGMS sketch structure, as well as concise
(� F�� �"!�Fn� 4 5�I?I -size) precomputed data structures to enable
incremental sketch tracking. We focus primarily on our
most general velocity/acceleration model, since both the
static and linear-growth models can be thought of as in-
stances of the velocity/acceleration model with certain pa-
rameters fixed.

Theorem 3.6. Assuming Fast-AGMS sketches of size
� F �/ 0 � �"!�Fn��4�5�I?I , the computation of the sketch tracking
condition (*) at site � can be implemented in � F�� �"!�Fn��4�5�IPI
time per update, where the predicted sketch sk �]FK� ! � � F H?I?I is
computed in the velocity/acceleration model.

If our tracking scheme detects that a Q bound has been vi-
olated, we must recompute the parameters of the sketch-
prediction model and send sketch information to the
coordinator. Such communications necessarily require
� F �/ 0 � �"!�Fn��4�5�I?I time, but occur relatively rarely.

3.4 Handling Other Query Classes

We outline how our results apply to the other query classes
introduced in Section 2. The basic intuition is that such
queries can be viewed as special inner products of the dis-
tribution (e.g., with wavelet-basis vectors [14]), for which
sketches can provide guaranteed-quality estimates. The
predicted sketch of � ! at the coordinator can be treated as aR(F16
SQ	I -approximate sketch of � ! , which accounts for both
sketching error (6) and remote-site deviations (Q).

� Range Queries, Point Queries, and Heavy Hitters. A
given range query
 FK� !
���
�� I can be reposed as an in-
ner product with a vector �
� \� �! where �"� \� �! � /	#q% � if
�>Vj/>V � , and � otherwise. This implies the following
theorem.

Theorem 3.7. Assume local-stream sketches of size
� F �/ 0 � �"!�Fn��4�5�I?I and let
� ! % L ��� sites � � � sk �rFR� ! � � I . If
for each remote site � � sites FR� ! I satisfies the condition
(*), then with probability at least �) � ! 5 ,
� ! _ sk F#�$� � �% I �

 FR� !
���
	� Ia@ 6�CDFn��C 66I 5 F?Fn��C Q	I 5)q� IPI F ��) � C � IT T � ! T T .

An immediate corollary is that point queries can be an-
swered with ? F16pC � Q	I�T T � ! T T error. Heavy-hitter queries
can be answered by asking all ��! point queries, and re-
turning those / whose estimate exceeds �
 FK�
���
	� I (with

guarantees similar to the centralized, one-shot case [4]).
� Histogram and Wavelet Representations. Gilbert et
al. [14] demonstrate how to use 6 -approximate sketches to
find � -term Haar-wavelet transforms that carry at least �G) 6
of the energy of best � -term representation if this repre-
sentation has large coefficients. In our setting, the sketch at
the coordinator is essentially R�F 6
SQ	I -approximate sketch;
thus, our analysis in conjunction with Theorem 3 of [14],
imply that our schemes can track a �) R�F 6
�Q	I approxima-
tion to the best � -term wavelet representation at the co-
ordinator. Similarly, Thaper et al. [22] show how to use
6 -approximate sketches to find an approximate histogram
representation with error at most �9C8� 6 times the error of
the best � -bucket multi-dimensional histogram. Combin-
ing our results with Theorem 3 of [22], we have a scheme
for tracking a � C�� R�F 6
�Q	I approximation to the best � -
bucket multi-dimensional histogram.

4 Extensions
We consider modifications to accommodate answering
queries based only on recent updates, and incorporating
different query models.

Sliding Windows and Exponential Decay. In the sliding
window case, the current distribution � ! is limited to only
those updates occurring within the last H�� time units, for
some fixed value of H � . We modify the tracking condition:
the remote sites build a sketch of the most recent H � time
units, and track whether a predicted sketch for this interval
is within Q error of the interval norm. The role of the co-
ordinator remains the same: to answer a query, it uses the
predicted sketch, as above. In the case that the site is not
space-constrained, the remote site can buffer the updates
that occurred in the window. When the oldest update / in
the buffer is more than H�� time units old, it can be treated
as an update =N+�
?/�
�)3�,B to � ! . The effect of the original
update of / is subtracted from the sketch, and so the sketch
only summarizes those updates within the window of H�� .
Using the above efficient tracking method, the asymptotic
cost is not altered in the amortized sense, since each update
is added and later subtracted once, giving an amortized cost
of � F�� �"!�Fn��4�5�I?I per update.

The exponential decay model is a popular alternative to
the sliding window model (see, e.g., [14]). Briefly, the cur-
rent distribution � ! F H?I is computed as � ! F H?I % � : c : � � ! F2H � I
for a positive decay constant

� = � — for example,� % � � ��� or � � ��� . Updates are processed as before, so
an update / means � ! F2H?I � /�#
	 � ! F H?I�� /	#QC'� . As in the
sliding window case, the action at the coordinator is un-
changed: given a suitable model of how the (exponentially-
decayed) distribution changes, the coordinator uses the pre-
dicted sketch to answer queries. At the remote site, the
tracking condition is again checked. Since the decay oper-
ation is a linear transform of the input, the sketch of the de-
cayed distribution can be computed by decaying the sketch:
sk FR� ! F2H?I?I�% � : c : � sk FR� ! F2H � IPI Applying this directly would
mean the tracking operation takes time � F �/ 0 � �"!aF?� 4 5�I?I , but

by devoting some extra space to the problem, we can track
the condition in time � F�� �"!�Fn��4�5�IPI again. In summary,

Theorem 4.1. The sketch tracking condition (*) can be
tracked in time � F�� �"!�Fn��4�5�IPI per update in both the sliding
window and the exponential decay streaming models.

Alternate Sketch-Prediction Models. We outlined three
distinct approaches to sketch prediction, each building pro-
gressively richer models to attempt to capture the behav-
ior of local stream distributions over time. Our most so-
phisticated model explicitly tries to model both first-order
(i.e., “velocity”) and second-order (i.e., “acceleration”) ef-
fects in the local update-stream rates while increasing the
amount of sketching information communicated to the co-
ordinator by a factor of only two. One can envisage other
models of evolving local distributions, and translating these
into predicted sketches by applying the linearity properties
of the sketch transformation. Other variations are also pos-
sible. Thus far, our models operate on whole sketches at
a time; it is possible, however, to design “finer-grained”
models that consider different parts of the distribution sep-
arately. For instance, individual data elements with high
counts in the � ! � � distribution carry the highest impact on
the norm of the distribution. Thus, we can separate such
“heavy-hitter” elements from the rest of the distribution and
model their movements separately (e.g., tracking an accel-
eration model), while using a sketch only for tracking the
remainder of the distribution. Once a local constraint is
violated, then it may be possible to restore the constraint
by only shipping information on some of the heavy-hitter
items, instead of shipping an entire sketch – clearly, this
may drastically reduce the amount of communication re-
quired. At a high level, this approach is similar to the idea
of “skimming sketches” of Ganguly et al. [12], but for the
purpose of decreasing communication rather than increas-
ing accuracy. We will explore such sketch-skimming ap-
proaches in the full version of this work.

5 Experimental Study
5.1 Testbed and Methodology

We implemented a test system that simulated running our
protocols in C. 6 Experiments were run on a single ma-
chine, simulating the actions of each of

�
sites and the

coordinator. For each experimental simulation, all remote
sites used the same class of prediction model with the same
tracking parameters 6
�Q .

We report the results of experiments run on data sets
drawn from the Internet Traffic Archive [17], representing
HTTP requests sent to servers hosting the World Cup 1998
Web Site. Servers were hosted in four geographic loca-
tions. Therefore, we modeled this system with four remote
sites, one handling requests to each location. We tracked
the relations defined by this sequence of requests, using the
“objectID” attribute as the attribute of interest. This seems
a good approximation of many typical data sets, taking on a

6Throughout, we set the probability of failure,) � & %.

1 Day HTTP data, W=20000

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
εεεε

C
om

m
un

ic
at

io
n

co
st

ε+2θ=10% ε+2θ=4% ε+2θ=2%
1 Day HTTP data, ε =2θε =2θε =2θε =2θ

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000 1000000
Window Buffer Size

C
om

m
un

ic
at

io
n

C
os

t

ε=2θ=5% ε=2θ=2% ε=2θ=1%
8 Days HTTP requests, ε=2θε=2θε=2θε=2θ , W=20000

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50
Updates / 10^6

C
om

m
un

ic
at

io
n

C
os

t

ε=2θ=5% ε=2θ=2% ε=2θ=1%

(a) (b) (c)

Figure 4: Experiments on real data: (a) Tradeoff between the parameters � and � . (b) Effect of varying the window size used to estimate
the “velocity” sketch. (c) Communication cost as number of updates increase.

large number of possible values with a non-uniform distri-
bution. We obtained similar results to those reported here
when using different data sets and settings.

Throughout, we measure the communication cost, as the
ratio between the total communication used by a protocol
(in bytes) divided by the total cost to send every update in
full (in bytes). For example, if our protocol sent 3 sketches,
each of which was 10KB in size, to summarize a set of
50,000 updates, each of which can be represented as a 32bit
integer, then we compute the communication cost as 15%.
Our goal is to drive this cost as low as possible. When
measuring the accuracy of our methods, we compute an
estimated result �`�H , and (for testing) compute the exact
answer, H�� ��� . The error is then given by

� : B � D c D � : �: B � D , which
gives a fraction, 0% being perfect accuracy.

5.2 Experimental Results

Setting Parameters and Tradeoffs. We investigated the
tradeoff between parameters 6 and Q in order to guarantee a
given global error bound, and the setting of the parameter
� for the velocity/acceleration model. We took one day of
HTTP requests from the World Cup data set, which yielded
a total of 14 million requests. Figure 4 (a) shows the effect
of varying 6 and Q subject to 6GC � Q^% � , for � %E� ��� , 4%,
and 2% error rate. In each case, we verified that the total
error was indeed less than � . The communication cost is
minimized for 6 roughly equal to � � � � � . Our analysis in
Section 3.2 showed that for a worst case distribution under
the static model, 6 should be around � � 7	7 � . In practice, it
seems that a slightly different balance gives the lowest cost,
although the trade-off curve is very flat-bottomed, and set-
ting 6 between � � � � and � ��� � gives similar bounds. We
have shown the curves for the velocity/acceleration model
with � % ���	����� ; curves for the different models and dif-
ferent settings of � look similar. For the remainder of
our experiments, we set 6^% � � � � and Q % � � � � � , givingR(F16
SQ	I ? � .

In Figure 4 (b), we show the effect of varying the win-
dow size � for the velocity/acceleration model on the
communication cost for three values of � % 6 C � Q . In
order to show all three models on the same graph, we have
shown the static model cost as the leftmost point (plot-
ted with a cross), since this can be thought of as the ve-
locity/acceleration model with no history used to predict

velocity. Similarly, we plot the cost of the linear growth
model as the rightmost point on each curve (marked with
an asterisk), since this can be thought of as using the whole
history to predict velocity. We see that for the best setting
of the window size the velocity/acceleration model outper-
forms both the other models by at least a third, but it is
sensitive to the setting of � : too small or too large, and
the overall communication cost is noticeably worse than
the best value. The static model gets close to the worst
cost, while the linear growth model does quite well, but
still about a third more than the best velocity/acceleration
model. For this data set, irrespective of the R(F16
�Q	I value the
best setting of � is in the range 10000–100000. Therefore,
for the remainder of our experiments, we focus on the ve-
locity/acceleration model with � % ���	����� .

Communication cost. We look at how the communica-
tion cost evolves with time in Figure 4 (c), using the ve-
locity/acceleration model. This experiment was performed
on a larger data set from a week of HTTP requests to the
World Cup data sets, totaling over 50 million updates. We
see that the cost is initially high, as the remote site adapts
to the stream, but as the number of updates increases, then
the requirement for communications drops. For the higher
error bounds, there are long periods of stability.

Accuracy of Approximate Query Answers. Our first set
of experiments focused on the communication cost of our
proposed protocols. We now consider the accuracy they
provide for answering queries at the coordinator, and the
time cost at the remote sites. In Figure 5 (a), we plot the
error in answering queries at the coordinator based on pro-
cessing the one day of data from the World Cup data set.
Here, we have fixed Q , and plotted the observed accuracy
for computing the size of a self-join as 6 varies when we
have processed all updates. We show with a heavy line the
worst case error bound 6�C � Q ? R(F16
SQGI .

In Figure 5 (b), we attempt to separate the sketch error
from the tracking error, by computing the approximation
we would get if the remote site sent the sketch of its current
distribution to the coordinator when the self-join query was
posed. In this figure, we have subtracted this error from the
total error to give an indication of how much error is due to
tracking as Q varies. The negative values seen in the results
for the velocity/acceleration model indicate that the answer

1 Day HTTP data, 2θθθθ=5% W=20000

-2%

0%

2%

4%

6%

8%

10%

0% 2% 4% 6% 8% 10%
εεεε

To
ta

l E
rr

or
 in

 S
el

f-
jo

in

Error bound Static Velocity-Acceleration

1 Day HTTP data, εεεε =5%, W=20000

-2%

0%

2%

4%

6%

8%

10%

0% 2% 4% 6% 8% 10%
2θ2θ2θ2θ

Tr
ac

ki
ng

 E
rr

or
 in

 S
el

f-
jo

in

Error bound Static Velocity-Acceleration
1 Day HTTP data, εεεε=2θ,θ,θ,θ, 14 million updates

0

500

1000

1500

2000

0% 2% 4% 6% 8% 10%ε (=2θ)ε (=2θ)ε (=2θ)ε (=2θ)

P
ro

ce
ss

in
g

Ti
m

e
/ s

Static Static-Fast
Velocity/Acceleration Velocity/Acceleration-Fast

(a) (b) (c)

Figure 5: Quality experimenrs: (a) Estimation quality, fixed � , varying � . (b) Estimation quality due to tracking delay with sketch error
subtracted, as � varies. (c) Timing cost, comparing fast tracking methods to performing sketch estimation every step.

given by using this prediction model at the coordinator is
actually more accurate than if the coordinator requested
each site to send it a sketch at query time. This shows an
unexpected benefit. Our worst-case bounds must assume
that the errors from sketching and tracking are additive, but,
in some cases, these errors can partially cancel out. For the
static case, we more clearly see the trend for the tracking
error to decrease as Q decreases to zero.
Timing Results. We compared the implementation of our
methods using Fast-AGMS sketches and our fast sketch-
tracking scheme against the same prediction models imple-
mented with a naive tracking method with time complexity
linear in the sketch size (Figure 5 (c)). Communication cost
and accuracy of both versions was the same in all cases. For
small 6 , the fast velocity/acceleration method is more ex-
pensive since, while update operations are still fast, recom-
puting the sketches when tracking bounds are broken con-
tributes more significantly to the overall cost. For 6 � � � ,
the cost was 36 seconds in the static case, and 50 seconds
for the velocity/acceleration model to process all 14 million
updates — an average overhead of 3 microseconds per up-
date on our experimental setup (2.4GHz Pentium desktop).
Experimental Conclusions. We saw that significant com-
munication savings are possible: with an approximation
factor of 10%, the communication cost can be less than
3% of sending every update. Time overhead is minimal,
a few microseconds to update the necessary tracking struc-
tures, and typically a few kilobytes per sketch. The veloc-
ity/acceleration model gives best performance, if enough
information about the streams is known to choose a good
setting of the window parameter � ; else linear growth pro-
vides adequate results, and requires no extra parameters.

6 Conclusions
We have presented novel algorithms for tracking complex
queries over multiple streams in a general distributed set-
ting. Our schemes are optimized for tracking high-speed
streams, and result in very low processing and communi-
cation costs, and significant savings over naive updating
schemes. Our key results show that any query that can be
answered using sketches in the centralized model can be
tracked efficiently in the distributed model, with low space,
time, and communication.

References
[1] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. “Tracking Join

and Self-Join Sizes in Limited Storage”. ACM PODS, 1999.
[2] N. Alon, Y. Matias, and M, Szegedy. “The Space Complexity of

Approximating the Frequency Moments”. ACM STOC, 1996.
[3] B. Babcock and C. Olston. “Distributed Top-K Monitoring”. ACM

SIGMOD, 2003.
[4] M. Charikar, K. Chen, and M. Farach-Colton. “Finding Frequent

Items in Data Streams”. ICALP, 2002.
[5] G. Cormode and S. Muthukrishnan. “An improved data stream sum-

mary: The count-min sketch and its applications”. LATIN, 2004.
[6] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi.

“Holistic Aggregates in a Networked World: Distributed Tracking
of Approximate Quantiles”. ACM SIGMOD, 2005.

[7] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. “Gigas-
cope: A Stream Database for Network Applications”. ACM SIG-
MOD, 2003.

[8] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. “Distributed
Set-Expression Cardinality Estimation”. VLDB, 2004.

[9] M. Datar, A. Gionis, P. Indyk, and R. Motwani. “Maintaining
Stream Statistics over Sliding Windows”. ACM-SIAM SODA, 2002.

[10] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and
W. Hong. “Model-Driven Data Acquisition in Sensor Networks”.
VLDB, 2004.

[11] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. “Processing
Complex Aggregate Queries over Data Streams”. ACM SIGMOD,
2002.

[12] S. Ganguly, M. Garofalakis, and R. Rastogi. “Processing Data-
Stream Join Aggregates Using Skimmed Sketches”. EDBT, 2004.

[13] P. B. Gibbons. “Distinct Sampling for Highly-Accurate Answers to
Distinct Values Queries and Event Reports”. VLDB, 2001.

[14] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss.
“Surfing Wavelets on Streams: One-pass Summaries for Approxi-
mate Aggregate Queries”. VLDB, 2001.

[15] M. B. Greenwald and S. Khanna. “Space-Efficient Online Compu-
tation of Quantile Summaries”. ACM SIGMOD, 2001.

[16] M. B. Greenwald and S. Khanna. “Power-Conserving Computation
of Order-Statistics over Sensor Networks”. ACM PODS, 2004.

[17] Internet traffic archive. (http://ita.ee.lbl.gov/).
[18] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “The

Design of an Acquisitional Query Processor for Sensor Networks”.
ACM SIGMOD, 2003.

[19] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. “Find-
ing (Recently) Frequent Items in Distributed Data Streams”. IEEE
ICDE, 2005.

[20] G. Singh Manku and R. Motwani. “Approximate Frequency Counts
over Data Streams”. VLDB, 2002.

[21] C. Olston, J. Jiang, and J. Widom. “Adaptive Filters for Continuous
Queries over Distributed Data Streams”. ACM SIGMOD, 2003.

[22] N. Thaper, S. Guha, P. Indyk, and N. Koudas. “Dynamic Multidi-
mensional Histograms”. ACM SIGMOD, 2002.

