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Abstract—Open Shortest Path First (OSPF)is a popular protocol
for routing within an autonomous system (AS) domain. In order
to scale for large networks containing hundreds and thousands of
subnets, OSPF supports a two-level hierarchical routing scheme
through the use ofOSPF areas. Subnet addresses within an area
are aggregated, and this aggregation is a crucial requirement for
scaling OSPF to large AS domains, as it results in significant re-
ductions in routing table sizes, smaller link-state databases, and
less network traffic to synchronize the router link-state databases.
On the other hand, address aggregation also implies loss of infor-
mation about the length of the shortest path to each subnet, which
in turn, can lead to suboptimalrouting.

In this paper, we address the important practical problem of
configuring OSPF aggregates to minimize the error in OSPF
shortest-path computations due to subnet aggregation. We first
develop an optimal dynamic programming algorithm that, given
an upper bound on the number of aggregates to be advertised
and a weight assignment function for the aggregates, computes
the aggregates that result in the minimum cumulative error in
the shortest-path computations for all source–destination subnet
pairs. Subsequently, we tackle the problem of assigning weights to
OSPF aggregates such that the cumulative error in the computed
shortest paths is minimized. We demonstrate that, while for
certain special cases (e.g., unweighted cumulative error) efficient
optimal algorithms for the weight assignment problem can be
devised, the general problem itself is NP-hard. Consequently, we
have to rely on search heuristics to solve the weight assignment
problem. To the best of our knowledge, our work is the first to ad-
dress the algorithmic issues underlying the configuration of OSPF
aggregates and to propose efficient configuration algorithms that
are provably optimalfor many practical scenarios.

Index Terms—Area border routers, dynamic programming, IP
address aggregation, optimal routing, Open Shortest Path First
(OSPF), OSPF advertisements, OSPF weights.

I. INTRODUCTION

OPEN Shortest Path First (OSPF) is a widely used protocol
for routing within an autonomous system (AS) domain in

today’s Internet [1]–[3]. To scale for large AS networks, OSPF
implements a two-level hierarchical routing scheme through the
deployment ofOSPF areas. Each OSPF area comprises a col-
lection of subnets interconnected by routers. Detailed informa-
tion about links and subnets within an OSPF area is flooded
throughout the elements connected to the area. As a result, every
router knows the exact topology of its enclosing OSPF area; this
includes the subnets and the links connecting routers within the
area. On the other hand, details of an area’s topology are not
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advertised beyond the area’s borders and are, thus, hidden from
other areas in the same AS. Instead, subnet addresses within
each area are grouped intoaggregatesand only these aggregates
are flooded into the rest of the network (thus, making an area’s
subnets reachable from the remainder of the AS network). This
task of advertising aggregate information about subnets in an
area is carried out byarea border routers(ABRs), that is, routers
attached to two or more areas.

OSPF areas and address aggregation are crucial in enabling
OSPF to scale for AS domains comprising hundreds or thou-
sands of subnets; specifically, they play an important role in op-
timizing router and network resource consumption, as explained
below.

1) Router Memory: For OSPF areasnotdirectly connected
to a router in the AS, the router’s routing tables only
need to contain entries corresponding to subnet aggre-
gates rather than individual subnet addresses. In other
words, a router stores individual subnet addresses in its
routing table only for the OSPF areas that are directly con-
nected to it. This obviously leads to smaller routing table
sizes and, thus, lower memory requirements at routers.

2) Router Processing Cycles:The link-state database main-
tained at each router is much smaller, since it only needs
to include summary information for subnets belonging to
OSPF areas not directly connected to the router. Conse-
quently, the computational cost of the shortest-path cal-
culation decreases substantially.

3) Network Bandwidth: For subnets within each OSPF
area, only aggregate address information (rather than
individual subnet addresses) is flooded into the rest of the
AS network. As a result, the volume of OSPF flooding
traffic necessary to synchronize the link-state databases
of the AS routers is significantly reduced.

Nevertheless, despite its obvious benefits, OSPF address
aggregation involves important practical tradeoffs. This is
because address aggregation typically results in loss of in-
formation which, in turn, can lead tosuboptimal routing
paths. To see this, we need to delve in more depth into how
OSPF routing works in the presence of address aggregation.
Briefly, each ABR attaches aweight to each aggregate that it
advertises to the rest of the network. This weight is critical
in determining the path used by a router external to the area
to reach subnets covered by the aggregate. More specifically,
among all the ABRs advertising the aggregate (with possibly
different weights), an external router chooses the ABR (say,
) that minimizes the sum of the following two quantities:

1) the length of the shortest path from the external router to
the border router and 2) the weight advertised byfor the
aggregate. Once such an ABRis chosen, IP packets from the
external router to every subnet covered by the aggregate are
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Fig. 1. Example of suboptimal routing due to address aggregation.

forwarded along the shortest path from the external router to
and, subsequently, along the shortest path fromto the subnet.
However, for certain subnet(s) covered by the aggregate, this
path may be significantly suboptimal, since there can be a much
shorter path from the external router to the subnet through a
different ABR. This is illustrated in the following example.

Example 1: Consider the AS network consisting of the four
areas 0.0.0.0, 0.0.0.1, 0.0.0.2, and 0.0.0.3 shown in Fig. 1.
(Area 0.0.0.0 corresponds to the ASsbackbone areathat
interconnects the ABRs of the different OSPF areas in the
AS.) The boxes in the figure are routers, while the thin black
rectangles denote subnets. The figure also illustrates the various
subnet addresses and the weight of each link connecting a pair
of routers. ABR belongs to area 0.0.0.1, to area 0.0.0.2,
and and to area 0.0.0.3. The subnet addresses in area
0.0.0.3 can be aggregated to different degrees. For instance,
the aggregate 10.1.0.0/21 covers all the subnets in the area. In
contrast, 10.1.4.0/22 covers subnets 10.1.4.0/24, 10.1.5.0/24,
10.1.6.0/24 and 10.1.7.0/24, while 10.1.2.0/23 covers subnets
10.1.2.0/24 and 10.1.3.0/24.

Suppose one of the aggregate addresses advertised by the
ABRs of area 0.0.0.3 is 10.1.4.0/22. Suppose further that each
ABR assigns a weight to the aggregate that equals the distance of
the furthest component subnet in the aggregate from the router
(as suggested, for example, by Moy [3]). Thus, routerad-
vertises 10.1.4.0/22 with a weight of 1100 (distance of subnet
10.1.6.0/24 from ), while router advertises 10.1.4.0/22 with
a weight of 1250 (distance of subnet 10.1.4.0/24 from). Thus,
external router belonging to area 0.0.0.1 forward all packets
to subnets in 10.1.4.0/22 through border router, since the
shortest path to the aggregate throughhas a length of

, while the shortest path through has length
. Note, however, that the path from to

subnets 10.1.6.0/24 and 10.1.7.0/24 passing through router
has length 1200 and is suboptimal since the shortest path from

to both subnets is through border routerand its length is
only 400. Thus, even in this simple scenario, address aggrega-
tion results in an error of in the optimal
route (i.e., shortest-path) computation betweenand each of
the subnets 10.1.6.0/24 and 10.1.7.0/24.

Further, note that considering different weight assignments
for the aggregates does not alleviate the problem. The root of
the problem is that a single border router is selected byfor
reaching all subnets in 10.1.4.0/22. Ifis chosen instead of ,
then the paths from to subnets 10.1.4.0/24 and 10.1.5.0/24
through become much longer (their length is

) compared to the shortest paths to the subnets that pass
through (whose length is ).

The primary reason for suboptimal paths being selected when
subnets are aggregated is that a single weight is used by each
ABR for all the subnets covered by the aggregate; obviously, a
single weight may be incapable of accurately capturing the dis-
tance of the border router to every covered subnet. This problem
is exacerbated when the aggregated subnets are spread across
the area with some subnets being in close proximity to dis-
tinct border routers in the area. This was precisely the case
in Example 1, where aggregate 10.1.4.0/22 spans two subnets:
10.1.5.0/24 (close to ) and 10.1.6.0/24 (close to ), the dis-
tance between which is greater than 1000. The end result is that
the single weight advertised for aggregate 10.1.4.0/22 is not rep-
resentative of the true distance between any border router (either

or ) and the two subnets in 10.1.4.0/22.
One possible way to reduce the error in suboptimal OSPF

routing paths in the presence of aggregation is to avoid aggre-
gating distant subnets that are close to multiple border routers.
Thus, in Example 1, instead of advertising the single aggre-
gate 10.1.4.0/22, one can choose to advertise two aggregates
10.1.4.0/23 (with weights 50 and 1250 atand , respectively)
and 10.1.6.0/23 (with weights 1100 and 200 atand , respec-
tively). This clearly reduces the error in the selected paths to zero,
since the assigned weights capture the ABRs’ distances to the
aggregated subnetsexactly. Thus, there is an important tradeoff
between thenumberofaggregatesadvertised (and,consequently,
the size of the routing tables) and the error in the selected shortest
paths. This tradeoff is further complicated by the fact that the
aggregates advertised by OSPF border routers do not have to be
disjoint—it is entirely possible for one advertised aggregate to be
completely containedin another. In such a scenario, thelongest
match propertyof IP routing causes the more specific aggregate
to take precedence for route computation to subnets within the
aggregate. Also, configuring theweight assignmentsused by
ABRs for address aggregates is another important mechanism
for controlling the quality of the OSPF routing paths in the
presence of aggregation. In the following example, we illustrate
how, by carefully selecting the address aggregates as well as the
associated weights, all the subnets in area 0.0.0.3 (Fig. 1) can
be advertised using only two (overlapping) aggregates while
incurring zero error in shortest-path computations.

Example 2: Consider the AS depicted in Fig. 1. One way to
ensure that the error in the selected paths to area 0.0.0.3’s sub-
nets is zero is to have the ABRs advertise the following three ag-
gregates: 10.1.4.0/23, 10.1.2.0/23, and 10.1.6.0/23. The reason
for this is that it is possible to choose weights for each aggre-
gate at each ABR such that the weight equals the exact distance
between the border router and every subnet covered by the ag-
gregate. For instance, for aggregate 10.1.2.0/23, weights of 1050
and 250 at ABRs and , respectively, reflect the exact dis-
tances of the border routers to subnets in it.
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Achieving zero error with only two aggregates is more
challenging. Note that all the subnets in area 0.0.0.3 can be
covered by the single aggregate 10.1.0.0/21; however, this
aggregate by itself cannot result in zero error. Another pos-
sibility is to consider the two disjoint aggregates 10.1.4.0/22
and 10.1.2.0/23, which cover all the subnets. However, as we
saw earlier, since subnets 10.1.4.0/23 and 10.1.6.0/23 covered
by 10.1.4.0/22 are closer to different routers (and distant from
each other), this cannot result in zero error, either. Thus, the
key to optimizing the error is to bundle 10.1.4.0/23 into one
aggregate, and 10.1.2.0/23 and 10.1.6.0/23 into the other. It
turns out that this can be achieved by advertising the following
two aggregates: 10.1.0.0/21 and 10.1.4.0/23. The longest match
characteristic of IP routing causes the latter aggregate to be
used for routing to subnets in 10.1.4.0/23 and the former to be
used to route to subnets in 10.1.2.0/23 and 10.1.6.0/23.

One question still remains: what weights should assigned
to each aggregate? While this is straightforward for the ag-
gregate 10.1.4.0/23 (since the two subnets 10.1.4.0/24 and
10.1.5.0/24 covered by it are at the same distance from any
given border router), it is somewhat less obvious for the
aggregate 10.1.0.0/21. Simply setting the weight equal to
the distance of the ABR to the most distant covered subnet
(see, e.g., [3]) may not result in the least error. To see this,
suppose and advertise 10.1.0.0/21 with weights 1100
and 1250, respectively (i.e., the maximum distance to a subnet
contained in the aggregate). This causesto select for
subnets in 10.1.0.0/21, and the resulting cumulative error in
the selected paths from to all subnets in area 0.0.0.3 is

.
On the other hand, a lower cumulative error can be achieved if

and advertise 10.1.0.0/21 with weights 730 and 570, re-
spectively (i.e., the average distance to the subnets contained in
the aggregate). In this case,selects border router to access
subnets in 10.1.0.0/21, resulting in a lower cumulative error of

(assuming again that only 10.1.0.0/21 is advertised for area
0.0.0.3).

Further, configuring border routers and to advertise ag-
gregates 10.1.0.0/21 and 10.1.4.0/23,with weights 730 and
50, and with weights 570 and 1250, causes the cumulative
error for to reduce to zero. This is becauseselects ABR
for subnets in 10.1.4.0/23 and ABRfor the remaining subnets
(that is, subnets in 10.1.0.0/21 but not contained in 10.1.4.0/23).
Thus, the selected paths after aggregation are indeed the shortest
paths from to the subnets in area 0.0.0.3.

A. Contributions of This Paper

In this paper, we address the important practical problem of
configuring OSPF aggregates to minimize the error in OSPF
shortest-path computations due to address aggregation. From
our discussion above, we can see that OSPF aggregate config-
uration involves two key subproblems: 1) selecting the aggre-
gates to advertise at each ABR and 2) assigning weights to each
advertised aggregate at each ABR. We address each of these
two problems separately. We first develop anoptimaldynamic
programming algorithm that, given an upper boundon the

number of aggregates to be advertised by the ABRs and a weight
assignment function for the aggregates, computes theaggre-
gates that result in the minimum cumulative/maximum error in
the OSPF shortest-path computations for all source–destination
subnet pairs. This problem is obviously relevant when there is a
limit on the number of aggregates that can be advertised within
an AS in order to bound the routing table sizes, number of en-
tries in the link-state database, or the amount of network traffic
due to OSPF advertisements. The objective then is to choose the

aggregates to advertise such that the selected paths are as close
to the shortest paths as possible (where “closeness” is measured
in terms of either the total or the maximum over all source–desti-
nation subnet pairs in the AS). Furthermore, our proposed algo-
rithm can be easily extended to optimally solve the dual OSPF
configuration problem, where the goal is to compute the min-
imum number of aggregates so that the (cumulative or max-
imum) error in selected paths is less than a certain user-specified
threshold.

We then address our second subproblem of selecting weights
for OSPF aggregates at each ABR such that the deviation of se-
lected paths from the shortest paths is minimized. More specifi-
cally, we attack the following problem: Given an address aggre-
gate , determine an assignment of weights toat each ABR
in its area such that the (cumulative or maximum) error in the
selected paths between source–destination subnet pairs is mini-
mized. We demonstrate that, while for certain restricted (but in-
teresting) cases the above problem can be solved in polynomial
time, the general problem itself is NP-hard. Consequently, we
have to rely on search heuristics to solve the weight assignment
problem. We also propose a randomized search strategy for the
general case of weighted cumulative error, and an optimal pseu-
dopolynomial time algorithm for the maximum error case.

The second subproblem involving weight selection for OSPF
aggregates is clearly important since, as shown in Example 2,
assigning to each aggregate (at an ABR), a weight equal to the
maximum distance from the ABR of subnets covered by the ag-
gregate (as suggested, for example, by Moy [3]), may not mini-
mize error. This is because the maximum distance may, at times,
be a poor estimate of the distance between subnets of the ag-
gregate and the ABR. A better alternative that has the ability to
capture the distance between an aggregate and an ABR fairly ac-
curately, is the average distance between the aggregate’s subnets
and the ABR. In fact, in this paper, we show that choosing the
average distance as the weight for an aggregate minimizes the
cumulative error for a single advertised aggregate and is, thus, in
many respects, more representative of the distance between an
aggregate and an ABR than maximum distance. Consequently,
it is important to consider alternative weight assignments for ag-
gregates at ABRs, besides the maximum distance advocated by
[3]—essentially, depending on the error metric we wish to opti-
mize, one set of weights may be more representative than others
of distances between aggregates and ABRs, and may ultimately
lead to the selection of a better set of aggregates (solution to the
first subproblem).

Combining our algorithmic results for the two subproblems
provides us with an effective integrated solution for configuring
(in many cases, optimally) OSPF aggregates in an AS domain.
The idea is to first apply our weight assignment algorithms to
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determine “good” weights for all candidate aggregates at each
ABR, and then employ our dynamic programming algorithm
to select the optimal subset of aggregates to advertise (given
these weight assignments). To the best of our knowledge, our
work is the first to address the algorithmic issues underlying
the configuration of OSPF aggregates and to propose efficient
configuration algorithms that areprovably optimalfor many
practical scenarios. One point to note, however, is that we
solve the aggregate-selection and weight assignment subprob-
lems separately. Although they can be combined into a single
problem, we believe the joint problem to be intractable. The
only solution we know of has exponential complexity and is,
thus, impractical.

Finally, we must point out that the problem of selecting ag-
gregates is considerably simplified if networks and areas are de-
signed carefully, and IP addresses are assigned to subnets within
areas in a systematic manner. For example, one possible strategy
is to segment an area intosmaller regions such that routers
within each region are close to each other. Then, it is possible to
achieve good aggregation by assigning consecutive IP addresses
to subnets within a region, and defining a single aggregate per
region. The above-mentioned approach, however, may not work
in practice since networks are seldom static and tend to continu-
ously evolve due to the addition of new network elements, sub-
nets, and links. For instance, addition of new routers may require
new IP aggregates to be allocated to a region. Similarly, deletion
or failure of an existing link within a region, or addition of a new
link between regions, may cause distances between routers to
be substantially altered, thus, rendering the previously selected
aggregates suboptimal. Our algorithms allow OSPF aggregates
to be optimally configured in such continuously changing dy-
namic networks, and also to work on-line: emergence of spu-
rious subnets (through external advertisements), link failures,
and topology changes would trigger the computation of changes
to the optimal set of advertised aggregates/weights. This com-
putation can also be carried out incrementally and efficiently.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model and Notation

We model the network as an undirected graph. Nodes in the
graph correspond to either routers or subnets. Edges in the graph
connect routers with other routers or subnets. A link exists be-
tween two routers if the two routers can directly exchange IP
packets without going through an intermediate router (that is,
the two routers are either connected to the same subnet or are
connected by a point-to-point link). A link exists between a
subnet and a router if the subnet is connected to the router. Each
link has an associated weight, which is the OSPF weight as-
signed to the link (that is, the interface to which the link is con-
nected to). For simplicity, we assume that the link is assigned the
same weight at both ends—our algorithms, however, are appli-
cable even if link weights are not symmetric. Table I describes
the notation employed in this paper.

The set of subnetsin the network are partitioned into disjoint
areas. The set of areas is denoted byand the set of subnets in
area is denoted by . A router is said to be attached

TABLE I
NOTATION USED IN THE PAPER

to area if it is directly connected to a subnet in. A router
that is attached to two or more areas is called an ABR. We denote
by the set of ABRs attached to area. In addition to area

(and possibly other areas), every ABR in is also attached
to a specialbackbonearea. The backbone area serves to connect
the subnets in the various other areas. We denote by the
length of the shortest path betweenand , where and can be
subnetsor routerswithin the AS. Note that, ifand belong to the
same area , then the shortest path betweenand is defined to
beover links inarea . If, instead, and belong todistinctareas
(say, and , respectively), then the shortest path between
and involves two ABRs and and consists of
three path segments: the first is the shortest path betweenand

involving links in , the second is the shortest path between
and over links in the backbonearea, and the final segment is the
shortest path between and all of whose links belong to area

. Note that can be defined in a similar fashion if either of
the subnets and above are replaced by routers.

In OSPF, information relating to links and subnets in an area
are flooded throughout the area. Consequently, routers attached
to area have detailed knowledge of ’s topology. As a re-
sult, IP packets originating in any subnetbelonging to area

destined to a subnetin the same area are forwarded along
the shortest path betweenand . However, in order to ensure
smaller routing table sizes and reduce network traffic overhead,
detailed information about individual subnets within an area are
typically not advertised beyond the area’s borders. Instead, area

’s ABRs will typically be configured to advertise a set of ag-
gregates that cover subnets in and a separate weight for
each aggregate in . We denote by , the weight as-
signed to an aggregate by ABR . Each ABR in

floods in the entire backbone area, every aggregate
along with the weight assigned toby it—this causes ABRs
belonging to every other area to receive. An ABR ,
in turn, floods into area with an adjusted weight equal to

. Thus, a subnetin , in order
to reach aggregate that covers subnets in , selects a path
passing through ABR for which is
minimum.
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Due to the longest match property of IP routing, the most
specific aggregate covering a subnet determines the path to
the subnet. We say that an aggregateis more specific than
an aggregate if is contained in , which we denote by

. Thus, for a subnet in , if is the most specific
aggregate in that covers , then a subnet in , in order
to reach , selects the path comprising of the shortest path
from to and then from to , where is the ABR
for which is minimum. We denote the
length of this selected path fromto for the set of advertised
aggregates and weight assignment by .
Thus, , and the error
in the selected path is simply .
When and belong to the same area, we define

to be equal to . Note that
if does not contain an aggregate that

covers (the implication here is thatis unreachable from).

B. Problem Statement

We address the problem of computing the set of aggregates
advertised across all the areas in an AS and the weight as-

signment function such that the error in the selected paths
is minimized. Clearly, we need to impose certain restrictions
on and in order to ensure the reachability of remote
subnets in a different area. First, we require thatbe com-
plete, that is, every subnet in be covered by some aggre-
gate in . The next two restrictions serve to ensure that an
ABR cannot advertise an aggregate covering a subnet inun-
less it belongs to . We say that an aggregateis eligible
if all the subnets in covered by it belong to a single area.
Thus, in the network of Fig. 1, aggregate 10.1.0.0/21 is eli-
gible, since it only covers subnets in Area 0.0.0.3; however, ag-
gregate 10.1.0.0/20 is not, since it covers subnets 10.1.8.0/24
and 10.1.4.0/24, which belong to different areas. Letdenote
the set of all eligible aggregates such that every aggregate in
covers at least one subnet in. Note that . Further, let

denote the set of eligible aggregates that cover subnets
in . We require that the set of advertised aggregates .
We also require that only ABRs in advertise aggregates in

. One way to model this is by requiring that
if and .

We are now in a position to state the two basic problems ad-
dressed in the remainder of this paper.

1) Aggregate Selection Problem:Given a and a weight
assignment function , compute a complete set

containing at most aggregates such that
is minimum.

2) Weight Selection Problem:For an aggregate ,
compute a weight assignment function such that

is minimum.
The rationale for our objective function which aims to mini-

mize the cumulative routing-path lengths is as follows. A link’s
weight typically is a measure of its desirability for routing
(Cisco recommends setting weights inversely proportional
to link capacities). Thus, paths with small weights are more
desirable, and our problem formulation minimizes the sum of
all routing-path weights.

Note that in both problem statements above, every source–
destination subnet pair is assigned the same degree of impor-
tance. In other words, in the final error, the error in the selected
path between every subnet pair is treated equally, that is, given
an equal degree of importance. However, this is somewhat re-
strictive since minimizing the error in the selected paths for cer-
tain source–destination subnets may be more important. This
may happen, for instance, for subnet pairs between which there
is a disproportionately high volume of traffic, or subnet pairs
carrying high-priority or delay-sensitive traffic such as voice.
Thus, we can consider adegree of importancefunction which
for a pair of subnets returns a real value that reflects
the importance of minimizing the error in the selected path be-
tween subnets and . Note that can be any arbitrary
function of the volume/priority of traffic flowing between sub-
nets and . Subnet pairs for which the error in the selected path
does not matter (either due to very low traffic volume or due to
low-priority data traffic) can be assigned low values for
or even zero. The generalized aggregate and weight selection
problems incorporating the degrees of importance are then as
follows.

1) Generalized Aggregate Selection Problem:Given a
and a weight assignment function , compute a com-
plete set containing at most aggregates such that

is min-
imum.

2) Generalized Weight Selection Problem:For an aggre-
gate , compute a weight assignment function
such that

is minimum.

In all the problems outlined above, our goal is to minimize
the (weighted) cumulative error across all source–destination
subnet pairs. An alternative statement of the OSPF configura-
tion problem aims to minimize themaximumerror across all
the source–destination subnets. The corresponding aggregate
and weight selection problems can be formulated in a similar
fashion, except that instead of minimizing , the objec-
tive is to minimize .

III. GENERALIZED AGGREGATESELECTION PROBLEM

In this section, we present a dynamic programming algorithm
for the generalized aggregate selection problem. Our algorithm
exploits the fact that the containment structure of aggregates in

is a set of trees (termedaggregate trees). We define the no-
tion of error for each aggregate tree when certain aggregates in
it are selected, and demonstrate that the cumulative error in the
shortest-path computation when a subsetof aggregates is ad-
vertised is equal to the sum of the corresponding aggregate-tree
errors when is selected. We present our dynamic program-
ming algorithm for selecting aggregates in a single aggregate
tree that minimize the tree’s error in Section III-B. Section III-C
then presents the algorithm for combining the results for the col-
lection of aggregate trees to derive the finalaggregates that
yield the minimum overall error. Finally, in Section III-E, we
show how our algorithms can be extended for minimizing the
maximum error in the OSPF routing paths.
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Fig. 2. Aggregate tree for eligible aggregates covering subnets in area 0.0.0.3.

A. Aggregate Trees

The containment relationship among the eligible aggregates
in naturally form a set of trees. For aggregates , an
edge from to exists if covers and every other aggre-
gate that covers also covers . Fig. 2 illustrates the
aggregate tree for the eligible aggregates that cover subnets in
Area 0.0.0.3 (from Fig. 1). Observe that sincecontains ag-
gregates 10.1.4.0/22, 10.1.6.0/23, and 10.1.7.0/24, there is an
edge from 10.1.6.0/23 to 10.1.7.0/24; however, there is no edge
from 10.1.4.0/22 to 10.1.7.0/24 in the tree. Also, the internal
nodes in the aggregate tree have either one or two children, but
no more than two children. For instance, in Fig. 2, 10.1.0.0/22
has only one child since 10.1.0.0/23 does belong to(subnet
10.1.1.0/24 does not exist in the network). Note that each leaf
of an aggregate tree is a subnet in. Further, the root of
tree is basically an aggregate that is not covered by any other
eligible aggregate.

We next define the error of a tree when a set of aggre-
gates in it have been selected. Supposeis an aggregate in
the tree , is the most specific selected aggregate covering

in the tree, and is the set of selected aggregates. Then
the error of the subtree rooted at is recur-
sively defined as given in the equation at the bottom of the page.
The error for an entire tree with the set of selected aggre-
gates is then simply ( denotes the empty
aggregate that does not cover any other aggregate). Note that
each recursive invocation of on ’s children propagates as
the most specific selected aggregate if . Consequently,
whenever is invoked for the subtree rooted at an aggregate

, is always the most specific selected aggregate covering
. As a result, the error of a tree is simply the sum of the er-

rors of all the leaf subnets in it, where the error of a subnetis
, where is the

most specific aggregate in that covers . Thus, since every
subnet in is contained in one of the trees, the sum of errors
of all the trees is essentially the cumulative error in the selected
paths, which is the metric we are interested in minimizing.

Thus, we have reduced the aggregate selection problem to
the problem of computing a set containing at most aggre-

gates such that the sum of the errors of all the trees is minimum.
We break this into two subproblems which we address in Sec-
tions III-B and III-C. First, we present our dynamic program-
ming algorithm to compute the optimal subset of aggregates for
a single aggregate tree. Then, we show how to select a combi-
nation of aggregates from different trees (i.e., OSPF areas) that
minimize the overall error for the entire collection of aggregate
trees.

B. Computing Optimal Aggregates for a Single Tree

We begin by presenting below a set of recursive equations for
computing a tight lower bound on the error of a tree assuming
that at most arbitrary aggregates in the tree can be selected.
The equations form the basis of our dynamic programming al-
gorithm and can be used to compute thebest aggregates to
select in order to minimize the error of the tree. Suppose that
is an aggregate in the treeand is the most specific aggregate
in the tree covering that has already been selected. Then, the
minimum error of the subtree rooted at, if
we are allowed to choose at mostaggregates in the subtree, is
as follows.

• If : .
• If and has a single child :

• If and has children , : is the minimum of

• If and is a leaf:
The intuition underlying the above set of equations is that if

, then since no aggregates in the subtree can be selected,
the minimum error is simply the error of the subtree when no
aggregates in it are chosen. In case and has children,
and if is the set of aggregates in the subtree rooted atthat if
selected result in the minimum error, then the following hold for

: 1) either or and 2) of the remaining aggregates
in , are in the subtree rooted at its left child and the remaining

or aggregates (depending on whether ) are
in the subtree rooted at its right child. Thus, since the error of
the subtree with as root is simply the sum of the errors of its
left and right subtrees, we can compute the minimum error for
(the subtree rooted at)by first computing the minimum error
of its left and right subtrees for selected aggregates
and for the cases whenis either selected or not selected, and
then choosing the combination with the smallest error. Finally, if

and is a leaf, then there are only two possible alternatives
for selecting aggregates in’s subtree: either to selector not

if has children and
if has children and
if is a leaf and
if is a leaf and
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to select . The minimum error for these two cases then yields
the desired minimum error. In the following, we formally prove
that is indeed the minimum error of the subtree rooted at

if at most aggregates can be selected in it.
Theorem 1: is equal to the minimum of

, where is any arbitrary set containing at most
aggregates in the subtree rooted at.

Proof: The proof is by induction on the number of aggre-
gates in the subtree rooted at.

Basis:Suppose that there is only one aggregate in the subtree
rooted at , that is, is a leaf. In case , then the minimum
error of the subtree is simply since none of the
aggregates in the subtree can be selected. On the other hand, if

, then the two possibilities are that either or
and the minimum error is the minimum of the error for these
two cases.

Induction Step:Suppose that is the set containing at most
aggregates in the subtree rooted atthat minimizes the error

of the subtree. We show that is equal to
for one case (other cases can be handled in a

similar fashion). The case we consider is when and has
two children and with and denoting the aggregates
selected in the subtrees rooted atand , respectively. Note
that if , then . From the definition
of error, .
Thus, since minimizes the error of the subtree rooted at,
and must be the sets containing at mostand ag-
gregates, respectively, and that minimizes the error of subtrees
rooted at and , respectively. Due to the induction hypothesis,

and
. Thus, since

, we can con-
clude that . Note that

cannot be less than , since
this would lead to a contradiction becausewould not mini-
mize the error of the subtree rooted at.

From Theorem 1, it follows that re-
turns the minimum possible error for a treewhen at most ag-
gregates in the tree can be selected. Procedure COMPUTEMINE
in Fig. 3 uses dynamic programming to compute theaggre-
gates that result in the minimum possible error for the subtree
rooted at and is the most specific aggregate coveringthat
has already been selected. The procedure is invoked with argu-
ments that include the root aggregate of the tree , and .
The key ideas are similar to those described earlier for the com-
putation of , the minimum error for the tree. For instance,
if an aggregate has children, then procedure COMPUTEMINE
recursively invokes itself for each of its children for the cases
when is selected and whenis not selected. Furthermore, in
the case that has two children, the procedure is invoked for
each child for all the possibilities for the number of aggregates
in each child subtree.

The only difference is that in addition to the minimum error,
the procedure also computes the aggregates that are responsible
for minimizing the tree error. Thus, every invocation of pro-
cedure COMPUTEMINE, in addition to returning the minimum
error for the subtree rooted at, also returns the set of aggre-
gates in the subtree that cause the error to be minimum. This set

Fig. 3. Dynamic programming algorithm for computing the aggregates that
minimize tree error.

is derived by taking the union of the optimal aggregates for the
subtrees rooted at its children, and adding to it if selecting
is required for minimizing the error (Steps 11, 20, and 35). Note
also that in order to improve computational efficiency, the op-
timal aggregates and the minimum error for the subtree rooted
at with as the most specific aggregate and at mostselected
aggregates are stored in and , respec-
tively. The first invocation of COMPUTEMINE causes the
body of the procedure to be executed, but subsequent invoca-
tions simply return the previously computed and stored values.

C. Combining the Aggregates for Set of Trees

Suppose there are aggregate trees . Further,
let denote the minimum error and the set of at most

aggregates in responsible for minimizing ’s error. Then,
, the minimum error for the set of trees

and the aggregates that minimize their cumulative error can be
computed using the result of the following theorem.

Theorem 2: For the set of trees

if
otherwise .
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Fig. 4. Combining aggregates for a set of aggregate trees.

Proof: The proof is by induction on.
Basis:When , the statement of the theorem clearly holds

since .
Induction Step:Suppose for the trees , the cumula-

tive error is minimum for aggregates whenaggregates are se-
lected from and the remaining aggregates are
selected from . Note that .
Thus, since due to the induction hypothesis, is equal
to the minimum error for the first trees when aggregates
are selected from them, it follows that is less than or
equal to the minimum error for the firsttrees when aggre-
gates are selected. In fact, since is set to the minimum
of for , due to the induction
hypothesis, it must be equal to the minimum error for the first
trees when aggregates are selected.

Procedure COMBINEMINE in Fig. 4 computes in
the minimum cumulative error and theaggregates that min-
imize the error for the trees . After computing the
error and aggregates for each individual tree in Steps 1–5, in
each iteration of Steps 8–14, the are computed for in-
creasing values ofbased on the individual tree errors and the

computed in the previous iteration (as stated in The-
orem 2). For each , the aggregates are computed by taking
the union of the aggregates for the and that re-
sult in the minimum error for .

D. Time and Space Complexity

Suppose that is the maximum depth of an aggregate tree, the
number of aggregates in is and the number of subnets in
is . Note that for 32-bit IP addresses, . Then the time
complexity of the procedure COMPUTEMINE can be shown to be

. The reason for this is that , the shortest
path between subnetsand , needs to be computed for all subnet
pairs. The time complexity of this step is . Also, for each
subnet and every aggregatecovering it, one can precompute
and store ,
thus, enabling this information to be accessed in constant time.

Further, the body of COMPUTEMINE is executed at most once for
each combination of, , and . For a specific , there are at most

different possibilities for and for which the body of the pro-
cedure is executed. This is becausehas to be an ancestor ofin
the tree and . Each execution of the body of COMPUTEMINE
makes at most recursive calls, and thus, since there are
possible aggregates, the total number of times COMPUTEMINE
is invoked is . As a result, the time complexity of
procedure COMPUTEMINE is . Further, the
space complexity of the procedure is , to
store the shortest path and error information for subnets, and

to store the error and aggregate values for each of the
possible combinations of values for, and .

It is fairly straightforward to observe that the threefor
loops spanning Steps 8–14 of procedure COMBINEMINE
execute steps. Thus, the overall time complexity
of the procedure is is , where the
first two terms are the time complexity of computing the
aggregates that minimize the error for thetrees. Note that
even though COMBINEMINE makes independent successive
invocations to COMPUTEMINE for , the
results computed in subTree during an invocation are shared
between the invocations. The space complexity of procedure
COMBINEMINE is simply to store the and arrays.

E. Minimizing Maximum Error

Note that instead of minimizing the cumulative error over
source destination subnet pairs, our algorithms can be adapted to
minimize the maximum error over source destination pairs. In
order to do this, we simply need to redefine the error of a tree to be
the maximum error of the leaf subnets in it (instead of the sum of
errors). Thus, the recursive definition of the error of the subtree
rooted at given that is the most specific selected aggregate
covering in the tree and is the set of selected aggregates,
is as given in the equation shown at the bottom of the page.

Further, the minimum error of the subtree rooted atif at
most aggregates in the subtree can be chosen (given thatis
the most specific aggregate in the tree coveringand that has
already been selected), is as follows.

• If : .
• If and has a single child :

• If and has children : is the minimum of

• If and is a leaf: .

if has children and
if has children and
if is a leaf and
if is a leaf and
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Note that unlike the cumulative error case, where we were in-
terested in the distributing the aggregates among the subtrees of

rooted at children and so that the sum of the errors of the
subtrees was minimized, for the maximum error case, we are
interested in minimizing the maximum of the errors of the two
subtrees (since the error of the subtree rooted atis the max-
imum of the errors of its two child subtrees). Thus, the following
modifications need to be made to procedure COMPUTEMINE to
compute the aggregates that minimize the (maximum) error
for the tree.

1) Replace
in Steps 5 and 7 with

.
2) Replace in Steps 26, 27, 33, and 34 with

.

Similarly, the following simple modification to proce-
dure COMBINEMINE enables it to compute the minimum
error of a set of trees for the maximum error case:
replace in Steps 11 and 12 with

.

IV. WEIGHT SELECTION PROBLEM

In Section III, for a given weight assignment function ,
we proposed algorithms for computing the optimal set of aggre-
gates for which the error in the selected paths is minimized.
However, the final error and set of optimal aggregatesare
very sensitive to the weight that a border router advertises for
each aggregate. Thus, the weight assignment problem is impor-
tant for ensuring that selected paths are of high quality, and is
the subject of this section.

Recall that the weight assignment problem is to compute a
weight assignment function for a single aggregate
such that the error in the selected paths from all subnets to des-
tination subnets covered byis minimized. The weight assign-
ment function assigns a weight to at each ABR .
Note that we are interested in computing the optimal weights
for under the assumption that no other aggregates covering
subnets in are concurrently being advertised. Also, since the
aggregate for whom we wish to compute weights is fixed, we
drop the subscript for —thus, we will use to de-
note the weight assigned toby ABR .

Intuitively, since is supposed to represent the distance
between and subnets covered by, two possible logical
choices for are the following:

1) ;
2) .

The first choice, recommended in [3], is simply the maximum
distance of a subnet in aggregatefrom the border router,
while the latter is the average distance of subnets infrom .
Note that since both choices are oblivious of the source subnets
(not covered by ) and the error to be minimized, as illustrated
in the examples below, for most cases, neither choice optimizes
our objective error function. In the following two examples, we
show that choosing to be minimizes
neither the cumulative error nor the maximum error.

Fig. 5. Example of an AS where choosing maximum-distance weights does
not minimize the maximum error.

Example 3: Consider the network in Fig. 1. Suppose we are
interested in computing weights for the aggregate 10.1.0.0/21
that covers all the subnets in Area 0.0.0.3. If each border router
chose the maximum distance to a subnet in 10.1.0.0/21 as the
weight for it, would assign 10.1.0.0/21 a weight of 1100 (dis-
tance of from 10.1.6.0/24) and would assign to 10.1.0.0/21
a weight of 1250 (distance betweenand 10.1.6.0/24). Con-
sequently, both subnets 10.1.16.0/24 and 10.1.8.0/24 select the
path through ABR to access the subnets in 10.1.0.0/21 which
has a cumulative error of
(for 10.1.16.0/24) and
(for 10.1.8.0/24). In contrast, assigning weights 1000 and 500 to
10.1.0.0/21 at ABRs and , respectively, causes the selected
paths to be through which results in much smaller cumulative
errors of (for 10.1.16.0/24) and

(for 10.1.8.0/24).
Example 4: Consider the network in Fig. 5. Suppose

we are interested in computing weights for the aggregate
10.1.0.0/21 that covers all the subnets in Area 0.0.0.3. If each
border router chose the maximum distance to a subnet in
10.1.0.0/21 as the weight for it, would assign 10.1.0.0/21
a weight of 900 (distance of from 10.1.6.0/24) and
would assign to 10.1.0.0/21 a weight of 1100 (distance
between and 10.1.4.0/24). Consequently, both subnets
10.1.16.0/24 and 10.1.8.0/24 select the path through ABRto
access the subnets in 10.1.0.0/21 which has a maximum error of

(for 10.1.16.0/24) and
(for 10.1.8.0/24). In contrast, assigning weights 1000 and 500
to 10.1.0.0/21 at ABRs and , respectively, causes the
selected paths to be through which results in lower values
for maximum error— (for 10.1.16.0/24)
and (for 10.1.8.0/24).

Choosing yields somewhat
better results because intuitively this is more representative of
the distance betweenand subnets in than .
As a matter of fact, setting to be the average distance of
to subnets in can be shown to minimize the cumulative error
for the weight selection problem. However, it does not minimize
the maximum error, as illustrated by the example below.



190 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

Example 5: Consider the network in Fig. 1. Suppose we are
interested in computing weights for the aggregate 10.1.0.0/21
that covers all the subnets in Area 0.0.0.3. If each border router
chose the average distance to a subnet in 10.1.0.0/21 as the
weight for it, would assign 10.1.0.0/21 a weight of 730 and

would assign to 10.1.0.0/21 a weight of 570. Consequently,
both subnets 10.1.16.0/24 and 10.1.8.0/24 select the path
through ABR to access the subnets in 10.1.0.0/21 which
has a maximum error of 1300 for 10.1.16.0/24 and 1100 for
10.1.8.0/24. In contrast, assigning weights 500 and 1000 to
10.1.0.0/21 at ABRs and , respectively, causes the selected
paths to be through which results in lower values for max-
imum error—700 for 10.1.16.0/24 and 1000 for 10.1.8.0/24.

In Sections IV-A–E, we first show that selecting
results in the minimum cumulative error

and is a solution to the weight selection problem. However,
the generalized weight selection problem that involves mini-
mizing the product of the cumulative error of selected paths and
their degrees of importance is an NP-hard problem [5]. Conse-
quently, we present search-based heuristics to solve the gener-
alized weight selection problem and a pseudopolynomial time
algorithm to solve the weight selection problem when the ob-
jective is to minimize the maximum error.

A. Problem Formulation

In this subsection, we simplify some of the notation and
introduce some new terminology that we need in order to
address the weight selection problem, which is: For an aggre-
gate , compute a weight assignment function such
that is minimum.
For each source, the selected paths to subnets covered by

is through the ABR for which
is minimum (among all the ABRs). We denote the ABR
selected for source by . Note that for ,

.
Further, suppose denotes the error in the selected
paths to subnets in if ABR is selected for source.
Thus, . Then,

, and,
thus, the weight selection problem becomes that of computing
a weight assignment such that is
minimum.

The above problem formulation is for minimizing the cumu-
lative error. If we wish to minimize the maximum error, then

and the
weight assignment must be such that
is minimum.

B. Weight Selection Problem (Cumulative Error)

For the cumulative error case, it can be shown that choosing
to be the average distance ofto subnets in minimizes

the cumulative error in the selected paths between sources and
destination subnets in.

Theorem 3: The weight assignment function which as-
signs a weight to ABR results
in the minimum value for .

Proof: Suppose the weight assignment function
assigns a weight to ABR .
For each source , is less
than or equal to for all ABRs . Thus,
first expanding and then multiplying by constant
and subtracting constant from both sides, we
get

for all ABRs . As a
result, for every source, for all ABRs

and, thus, is minimum for the weight
assignment .

C. Generalized Weight Selection Problem (Cumulative Error)

For the cumulative error case,
is closely related to the criterion for selecting

an ABR for which is that is minimum (note
that is a constant). However, for the generalized
cumulative error case,

and, thus, can be any arbitrary value
based on the value of . This fact that can be any
arbitrary value makes the problem of computing a weight as-
signment function that minimizes in-
tractable, as the following theorem demonstrates. The proof of
the theorem involves a rather complex reduction from 3-SAT
and, in the interest of space, has been omitted from the paper.
Details of the proof, however, can be found in [4].

Theorem 4: For arbitrary values of and constant ,
determining if there exists a weight assignment functionfor
which is NP-hard.

A simple iterative greedy search heuristic can be used to com-
pute a weight assignment that results in a low value for the
cumulative error. The basic idea is to start with a setof
random weight assignments. Then, in each subsequent iteration,
for each , from a number of candidate modifications,
the one that minimizes the cumulative error is greedily chosen
and applied to . For a , each candidate modifica-
tion consists of adjusting the weight for a single ABR

. Thus, for each weight assignment, we are inter-
ested in computing the ABR and a weight such that set-
ting (and leaving the weights for other ABRs un-
changed) results in the smallest value for the cumulative error

. For sources and ABRs, this can be com-
puted in time as follows. First, we compute
for each ABR the weight such that setting min-
imizes the error. Then, we choose from all the (ABR, weight)
pairs the one that results in the minimum error.

In order to compute the optimal weight for an ABR , we
first compute for every source, the ABR in for which

is minimum (this can be achieved in
steps). For the source, let
and . Suppose that are the values
for the sources in sorted (increasing) order (sorting thevalues
takes steps). Also, let . Then, choosing
a value for , such that causes the
cumulative error to be (since ABR

is selected for sources when ). Thus,
in a single pass over the sequence , the optimal
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Fig. 6. Algorithm for computing weights for two ABRs.

weight for which minimizes the cumulative error
can be computed. Thus, the optimal

weight for each ABR can be computed in steps
and for all ABRs, in time.

To recap, the greedy heuristic, in each iteration, modifies each
weight assignment by setting , where ABR

and weight result in the minimum error for and are com-
puted as described above. It terminates the search computation
either after a fixed number of iterations or if the improvement
in cumulative error during an iteration due to modifying every

drops below an error threshold.

D. Generalized Weight Selection Problem (Maximum Error)

Recall that if we are interested in minimizing the max-
imum error, then

and the weight assignment must be such that
is minimum. Thus, we can employ

an algorithm similar to the greedy search heuristic described
earlier to compute a weight assignment function that minimizes
the maximum error (instead of the cumulative error).

However, if we assume that weight assignments and
shortest path distances to be nonnegative integers, then we
can devise a more efficient pseudopolynomial time algorithm
for computing the weight assignment that minimizes the
maximum error. Suppose we could devise a procedurethat
computes a weight assignment (if there exists one) such
that for some constant . Then,
a simple procedure for computing the weight assignment that
minimizes the maximum error is as follows:

1) sort the errors between (source, ABR) pairs—let
be the errors in order of increasing value;

2) repeatedly invoke the procedurefor increasing values
of , until returns a weight assignment for which

.
Thus, is the smallest value for which a weight assignment
exists and represents the minimum possible value for the max-
imum error. Further, is the weight assignment that minimizes
the maximum error. Note that instead of considering eachse-
quentially, one can also use a binary search procedure to com-
pute the minimum value for the maximum error more efficiently.

Thus, the crucial task for us is to develop the procedurethat
computes a weight assignment (if there exists one) such that

for some constant . We show that
the problem of computing a such that the maximum error is

at most is equivalent to solving a set of inequalities involving
the s as variables. For a source, let denote the set of
ABRs for which —thus, for the remaining
ABRs , . Consequently, since the
error for each source can be at most, the computed must
be such that one of the ABRs in is selected for . For this,
we require to satisfy the following set of inequalities for all

:

Thus, for each source, we obtain the set of inequalities de-
scribed above.1Note that the ’s in the equations are variables
and the ’s are constants. Also, for each ABR, also needs
to satisfy the constraint . Suppose denotes the set of
inequalities over all the sources and ABRs. It is straightforward
to observe that for a the maximum error is if and only if
is a solution for the set of equations. Thus, we simply need to
focus on computing a that satisfies the inequalities in. Ob-
serve that if for a source, the set is empty, then there does
not exist a for which the set of inequalities is satisfiable.
The reason for this is that for the source, we obtain inequalities
of the form which cannot be satis-
fied since . Also, no equations are generated for a
source if (that is, the error for the sourceis at
most irrespective of the chosen ABR).

Procedure COMPUTEWEIGHTSMAX in Fig. 6 is an iterative
pseudopolynomial time algorithm for computing a that sat-
isfies . In the procedure, and store the weight as-
signment values prior to and after each iteration. In each itera-
tion, a new weight assignment is computed after substi-
tuting the previous weight assignment for the ’s only
on the LHS of each inequality in (Steps 3–4). (We use LHS
and RHS to denote the left- and right-hand side of an inequality,
respectively.) Note that each inequality in has the form

, where and are constants and
is a variable. Also, is the maximum value for for
a (source, ABR) pair.

1We assume that if for two ABRsb andC, W (b) + lsp(s; b) = W (c) +
lsp(s; c), then the ABR with a smaller error is selected fors. In case this as-
sumption does not hold, the following stronger inequality can be employed for
all c 2 B � R(s):

min fW (b) + lsp(s; b)g+ 1 �W (c) + lsp(s; c):
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Fig. 7. Example network for tracing execution of procedure
COMPUTEWEIGHTSMAX.

Example 6: Consider sources and and ABRs , ,
and , shown in Fig. 7. Let the functions and for the
(source, ABR) pairs be as depicted in the figure. For ,

and . Thus, for source ,
contains the following inequality:

(1)

And for source , contains the following two inequalities:

(2)

(3)

Note that since weight assignments cannot be negative, even
though we do not explicitly state this, and always contain
the following three constraints: , , and

.
We now trace the execution of COMPUTEWEIGHTSMAX for

the above set of inequalities in. Initially, is set to
0 for all three ABRs. In the first iteration, substituting 0 for all
the variables on the LHS of inequalities (1)–(3) results
in the following set of equations (Step 3 of the procedure):

[due to inequality (1)], [due
to inequality (2)], and [due to inequality (3)].
As a result, is set to 10, while for and
continue to be 0. At the beginning of the second iteration, thus,

. Consequently, after substitution of
for the variables on the LHS of inequalities in,
contains equations , , and

. This causes and to be set to
10 and 10, respectively, at the end of the iteration (in Step 8).
Similarly, it can be shown that at the end of the third iteration,

and are set to 20 and 10, respectively, and
during the fourth iteration, and are set to 20
and 20, respectively. In the fifth and final iteration, equations
in after substitution are , , and

, causing to be equal to . Thus, in the
final weight assignment returned by COMPUTEWEIGHTSMAX,

, , and .
In the following, we show that COMPUTEWEIGHTSMAX re-

turns a that is a solution to if and only if is satisfi-
able. In order to show this, in the following lemmas, we show
that: 1) for any that satisfies , and 2)

if is satisfiable, then there exists a that is a solution to
for which .

Thus, since does not decrease between successive itera-
tions and the procedure terminates only when ais found or

becomes greater than
, COMPUTEWEIGHTSMAX computes correctly. In the

proofs, denote the value of at the end of theth itera-
tion. Also, denotes the set of inequalities inwhen is
substituted for all variables on the LHS of each inequality in.

Lemma 1: For every ABR , .
Proof: The proof is by induction on.

Basis:Clearly, the lemma holds for . At the end of the
zeroth iteration (that is, initially), for every ABR

. Since contains the inequality for every
ABR , and, thus, .

Induction Step:Consider a . Since due to the induction
hypothesis, , it follows that the LHS of
each inequality in is less than or equal to the LHS of the
corresponding inequality in . Thus, since
is the smallest possible value for for which the inequalities
in with on the RHS are satisfied, it follows that

.
Lemma 2: For every weight assignment that is a solution

to , , for every ABR .
Proof: We use induction to show that the lemma holds at

the end of each iteration.
Basis:Clearly, the lemma holds for . At the end of the

zeroth iteration (that is, initially), for every ABR
. Thus, since , the lemma holds at the end of

the 0 iteration.
Induction Step:Consider a . At the start of the iter-

ation, due to the induction hypothesis, we have that
. Suppose that denotes the set of inequalities in

when all variables on the LHS of every inequality inare
substituted with . Due to the induction hypothesis, it fol-
lows that the LHS of each inequality in is less than or
equal to the LHS of the corresponding inequality in. Thus,
since is the smallest possible value for
for which the inequalities in with on the RHS
are satisfied, it follows that .

Lemma 3: If is satisfiable, then there exists a weight
assignment that is a solution to and for which

.
Proof: Let be a weight assignment that is a solution

for with the smallest value for and further
suppose that .
Suppose is the smallest value for among all the
ABRs. Then, must be zero since the weight assign-
ment where is also a solu-
tion to and —which
leads to a contradiction. Without loss of generality,
let be the weights for ABRs
sorted in increasing order. Thus, . Since

, it must
be the case that for a pair of consecutive ABRsand ,

. We show that is a solu-
tion for , where , for , and
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, for . However, this
leads to a contradiction since .

In order to show that is satisfiable for , we need to
consider the following two cases for each inequality.

1) Variable is on the RHS of the inequality .
In this case, the value of the RHS of the inequality is
identical for both and , while the value of the LHS
for is less than or equal to the LHS for . Thus, if
the inequality was satisfiable for , it is also satisfiable
for .

2) Variable is on the RHS of the inequality
. In this case, the value of the RHS of the inequality

decreases by one for compared to . If the value of
the LHS of the inequality also decreases by one for
compared to , then since the inequality is satisfiable
for , it is also satisfiable for .

The other case we need to consider is when the value of the
LHS of the inequality is the same for and . This corre-
sponds to the case when the minimum value of the LHS (for both

and ) is due to the term for some
. Since the inequality holds for ,

. Further, since ,
. Rearranging terms,

, or alternately, (since
). Thus,

and .
However, since and ,
the inequality holds for .

Thus, is a solution for . However, this leads to a con-
tradiction since , and, thus, it
must be the case that

.
Clearly, if a weight assignment is returned by procedure

COMPUTEWEIGHTSMAX, then this is a solution to . The reason
for this is that for the returned , —thus,
when the value for returned by the procedure is substi-
tuted for the occurrence of variable in each inequality,
every inequality is satisfied. However, we also need to show that
our procedure finds a solution for if one exists.

Theorem 5: If is satisfiable, then procedure
COMPUTEWEIGHTSMAX returns a weight assignment that is
a solution to .

Proof: Suppose is satisfiable. Due to Lemma 3, it
follows that there exists a that is a solution to such
that . Fur-
ther, due to Lemma 2, and so for ,

. Also,
due to Lemma 1, at the end of an iteration
is greater than or equal to its value at the end of the pre-
vious iteration. Thus, since cannot exceed

, at some point during the
execution of the procedure, the value of between two con-
secutive iterations does not change. This weight assignment
is returned by the procedure and is a solution to. The reason
for this is that for the returned , —thus,
when the value for returned by the procedure is substi-
tuted for the occurrence of variable in each inequality,
every inequality is satisfied.

The worst case time complexity of the overall proce-
dure to compute a that minimizes the maximum error
(by repeatedly invoking COMPUTEWEIGHTSMAX for error
values in , ) can be shown to be

, where is the number
of ABRs and is the number of sources. The term
is due to the binary search over all the errors to determine
the minimum error for which a weight assignment can
be computed by COMPUTEWEIGHTSMAX. In the worst case,
COMPUTEWEIGHTSMAX performs iterations
since the procedure terminates when the sum of the weights
become and the sum increases
by at least one in each iteration. Finally, the time complexity for
computing in each iteration is since in the worst
case, the number of inequalities inis (one inequality for
every pair of variables, one on the LHS and the other on the
RHS of the inequality).

V. CONCLUDING REMARKS

Address aggregation within OSPF areas is critical for scala-
bility since it can result in significant reductions in routing table
sizes, smaller link-state databases, and less network traffic to
synchronize the router link-state databases. However, address
aggregation can also lead to the selection ofsuboptimalOSPF
routing paths between source–destination subnet pairs that
span different areas. In this paper, we addressed the important
practical problem of configuring OSPF aggregates at ABRs to
minimize the error in OSPF shortest-path computations due
to subnet aggregation. We first developed an optimal dynamic
programming algorithm that, given an upper boundon the
number of aggregates to be advertised by the ABRs and a
weight assignment function for the aggregates, computes the

aggregates that result in the minimum cumulative/maximum
error in the shortest-path computations for all source–desti-
nation subnet pairs. Subsequently, we tackled the problem
of assigning weights to OSPF aggregates such that the cu-
mulative/maximum error in the computed shortest paths is
minimized. We showed that, while for certain special cases
(e.g., unweighted cumulative error) efficient optimal algorithms
for the weight assignment problem can be devised, the general
problem itself is NP-hard. We proposed a randomized search
strategy for the general case of weighted cumulative error. To
the best of our knowledge, our work is the first to carry out
a systematic study of the algorithmic issues underlying the
configuration of OSPF aggregates and to propose efficient
configuration algorithms that areprovably optimalfor many
practical scenarios.

While the problem of selecting OSPF aggregates is simplified
if IP addresses are systematically assigned to carefully designed
networks and areas, such an approach may not work in practice
since networks are seldom static and tend to evolve continuously
due to the addition of new network elements, subnets, and links.
Our proposed algorithms allow aggregates to be optimally con-
figured in such continuously changing dynamic networks, and
can also work on-line: emergence of spurious subnets (through
external advertisements), link failures, and topology changes
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would trigger the computation of changes to the optimal set
of advertised aggregates/weights. This computation can also be
carried out incrementally and efficiently.
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