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Distributed Geometric Query Monitoring Using Prediction Models
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Many modern streaming applications, such as online analysis of financial, network, sensor, and other forms
of data, are inherently distributed in nature. An important query type that is the focal point in such
application scenarios regards actuation queries, where proper action is dictated based on a trigger condition
placed upon the current value that a monitored function receives. Recent work [Sharfman et al. 2006,
2007b, 2008] studies the problem of (nonlinear) sophisticated function tracking in a distributive manner.
The main concept behind the geometric monitoring approach proposed there is for each distributed site to
perform the function monitoring over an appropriate subset of the input domain. In the current work, we
examine whether the distributed monitoring mechanism can become more efficient, in terms of the number
of communicated messages, by extending the geometric monitoring framework to utilize prediction models.
We initially describe a number of local estimators (predictors) that are useful for the applications that we
consider and which have already been shown particularly useful in past work. We then demonstrate the
feasibility of incorporating predictors in the geometric monitoring framework and show that prediction-
based geometric monitoring in fact generalizes the original geometric monitoring framework. We propose
a large variety of different prediction-based monitoring models for the distributed threshold monitoring of
complex functions. Our extensive experimentation with a variety of real datasets, functions, and parameter
settings indicates that our approaches can provide significant communication savings ranging between two
times and up to three orders of magnitude, compared to the transmission cost of the original monitoring
framework.
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1. INTRODUCTION

A wide variety of modern applications rely on the continuous processing of vast
amounts of arriving data in order to support decision-making procedures in real time.
Examples include network administration, stock market analysis, environmental,

This work was partially supported by the European Commission under ICT-FP7-FERARI-619491 (Flexible
Event pRocessing for big dAta aRchitecture).
Authors’ addresses: N. Giatrakos (corresponding author), A. Deligiannakis, and M. Garofalakis, School of
Electronic and Computer Engineering, Technical University of Crete, University Campus – Kounoupidiana,
Chania 73100, Greece; email: ngiatrakos@softnet.tuc.gr; I. Sharfman and A. Schuster, Computer Science
Department, Technion – Israel Institute of Technology, Haifa 32000, Israel.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 0362-5915/2014/05-ART16 $15.00

DOI: http://dx.doi.org/10.1145/2602137

ACM Transactions on Database Systems, Vol. 39, No. 2, Article 16, Publication date: May 2014.



16:2 N. Giatrakos et al.

surveillance, and other application scenarios. These settings are, more often than not,
inherently distributed in nature. For instance, consider the case of a network operation
center where data is produced by hundreds or thousands of routers [Cormode and
Garofalakis 2005, 2008; Cormode et al. 2005] or the case of environmental as well
as control applications where wireless sensor network adoption has become of great
importance [Madden et al. 2005].

Due to the distributed nature of data production in the aforementioned scenarios, the
major challenge confronted by algorithms dealing with their manipulation is to reduce
communication [Cormode and Garofalakis 2005, 2008; Cormode et al. 2005; Sharfman
et al. 2006, 2007b, 2008; Das et al. 2004]. This happens because the central collection
of data is not feasible in large-scale applications. Furthermore, in the case of sensor
network deployments, central data accumulation results in depleting the power supply
of individual sensors, reducing the network lifetime [Madden et al. 2005].

An important query type that is of the essence in the aforementioned fields regards
the monitoring of a trigger condition defined upon the range of values that a function
of interest receives [Sharfman et al. 2006, 2007b, 2008; Huang et al. 2006, 2007; Jain
et al. 2004; Keralapura et al. 2006]. For instance, in order to perform spam detection
on a number of dispersed mail servers, algorithms base their decisions on whether the
value of the information gain function globally exceeds a given threshold [Sharfman
et al. 2007b]. Moreover, in the example of the network operation center, Denial-of-
Service (DoS) attacks are detected by attempting to pinpoint strangely high (based on
a given threshold) number of distinct source addresses routing packets across various
destinations within the network [Das et al. 2004].

Recently, the work in Sharfman et al. [2006, 2007b] has introduced a generic
paradigm for monitoring general (nonlinear) functions defined over the average of local
vectors maintained at distributed sites. Their proposed geometric approach essentially
monitors the area of the input domain where the average vector may lie, rather than
monitoring the function’s value itself. The monitoring is performed in a distributed
manner, by assigning each node a monitoring zone, expressed as a hypersphere, which
is nothing more than a subset of the input domain where the average vector may lie.
Communication is shown to be necessary only if at least one site considers it likely that
the condition of the monitored function may have changed since the last communication
between the sites.

In this work, we examine the potentials of a simple (yet powerful), easy to locally
maintain approach in order to further reduce transmissions towards the central source.
In particular, we foster prediction models so as to describe the evolution of local streams.
The adoption of prediction models has already been proven beneficial in terms of band-
width preservation [Cormode and Garofalakis 2005, 2008; Cormode et al. 2005] in dis-
tributed settings. Initially, we extend the geometric monitoring framework of Sharfman
et al. [2006, 2007b] and illustrate how it can incorporate predictors, in order to forecast
the evolution of local data vectors of sites. We exhibit the way the geometric monitoring
framework is modified to encompass constructed predictors and identify the peculiar-
ities occurring upon predictors’ adoption. In contrast to the findings of prior works
[Cormode and Garofalakis 2005, 2008; Cormode et al. 2005], we prove that the mere
utilization of local predictions is hardly adequate to guarantee communication preser-
vation even when predictors are quite capable of describing local stream distributions.
We then proceed by establishing a theoretically solid monitoring framework that incor-
porates conditions potentially leading to fewer contacts with the central source. Even-
tually, we develop a number of mechanisms, along with extensive speculative analysis,
that relax the previously introduced framework, base their function on simpler criteria,
and in practice yield significant transmission reduction. Our main contributions are as
follows.
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—We introduce the adoption of prediction models in the setting of tracking general,
nonlinear functions utilizing the geometric approach [Sharfman et al. 2006, 2007b].
We exhibit the way prediction models can be locally adopted by sites and we show the
characteristics they attribute to the geometric approach. We then illustrate that the
initial geometric monitoring framework of Sharfman et al. [2006, 2007b] is a special
case of our more general prediction-based geometric monitoring framework.

—We point out the failure of conventional notions of good predictors to be applied in
this setting and manage to establish a solid theoretic framework consisting of con-
ditions that make it more likely for prediction models to exhibit reduced bandwidth
consumption.

—We expose a number of novel tracking mechanisms relaxing the previously (hard
to verify in a distributed manner) identified conditions. Using the simplest possible
primitives regarding prediction models’ behavior, we thoroughly study a number of
simplified alternative tracking techniques possessing the potentials for communica-
tion preservation.

—We present a probabilistic analysis on the expected performance of our simplified
alternative tracking mechanisms. This analysis describes an ideal case where con-
tinuous knowledge of global statistics is available. As, in practice, this type of statis-
tics requires constant central data collection, we then use the extracted intuition to
propose empirical decision-making procedures with respect to the best (i.e., the one
that protracts central data collection) alternative choice.

—We look into extensions of our techniques for approximate function monitoring sce-
narios as the core of more generic query answering procedures. We come up with
problem transformations which render accurate predictors capable of reducing band-
width consumption. In our study, we introduce novel monitoring techniques tailored
for the new setup and accordingly compare their function with the rest of the alter-
native schemes previously developed in our work.

—We present an extensive experimental analysis using a variety of real datasets,
parameters, and functions of interest. Our evaluation shows that our approaches
can provide significant communication load reduction with savings ranging from
two times and in some cases reaching three orders of magnitude compared to the
transmission cost of the original bounding algorithm.

Article Overview. This article proceeds as follows. In the next section we present
related work. In Section 3 we formally present the geometric monitoring framework
and some exemplary prediction models useful for the applications that we consider. In
Section 4 we first explain the motivation for adopting predictors and we then demon-
strate how prediction models can be incorporated within the geometric monitoring
framework. We also demonstrate that simply using “good” predictors, that is, those ap-
proximating the local data maintained at nodes more accurately than a simple model
that assumes them to be static, may not suffice for efficient distributed monitoring
applications. We then seek to determine in Section 5 conditions and properties that
predictor-based monitoring should exhibit in order to more likely result in reduced
communication. We thus propose the notion of strong predictor-based monitoring mod-
els and examine their properties. In Section 6 we argue that efficiently, in terms of re-
quired bandwidth, verifying the properties of strong predictor-based monitoring models
in a distributed environment seems infeasible. We thus propose, based on relaxed ver-
sions of the previously identified conditions, several practical alternatives built upon
simpler assumptions on the ability of prediction models to describe incoming data
distributions. Given many possible predictor-based models, the questions that natu-
rally arise involve the choice of the appropriate model to use in each application and
dataset. In Section 7 we first investigate whether such a decision can be made based on
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probabilistic arguments and we explain why such a decision is hard to be made in such
a way. We thus propose our CAA algorithm that automatically switches its decisions on
which model to use at each time instance. Section 8 explains how our techniques can
be adapted to efficiently support prediction-based approximate query answering pro-
cedures. We also explain under which conditions the monitoring process at each node
can become very simple and computationally much more efficient. Our experimen-
tal analysis is incorporated in Section 9. Eventually, Section 10 includes concluding
remarks.

2. RELATED WORK

Recently, substantial efforts have been devoted on tracking and querying distributed
data streams [Cormode and Garofalakis 2007]. The geometric monitoring framework
that is leveraged by our approaches was introduced in Sharfman et al. [2006, 2007b]
and was later enhanced in Sharfman et al. [2008] and Keren et al. [2012]. The optimiza-
tions proposed in Sharfman et al. [2008] are orthogonal to our approaches, but note
that the techniques of Sharfman et al. [2008] either require data to conform with a mul-
tivariate normal distribution or entail a number of solutions to a series of optimization
problems that may increase the computational load. The latter renders their adoption
unaffordable in resource-constrained environments such as Sharfman et al. [2007a]
and Burdakis and Deligiannakis [2012]. On the contrary, our approaches are based on
simple predictors’ adoption that remain adaptable to changing data distributions and
are easy to maintain even when resource constraints exist. In other work related to
the geometric monitoring approach, Sharfman et al. [2007a] discuss an application of
the framework of Sharfman et al. [2006, 2007b] to clustered sensor network settings,
while Burdakis and Deligiannakis [2012] show how the tracking scheme can be uti-
lized so as to detect outliers produced by motes. The recent work of Sagy et al. [2010]
adopts the geometric approach and proposes a tentative bound algorithm to moni-
tor threshold queries in distributed databases (rather than distributed data streams)
for functions with bounded deviation, while Sagy et al. [2011] enhance ideas of Sagy
et al. [2010] to answer vectorial top-k aggregation queries over distributed databases.
Moreover, the work in Garofalakis et al. [2013] couples sketch summaries with the
geometric monitoring framework focusing on specific monitored functions such as gen-
eral inner products (i.e., join aggregates), special cases of L2-norms (i.e., self-join sizes)
and range aggregates (e.g., quantiles, histograms, wavelets, and heavy-hitters over the
streams).

Prediction models in the context of distributed data streams have already been
fostered in previous work to monitor one-dimensional quantiles [Cormode et al. 2005]
and randomized sketch summaries [Cormode and Garofalakis 2008]. Their adoption
has been proven beneficial in terms of reducing the communication burden. Contrary
to previous approaches, our focus is on the benefits they can provide in the context of
the geometric monitoring framework for tracking nonlinear threshold functions.

In related work regarding distributed trigger monitoring, Keralapura et al. [2006]
provide a framework for monitoring thresholded counts over distributed data streams,
while Jain et al. [2004] design techniques that decompose the problem of detecting
when the sum of a distributed set of variables exceeds a given threshold. Based on Jain
et al. [2004], anomaly detection techniques are studied in Huang et al. [2006, 2007].
The recent work of Cormode et al. [2011] provides upper and lower communication
bounds for approximate monitoring of thresholded Fp moments, with p = 0, 1, 2.

Other works focus on tracking specific types of functions over distributed data
streams. The work of Olston et al. [2003] considers simple aggregation queries over
multiple sources, while Babcock and Olston [2003] focus on monitoring top-k values.

ACM Transactions on Database Systems, Vol. 39, No. 2, Article 16, Publication date: May 2014.



Distributed Geometric Query Monitoring Using Prediction Models 16:5

Table I. Notation Used

Symbol Description

n The number of sites

Si The i-th site

ts Timestamp of the last synchronization

v(t) Global measurements vector at time t (
n∑

i=1
wivi(t)/

∑n
i=1wi)

e(t) Estimate vector at time t (equal to v(ts))

ep(t) The predicted estimate vector (
n∑

i=1
wiv

p
i (t)/

∑n
i=1wi)

vi(t) Local measurements vector at Si at time t

wi Number of data points at Si

ui(t) Drift vector (equals to e(t) + vi(t) − vi(ts))

v
p
i (t) Local predictor of Si at time t

up
i (t) Prediction deviation vector (ep(t) + vi(t) − v

p
i (t))

B‖r‖
c Local constraint (ball) centered at c with radius ‖r‖

De Radius of maximum sphere (ball), centered at e, that can be
inscribed without violating the threshold surface

Dep Radius of maximum sphere (ball), centered at ep, that can be
inscribed without violating the threshold surface

Furthermore, Das et al. [2004] monitor set-expression cardinalities in a distributed
system using a scheme for charging local changes against a single site’s error toler-
ance. Yi and Zhang [2013] consider the problem of tracking heavy-hitters and quan-
tiles in a distributed manner, establishing optimal algorithms to accomplish the task.
Cormode et al. [2007] study the problem of clustering distributed data streams, while
Zhang et al. [2008] generalize the previous approach to hierarchical environments.
Eventually, the latest work of Gupta et al. [2013] studies the problem of distributed
monitoring of thresholded ratio functions. The tracked ratio function is a simple ratio of
sums

∑n
i=1 ni/

∑n
i=1 di where ni, di refer to data items possessed by individual sites. On

the contrary, the geometric approach can monitor much more complex ratio functions,
examples of which are utilized in our experimental evaluation.

In the conference version of this article [Giatrakos et al. 2012], we presented the ini-
tial framework for monitoring nonlinear functions using prediction models. In this work
we build on the work of Giatrakos et al. [2012] mainly by extending this framework to
perform approximate query answering (Section 8). We also enhance the discussion on
the selection of the model to use at each time by adding a theoretical viewpoint on this
process (Section 7.1). We further manage to elaborate on the proofs of Corollary 6.3 and
Proposition 6.4. Finally, we enhanced our experimental results by individually explor-
ing the proposed tracking mechanisms’ performance (Section 9.2) by investigating the
impact of the accuracy of the predictors in the proposed function monitoring schemes
utilizing appropriate synthetic datasets (Section 9.4) and by validating (Section 9.5) the
usability of our newly proposed techniques in approximate query answering scenarios.

3. PRELIMINARIES

In this section we first provide helpful background work related to function monitoring
using the geometric approach. We then describe local stream predictors which have
been utilized in past work. The notation used in this article appears in Table I.
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3.1. The Geometric Monitoring Framework

As in previous works [Cormode et al. 2005; Sharfman et al. 2007b, 2008; Cormode
and Garofalakis 2005, 2008], we assume a distributed, two-tiered setting, where data
arrives continuously at n geographically dispersed sites. At the top tier, a central
coordinator exists that is capable of communicating with every site, while pairwise site
communication is only allowed via the coordinating source.

Each site Si, i ∈ [1..n] participating at the bottom tier receives updates on its local
stream and maintains a d-dimensional local measurements vector vi(t). The global
measurements vector v(t) at any given timestamp t is calculated as the weighted average
of vi(t) vectors, v(t) =

∑n
i=1 wivi (t)∑n

i=1 wi
, where wi ≥ 0 refers to the weight associated with a

site. Usually, wi corresponds to the number of data points received by Si [Sharfman
et al. 2006]. Our aim is to continuously monitor whether the value of a function f (v(t)),
defined upon v(t), lies above/below a given threshold T . We use the term threshold
surface to denote the area of the input domain where f (v(t)) = T .

During the monitoring task using the geometric approach [Sharfman et al. 2006,
2007b], the coordinator may request that all sites transmit their local measurements
vectors and subsequently calculates v(t), performs the required check on f (v(t)), and
transmits the v(t) vector to all sites. The previous process is referred to as a synchro-
nization step. Let vi(ts) denote the local measurements vector that Si communicated
during the last synchronization process at time ts. The global measurements vector
computed during a synchronization step is denoted as the estimate vector e, where
e = ∑n

i=1 wivi(ts)/
∑n

i=1 wi.
After a synchronization, sites keep up receiving updates of their local streams and ac-

cordingly maintain their vi(t) vectors. At any given timestamp, each site Si individually
computes vi(t) − vi(ts) and the local drift vector ui(t) = e + (vi(t) − vi(ts)). Since

v(t) =
∑n

i=1wivi(t)∑n
i=1wi

= e +
∑n

i=1wi(vi(t) − vi(ts))∑n
i=1wi

=
∑n

i=1wiui(t)∑n
i=1wi

,

v(t) constitutes a convex combination of the drift vectors. Consequently, v(t) will always
lie in the convex hull formed by the ui(t) vectors: v(t) ∈ Conv (u1(t), . . . , un(t)), as
depicted in Figure 1.

Please note that each site can compute the last known value of the monitored function
as f (e) and can thus determine whether this value lies above/below the threshold T .
Since v(t) ∈ Conv (u1(t), . . . , un(t)), if the value of the monitored function in the entire
convex hull lies in the same direction (above/below the threshold T ) as f (e), then it is
guaranteed that f (v(t)) will lie in that side. In this case, the function will certainly not
have crossed the threshold surface. The key question is: How can the sites check the
value of the monitored function in the entire convex hull, since each site is unaware of
the current drift vectors of the other sites? This test can be distributively performed as
described in Theorem 3.1, while an example (in two dimensions) is included in Figure 1.

THEOREM 3.1 ([SHARFMAN ET AL. 2006, 2007B]). Let x, y1, . . . , yn ∈ Rd be a set of d-
dimensional vectors. Let Conv (x, y1, . . . , yn) be the convex hull of x, y1, . . . , yn. Let

B
‖ x−yi

2 ‖
x+yi

2
be a ball centered at x+yi

2 with a radius of ‖ x−yi
2 ‖ that is, B

‖ x−yi
2 ‖

x+yi
2

= {z ∈ Rd :

|‖z − x+yi
2 ‖ ≤ ‖ x−yi

2 ‖}. Then, Conv (x, y1, . . . , yn) ⊂ ∪n
i=1 B

‖ x−yi
2 ‖

x+yi
2

.

With respect to our previous discussion, x corresponds to e while yi vectors refer to
the drift vectors ui(t). Hence, sites need to compute their local constraints in the form

of B
‖ e−ui (t)

2 ‖
e+ui (t)

2

and independently check whether a point within these balls may cause a
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Fig. 1. Demonstration of the geometric framework rationale. Conv (u1, . . . , un) is depicted in gray, while the
actual position of e and the current v(t) are shown as well. Black spheres refer to the local constraints con-
structed by sites to assess possible threshold crossing. v(t) is guaranteed to lie within the union of these locally
constructed spheres. Since none of the spheres crosses the threshold surface, the sites are certain that f (v(t))
and f (e) are at the same side relative to the threshold T . Hence, no synchronization needs to be performed.

threshold crossing. If this indeed is the case (an event termed as a local violation), a
synchronization step takes place. Note that, since Conv (e, u1, . . . , un) is a subset of the
union of local ball constraints, the framework may produce a synchronization in cases
where the convex hull has not actually crossed the threshold surface (false positives).

In summary, each site in the geometric monitoring framework manages to track
a subset of the input domain. The overall approach achieves communication savings
since the coordinator needs to collect the local measurement vectors of the sites only
when a site locally detects (in its monitored area of the input domain) that a threshold
crossing may have occurred.

3.2. Local Stream Predictors

We now outline the properties of some prediction model options that have already been
proven useful in the context of distributed data streams [Cormode and Garofalakis
2008; Cormode et al. 2005]. Please note, beforehand, that the concept of their adoption
is to keep such models as simple as possible, and yet powerful enough to describe local
stream distributions. It can easily be conceived that more complex model descriptors
can be utilized, which, however, incur extra communication burden when sites need to
contact the coordinating source [Cormode and Garofalakis 2008; Cormode et al. 2005].
In our setting, this translates to an increased data transmission overhead during each
synchronization step. In our discussion hereafter, we utilize the term predictor to denote
a prediction estimator for future values of a local measurements vector. Using a similar
notation to the one of Section 3.1, we employ v

p
i (t) to denote the prediction for the local

measurements vector of site Si at timestamp t.

The Static Predictor. The simplest guess a site may take regarding the evolution of its
local measurements vector is that its coordinates will remain unchanged with respect
to the values they possessed in the last synchronization: v

p
i (t) = vi(ts). It is also evident

that this predictor is trivial to maintain in both the sites and the coordinator. Moreover,
it requires no additional information to be communicated towards the coordinator upon
a synchronization step. Using the static predictor, in the absence of a synchronization
step, the coordinator estimates that v(t) = e.

The static predictor may be a good choice only in settings where the evolution of
the values in each local measurements vector is unpredictable, or local measurements
vectors change rarely.

The Linear Growth Predictor. The next simple, but less restrictive, assumption that
can be made is that local vectors will scale proportionally with time. In particular,
v

p
i (t) = t

ts
vi(ts) which is the only calculation individual sites and the coordinating source
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Table II. Local Stream Predictors’ Summary

Predictor Info. Pred. Local Vector (v p
i )

Static ∅ vi(ts)
Linear Growth ∅ t

ts
vi(ts)

Velocity/Acceleration veli vi(ts) + (t − ts)veli + (t − ts)2acceli

need to perform in order to derive an estimation of vi(t) at any given time. Please note
that, using this predictor, the best guess that a coordinator can make for the value of
v(t) is equal to t

ts
v(ts) = t

ts
e. As with the static predictor, the linear growth predictor

requires no additional information to be transmitted upon a synchronization.
We can deduce that the linear growth predictor is built on the assumption that vi(t)

vectors evolve, but that their evolution involves no direction alterations. Consequently,
it can be adopted so as to approximate local streams in which vi(t) vectors’ coordinates
are expected to uniformly increase by a time-dependent factor.

The Velocity/Acceleration Predictor. The Velocity/Acceleration (VA) predictor is a
much more expressive predictor. VA employs additional vectors that attempt to capture
both the scaling and directional change that vi(t) may undertake. More precisely, in
the VA predictor the future value of the local measurements vector is estimated as
v

p
i (t) = vi(ts)+(t−ts)veli +(t−ts)2acceli. Since the velocity veli and the acceleration acceli

of the local stream are capable of expressing both possible types of vi(t) alterations, it
provides an enriched way to approximate its behavioral pattern.

In a way similar to Cormode and Garofalakis [2008], when a synchronization is about
to take place, Si is required to compute the velocity vector veli utilizing a window of
the W most recent updates it received. Given that window, the velocity vector can
be calculated by computing the overall disposition as the difference between vi(t) and
the local vector instance corresponding to the first position of the window.1 Scaling this
outcome by the time difference between the window extremes provides veli. In addition,
the acceli value can be computed as the difference between the current velocity and
corresponding velocity calculated in the previous synchronization. Scaling the previous
result by 1/(t − ts) computes a proper acceli vector. Additional approaches based on use
of veli and acceli values can be found in Cormode and Garofalakis [2008].

It is easy to see that the flexibility provided by the VA predictor comes at the cost
of the transmission of veli (along with vi(t)) during each synchronization. We note that
acceli does not need to be communicated to the coordinator, since the coordinator is
already aware of the previously computed velocity vectors of each site.

Table II summarizes the described predictor characteristics. It is important to em-
phasize that the prediction-based monitoring framework described in the next sections
can utilize any predictor and is thus not restricted to the predictors presented in this
section.

4. PREDICTION-BASED GEOMETRIC MONITORING

In this section we first motivate the need to incorporate predictors in the geometric
monitoring framework and then demonstrate how this can be achieved. We then il-
lustrate that the initial geometric monitoring framework of Sharfman et al. [2006,
2007b] is a special case of our more general prediction-based geometric monitoring
framework. Subsequently, we define the notion of a good predictor and demonstrate

1Please note that each update may not arrive at each timestamp. Thus, the timestamp of the first update in
the window may in general be different than t − W + 1.
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Fig. 2. Motivation for incorporating predictors in the geometric approach. The drift vector u3 would cause
a synchronization in the original framework. However, if the changes could have been predicted, then the
coordinator could have expected the value of the estimate vector to actually be close to e and far from the
threshold surface.

that good predictors lead to monitoring a smaller subset of the domain space, thus
potentially leading to fewer synchronizations and hence fewer transmitted messages.

Motivation for Predictors. Figure 2 demonstrates a motivating example of why it
may be beneficial to incorporate predictors in the geometric monitoring framework. In
the illustrated example, the drift vector u3 has crossed the threshold surface. Based
on their definition, the direction of each drift vector essentially depicts how the values
of the corresponding local measurements vector have changed since the last synchro-
nization. Using the geometric monitoring approach, a synchronization will take place
because S3 will detect a threshold crossing. A plausible question is: Could we avoid
such a synchronization step, if the changes in the values of the three local measure-
ments vectors could have been predicted fairly accurately? For example, if we could
have predicted the change (drift) in the local measurements vectors of each site fairly
accurately, then we would have determined that v(t) has probably not moved closer to
the threshold surface and thus avoid the synchronization step. The preceding example
motivates the need for prediction-based geometric monitoring.

How to Incorporate Predictors. As explained in Section 3.2, the coordinator can re-
ceive, during a synchronization step, information regarding the predicted local mea-
surements vector v

p
i (t) of each site. Thus, the coordinator will be able to compute an

estimation of v(t) provided by the local predictors as ep(t) =
∑n

i=1 wiv
p
i (t)∑n

i=1 wi
, which we will

term as the predicted estimate vector. Based on ep(t), we now show that the coordina-
tor can continuously check the potential threshold crossings. However, in this case a
synchronization is required only when ep(t) and v(t) are likely to be placed in different
sides of the threshold surface.

In the context of the geometric monitoring framework, we first observe that

v(t) =
∑n

i=1wivi(t)∑n
i=1wi

= ep(t) +
∑n

i=1wi(vi(t) − v
p
i (t))∑n

i=1wi
=

∑n
i=1wiu

p
i (t)∑n

i=1wi
,

where up
i (t) = ep(t) + (vi(t) − v

p
i (t)) denotes the vector expressing the prediction de-

viation. Thus, similar to our analysis in Section 3.1, v(t) ∈ Conv (up
1 (t), . . . , up

n(t)) ⊂⋃n
i=1 B

‖ ep(t)−up
i (t)

2 ‖
ep(t)+up

i (t)
2

. Since v(t) lies in the convex hull Conv(up
1 (t), . . . , up

n(t)), each site Si can

monitor the ball that has as endpoints of its diameter the estimated predicted vector
ep(t) and its prediction deviation up

i (t).
Please note that the geometric monitoring approach of Sharfman et al. [2006, 2007b]

corresponds to utilizing a static predictor (this leads to v
p
i (t) = v(ts), ep(t) = e and
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Fig. 3. The red balls demonstrate the local constraints of sites when using a sample good predictor. A
good predictor results in the tighter convex hull Conv (up

1 (t), . . . , up
n(t)) (depicted in yellow). Here, fewer

synchronizations are not guaranteed, since ∪n
i=1 B

‖ ep(t)−up
i (t)

2 ‖
ep(t)+up

i (t)
2

crosses the threshold before ∪n
i=1 B

‖ e−ui (t)
2 ‖

e+ui (t)
2

.

up
i (t) = ui(t)) and is thus a special case of our more general prediction-based monitoring

framework.

Defining a Good Predictor. Upon utilizing a predictor, as long as local forecasts (vp
i (t))

remain sound, we expect that they will approximate the true local vectors vi(t) to a
satisfactory degree at any given timestamp. This means that each v

p
i (t) will be in

constant proximity to the vi(t) vector, when compared to vi(ts). Formally, we state the
following.

Property 1. A good predictor possesses the property

‖vi(t) − v
p
i (t)‖ ≤ ‖vi(t) − vi(ts)‖ ∀t ≥ ts.

Property 1 lies, implicitly or not, in the core of predictors’ adoption in distributed
stream settings. It expresses the notion of a useful, in terms of bandwidth consumption
reduction, predictor present in previous works [Cormode and Garofalakis 2005, 2008;
Cormode et al. 2005] which have managed to exhibit important improvements by
exploiting the previous fact. Hence, we start by exploring the benefits of the notion of
good predictors expressed by Property 1 within the geometric monitoring setting.

Predictors satisfying Property 1 yield stricter local constraints for the bounding
algorithm compared to the original monitoring mechanism (Section 3.1). This happens
because ‖vi(t)−v

p
i (t)‖ ≤ ‖vi(t)−vi(ts)‖ ⇔ ‖up

i (t)−ep(t)‖ ≤ ‖ui(t)−e‖ and the radius of the
constructed balls will always be smaller. An example of prediction-based monitoring is
depicted in Figure 3.

Consequently, a good predictor results in the sites monitoring a tighter convex hull,
namely Conv (up

1 (t), . . . , up
n(t)), than the corresponding convex hull of the original geo-

metric monitoring framework. This yields the construction of tighter local constraints
and, as already mentioned, a synchronization is required only when ep(t) is likely
to be placed in a different side of the threshold surface to the one of v(t). Hence, a

synchronization is again caused when any ball B
‖ ep(t)−up

i (t)
2 ‖

ep(t)+up
i (t)

2

crosses the threshold surface.

Despite the fact that this mechanism may in practice be useful, it cannot guarantee
fewer synchronizations because Conv (up

1 (t), . . . , up
n(t)), although tighter, might still be

placed closer than Conv (u1(t), . . . , un(t)) to the threshold surface. This in turn will

cause some B
‖ ep(t)−up

i (t)
2 ‖

ep(t)+up
i (t)

2

to cross the threshold before any B
‖ e−ui (t)

2 ‖
e+ui (t)

2

does (Figure 3). This
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observation shows that the conventional concept of good predictors fails to adapt in the
current setting since it does not guarantee by itself fewer synchronizations.

5. STRONG MONITORING MODELS

Consider any point in time when all nodes are aware of a specific estimate vector e.
The concluding observations of Section 4 raise a concern regarding the sufficient con-
ditions that should be fulfilled for the predictors to yield a synchronization no sooner
than the original framework. Apparently, this happens when the surface of the moni-
toring framework devised by the predictors is contained inside the monitored surface
of the original framework. In other words, we need to define the prerequisites for

constructing local constraints that are always included in
⋃n

i=1 B
‖ e−ui (t)

2 ‖
e+ui (t)

2

utilized by the

original framework. Let Sur(P) be the surface monitored by any alternative mecha-
nism that adopts predictors while operating. A monitoring model is defined as strong
if the following property holds.

Property 2. A strong predictor-based monitoring model possesses the property:

Sur(P) ⊆ ⋃n
i=1 B

‖ e−ui (t)
2 ‖

e+ui (t)
2

.

Based on its definition, a strong predictor-based monitoring model guarantees that,
given an estimate vector e, it will result in a local violation no sooner than the original
framework. Immediately after each time that the value of the function truly crosses
the threshold, any monitoring model, including the one in the original framework, will
require a synchronization at that particular time point in order to verify the threshold
crossing. Thus, immediately after each true threshold crossing, strong predictor-based
models are guaranteed to use the same estimate vector as the original framework and
to result in a local violation no sooner than the original framework. Please note that
there is no guarantee that the total number of synchronizations will be lower, since
after the initial synchronization the original framework, had it been prefered instead,
may have used a different estimate vector, due to synchronizations that may have
occurred at a different time instance. However, the notion of strong predictor-based
monitoring models offers us an intuitive goal that is likely, based on our experimental
evaluation, to lead to fewer synchronizations. Our discussion on strong predictor-based
monitoring models is important though, since observations derived from it will later
be used in Section 6 as a building block for the introduction of some of our alternative
predictor-based monitoring techniques. In particular, our discussion on the convex hull
containment presented next inspires the introduction of our average and safer mod-
els while Section 5.2 provides the primitives for the loosened intersection monitoring
frameworks of Section 6.2.

5.1. Containment of Convex Hulls

According to Theorem 3.1, after computing the local drift vectors and prediction de-
viations, we are free to choose any common reference vector in order to perform the
monitoring task. Thus, it is not mandatory for the sites to use e and ep(t) as a common
reference point in order to construct their monitoring zones. In fact, the sites could use
any common point as an endpoint of the diameter of their monitoring zones.

An important observation that we prove in this section is that a predictor-based
monitoring model satisfies Property 2 when: (1) every prediction deviation vector is
contained in the convex hull of the estimate vector and the drift vectors defined by the
original bounding algorithm, and (2) an appropriate reference vector is selected.
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16:12 N. Giatrakos et al.

Before proving our observation, we first show that for any triplet of vectors z, y, x ∈
Rd, the condition z ∈ B

‖ y−x
2 ‖

y+x
2

is equivalent to 〈x − z, y − z〉 ≤ 0, where the notation 〈·, ·〉
refers to the inner product of two vectors. Whenever appropriate, we omit the temporal
reference symbol (t) in the vectors to simplify the exposition.

LEMMA 5.1. z ∈ B
‖ y−x

2 ‖
y+x

2
if and only if 〈x − z, y − z〉 ≤ 0.

PROOF. Recall that if z ∈ B
‖ y−x

2 ‖
y+x

2
, then the distance of z from the center x+y

2 does

not exceed the radius ‖ x−y
2 ‖. Thus, ‖z − x+y

2 ‖ ≤ ‖ x−y
2 ‖. Since ‖A‖2 = 〈A, A〉, simple

calculations show that ‖z − x+y
2 ‖ ≤ ‖ x−y

2 ‖ ⇔ ‖z − x+y
2 ‖2 ≤ ‖ x−y

2 ‖2 ⇔ 1
4 〈2z − (x + y),

2z − (x + y)〉 − 1
4 〈x − y, x − y〉 ≤ 0. Recall that the inner product is both distributive,

namely 〈a + b, c〉 = 〈a, c〉 +〈b, c〉, and symmetric, namely 〈a, b〉 = 〈b, a〉. Therefore

1
4

〈2z − (x + y), 2z − (x + y)〉 − 1
4

〈x − y, x − y〉 ≤ 0 ⇔
1
4

〈(z − x) + (z − y), (z − x) + (z − y)〉 − 1
4

〈(z − x) − (z − y), (z − x) − (z − y)〉 ≤ 0 ⇔
〈z − x, z − y〉 ≤ 0 ⇔
〈x − z, y − z〉 ≤ 0 .

We now proceed to prove in Lemma 5.2 that a predictor-based monitoring model
that maintains each prediction deviation vector contained in the convex hull of the
drift vectors defined by the original bounding algorithm is a strong predictor-based
monitoring model if it also selects the same reference vector (e.g., e instead of ep) as
the original framework. A direct result is that the area monitored by the sites is a
subset of the corresponding area of the original framework. This, in turn, leads to
fewer synchronizations, since every time a site detects a potential threshold crossing
in the predictor-based monitoring model, at least one site would also have detected the
same threshold crossing (for the same estimate vector) in the original framework.

LEMMA 5.2. Let up
i ∈ Conv(u1, . . . , un) ∀i ∈ {1..n}. Then B

‖ e−up
i

2 ‖
e+up

i
2

⊆ ⋃n
i=1 B

‖ e−ui
2 ‖

e+ui
2

.

PROOF. For each up
i ∈ Conv(u1, . . . , un) there exist λ1,λ2, . . . , λn such that λi � 0 (i ∈

{1..n}), ∑n
i=1 λi = 1 and up

i = ∑n
i=1 λiui. Let h ∈ B

‖ e−up
i

2 ‖
e+up

i
2

. We will show that for at least

one of the ui vectors, h ∈ B
‖ e−ui

2 ‖
e+ui

2
.

According to Lemma 5.1, 〈h − e, h − up
i 〉 ≤ 0. Therefore〈

h − e, h − up
i

〉 =
〈
h − e,

∑
λih −

∑
λiui

〉
=

〈
h − e,

∑
λi(h − ui)

〉
=

∑
λi 〈h − e, h − ui〉 ≤ 0.

Since λi � 0, it follows that for at least one ui with λi > 0, 〈h − e, h − ui〉 ≤ 0, which

implies (Lemma 5.1) that h ∈ B
‖ e−ui

2 ‖
e+ui

2
.

A trivial example of a strong predictor-based monitoring model is the static predictor
which, as mentioned in Section 4, is equivalent to the original framework of Sharfman
et al. [2006, 2007b]. Unfortunately, the containment constraints are not easily abided
by any other chosen predictor and, even if they are, it appears hard to dictate a way
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that allows sites to distributively identify that fact. We will revisit the convex hull
containment issues in Section 6.1, when we introduce our average and safer predictor-
based monitoring models.

5.2. Convex Hull Intersection Monitoring

An important observation that we make is that, since v(t) ∈ Conv(u1, . . . , un) and v(t) ∈
Conv(up

1 , . . . , up
n), these two convex hulls cannot be disjoint (Figure 3). One could thus

seek ways to exploit this fact, which limits the possible locations of v(t), in order to
reduce the size of the monitoring zones of each site, which in turn will potentially lead to
fewer detected threshold crossings. We thus seek to come up with new local constraints
in the context of predictor-based monitoring models that cover the intersection of the
two convex hulls and which also fulfill Property 2. To proceed towards this goal we first
formally formulate an enhanced version of Property 1.

Property 3. A universally good predictor possesses the property ‖vi(t) − v
p
i (t)‖ ≤

‖v j(t) − v j(ts)‖ for any pair of sites Si, Sj.

In other words, for universally good predictors,

min
k=1..n

‖e − uk‖ ≥ max
k=1..n

∥∥ep − up
k

∥∥. (1)

Property 3 yields ‖up
i − ep‖ ≤ ‖uj− e‖ for any pair of sites Si, Sj . The latter result is

produced by simply adding as well as subtracting ep, e to the left and right side of its
inequality, respectively. The following lemma utilizes this fact to devise appropriate
local constraints to be fostered at each site Si.

LEMMA 5.3. If Property 3 holds, each site Si needs to examine whether B
‖ e−ui

2 ‖
e+ui

2
∩ B‖e−ui‖

ep

crosses the threshold, since: Conv(u1, . . . , un) ∩ Conv(up
1 , . . . , up

n) ⊂ ∪n
k=1 B

‖ e−uk
2 ‖

e+uk
2

∩ B‖e−uk‖
ep .

PROOF. We will demonstrate than any vector h ∈ Rd that lies in Conv (u1, . . . , un) ∩
Conv (up

1 , . . . , up
n) is also included in at least one intersection B

‖ e−uk
2 ‖

e+uk
2

∩ B‖e−uk‖
ep of a site

Sk (k ∈ {1..n}). What is certain is that, due to Property 3, h ∈ Conv (up
1 , . . . , up

n) ⇒
h ∈ ∪n

k=1 B
‖ ep−up

k
2 ‖

ep+up
k

2

⇒ h ∈ ∪n
k=1 B‖ep−up

k ‖
ep ⇒ h ∈ B‖e−uk‖

ep . Since h is definitely contained as

well in at least one of the balls B
‖ e−uk

2 ‖
e+uk

2
(Theorem 3.1) constructed by the sites, this

implies that h will be examined by at least one site. The proof follows immediately.

According to Lemma 5.3, universally good predictors guarantee Property 2, thus
leading to a decreased synchronization frequency. Nevertheless, Lemma 5.3 simul-
taneously assumes that predictors are always universally good and no information
sharing exists between the sites. In a large-scale distributed scenario, however, some
sites may adhere to neither Property 3 nor Property 1. Obviously, any efficient mon-
itoring algorithm has to take into consideration such situations and guarantee the
“correctness” of the monitoring model together with Property 2. Note that the term
“correctness” refers to the ability of the monitoring algorithm to ensure that the in-
tersection is always covered by the union of sites’ local constraints. Our evaluation of
the overhead required to monitor that Lemma 5.3 is satisfied shows that this overhead
is significant and that it outweighs the benefits of the mechanism. Thus, we seek to
devise alternative implementations that are based on more relaxed conditions.
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6. SIMPLIFIED ALTERNATIVES

6.1. Relaxing the Containment Condition

The containment of convex hulls (Section 5.1) as a sufficient prerequisite to achieve
accordance with Property 2 is seemingly hard to achieve, let alone come up with ways to
continuously check it in a distributive manner. To confront the preceding drawbacks we
investigate an alternative approach which relaxes that condition. Instead of distribu-
tively checking the containment condition, we direct our interest to the more practical
alternative of making it likely. Intuitively, we are looking for a way to monitor v(t) such
that the following requirements are fulfilled.

Requirement 1. The local constraints in the shape of constructed balls are tighter
than those of the original framework (Section 3.1).

Requirement 2. The choice of the reference point should be as close as possible to e
(due to the establishment of Lemma 5.2).
This pair of requirements renders the containment of new constraints in

⋃n
i=1 B

‖ e−ui
2 ‖

e+ui
2

more likely. Furthermore, we wish to invent an algorithm that avoids any communica-
tion among the sites, unless a threshold crossing is observed.

Since v(t) =
∑n

i=1wiu
p
i∑n

i=1wi
and v(t) =

∑n
i=1wiui∑n

i=1wi
, for any μ ∈ R we can express the true

global vector as v(t) =
∑n

i=1wi (μup
i +(1−μ)ui )∑n

i=1wi
. So, in order to monitor the current status

of the true global vector we may reside to a new convex hull, namely Conv (μup
1+

(1 − μ)u1, . . . , μup
n + (1 − μ)ui). We then find ourselves concerned with identifying a

value for μ that may fulfill Requirements 1 and 2.

LEMMA 6.1. For any 1
2 ≤ μ ≤ 1, when Property 1 holds, tighter local constraints

compared to the framework of Section 3.1 are guaranteed, that is, ‖(μup
i + (1 − μ)ui) −

(μep + (1 − μ)e)‖ ≤ ‖ui − e‖.

PROOF.

‖up
i − ep‖ ≤ ‖ui − e‖ μ≥0⇔ ‖μup

i − μep‖ ≤ ‖μui − μe‖ ⇔

‖μup
i − μep + (1 − μ)(ui − e) + (μ − 1)(ui − e)‖ ≤ ‖μui − μe‖

By the triangle inequality,

‖μup
i − μep + (1 − μ)(ui − e)‖ − ‖(μ − 1)(ui − e)‖ ≤ ‖μui − μe‖ ⇔

‖μup
i − μep + (1 − μ)(ui − e)‖ ≤ (2μ − 1)‖ui − e‖.

Obviously, (2μ − 1) ≥ 0 ⇔ μ ≥ 1
2 . Additionally, the balls that are built by the original

framework possess a radius of ‖ui−e‖
2 and as a result, for μ ≤ 1 we obtain

‖μup
i − μep + (1 − μ)(ui − e)‖ ≤ (2μ − 1)‖ui − e‖ ≤ ‖ui − e‖.

The latter inequality completes the proof.

The previous lemma provides a rough upper, as well as lower, bound to the value of
μ such that ‖(μup

i + (1 − μ)ui) − (μep + (1 − μ)e)‖ ≤ ‖ui − e‖ in every site. This means
that sites construct tighter constraints than the ones they possessed using the original
framework.
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Fig. 4. The effect of the average model adoption.

The Average Model. Lemma 6.1 shows that setting μ = 1
2 meets Requirement 1 and

simultaneously provides beforehand some minimum knowledge with respect to the
closest we can move μep + (1 − μ)e towards e for Requirement 2 to be satisfied as well.
Based on these, we are able to devise a first simpler alternative to the containment of
convex hulls notion, which we term as the average model. The average model monitors

Conv ( up
1 +u1

2 , . . . , up
n+un

2 ) ⊆ ⋃n
i=1 B

‖ ep+e
4 − up

i +ui
4 ‖

ep+e+up
i +ui

4

by a priori picking a value of μ = 1
2 .

Figure 4 depicts an example of the average model adoption, where both the original
and the prediction-based convex hulls cross the threshold surface in different areas
(we included three sites in this example to simplify the exposition). In Figure 4(a),
notice that for S2 Property 1 is violated. Despite this fact, as shown in Figure 4(b), the
average model can still ward off threshold crossing, nearly achieving containment of
its constraints (balls) in those of the original bounding algorithm.

The Safer Model. We now discuss an alternative model that relaxes Requirement 2.
Following a rationale similar to that of Sharfman et al. [2008], we observe that at any
given timestamp, the sites can individually choose the reference point μep + (1 − μ)e,
1
2 ≤ μ ≤ 1 which is farther from the threshold surface and, at the same time, ensures
smaller local constraints. Note that, by being far from the threshold surface, a refer-
ence point makes the local constraints of any predictor-based monitoring model less
possible to cause a crossing of the threshold surface [Sharfman et al. 2008]. This second
alternative is termed as the safer model.

At the first step of the algorithm, every site starts with μ1 = 1
2 and calculates

μ1ep + (1 −μ1)e. In addition, let e∗
1 denote the vector lying on the threshold surface and

being the closest to μ1ep + (1 − μ1)e 2. Every site is capable of individually computing
‖μ1ep + (1 − μ1)e − e∗

1‖ and thus determining the distance the first examined reference
point yields. To restrain the computational intensiveness of the technique, we define
a number of allowed steps θ , such that in every subsequent step 1 ≤ j ≤ θ the sites

2The details on how to compute e∗ can be found in Sharfman et al. [2008].
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employ a value of μ j = μ j−1 + 1
2θ

until μθ = 1. Eventually, the μ j value that induces
the largest distance is chosen. Notice that, using this framework, the sites can reach a
consensus regarding μ without any additional communication. This happens due to the
fact that the choice of the final μ is based on common criteria related to the threshold
surface and the e, ep vectors that are known to all sites.

6.2. Loosened Intersection Monitoring

So far in this section we have proposed simplistic alternatives that relax the convex
hull containment condition that was discussed in Section 5.1. The presented (average
and safer) predictor-based monitoring models do manage to avoid any direct communi-
cation between the sites unless a threshold crossing is detected. Although they do not
necessarily abide by Property 2, these models encompass Requirements 1 and 2 (for
the average model) and are thus in practice likely to substantiate a condition that is
hard to check in a distributed manner.

We next aim at inventing a loosened version for the intersection monitoring model
of Section 5.2. As previously, we wish to come up with a mechanism that avoids any
communication between sites unless a threshold crossing happens and simultaneously
makes Property 2 highly likely. Property 1 is again set as a simple prerequisite, but note
that all our algorithms in this section remain correct even if it does not hold, since local
constraints still totally cover the monitored area of the input domain. In Section 5.2
we saw that v(t) ∈ Conv(u1, . . . , un) ∩ Conv(up

1 , . . . , up
n) while in this section we demon-

strate that v(t) also lies in any Conv (μup
1 + (1 − μ)u1, . . . , μup

n + (1 − μ)ui) which for
1
2 ≤ μ ≤ 1 possesses the desired characteristics formulated in Requirements 1 and 2.
The following lemma provides a primitive result on how the intersection moni-
toring can be achieved using the aforementioned logic. For ease of exposition, we
use Conv3

∩ to denote the triple intersection of these three (original, predicted, and

weighted) convex hulls, while Sur(Conv3
∩) ≡ maxi=1..nB‖e−ui‖

e ∩ maxi=1..nB‖ep−up
i ‖

ep ∩
maxi=1..nB‖μep+(1−μ)e−μup

i −(1−μ)ui‖
μep+(1−μ)e , where maxi=1..nB‖r‖

c denotes the corresponding (in each
maximization term) ball of maximum radius.

LEMMA 6.2. For any μ ∈ R, the area inscribed in Conv3
∩ is covered by the region

induced by Sur(Conv3
∩).

PROOF. Initially notice that

Conv(u1, . . . , un) ⊂ n∪
i=1

B
‖ e−ui

2 ‖
e+ui

2
⊂ max

i=1..n
B‖e−ui‖

e , (2)

Conv
(
up

1 , . . . , up
n

) ⊂ n∪
i=1

B
‖ ep−up

i
2 ‖

ep+up
i

2

⊂ max
i=1..n

B‖ep−up
i ‖

ep , (3)

Conv
(
μup

1 + (1 − μ)u1, . . . , μup
n + (1 − μ)un

)
⊂ n∪

i=1
B

‖ μep+(1−μ)e−μup
i −(1−μ)ui

2 ‖
μep+(1−μ)e+μup

i +(1−μ)ui
2

⊂ max
i=1..n

B‖μep+(1−μ)e−μup
i −(1−μ)ui‖

μep+(1−μ)e . (4)

So, each time, the maximum balls cover the corresponding convex hulls. We want to
prove that the intersection of the latter balls also covers the intersection of the convex
hulls. The proof will be derived by contradiction.

Suppose that a vector h ∈ Conv3
∩ exists. Now assume that the vector h does not lie

in at least one of maxi=1..nB‖e−ui‖
e , maxi=1..nB‖ep−up

i ‖
ep , or maxi=1..nB‖(μep+(1−μ)e)−(μup

i +(1−μ)ui )‖
μep+(1−μ)e .
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However, this would violate at least one of the Propositions 2,3,4, which is a contradic-
tion. This concludes the proof.

Reckon, however, that the ascertainment of Lemma 6.2 cannot be tracked in a dis-
tributed manner. This happens because the site that determines each maximum ball
may be different. Should Property 1 and thus (for 1

2 ≤ μ ≤ 1) Lemma 6.1 hold, what sites
actually need to perform so that they can distributively track Conv3

∩ is to use B‖e−ui‖
e ,

B‖e−ui‖
ep and B‖e−ui‖

μep+(1−μ)e. To understand this, please observe that if both ‖ep−up
i ‖, ‖(μep+

(1 − μ)e) − μup
i − 1 − μ)ui‖ ≤ ‖e − ui‖ (due to Property 1 and Lemma 6.1, respectively),

it is evident that Sur(Conv3
∩) ⊂ maxi=1..nB‖e−ui‖

e ∩ maxi=1..nB‖e−ui‖
ep ∩ maxi=1..nB‖e−ui‖

μep+(1−μ)e.
Hence, the site that possesses the maximum ‖e−ui‖ will check whether the intersec-

tion of its locally constructed balls crosses the threshold. Provided that the intersection
of the local balls does not cross the threshold at any site (and thus at the site with the
maximum ‖e − ui‖ as well), synchronization can safely be avoided. At this point, we
would be interested in identifying proper values for μ that refine the range ( 1

2 ≤ μ ≤ 1)
established in Lemma 6.1. Nonetheless, the following corollary shows that if we have
to employ ‖e − ui‖ as the radius of the balls, maxi=1..nB‖e−ui‖

μep+(1−μ)e does not refine the
intersection outcome.

COROLLARY 6.3. For any 0 ≤ μ ≤ 1,maxi=1..nB‖e−ui‖
μep+(1−μ)e does not refine the region

induced by maxi=1..nB‖e−ui‖
e ∩ maxi=1..nB‖e−ui‖

ep .

PROOF. Assume that there exists a vector h ∈ maxi=1..nB‖e−ui‖
e ∩ maxi=1..nB‖e−ui‖

ep . Then

‖h − e‖ ≤ max
i=1..n

‖e − ui‖ 1≥μ⇒ (1 − μ)‖h − e‖ ≤ (1 − μ)max
i=1..n

‖e − ui‖

and ‖h − ep‖ ≤ maxi=1..n‖e − ui‖ μ≥0⇒ μ‖h − ep‖ ≤ μmaxi=1..n‖e − ui‖.
Summing the aforesaid and merely applying the triangle inequality, we obtain

‖h − (μep + (1 − μ)e)‖ ≤ μ‖h − ep‖ + (1 − μ)‖h − e‖ ≤ max
i=1..n

‖e − ui‖.

The latter result exhibits that if a vector lies in the intersection of maxi=1..nB‖e−ui‖
e ∩

maxi=1..nB‖e−ui‖
ep , it will definitely lie in the maxi=1..nB‖e−ui‖

μep+(1−μ)e as well. Consequently
that ball does not contribute to refining the monitored area.

Corollary 6.3 is true for any 0 ≤ μ ≤ 1, but note that in order to ensure ‖ep − up
i ‖ ≤

‖e − ui‖ and ‖(μep + (1 − μ)e) − μup
i − (1 − μ)ui‖ ≤ ‖e − ui‖, we had already assumed

that 1
2 ≤ μ ≤ 1. Hence it suffices to check whether the pair B‖e−ui‖

e ∩ B‖e−ui‖
ep crosses the

threshold in at least one site3. Figure 5 provides an exemplary application of the inter-
section monitoring procedure described so far, where maxi=1..nB‖e−ui‖

e , maxi=1..nB‖e−ui‖
ep

are produced by S1.
On the other hand, following an intuition similar to the one utilized in the average

model, an alternative is to track Conv (up
1 , . . . , up

n) ∩ Conv ( up
1 +u1

2 , . . . , up
n+un

2 ) instead.
In other words, this time each site Si needs to individually construct two balls using
ep and ep+e

2 as centers and M = max{‖ep − up
i ‖, ‖ ep+e

2 − up
i +ui

2 ‖} as the common radius
(please note that M refers to the maximum of the pair of local radii). Subsequently,

3Even if the site that determines the maximum radius finds that Property 1 does not hold, Corollary 6.3 is
still valid upon replacing ‖e − ui‖ with ‖ep − up

i ‖.
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Fig. 5. Loosened intersection monitoring. maxi=1..nB‖e−ui‖
e , maxi=1..nB‖e−ui‖

ep are produced by S1 which is the
one that checks maxi=1..nB‖e−ui‖

e ∩ maxi=1..nB‖e−ui‖
ep . No threshold crossing occurs despite that individual

convex hulls violate the threshold surface.

a synchronization is caused when at least one Si detects that the locally constructed
intersection crosses the threshold.

We conclude our study by showing the condition which makes the latter inter-
section tracking preferable, as it results in smaller local constraints compared to
maxi=1..nB‖e−ui‖

e ∩ maxi=1..nB‖e−ui‖
ep .

PROPOSITION 6.4. When Property 1 holds and maxi=1..nB‖e−ui‖
e ⊇ maxi=1..nBM

ep+e
2

, then

maxi=1..nBM
ep ∩ maxi=1..nBM

ep+e
2

⊆ maxi=1..nB‖e−ui‖
e ∩ maxi=1..nB‖e−ui‖

ep .

PROOF. For any vector h ∈ maxi=1..nBM
ep ∩ maxi=1..nBM

ep+e
2

we have

‖h − ep‖ ≤ M
‖ep−up

i ‖≤‖e−ui‖≤ max‖e − ui‖
which entails that h ∈ maxi=1..nB‖e−ui‖

ep . If in addition maxi=1..nB‖e−ui‖
e ⊇ maxi=1..nBM

ep+e
2

then h ∈ maxi=1..nB‖e−ui‖
e as well. Hence h ∈ maxi=1..nB‖e−ui‖

e ∩ maxi=1..nB‖e−ui‖
ep .

7. CHOOSING AMONGST ALTERNATIVES

So far, we investigated a number of simpler alternatives that loosen the strong mon-
itoring frameworks of Section 5, namely the convex hull containment as well as the
intersection monitoring framework. We based our analysis on Property 1 as an intu-
itive assumption also employed in past studies [Cormode et al. 2005; Cormode and
Garofalakis 2005, 2008] and evolved it to practical tracking mechanisms together with
appropriate speculative analysis. Nonetheless, upon relaxing the monitoring condi-
tions we also relaxed their conformity to Property 2, that is, the prerequisite for strong
predictor-based monitoring models. Since the coordinator is supposed to a priori dictate
the predictor-based tracking alternative that should be uniformly utilized by sites at
least until the next synchronization, we need to provide a decision-making mechanism
that enables it choose among the available options and adjust its decisions on their
anticipated performance with respect to communication savings.

The available tracking options that do not belong (excluding the trivial choice of the
original framework) to the strong predictor-based monitoring models’ class include:

—Model 0: monitoring of Conv(u1, . . . un) as in Section 3.1;
—Model 1: monitoring of Conv(up

1 , . . . , up
n) as in Section 4;

—the average model;
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—the safer model;
—Intersection 1: tracking of maxi=1..nB‖e−ui‖

e ∩ maxi=1..nB‖e−ui‖
ep ; and

—Intersection 2: tracking of maxi=1..nBM
ep ∩ maxi=1..nBM

ep+e
2

.

In this section we first seek to examine in Section 7.1 whether the selection of the used
monitoring model can be decided based on probabilistic models that try to estimate
the probability of a threshold violation using each model. We describe the limitations
and difficulties of basing our decisions on the results of our probabilistic analysis and
then (in Section 7.2) seek to devise an adaptive way of chosing amongst the alternative
models, based on statistics collected during the operation of the algorithm.

7.1. A Probabilistic Viewpoint

We initially seek to analyze the estimated benefit of all the presented tracking mech-
anisms from a probabilistic point of view. Our analysis formulates and subsequently
examines a worst-case scenario for each of the proposed models. Eventually, it attempts
to compare their expected performance with respect to the communication load.

Going back to the example depicted in Figure 3, we recall that a tighter convex
hull by a prediction model may not necessarily result in fewer local threshold crossings
(local violations). For example, in the example of Figure 3, the main reason why the con-
straints of the prediction-based convex hull cause a threshold crossing is the distance of
ep from the threshold surface. As a consequence, despite the fact that Conv(u1, . . . , un)
yields larger balls, the second factor that affects the communication savings of the mere
Conv (up

1 , . . . , up
n) monitoring is the distance of the common reference point from the

threshold surface. This fact was also noted when presenting the rationale behind the
safer model’s adoption throughout our study.

Figure 6 depicts the maximum balls, centered at e and ep respectively, that can be
inscribed without crossing the threshold surface. Let De and Dep denote the radius of
these maximum balls, respectively. Then

ui ∈ BDe
e ⇒ B

‖ e−ui
2 ‖

e+ui
2

⊂ B‖e−ui‖
e ⊂ BDe

e , ∀i ∈ {1..n}

and similarly

up
i ∈ BDep

ep ⇒ B
‖ ep−up

i
2 ‖

ep+up
i

2

⊂ B‖ep−up
i ‖

ep ⊂ BDep

ep , ∀i ∈ {1..n}.

For any drift vector ui to cause a violation, it needs to exit the corresponding ball.
Therefore, utilizing Markov’s inequality [Garofalakis et al. 2002], we can bound the
probability of a threshold crossing in the original monitoring framework [Sharfman
et al. 2007b] as follows.

PrModel0
violationi

≤ Pr{‖e − ui‖ ≥ De} ≤ E(‖e − ui‖)
De

In the same way, for Conv(up
1 , . . . , up

n) monitoring,

PrModel1
violationi

≤ Pr
{‖ep − up

i ‖ ≥ Dep
} ≤ E

(‖ep − up
i ‖)

Dep
.

Notice that as long as the norm of the expected drift does not exceed the radius of BDe
e ,

then E(‖e−ui‖) ≤ De (a similar discussion also holds for the prediction deviation vectors
case). This ensures that the provided upper bound receives a meaningful value ≤1.
Similar bounds can be extracted for the case of the average (for μ = 1

2 ) as well as the
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Fig. 6. Maximum spheres centered at the reference points e and ep that can be inscribed without violating
the threshold surface. The radius of these spheres is denoted as De and Dep , respectively. Apart from the
size of the local constraints, the position of the utilized reference points determines the probability of a
synchronization occurrence.

safer model.

PrSaf er
violationi

≤ Pr
{‖μep + (1 − μ)e − (1 − μ)ui + μup

i ‖ ≥ Dμep+(1−μ)e
}

≤ E
(∥∥μep + (1 − μ)e − (1 − μ)ui + μup

i

∥∥)
Dμep+(1−μ)e

Please recall that the safer model essentially seeks to maximize the denominator of
the preceding fraction. Moreover, due to Property 1, the safer model can also yield a re-
duced nominator compared to the original monitoring framework. Based on Lemma 6.1,
for 1

2 ≤ μ ≤ 1, we have∥∥(
μup

i + (1 − μ)ui
) − (μep + (1 − μ)e)

∥∥ ≤ ‖ui − e‖
⇒ E

(∥∥μep + (1 − μ)e − (1 − μ)ui + μup
i

∥∥) ≤ E(‖e − ui‖).

Of course, these ascertainments should come as no surprise given our discussion in
Section 6.

For a synchronization to take place, at least one out of the n sites needs to cause a
violation. Assuming that the data streams arriving at the various sites do not exhibit
any dependency, the probability of a synchronization, taking Model 1 for instance, can
be bounded by

PrModel1
Sync = 1 − �n

i=1

(
1 − PrModel1

violationi

) ≤ 1 − �n
i=1

(
Dep − E

(‖ep − up
i ‖)

(Dep)n .

Similar results can be extracted for both the original and the safer model.
Regarding the intersection monitoring frameworks, we point out that the probability

of violating the threshold surface can be upper bounded by the probability that local
spheres (maxi=1..nB‖e−ui‖

e and maxi=1..nB‖e−ui‖
ep ) simultaneously cause a violation. The up-

per bound is valid since, while these local spheres may both cause a threshold crossing
at the same time, the monitored intersection may still avoid a violation. However, the
contrary is not possible, that is, if the monitored intersection results in a threshold
crossing, then both local spheres result in a threshold crossing as well. Therefore

PrIntersection1
violation ≤ Pr

{
max
i=1..n

‖e − ui‖ ≥ De ∩ max
i=1..n

‖e − ui‖ ≥ Dep

}

= Pr
{

max
i=1..n

‖e − ui‖ ≥ max{De, Dep}
}

≤
E

(
max
i=1..n

‖e − ui‖
)

max{De, Dep} .
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Table III. Probability of Synchronizations of the Proposed Alternative Tracking Schemes

Alternative Probability of Synchronizations

Model 0 O
(
1 − �n

i=1(De−E(‖e−ui‖)
(De)n

)

Model 1 O
(

1 − �n
i=1(Dep−E(‖ep−up

i ‖)
(Dep )n

)

Safer & Average Models O
(

1 − �n
i=1(Dμep+(1−μ)e−E(‖(μup

i +(1−μ)ui )−(μep+(1−μ)e)‖)
(Dμep+(1−μ)e)n

)

Intersection 1 O
(

E(maxi=1..n‖e−ui‖)
max{De,Dep }

)

Intersection 2 O

(
E(M)

max{Dep ,Dep+e
2

}

)

The corresponding bound for Intersection2 can be derived as E(M)
max{Dep ,Dep+e

2
} . Our in-

tersection monitoring schemes determine whether to call for a synchronization relying
only on the maximum inscribed sphere. Therefore, the bound on the violation proba-
bility provided before also constitutes a bound on the probability of a synchronization.
Given the preceding, Table III summarizes the worst-case bounds for the probability
of synchronization at any given time instance (the temporal reference symbol t in the
table is omitted to simplify the exposition).

Difficulties of Using our Probabilistic Viewpoint. In contrast with the nominator, the
denominator of all the extracted bounds can be computed during the synchronization,
as is the case with the constant De. Dep is altered due to the movement of ep but can
be determined individually by sites as they share the common information about the
posed threshold and ep at any given timestamp. Obviously, the nominator changes
as time passes and sites need to be continuously aware of the expected drifts of the
candidate models so as to consult the corresponding bounds and dynamically choose
the best monitoring model.

As a matter of fact, it is difficult to extract any generic decision-making mechanism
regarding the best choice of the tracking mechanism, unless we are aware of the exact
probability density function of PrChosen Model

Sync (t) at any given t. To simplify things, one
may assume that not only PrChosen Model

Sync , but also the quantities that bound this proba-
bility remain relatively stable and compute all probabilities given past statistics that
are transmitted to nodes during some synchronization.

Despite the fact that our previous analysis may be interesting, it incorporates strong
assumptions which tremendously limit its applicability to practical tracking scenarios
(such as lack of dependency between local data streams and PrChosen Model

Sync ’s stability).
Moreover, any global statistics that need to be continuously transmitted for computing
the probabilities of Table III increase the overall bandwidth consumption, which is
clearly not desirable. Because of the aforementioned limitations, in what follows we
devise a more empirical approach that selects the monitoring model to be adopted based
on the recent performance of these models, while also not requiring any statistics to be
transmitted by the coordinator to the nodes.

7.2. An Empirical Viewpoint

In order to provide an appropriate decision-making mechanism, we require that sites
keep up monitoring all the six options mentioned earlier. This monitoring will take
place only for models that would not result in any local transmission since the last
synchronization (i.e., we stop monitoring an alternative model for which we detect that
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a transmission would have been caused). Notice that one model has been chosen as
the main model after the last synchronization. Thus, for each of the six alternatives,
the sites maintain 6 bits, where the i-th bit is set iff the corresponding monitoring
mode would have resulted in at least one transmission since the last synchronization.
A synchronization can still be caused only by the main model. Upon a synchronization,
however, together with vi(t) and the velocity vector in the case of the velocity acceler-
ation model choice, sites attach 5 bits (they do not need to send a bit for the current
model being used) on their messages. The 5 transmitted bits per node obviously con-
stitute a very small overhead. Please note that the following facts hold in our adaptive
algorithm.

—No site has a violation using the current model in a previous time instance (since the
previous synchronization).

—An alternative model that has its corresponding bit to 1 in any of the sites would not
have been better than the model currently being used, since it would have resulted
in a transmission in a prior (or the current) time instance.

—Based on the preceding observation, we decide to switch to an alternative model only
if the corresponding bits for this model were equal to 0 in all the sites.

In case of multiple alternatives with unset bits, a random choice among such alterna-
tives is performed. We henceforth term this empirical viewpoint for Choosing Amongst
Alternatives as the CAA approach.

8. APPROXIMATE QUERY ANSWERING

8.1. Absolute Threshold Monitoring

In the previous sections we focused on tracking functions where the posed threshold
T , and thus the threshold surface of the input domain, remained stable throughout
the monitoring process. Nevertheless, in many cases [Cormode and Garofalakis 2005,
2007, 2008; Cormode et al. 2005, 2007; Olston et al. 2003] it is particularly interesting to
continuously maintain at the coordinator an approximation (i.e., given some accuracy
constant ε > 0) of the true value of the monitored function. In terms of the concepts
previously presented in our prediction-based monitoring framework, such a need can
be expressed in the following tracking task.

| f (v(t)) − f (ep(t))| ≤ ε (5)

In this scenario, the coordinator is capable of constantly providing at any given times-
tamp t ε-approximate answers ( f (ep(t))) regarding the value of the monitored function,
utilizing the predicted estimate vector. Central data collection is caused only when the
error in the answer may exceed the specified accuracy bound ε.

It is not difficult to see that Inequality (5) can be decomposed into two tracking
tasks, namely f (v(t)) ≤ ε + f (ep(t)) and f (v(t)) ≥ f (ep(t)) − ε, which can be handled
separately by the empirical CAA approach devised in the previous section. This shows
that our techniques are general enough to accommodate any approximate function
monitoring requirement. Nevertheless, an undesirable effect of this approach is that
it doubles the computational load on individual sites, since this time each site is re-
quired to assess whether two d-dimensional balls of local constraints (one for each of
the tracking tasks given before) are crossing the threshold surface4. This is a time-
consuming task especially when d is high and more than one function is monitored.

4Note that to assess crossings, sites essentially need to find the two couples of vectors included in each
constructed ball that yield max/min f () values (where f () is the function of interest) and check if maxf () lies
in a different side of the threshold compared to minf (). Finding these d-dimensional vectors involves solving
a couple of constrained optimization problems.
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Thus, the computational load may in turn lead to lags in the delivery of synchroniza-
tion decisions, which finally affects the real-time delivery of answers to the streaming
applications. Additionally, in resource-constrained environments such as those exam-
ined in Burdakis and Deligiannakis [2012] and Sharfman et al. [2007a], this computa-
tional load would deplete their remaining energy supply even for mediocre-dimensioned
vectors.

Therefore, in what follows we propose a problem transformation tailored for the
approximate query answering task (Inequality (5) as well as Inequality (8) discussed
later on). The advantage of the proposed transformation is that it reduces the tracking
process to a single monitoring task where threshold crossing tests use mere L2-norm
comparisons. Furthermore, the transformed geometric setting ensures that good pre-
dictors that satisfy Property 1 can always yield reduced communication burden (Sec-
tions 8.1.1 and 8.1.2). As a result, it favors Model 1’s adoption and forms a proper
scenario for assessing the usefulness of our CAA approach versus sole Model 1’s good
performance (Section 9.5).

To achieve the desired transformation, we reside to the notion of Holder continuity.
More precisely, a function f : Rd −→ R is called Holder continuous on Rd if, for Holder
constants Hf , α > 0, the change in the output of f can be bounded by a corresponding
change in the input. In our notation,

| f (ep(t)) − f (v(t))| ≤ Hf · ‖ep(t) − v(t)‖α. (6)

For α = 1 the function is called Lipschitz continuous. Examples of functions that
can be easily verified that conform with Holder continuity include, but are not limited
to, general Lp-norms that abide by the reverse triangle inequality as well as trigono-
metric functions such as the cosine similarity. All these functions have been adopted
within the geometric monitoring framework for detecting outliers in sensor network
settings [Burdakis and Deligiannakis 2012].

Given Inequalities (5) and (6), we can actually come up with a value δ > 0 such that

‖ep(t) − v(t)‖ ≤ δ ⇒ Hf · ‖ep(t) − v(t)‖α ≤ Hf · δα ≤ ε (7)

which forms the final version of our monitoring task, since | f (ep(t)) − f (v(t))| ≤ Hf ·
‖ep(t) − v(t)‖α ≤ Hf · δα ≤ ε. Taking Lp-norm monitoring [Burdakis and Deligiannakis
2012] as an example, the corresponding constants are set to Hf = 1, a = 1 and
δ = ε. Despite the fact that the aforesaid Holder condition is not always achievable
for any tracked f on Rd, after a synchronization, we can define a neighborhood U ⊂
Rd of the input domain for which Holder’s condition holds and have sites call for a
synchronization whenever the resulting vectors may exit this neighborhood (in addition
to tracking the ε-approximation requirement). Hence, we expect that a wide variety of
functions can be covered by the analysis that we present in this section.

Inequality (7) actually transforms the original monitoring target of Inequality (5) to a
δ-approximation on the values of the input domain ‖ep(t) − v(t)‖ ≤ δ. In the remainder
of this section we discuss how this special tracking task can be performed by two
alternative approaches.

—We can decompose the problem into a set of simple local constraints (DLC algorithm,
described in Section 8.1.1). Using this technique, each site will be able to moni-
tor a simple local constraint that is based only on the deviation of its actual local
measurements vector vi(t) from its corresponding predicted vector v

p
i (t).

—We can adopt the prediction-based monitoring framework (Section 8.1.2). While this
technique shares some similarities with the DLC algorithm, it also allows the ap-
plication of the average model and the intersection monitoring techniques, thus
enabling the use of our CAA algorithm.
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8.1.1. Distributed Monitoring by Simple Decomposition to Local Constraints (DLC). In order to
achieve the δ-approximation target, we first decompose the problem of distributively
ensuring that ‖ep(t) − v(t)‖ ≤ δ to simple local constraints that sites can monitor, in
order to decide whether a synchronization process needs to take place. The upcoming
lemma elaborates on the latter issue, introducing an appropriate sufficient condition.

LEMMA 8.1. When the local constraint

‖vp
i (t) − vi(t)‖ ≤ δ

holds for any site Si, i ∈ {1..n} at time t, then

‖ep(t) − v(t)‖ ≤ δ,

that is, the estimation of the true global vector that is kept at the coordinating source is
always a δ-approximation of the true global vector.

PROOF. Starting by the local constraint of a single site Si we obtain

‖vp
i (t) − vi(t)‖ ≤ δ

wi≥0⇔ ‖wi · v
p
i (t) − wi · vi(t)‖ ≤ wi · δ.

Summing for n sites, we have

n∑
i=1

‖wi · v
p
i (t) − wi · vi(t)‖ ≤

n∑
i=1

wi · δ

triangle

inequality
⇒

‖
n∑

i=1

wi · v
p
i (t) −

n∑
i=1

wi · vi(t)‖ ≤
n∑

i=1

wi · δ

∑n
i=1 wi>0⇔

‖
∑n

i=1 wi · v
p
i (t)∑n

i=1 wi
−

∑n
i=1 wi · vi(t)∑n

i=1 wi
‖ ≤ δ ⇔

‖ep(t) − v(t)‖ ≤ δ

which concludes the proof.

As long as Lemma 8.1 holds, no transmission is required. Each site keeps up ac-
quiring updates and locally maintains the required information for the computation of
predictors at the next synchronization, as described in Section 3.2. If ‖vp

i (t) − vi(t)‖ ≤ δ
is not satisfied in at least one site, then a synchronization occurs. Thus, the decomposi-
tion to local constraints essentially results in sites constructing balls centered at v

p
i (t)

with a radius of δ and monitoring whether vi(t) lies within this ball (see Figure 7(a)).
Moreover, notice that the previously stated tracking scheme does not require any in-
formation regarding ep to be broadcasted to sites, as ep is not involved in the local
constraint that sites need to check.

8.1.2. Applying the Prediction-Based Geometric Approach. Our second option is that of fos-
tering the prediction-based geometric monitoring framework. Before doing so, we need
to identify the basic elements of the tracking process. We start by studying the function
of interest q(v(t)) = ‖ep(t)−v(t)‖ ≤ δ according to Inequality (7). Note that ep(t) is made
known to all the sites after each synchronization process and it can thus be treated as
a constant in the monitored function q(v(t)).

Again, let us assume that the coordinator has collected all the local vectors of mon-
itored sites at a previous timestep. Then, the central source extracts e and ep, which
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Fig. 7. Comparison of approximate query answering approaches.

are broadcasted to the network. Having received the estimate as well as the predicted
estimate vectors, every site Si individually computes the drift vector ui(t) and the
prediction deviation vector up

i (t).
Nonetheless, it is worth focusing on the shape of the threshold surface in more

detail. The region where the monitored convex hull Conv (up
1 (t), . . . , up

n(t)) is allowed
to lie is again the ball Bδ

ep (depicted in Figure 7(b)), centered at ep(t) with radius δ,
which is convex. Due to the convexity of Bδ

ep, the convex hull of interest cannot cause
threshold crossing without having at least one of its vertices (up

1 (t), . . . , up
n(t)) doing

so. Hence, for Model 1 and Model 0 it suffices for every site to check if up
i (t) = ep +

(vi(t)−v
p
i (t)) is included in Bδ

ep. Overall, we again check a spherical constraint of radius
δ, which is violated only when ‖vi(t) − v

p
i (t)‖ > δ. Our previous discussion renders the

presented approaches of Model 1, Model 0, and DLC equivalent in terms of the size
of the consulted local constraints. Note that, as explained in Section 4, the size of the
constructed constraints is an important factor in determining the communication cost
of a given monitoring scheme.

However, we have also noted that the choice of the reference point is the other major
criterion in tuning the (minimum) distance of the tracked convex hull (or intersec-
tion) from the threshold surface. Notice that the adoption of an alternative tracking
mechanism (such as the average or the safer models) does not have an impact on
the threshold surface. In fact, based on the estimation ep(t) on which the coordinator
bases its ε-approximate query answers, the surface of Bδ

ep forms the threshold surface
independently of the used alternative tracking mechanism.

Given the preceding, the adoption of the average model of Section 6.1 enforces sites
to check whether up

i +ui

2 exits Bδ
ep. As regards the safer model, notice that since Bδ

ep forms
the threshold surface, it will always be reduced to the choice of Model 1, since ep will
always be the reference point that is farther from that surface. Eventually, the loosened
intersection monitoring schemes of Section 6.2 can be applied by having sites check if
the local intersection of the corresponding balls exceeds the surface of Bδ

ep. As a result,
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the intersection monitoring schemes together with the average model are added tools
which the DLC approach cannot exploit.

Hence, the empirical CAA approach of Section 7.2 is still applicable and capable
of providing additional flexibility compared to the framework of Section 8.1.1 to the
distributed tracking process. This is because CAA can tune both the size of the local
constraints and their position, as well as choosing the preferable monitoring tech-
nique depending on the recent performance of the corresponding alternative tracking
mechanisms.

8.2. Relative Threshold Monitoring

Another form of approximate function tracking which is often utilized in the context of
data streams [Cormode and Garofalakis 2008; Cormode et al. 2005; Liu et al. 2012] is
that of relative threshold monitoring. In particular, this case reflects to the following
monitoring task (for f (v(t)) ≥ 0 – otherwise, the displayed inequality is reversed).

(1 − ε) f (v(t)) ≤ f (ep(t)) ≤ (1 + ε) f (v(t)) (8)

In other words, we want to ensure that the approximate answer provided by the coor-
dinator using f (ep(t)) is within ±ε f (v(t)) units from the current value of the tracked f .
Nevertheless, since sites are not aware of f (v(t)), we need to modify our prior monitor-
ing approach to render it capable of accomplishing relative threshold monitoring.⎧⎪⎪⎨

⎪⎪⎩
f (ep(t))
1 + ε

≤ f (v(t))

f (ep(t))
1 − ε

≥ f (v(t))
⇔

⎧⎪⎨
⎪⎩

f (ep(t)) − f (ep(t))
1 + ε

≥ f (ep(t)) − f (v(t))

f (ep(t))
1 − ε

− f (ep(t)) ≥ f (v(t)) − f (ep(t))

The previous two conditions can both be ensured by checking whether

| f (ep(t)) − f (v(t))| ≤ min
{∣∣∣∣ f (ep(t)) − f (ep(t))

1 + ε

∣∣∣∣,
∣∣∣∣ f (ep(t))

1 − ε
− f (ep(t))

∣∣∣∣
}

≤ min
{

ε f (ep(t))
1 + ε

∣∣∣∣,
∣∣∣∣ε f (ep(t))

1 − ε

∣∣∣∣
}
.

An equivalent result can be obtained for the case when f (v(t)) ≤ 0. The latter in-
equality resembles Inequality (5), with the difference being that the right side is now
dynamically adjusted based on the (known to the sites) current value of f (ep(t)). Thus,
the tracking task can be conducted utilizing the concepts presented in Sections 8.1.1
and 8.1.2.

8.3. Discussion

A question that naturally arises is whether the absolute or relative threshold mon-
itoring tasks can also be performed in cases of functions that either are not Holder
or Lipschitz continuous or their conformity with Holder continuity is hard to be ver-
ified. As previously noted, one option is to identify a neighborhood U ⊂ Rd where
local continuity for the tracked f () exists. In addition to that option, in the following
examples we study functions where our framework may be rendered applicable by ex-
ploiting properties of the adopted predictor (Section 8.3.1) or by properly transforming
the monitored f () (Section 8.3.2). We choose to elaborate on these particular functions
due to their popularity in distributed data-stream monitoring settings [Cormode and
Garofalakis 2008, 2007, 2005] and within the geometric monitoring scheme [Burdakis
and Deligiannakis 2012].

8.3.1. Exploiting Properties of Our Predictor. We first describe a case in which the relative
threshold monitoring task can be performed even if the function f () under study is
not globally Holder or Lipschitz continuous. To tackle this problem, we demonstrate
that it may be possible to exploit the properties of the adopted predictors in order to
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achieve bounding the change in the output by a corresponding change in the input, as
in Inequality (6).

Example 8.2. Assume that, as in Cormode and Garofalakis [2008], we would like
to perform relative threshold monitoring on the self-join ‖v(t)‖2 function, which is
not a Lipschitz-continuous function over all reals. Our local vectors are frequency
distribution vectors [Cormode and Garofalakis 2008], that is, streaming tuples apart
from either +1 or −1 updates on d coordinates, and we choose to adopt the LG predictor
(Table II). Consider a distributed system where data arrive at sites at predefined time
intervals called epochs [Burdakis and Deligiannakis 2012]. If the distributed system
currently is at the N − th epoch of its operation and Ns denotes the epoch when the last
synchronization process took place, we have (we keep ep(t) in ‖v(t) − ep(t)‖ to show the
correspondence with Inequality (5))

| f (v(t)) − f (ep(t))| = ‖ f (v(t)) − f (ep(t))‖ = ‖‖v(t)‖2 − ‖ep(t)‖2‖
= ‖v(t) + ep(t)‖‖v(t) − ep(t)‖ =

∥∥∥∥v(t) + N
Ns

e
∥∥∥∥ ‖v(t) − ep(t)‖

triangle

inequality

≤
(

‖v(t)‖ +
∥∥∥∥ N

Ns
e
∥∥∥∥
)

‖v(t) − ep(t)‖ ≤
(

nN
√

d +
∥∥∥∥ N

Ns
e
∥∥∥∥
)

‖v(t) − ep(t)‖

≤
(

nN
√

d +
∥∥∥∥ N

Ns
e
∥∥∥∥
)

δ.

Thus, in order to enforce the relative threshold monitoring task, the sites need to
continuously check whether(

nN
√

d +
∥∥∥∥ N

Ns
e
∥∥∥∥
)

δ ≤ min
{

ε f (ep(t))
1 + ε

,
ε f (ep(t))

1 − ε

}
.

This yields the desired value of δ as δ = min{ ε f (ep(t))
1+ε

,
ε f (ep(t))

1−ε
}

(nN
√

d+‖ N
Ns

e‖)
, which can be individually

computed by sites at any given epoch, as long as they share the common information
about e, ep and ε, the dimensionality d of vi(t), the size of the network n, and the values
of Ns, N.

8.3.2. Exploiting Function Transformations. We now provide an example of absolute thresh-
old monitoring tasks that can be performed even if it is not straightforward whether
the monitoring functions are Lipschitz or Holder continuous. The basic idea is to prop-
erly transform the monitoring function to other functions that are well known to abide
by that type of continuity.

Example 8.3. Suppose we have installed a number of sensors in a server room so as
to continuously measure the environmental conditions (such as temperature, radiance,
noise levels, and so on) under which the computing machines operate. In order to assure
unhindered operation, we let motes collect a number of w recent observations based on
which we intend to monitor the resemblance that the global vector v(t) exhibits with a
given vector g representing the “normal” values of the quantities sampled by the sensor
nodes. The resemblance between the g, v(t) pair of vectors can be determined based on
the extended Jacccard (or Tanimoto) coefficient (Tan) [Burdakis and Deligiannakis
2012; Giatrakos et al. 2013]:
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In order to perform the desired transformation of the Tanimoto coefficient

Tan(g, v(t)) = g · v(t)
‖g‖2 + ‖v(t)‖2 − g · v(t)

the initial requirement of

|Tan(g, ep(t)) − Tan(g, v(t))| ≤ ε

is first decomposed in two constraints{
T1(t) = Tan(g, ep(t)) − ε ≤ Tan(g, v(t))
T2(t) = Tan(g, ep(t)) + ε ≥ Tan(g, v(t))

and then transformed as follows [Giatrakos et al. 2013] (for T1(t), T2(t) ∈ [0, 1]).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∥∥∥∥T1(t) + 1
2T1(t)

g − v(t)
∥∥∥∥ ≤

√
−4T1(t)2 + (T1(t) + 1)2

2T1(t)
‖g‖∥∥∥∥T2(t) + 1

2T2(t)
g − v(t)

∥∥∥∥ ≥
√

−4T2(t)2 + (T2(t) + 1)2

2T2(t)
‖g‖

Notice that since g, ep(t)), ε have been broadcasted, T1(t) and T2(t) can be individually
computed by sites. Now then, subtracting the previous inequalities we get∥∥∥∥T1(t) + 1

2T1(t)
g − v(t)

∥∥∥∥ −
∥∥∥∥T2(t) + 1

2T2(t)
g − v(t)

∥∥∥∥
≤

√
−4T1(t)2 + (T1(t) + 1)2

2T1(t)
‖g‖ −

√
−4T2(t)2 + (T2(t) + 1)2

2T2(t)
‖g‖

which can be ensured if∥∥∥∥T1(t) + 1
2T1(t)

g − v(t)
∥∥∥∥ −

∥∥∥∥T2(t) + 1
2T2(t)

g − v(t)
∥∥∥∥
∣∣∣∣

≤
∣∣∣∣∣
√

−4T1(t)2 + (T1(t) + 1)2

2T1(t)
−

√
−4T2(t)2 + (T2(t) + 1)2

2T2(t)

∣∣∣∣∣ ‖g‖.

The left side of the preceding can be bounded as

∣∣∣∣
∥∥∥∥T1(t) + 1

2T1(t)
g − v(t)

∥∥∥∥ −
∥∥∥∥T2(t) + 1

2T2(t)
g − v(t)

∥∥∥∥
∣∣∣∣

reverse
triangle

inequality≤∥∥∥∥
(

T1(t) + 1
2T1(t)

+ T2(t) + 1
2T2(t)

)
g − 2v(t)

∥∥∥∥ =
∥∥∥∥
(

T1(t) + 1
2T1(t)

+ T2(t) + 1
2T2(t)

)
g − 2ep(t) − 2(v(t) − ep(t))

∥∥∥∥
triangle

inequality≤∥∥∥∥
(

T1(t) + 1
2T1(t)

+ T2(t) + 1
2T2(t)

)
g − 2ep(t)

∥∥∥∥ + 2‖v(t) − ep(t)‖ ≤∥∥∥∥
(

T1(t) + 1
2T1(t)

+ T2(t) + 1
2T2(t)

)
g − 2ep(t)

∥∥∥∥ + 2δ ≤∣∣∣∣∣
√

−4T1(t)2 + (T1(t) + 1)2

2T1(t)
−

√
−4T2(t)2 + (T2(t) + 1)2

2T2(t)

∣∣∣∣∣ ‖g‖.
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Obviously, δ = |
√

−4T1(t)2+(T1(t)+1)2

2T1(t) −
√

−4T2(t)2+(T2(t)+1)2

2T2(t) |‖g‖ − ‖( T1(t)+1
2T1(t) + T2(t)+1

2T2(t) )g−2ep(t)‖
and Hf = 2, α = 1 .

9. EVALUATION RESULTS

In order to evaluate our algorithms, we developed a simulation environment in Java.
We utilized two real datasets to derive data-stream tuples arriving at every site in the
network. Corpus consists of 804,414 records present in the Reuters Corpus (RCV1-v2)
[Lewis et al. 2004] collection. Each record corresponds to a news story to which a list of
terms (features) and appropriate categorizations have been attributed. As in Sharfman
et al. [2007b, 2008] we focus on the following features: Bosnia, Ipo, Febru while mon-
itoring their coexistence with the CCAT (the CORPORATE / INDUSTRIAL) category.
Aiming at identifying the relevance of these features to the CCAT category at any given
time, we monitored two different functions involving the chi-square (χ2) and mutual
information (MI) score. We utilized the Corpus dataset in order to test our techniques
using the cash register streaming paradigm, that is, taking into consideration the
whole history of the tuples arriving at the various sites. In any given timestamp, after
the receipt of a new tuple each site forms a vector which consists of four dimensions for
the χ2 and three dimensions for the MI case. These vectors have one of their positions
set, while the rest remain zero. In particular, for both the functions the first position
of the vector is set if the term and the category co-occur, the second if the term occurs
without the CCAT category, the third in case CCAT is present without the term, while
the fourth (only for χ2 score) if neither of them appears in the incoming tuple.

Due to the nature of the incoming (binary) vectors and the utilized cash register
paradigm, the previously described environment may be considered moderate to change
and be thought of as easily predictable by our techniques. In order to test our algorithms
in more dynamic conditions we utilized one more dataset. The Weather dataset includes
Solar Irradiance, Wind Speed, Wind Peak, and Temperature measurements from the
station in the University of Washington and for the year 2002 [Deligiannakis et al.
2004, 2007], where each file incorporates 523,439 records of measurements. We used the
Weather datasets so as to monitor the Variance (Var) and the Signal-to-Noise ratio (StN)
functions. We also tested our query answering techniques (Section 8) while performing
approximate L2 and cosine (Cos) similarity monitoring. We utilized Var, L2, and Cos
which have already been used within the geometric monitoring framework [Sharfman
et al. 2007a; Burdakis and Deligiannakis 2012]. In addition, the StN function equals
the ratio between the mean and the standard deviation (μ

σ
) in a given window of

measurements and can thus be applicable to globally quantify the noise present in the
measurements.

Eventually, we produced a synthetic dataset, named Synthetic. This dataset includes
523,439 records of measurements generated by a VA predictor of constant velocity v = 5
degrees/time unit and zero acceleration. This means that, during the monitoring task,
local predictors can perfectly estimate the current values of vectors and corresponding
prediction drifts are zeroed. Then, in the original synthetic dataset, we impose different
degrees of noise between 10% and 50% distorting each measurement by ±noise%. We
utilize the Synthetic dataset with different degrees of noise to assess the impact of the
accuracy of the predictor to the performance of Model 1 which is mainly affected by
the predictor’s accuracy. We compare Model 1’s communication cost against the rest of
the proposed alternatives while tracking the Coefficient of Variation (CoV) function.
CoV is chosen due to the fact that it constitutes a normalized measure of dispersion
caused by the injected noise percentage.

In each experiment we first measure the number of messages transmitted in the
network across different thresholds for a network configuration consisting of 10 sites.
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We then use the middle-case threshold and plot the number of transmitted messages
when increasing the scale of the distributed environment (the number of sites). We
denote the performance of the original bounding algorithm (Section 3.1) by “Model 0”,
while “Model 1” refers to the mere application and monitoring of the prediction-based
bounding algorithm (Section 4). “CAA” shows the performance of the Choosing Amongst
Alternatives framework that was introduced in Section 7.2. We also provide indicative
results of individual monitoring alternatives performance (apart from incorporating
them in CAA). The alternatives are termed as “Average”, “Safer”, and “Intersection1”
denoting the monitoring of the intersection between the original and the predicted
convex hull, while “Intersection2” refers to monitoring the intersection between the
average convex hull and the predicted one. As we demonstrate, none of these alternative
models consistently outperforms the others. On the other hand, our CAA algorithm
intelligently adapts to the characteristics of the data and picks the correct model, often
switching the model of choice even within the same dataset.

For each of the lines in the graphs, we enclosed the chosen predictor using LG to
denote the Linear Growth predictor and VA−W so as to declare a Velocity/Acceleration
predictor with a window of W measurements5.

9.1. Corpus Dataset—Cash Register Paradigm

We begin our study by examining the performance of our techniques in the Corpus
dataset on par with the cash register paradigm adoption. Figure 8 depicts the perfor-
mance of Model 0 and of the CAA approach when using the LG and the V A predictors.
Since almost 6000 documents are received within a period of a month [Sharfman et al.
2008], we choose a W = 200 window for the VA predictor which is expected to be roughly
the amount of news stories received daily. Each column of the figure corresponds to the
case of the terms “Bosnia”, “Ipo”, and “Febru”, respectively.

Sensitivity to Threshold—Chi Square. As shown at the top of the first (left) column
of Figure 8, where the χ2 function for the term “Bosnia” is monitored, Model 0 appears
to always be about 2 and 1.85 times worse in terms of the number of transmitted
messages when compared to the CAA(LG) and CAA(VA-200) approaches, respectively,
for different threshold values (Figure 8(a)) using 10 sites.

Sensitivity to Threshold—Mutual Information (MI). Moving to the second and third
row of the left column of Figure 8(a) we investigate the cases of the “Ipo” as well as
“Febru” terms, monitoring the MI function across different threshold values for a 10-
site configuration (note that MI is calculated as a logarithm, therefore the negative
threshold values in that axis). In these graphs the peak that occurs at 0.4 and 0 for the
“Ipo” and “Febru” involves an accumulation of synchronizations around the average
value that the MI function possesses along the run. We again observe that CAA(LG)
performs 1.75–2.1 times better than the Model 0 case for both monitored terms. Despite
the fact that CAA(VA-200) is proved slightly worse compared to CAA(LG), it is still able
to better amend the peak that occurs in “Febru” monitoring for a 0 threshold.

Sensitivity to Number of Sites. Eventually, switching to Figure 8(b), for the “Bosnia”
term (top figure on the right) the relative benefits remain almost the same across all
network scales. For the “Ipo” term monitoring (middle row on the right) we observe
that Model 0 is steadily more than 1.8 times worse than the CAA(LG) choice across
different scales. CAA(VA-200) performs worse than the CAA(LG) case for network

5We focus on comparing the performance of our prediction-based geometric monitoring techniques
against Sharfman et al. [2006, 2007b] (Model 0), since we expect our prediction-based methods to give
similar benefits when operating over the ellipsoidal bounding regions of Sharfman et al. [2008] to those seen
in our current study using spherical constraints as in Sharfman et al. [2006, 2007b].
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Fig. 8. Corpus dataset: Performance of our techniques in the cash register streaming paradigm.

configurations up to 80 sites. Nonetheless, the introduction of additional sites (along
with their respective substreams) in 90-, 100-site cases, causes the MI function to
always lie below the posed zero threshold since the “Ipo” term becomes more rare. This
fact is perfectly read by the CAA(VA-200) approach, the transmitted messages of which
approach zero. A similar behavior appears early at the third row of the right column of
Figure 8(b) for the “Febru” case where the introduction of more than 10 sites causes MI
to be negative, which is again accurately pinpointed by the CAA(VA-200) monitoring
model reaching savings of three orders of magnitude size.

In the previously presented graphs we omitted the lines for the mere application of
Model 1 to keep the diagram readable, since Model 1 shows almost identical (actually
CAA can occasionally save a few tens of extra messages) behavior with its corresponding
CAA applications. CAA possesses the ability to recognize the utility of Model 1 (the
mere application of predictors as described in Section 4) in this setting and encompass
it throughout its operation. On the other hand, this fact exhibits the ability of Model 1
to provide an efficient solution in environments where vi values evolve relatively slowly.
Nonetheless, as we will shortly present, this is not always true in scenarios where more
dynamic updates occur.

9.2. Weather Data—Sliding-Window Paradigm

We proceed to the sliding-window operation, using the Weather dataset and monitoring
the Var and StN functions. Please note that in all the graphs presented in the current
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section the Linear Growth predictor is not applicable since it assumes that local vec-
tors (vi) uniformly evolve by a time-dependent factor (Section 3.2), which is obviously
unrealistic for the physical measurements in the Weather data and the sliding-window
application scenario. We thus compare the performance of Model 0, Model 1(VA-W),
and CAA(VA-W) cases in our study. For the CAA(VA-W) monitoring model we again
choose the window based on natural time units’ division. We uniformly utilize a predic-
tion window W = 10 which corresponds to the latest minutes of received observations,
except for the Wind Peak data where W = 50 was chosen to adjust predictions to the
expected frequency of the peaks in the wind blasts. For each dataset-function pair,
the default value of the sliding-window size, over which the corresponding function is
computed, is 200 measurements. However, we also perform a sensitivity analysis on
this parameter as well.

Variance Monitoring. Figure 9(a) plots the performance of the techniques in the case
of Var monitoring in the Solar Irradiance Data. On the left of the first row of the
figure we observe that the cost of Model 0 ranges between 11 and 600 times larger
than the cost yielded by CAA(VA-10) monitoring model, while CAA(VA-10) ensures up
to 500 times lower cost even when compared with Model 1 across different thresh-
olds. A case of particular interest shows up for a threshold of 30000. There, Model 1
shows a peak in the number of transmitted messages which are higher even when
compared to Model 0. This happens due to the existence of specific sites whose drift
vectors approach the threshold surface as noted in Figure 3. Obviously, increasing the
threshold to 40000 alters the threshold surface and thus hinders the same sites to
cause threshold violations. Nonetheless, CAA(VA-10) maintains low transmission cost
due to the loosened intersection monitoring capabilities (Section 6.2) that it embodies.
We will revisit this issue in the next section were we look into the operational details
of the CAA monitoring model. In the meantime we note that the same applies for the
second row on the left of Figure 9(a) where increasing the scale of the network results
in CAA(VA-10) savings that reach a number of 30 times compared to Model 0 and they
become even larger when compared to Model 1. Eventually, the third row on the left
of the same figure shows the resilience of our techniques when altering the employed
size of observations encapsulated in the sliding window for 10 sites. CAA(VA-10) shows
similar behavior when enlarging the window. Model 1 yields more synchronizations for
a window of 200 observations since enlarging the window causes the variance values
within it to increase, and thus some sites approach the posed threshold of 50000. The
lack of the alternative mechanisms that are incorporated in CAA leads sites merely
utilizing Model 1 to threshold crossings. Finally, Model 0 exhibits high sensitivity to
the number of values that local vectors (vi) are built upon.

On the right column of Figure 9(a) we also provide indicative results of individual
monitoring models’ performance. To keep the diagram readable, instead of incorpo-
rating all seven value series on the same graph, we group the performances of the
Average, Safer, Intersection1, and Intersection2 on the right diagram using the same
scale on the vertical axis (parts of the series that exceed the used maximum value
of the vertical axis are left outside the plot) and present the two graphs side by side
so that the trends can easily be observed. In all three rows of the right column of
Figure 9(a) we observe that the CAA approach holds the best performance in the vast
majority of the cases, with the exception of Intersection1 performing better for 90
and 100 sites in the middle row of the figure. Apart from this, the Safer model more
closely approaches CAA’s performance upon varying the threshold (top figure on the
right). When the degree of distribution of sites increases (middle row on the right) the
Safer as well as the Average model, although less efficient, appear to be acceptable
secondary choices, while varying the window size (bottom row on the right) leaves the
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Fig. 9. Weather dataset: Performance of our techniques in the sliding-window streaming paradigm for
variance monitoring.
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Intersection1 and Safer models unaffected. These observations (together with those
noted in the upcoming figures) validate our initial claim that no sole alternative con-
sistently holds the best performance.

Figure 9(b) presents corresponding results for Var monitoring in the Wind Speed
dataset. Model 1 is slightly worse (almost 1%) in terms of transmitted messages com-
pared to CAA(VA-10) when varying the threshold (first column at the top of the figure)
and across different network scales (second column at the top), yet both result in
savings ranging between 3 and 13 times compared to the message cost of Model 0.
Furthermore, at the bottom row of Figure 9(b) we observe that both CAA(VA-10) and
Model 1 remain resilient to altering the sliding-window size, ensuring significant ben-
efits when compared to Model 0. Notice that, for a window of 100 observations, Model 1
performs better than CAA(VA-10). Recall that CAA resolves ties in the choice of the
monitoring mechanism (Section 7) by picking a random model among those which did
not cause a threshold crossing. Thus, when a particular model is always the appropri-
ate choice, the adaptive CAA algorithm may sometimes end up transmitting slightly
more messages. The results are similar for the Wind Peak dataset which we omit.

Signal-to-Noise Monitoring. In our next experiment we utilized the same motif for
analyzing the performance of our techniques in monitoring the StN function. We begin
our discussion with the Solar Irradiance dataset in Figure 10(a). CAA(VA-10) performs
up to three times better than Model 0 when varying the threshold for 10 sites (left
column at the top of the figure) and up to five times across network configurations of
10–100 sites (second column at the top). Model 1 is again the worst choice as it yields
2–5 times higher cost compared to Model 0 across different thresholds and appears over
two times worse than Model 0 for different scales. At the bottom row of Figure 10(a), it
is evident that CAA(VA-10) again remains mostly unaffected to different window sizes,
while Model 1 exhibits a wavy behavior depending on the accuracy of the employed
VA-10 predictor.

We then analyze the performance of the Wind Peak data in StN monitoring
(Figure 10(b)) (the Wind Speed data had similar behavior). On the left column of
the figure we observe that Model 1 and CAA possess similar performance across dif-
ferent thresholds with savings ranging between 4 and 85 times compared to the cost of
Model 0. The same holds in large part when varying the network scale (middle row on
the left in Figure 10(b)) where savings reach a factor of 5. An exception occurs for 40- and
50-site configuration cases. This is another occasion where site predictors lie close to the
threshold surface for the given threshold of 0.5 and CAA manages to achieve increased
savings due to the intersection monitoring capacity. As more sites are added in the
subsequent steps (60–100-site configurations) the predicted estimate’s (ep) position is
affected and thus the sites that were previously causing synchronizations (despite their
restricted local constraints, i.e., balls) were ousted from the threshold surface, stabiliz-
ing the cost of Model 1. Eventually, as with the previously examined functions-dataset
pairs, the CAA monitoring model is not sensitive to changes in the window size (bottom
row on the left of Figure 10(b)) while Model 0 and Model 1 exhibit opposite trends upon
enlarging it. Overall, Model 0’s cost is 5 to 35 times the transmission cost of CAA, while
savings against Model 1 range between 4 to 9 times across different window sizes.

As in Figure 9(a), we include performance results of individual model’s adoption
for the Wind Peak dataset and StN monitoring on the right column of Figure 10(b).
It is once again obvious that the CAA approach manages to derive the most out of
the available alternatives function as its performance approaches or exceeds the more
efficient individual monitoring model, irrespective of varying the threshold (top figure
on the right column of Figure 10(b)), the number of sites (middle row on the right), or the
size of the window (bottom row on the right). In the case of varying the posed threshold,
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Fig. 10. Weather dataset: Performance of our techniques in the sliding-window streaming paradigm for StN
monitoring.
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Table IV. Case Study: Solar-Var vs. Threshold Monitoring

Threshold Model 0 Model 1 Average Safer Intersection 1 Intersection 2

10000 0 15 0 3 0 0
30000 105 0 0 0 4 25
50000 7 0 0 0 5 3
70000 0 0 1 0 0 1
90000 0 0 1 0 0 1

the Average and the Safer models’ performance is closer to the one of the CAA’s,
while the same holds in most part upon varying the number of sites in the network.
On the other hand, varying the window size appears to slightly favor the Intersection1
monitoring framework which exhibits slightly better performance compared to CAA.

9.3. CAA Operational Insights

We are now providing additional details regarding the choices that CAA makes through-
out its operation to investigate the stem of its benefits. Since it is hard to present
analytic statistics of alternative models’ usage for every single case of the previously
discussed graphs, we focus on two situations where Model 1 exhibits possibly unex-
pected peaks in the number of messages and examine the tools that CAA utilizes to
avoid similarly high message exchange.

The first of the aforementioned cases regards the Solar Irradiance under Var moni-
toring against different thresholds and for 10 sites (left figure of Figure 9(a)). Table IV
shows the CAA choices for different thresholds. We point out that for threshold >10000
(where it exhibits low costs) Model 1 is never employed by CAA. For the threshold-
30000 case, Model 0 appears as the most frequent choice but it is only used during the
first synchronizations until predictors are stabilized around the threshold surface (if
Model 0 was continuously picked, CAA would have had similar cost to Model 0). After-
wards, the loosened intersection framework is chosen which safely leads the monitoring
procedure to the decrement of the transmission cost, as shown in Figure 9(a).

Comparing the choices of the CAA approach in Table IV with the top-right graph in
Figure 9(a), a contradiction seems to arise since the table shows that CAA often chooses
the Intersection1 and Intersection2 tracking models, which, however, appear to lack
performance upon operating individually in Figure 9(a). This reveals another impor-
tant aspect of the integration of the alternative monitoring frameworks inside the CAA
approach. This is because the intersection monitoring frameworks cause many synchro-
nizations (almost continuous central data collection) at the beginning to the middle of
the monitoring process and they carry this communication burden irrespectively of how
well they perform afterwards. This explains the bad performance of Intersection1 and
Intersection2 in Figure 9(a). On the other hand, the CAA approach (as Table IV shows)
prefers some other tracking alternative while intersections are inefficient and elects
the loosened intersection monitoring schemes only when they are ready to prevent syn-
chronizations. In other words, CAA can achieve increased performance by determining
the order by which the available alternatives will be used, thus possessing the ability
to choose the proper alternative at the right time throughout the tracking process.

The second case we distinguished during our discussion was the peak that occurs
when monitoring the Wind Peak data under the StN function for network configura-
tions of different scale (middle figure of Figure 10(b)). As Table V shows, for 10 sites
the savings CAA provides are mostly attributed to the Average and Safer model usage,
while for 40, 50, and more sites, this is combined with the single time that Intersec-
tion2 is employed by CAA, which hinders communication for a considerable amount of
time. These choices are in accordance with the results extracted in Figure 10(b) where
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Table V. Case Study: Wind Peak-StN vs. No. Sites Monitoring

# Sites Model 0 Model 1 Average Safer Intersection 1 Intersection 2

10 35 16 25 35 1 3
40 8 6 12 19 0 1
50 13 10 7 17 0 1
80 12 14 9 14 0 1
90 9 9 12 21 0 1

Model 1, the Average, and Safer models exhibit comparable performance to CAA’s
performance.

9.4. Impact of Predictor’s Accuracy

In the current section we analyze the impact of the accuracy of the predictor on the
performance that individual monitoring models and the CAA approach exhibit. We
employ our Synthetic dataset produced as described in the introductory part of Sec-
tion 9 and Coefficient of Variation (CoV) is the function under study. The window size
employed in our VA predictors equals the window of observations’ size. Since site mea-
surements were generated based on a specific VA model, when no noise exists, local
predictors are absolutely accurate and Model 1’s convex hull is reduced to a single point.
Figure 11 depicts corresponding results upon varying the percentage of noise imposed
in local measurements, the posed threshold, the scale of the distributed network, and
the window size.

At the top row of Figure 11 we present the communication cost of the monitoring mod-
els upon varying the posed threshold for a fixed amount of 25% noise in the streaming
tuples. Once again the CAA approach achieves the best performance among the mon-
itoring models, with Model 1 and Model 0 falling short up to an order and two orders
of magnitude, respectively. As regards the rest of the alternatives (right column of the
first row), the Average and the Safer Model may require up to 19 times more messages
compared to CAA, Intersection1 appears up to four times worse while Intersection2
better approaches CAA’s performance, being up to 3.5 times worse. Inspecting Model 1’s
cost, which is mainly affected by the accuracy of the local predictors, we observe a mid-
dle case for the resulting overhead for a threshold of 0.8. We therefore choose that
threshold value to test our models against different noise percentages imposed on the
original datasets.

At the second row of Figure 11 we present the communication cost of the monitoring
models upon varying the percentage of noise (0%–50%) imposed on the site’s local
measurements for fixed 0.8 threshold value and 10-sites configuration. Model 1 remains
resilient when injecting 0% to 10% noise (0% noise represents the case of perfectly
accurate predictors). Its communication cost is doubled in each of the following steps as
measurements become more obscured from VA predictors’ estimations, until it reaches
a maximum for 50% noise. As we expected, increasing the amount of noise deteriorates
the performance of Model 1 as the monitored convex hull is enlarged. Model 0 appears
the worst choice, being 2–37 times worse compared to Model 1. Reckoning that Model
0 assumes stability of sites’ measurements, it is also severely affected by increasing
the percentage of noise in the dataset, reaching the maximum communication cost for
50% noise. On the other hand, CAA is resilient for up to 30% injected noise, wherein its
communication cost reaches its maximum value for the case of 40% and remains stable
in the next 50% noise level. CAA appears up to 2.5 times better compared to Model 1
and at least seven times better than Model 0. The Average model better approaches
CAA’s performance for noise levels up to 20%. For 30% noise the Safer Model falls short
by an order of magnitude while Intersection1 provides five times worse performance.
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Fig. 11. Synthetic dataset: CoV monitoring.

Intersection2 as well as the Safer model resemble CAA for 40% noise even yielding
lower overhead for the 50% case.

Another possible way of increasing the overall variation in the dataset is by increas-
ing the number of sites participating in the distributed network, even when keeping the
noise percentage unchanged (25%). Hence, in the third row of Figure 11, we present the
communication cost of the various alternatives for different network scales. Increasing
the number of sites aggravates the total error (dispersion from a perfect predictor) in
the dataset and thus Model 1’s cost boosts with the number of sites. Model 0 is up to
nine times worse compared to the CAA approach while Model 1 provides up to two
times worse cost. The rest of the alternatives fluctuate a lot across various network
sizes with the middle case of the Safer Model appearing at least two times worse than
CAA for network sizes above 50. The Intersection1 model resembles CAA with up to
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Fig. 12. Weather dataset—Temperature: Approximate query answering performance.

30% higher number of transmitted messages, performing proportionately better for
70–80 sites in the network.

To complete the picture we also experiment with different window sizes as the num-
ber of noisy measurements in a window has an impact on the performance of our
predictors and the corresponding monitoring models. In this case, we choose a VA
predictor’s window size equivalent to the window of observations. This choice stems
from the intuition that, should no noise exist (the noise is again set 25%), the previous
VA window should perfectly forecast the observations of the upcoming one. The out-
comes presented at the bottom row of Figure 11 show in large part that the more noisy
measurements that exist in a window, the higher the communication cost for all the pre-
sented alternatives. This situation is once again better remedied by the CAA approach
which constitutes the more efficient choice amongst the presented alternatives.

9.5. Approximate Query Processing

Finally, in Figure 12 we present an experimental analysis regarding our prediction-
based query answering procedures, introduced in Section 8, utilizing temperature
measurements in the Weather dataset. As in Burdakis and Deligiannakis [2012], we
perform L2-norm as well as cosine (Cos) monitoring and measure the number of trans-
mitted messages for different ε values (please recall that we enforce | f (ep(t))− f (v(t))| ≤
ε), network scale configurations, and sliding-window sizes. We use the two most recent
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readings in the VA predictor, namely VA−2. The adoption of the simple Decomposition
to Local Constraints (DLC) approach provides no communication reduction in the case
of Cos monitoring while allowing relatively small savings which range between 1% to
12% compared to the DLC Model 0 in L2 approximate tracking. This happens due to
the tight approximation requirements, that is, the magnitudes of the ε value that are
placed while performing approximate Cos answers. The latter fact shows that the mere
adoption of good predictors does not achieve significant message reduction when the δ
parameter which determines the radius of the constructed hypersphere (see Inequal-
ity (7) and Figure 7) receives small values. However, it is important to note that the
number of transmitted messages by the DLC approach is still always half the number
of messages that the mere adoption of Model 1 and Model 0 (omitted in Figure 12)
would require, respectively. This happens because, as noted in Section 8.1.1, the DLC
framework does not require any information to be broadcasted back to the sites. Hence,
one-way communication suffices during each synchronization process, which in turn
halves the number of transmitted messages.

On the contrary, the application of CAA on the techniques of Section 8.1.2 (diamonded
line approaching the horizontal axis in Figure 12) is capable of providing communica-
tion savings from 400 times to three orders of magnitude compared to DLC Model 1,
which are even higher when compared to DLC Model 0 for both of the monitored func-
tions. Hence, we have validated the claim of Section 8.1.2 regarding the flexibility of
the CAA approach to simultaneously tune both the size and the position of the local
constraints so as to improve approximate query answering performance.

10. CONCLUSIONS

In this article, we presented a thorough study regarding the generalization of the
geometric approach of Sharfman et al. [2006, 2007b] by prediction models’ adoption.
After identifying the peculiarities exhibited by predictors upon their implementation
in the aforementioned environment, we developed a solid theoretic framework com-
posed of conditions rendering predictors more likely to lighten the communication
burden. We proposed algorithms incorporating these conditions and expanded on their
relaxed versions, along with extensive theoretical analysis on their expected benefits.
We also directed our study on approximate f (v(t)) tracking scenarios and expanded
our algorithms with enrichments tailored for efficiently fulfilling that particular task.
Our ongoing efforts in this area explore the choice of optimal reference points, as in
Sharfman et al. [2008] that, together with probing only a representative subset of the
sites, may loosen the conditions of strict containment.
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