
9

Approximate Continuous Querying
over Distributed Streams

GRAHAM CORMODE

AT&T Labs–Research

and

MINOS GAROFALAKIS

Yahoo! Research & University of California, Berkeley

While traditional database systems optimize for performance on one-shot query processing, emerg-

ing large-scale monitoring applications require continuous tracking of complex data-analysis

queries over collections of physically distributed streams. Thus, effective solutions have to be si-

multaneously space/time efficient (at each remote monitor site), communication efficient (across

the underlying communication network), and provide continuous, guaranteed-quality approximate

query answers. In this paper, we propose novel algorithmic solutions for the problem of continu-

ously tracking a broad class of complex aggregate queries in such a distributed-streams setting.

Our tracking schemes maintain approximate query answers with provable error guarantees, while

simultaneously optimizing the storage space and processing time at each remote site, and the com-

munication cost across the network. In a nutshell, our algorithms rely on tracking general-purpose

randomized sketch summaries of local streams at remote sites along with concise prediction models

of local site behavior in order to produce highly communication- and space/time-efficient solutions.

The end result is a powerful approximate query tracking framework that readily incorporates sev-

eral complex analysis queries (including distributed join and multi-join aggregates, and approx-

imate wavelet representations), thus giving the first known low-overhead tracking solution for

such queries in the distributed-streams model. Experiments with real data validate our approach,

revealing significant savings over naive solutions as well as our analytical worst-case guarantees.

Categories and Subject Descriptors: H.4.3 [Information Systems Applications]: Communica-

tions Applications; H.2.4 [Database Management]: Systems—Query processing

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Continuous distributed monitoring, data stream algorithms,

data synopses, approximate query processing

Parts of this work were done while G. Cormode was with Bell Labs, Alcatel-Lucent Technologies,

and M. Garofalakis was with Bell Labs, Alcatel-Lucent Technologies, and Intel Research Berkeley.

This paper extends work originally published as [Cormode and Garofalakis 2005].

Authors’ current addresses: G. Cormode AT&T. Labs-Research, 180 Park Ave., Florham Park, NJ;

email: cormode@research.att.com; M. Garofalakis, Yahoo! Research, 2821 Mission College Blvd.,

Santa Clara, CA; email: minos@yahoo-inc.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0362-5915/2008/06-ART9 $5.00 DOI 10.1145/1366102.1366106 http://doi.acm.org/

10.1145/1366102.1366106

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:2 • G. Cormode and M. Garofalakis

ACM Reference Format:
Cormode, G. and Garofalakis, M. 2008. Approximate continuous querying over distributed streams.

ACM Trans. Datab. Syst. 33, 2, Article 9 (June 2008), 39 pages. DOI = 10.1145/1366102.1366106

http://doi.acm.org/10.1145/1366102.1366106

1. INTRODUCTION

Traditional data-management applications typically require database support
for a variety of one-shot queries, including lookups, sophisticated slice-and-dice
operations, data mining tasks, and so on. One-shot means the data processing is
done in response to the posed query. This has led to a very successful industry of
database engines optimized for supporting complex, one-shot SQL queries over
large amounts of data. Recent years, however, have witnessed the emergence
of a new class of large-scale event monitoring applications that pose novel data-
management challenges. In one class of applications, monitoring a large-scale
system is a crucial aspect of system operation and maintenance. As an example,
consider the Network Operations Center (NOC) for the IP-backbone network
of a large ISP (such as Sprint or AT&T). Such NOCs are typically impressive
computing facilities, monitoring 100’s of routers, 1000’s of links and interfaces,
and blisteringly-fast sets of events at different layers of the network infras-
tructure (ranging from fiber-cable utilizations to packet forwarding at routers,
to VPNs and higher-level transport constructs). The NOC has to continuously
track and correlate usage information from a multitude of monitoring points
in order to quickly detect and react to hot spots and floods, failures of links
or protocols, intrusions, and attacks. A different class of applications is one in
which monitoring is the goal in itself. For instance, consider a wireless network
of seismic, acoustic, and physiological sensors that are deployed for habitat,
environmental, and health monitoring. The key objective for such systems is
to continuously monitor and correlate sensor measurements for trend analysis,
detecting moving objects, intrusions, or other adverse events. Similar issues
arise in sophisticated satellite-based systems that do atmospheric monitoring
for weather patterns.

A closer examination of such monitoring applications allows us to abstract
a number of common characteristics. First, monitoring is continuous, that is,
we need real-time tracking of measurements or events, not merely one-shot re-
sponses to sporadic queries. Second, monitoring is inherently distributed, that
is, the underlying infrastructure comprises several remote sites (each with its
own local data source) that can exchange information through a communication
network. This also means that there typically are important communication
constraints owing to either network-capacity restrictions (e.g., in IP-network
monitoring, where the volumes of collected utilization and traffic data can be
huge [Cranor et al. 2003]), or power and bandwidth restrictions (e.g., in wireless
sensor networks, where communication overhead is the key factor in determin-
ing sensor battery life [Madden et al. 2003]). Furthermore, each remote site
may see a high-speed stream of data and has its own local resource limitations,
such as storage-space or processing-time constraints. This is certainly true for IP

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:3

routers (that cannot possibly store the log of all observed packet traffic at high
network speeds), as well as wireless sensor nodes (that, even though they may
not observe large data volumes, typically have very little memory onboard).

Another key aspect of large-scale event monitoring is the need for effectively
tracking queries that combine and/or correlate information (e.g., IP traffic or
sensor measurements) observed across the collection of remote sites. For in-
stance, tracking the result size of a join (the “workhorse” correlation operator
in the relational world) over the streams of fault/alarm data from two or more
IP routers (e.g., with a join condition based on their observed timestamp values)
can allow network administrators to effectively detect correlated fault events at
the routers, and, perhaps, also pinpoint the root-causes of specific faults in real
time. As another example, consider the tracking of a two- or three-dimensional
histogram summary of the traffic-volume distribution observed across the edge
routers of a large ISP network (along axes such as time, source/destination
IP address, etc.); clearly, such a histogram could provide a valuable visual-
ization tool for effective circuit provisioning, detection of anomalies and DoS
attacks, and so on. Interestingly, when tracking statistical properties of large-
scale systems, answers that are precise to the last decimal are typically not
needed; instead, approximate query answers (with reasonable guarantees on
the approximation error) are often sufficient, since we are typically looking for
indicators or patterns, rather than precisely-defined events. This works in our
favor, allowing us to effectively tradeoff efficiency with approximation quality.

Prior Work. Given the nature of large-scale monitoring applications, their im-
portance for security as well as daily operations, and their general applicability,
surprisingly little is known about solutions for many basic distributed-
monitoring problems. The bulk of recent work on data-stream processing has fo-
cused on developing space-efficient, one-pass algorithms for performing a wide
range of centralized, one-shot computations on massive data streams; exam-
ples include computing quantiles [Greenwald and Khanna 2001], estimating
distinct values [Gibbons 2001], and set-expression cardinalities [Ganguly et al.
2003], counting frequent elements (i.e., “heavy hitters”) [Charikar et al. 2002;
Cormode and Muthukrishnan 2003; Manku and Motwani 2002], approximating
large Haar-wavelet coefficients [Gilbert et al. 2001], and estimating join sizes
and stream norms [Alon et al. 1999; Alon et al. 1996; Dobra et al. 2002]. As
already mentioned, all these methods work in a centralized, one-shot setting
and, therefore, do not consider communication efficiency issues. More recent
work has proposed methods that carefully optimize site communication costs
for approximating different queries in a distributed setting, including quan-
tiles [Greenwald and Khanna 2004] and heavy hitters [Manjhi et al. 2005];
however, the underlying assumption is that the computation is triggered either
periodically or in response to a one-shot request. Such techniques are not imme-
diately applicable for continuous-monitoring, where the goal is to continuously
provide real-time, guaranteed-quality estimates over a distributed collection of
streams.

It is important to realize that each of the dimensions of our problem (distri-
buted, continuous, and space-constrained) induce specific technical bottlenecks.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:4 • G. Cormode and M. Garofalakis

For instance, even efficient streaming solutions at individual sites can
lead to constant updates on the distributed network and become highly
communication-inefficient when they are directly used in distributed moni-
toring. Likewise, morphing one-shot solutions to continuous problems entails
propagating each change and recomputing the solutions which is communica-
tion inefficient, or involves periodic updates and other heuristics that can no
longer provide real-time estimation guarantees.

Prior research has looked at the monitoring of single values, and building
appropriate models and filters to avoid propagating updates if these are in-
significant compared to the value of a simple aggregate (e.g., to the SUM of the
distributed values). Olston et al. [2003] propose a scheme based on “adaptive
filters”—that is, bounds around the value of distributed variables, which shrink
or grow in response to relative stability or variability, while ensuring that the
total uncertainty in the bounds is at most a user-specified bound δ. [Jain et al.
2004] propose building a Kalman Filter for individual values, and only propa-
gating an update in a value if it falls more than δ away from the predicted value.
The BBQ system [Deshpande et al. 2004] builds a dynamic, multidimensional
probabilistic model of a set of distributed sensor values (viewed as random
variables) to drive acquisitional query processing. Given a simple SQL-style
query, the system determines whether it is possible to answer the query only
from the model information, or whether it is necessary to poll certain locations
for up-to-date information. This was extended to the continuous case in the
Ken system [Chu et al. 2006], which ensured that the probabilistic model at
the central site was kept up to date, to reflect changes in the distributions at
remote sites. The approach involved finding a compromise between the fully-
independent approach of Kalman filters, and the fully-correlated approach of
the BBQ system, and instead capturing correlations only between small cliques
of random variables. A common aspect of all these earlier works is that they
typically consider only a small number of monitored values per site, and assume
that it is feasible to locally monitor and/or build a model for each such value.
In contrast, our problem setup is much more complex, as each resource-limited
site monitors a streaming distribution of a large number of values and cannot
afford to explicitly capture or model each value separately. Moreover, for the
class of complex aggregate queries that we study (e.g., join or multi-join size),
no prior work offers any guaranteed bound on the quality of the query answer,
or any guaranteed trade-off between accuracy and communication cost. While
one could conceivably partition an overall aggregate error bound (e.g., on the
join size) to error bounds for individual values, such a mapping is nontrivial
for our class of aggregates; furthermore, such per-value bounds are likely to be
much too stringent, thus resulting in excessive communication.

Closest in spirit to our work are the results of Babcock and Olston [2003]
and Das et al. [2004], as well as our work on distributed quantile tracking
[Cormode et al. 2005]. All these efforts explicitly consider the tradeoff be-
tween accuracy and communication for monitoring a limited class of continuous
queries (at a coordinator site) over distributed streams (at remote sites). More
specifically, Babcock and Olston [2003] consider tracking approximate top-k val-
ues over dynamically-changing numeric values spread over multiple sources,

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:5

whereas Das et al. [2004] discuss monitoring of approximate set-expression
cardinalities over physically distributed element streams. Similarly, our re-
cent work [Cormode et al. 2005] attacks the problem of approximately track-
ing one-dimensional quantile summaries of a global data distribution spread
over the remote sites. All these earlier papers focus solely on a narrow class
of distributed-monitoring queries (e.g., one-dimensional quantiles), resulting
in special-purpose solutions applicable only to the specific form of queries at
hand. It is not at all clear if/how they can be extended to more general settings
(such as, tracking distributed joins or multidimensional data summaries).

For instance, Das et al. [2004] employ ideas similar to the adaptive filter
bounds of Olston et al. [2003] for the distributed monitoring of set-expression
cardinalities; since their estimation problem relies on set semantics, they pro-
pose a scheme for effectively charging local changes against a site’s error toler-
ance. Similarly, Babcock and Olston [2003] focus on monitoring the top-k (i.e.,
k most frequent) values over remote data streams; their techniques ensure
the validity of the current top-k set (at the coordinator) by installing appro-
priate arithmetic constraints at each site. Once again, these earlier papers
focus on specific distributed-monitoring queries (namely, simple aggregates,
set-expression cardinalities, and top-k), and are not always applicable to more
general settings (specifically, for monitoring summaries of the entire data dis-
tribution or more complex, holistic aggregates over the remote sites).

Following our original conference paper [Cormode and Garofalakis 2005],
Sharfman et al. [2006] have proposed an approach for efficiently monitoring
the value of a general function over distributed data relative to a given thresh-
old. Their solution relies on interesting geometric arguments for breaking up a
global threshold condition on a function into “safe” local conditions that can be
checked locally at each site. The primary focus of Sharfman et al. [2006] is on
a slightly different problem, namely, monitoring a distributed trigger condition
over physically distributed data, and not continuously monitoring a distributed
query result with approximation-error guarantees. Still, some of their geomet-
ric techniques could be applicable in our setting, and combining their ideas with
the results in this paper is an interesting avenue for future work in this area.
Other recent work on distributed-trigger monitoring includes Keralapura et al.
[2006]; Huang et al. [2007a, 2007b].

Our Contributions. In this article, we tackle the problem of continuously track-
ing approximate, guaranteed-quality answers to a broad, general class of com-
plex aggregate queries over a collection of distributed data streams. Our contri-
butions are as follows:

—Communication- and Space-Efficient Approximate Query Tracking. We
present the first known algorithms for tracking a broad class of complex data-
analysis queries over a distributed collection of streams to specified accuracy,
provably, at all times. In a nutshell, our tracking algorithms achieve com-
munication and space efficiency through a combination of general-purpose
randomized sketches for summarizing local streams and concise sketch-
prediction models for capturing the update-stream behavior at local sites.
The use of prediction models, in particular, allows our schemes to achieve a

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:6 • G. Cormode and M. Garofalakis

natural notion of stability, rendering communication unnecessary as long as
local data distributions remain stable (or, predictable). The end result is a
powerful, general-purpose approximate query tracking framework that read-
ily incorporates several complex data-analysis queries (including join and
multi-join aggregates, and approximate wavelet/histogram representations
in one or more dimensions), thus giving the first principled, low-overhead
tracking solution for such queries in the distributed-streams model. In fact,
as our analysis demonstrates, the worst-case communication cost for simple
cases of our protocols is comparable to that of a one-shot computation, while
their space requirement is not much higher than that of centralized, one-shot
estimation methods for data streams.

—Time-Efficient Sketch-Tracking Algorithms, and Extensions to Other Dis-
tributed Streaming Models. When dealing with massive, rapid-rate data
streams (e.g., monitoring high capacity network links), the time needed to
process each update (e.g., to maintain a sketch summary of the stream) be-
comes a critical concern. Traditional approaches that need to “touch” every
part of the sketch summary can quickly become infeasible. The problem is
further compounded in our tracking schemes that need to continuously track
the divergence of the sketch from an evolving sketch prediction. We address
this problem by proposing a novel structure for randomized sketches that
allows us to guarantee small (i.e., logarithmic) update and tracking times
(regardless of the size of the sketch), while offering the same (in fact, slightly
improved) space/accuracy tradeoffs. Furthermore, we discuss the extension of
our distributed-tracking schemes and results to (1) different data-streaming
models that place more emphasis on recent updates to the stream (using
either sliding-window or exponential-decay mechanisms); and (2) more com-
plex, hierarchical-monitoring architectures, where the communication net-
work is arranged as a tree-structured hierarchy of nodes (such as a sensornet
routing tree [Madden et al. 2003]).

—Experimental Results Validating our Approach. We perform a thorough set
of experiments with our schemes over real-life data to verify their benefits
in practical scenarios. The results clearly demonstrate that our algorithms
can result in dramatic savings in communication—reducing overall commu-
nication costs by a factor of more than 20 for an approximation error of only
10%. The use of sophisticated, yet concise, sketch-prediction models is key to
obtaining the best results. Furthermore, our numbers show that our novel
schemes for fast local sketch updates and tracking can allow each remote
site to process many hundreds of thousands of updates per second, matching
even the highest-speed data streams.

2. PRELIMINARIES

In this section, we describe the key elements of our distributed stream-
processing architecture and define the class of distributed query-tracking prob-
lems addressed in this article. We also provide some necessary background
material on randomized stream-sketching techniques that lie at the core of our
proposed solutions.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:7

Fig. 1. Distributed stream processing architecture.

2.1 System Architecture

We consider a distributed-computing environment, comprising a collection of k
remote sites and a designated coordinator site. Streams of data updates arrive
continuously at remote sites, while the coordinator site is responsible for gener-
ating approximate answers to (possibly, continuous) user queries posed over the
unions of remotely-observed streams (across all sites). Following earlier work
in the area [Babcock and Olston 2003; Cormode et al. 2005; Das et al. 2004;
Olston et al. 2003], our distributed stream-processing model does not allow di-
rect communication between remote sites; instead, as illustrated in Figure 1,
a remote site exchanges messages only with the coordinator, providing it with
state information on its (locally observed) streams. Note that such a hierarchical
processing model is, in fact, representative of a large class of applications, in-
cluding network monitoring where a central Network Operations Center (NOC)
is responsible for processing network traffic statistics (e.g., link bandwidth uti-
lization, IP source-destination byte counts) collected at switches, routers, and/or
Element Management Systems (EMSs) distributed across the network.

Each remote site j ∈ {1 , . . . , k} observes local update streams that incre-
mentally render a collection of (up to) s distinct frequency distribution vectors
(equivalently, multi-sets) f1, j , . . . , f s, j over data elements from corresponding
integer domains [Ui] = {0 , . . . , Ui − 1}, for i = 1, . . . , s; that is, f i, j [v] de-
notes the frequency of element v ∈ [Ui] observed locally at remote site j . As
an example, in the case of IP routers monitoring the number of TCP connec-
tions and UDP packets exchanged between source and destination IP addresses,
[U1] = [U2] denote the domain of 64-bit (source, destination) IP-address pairs,
and f1, j , f2, j capture the frequency of specific (source, destination) pairs ob-
served in TCP connections and UDP packets routed through router j . (We use
f i, j to denote both the ith update stream at site j as well as the underlying
element multi-set/frequency distribution in what follows.) Each stream update
at remote site j is a triple of the form 〈i, v, ±1〉, denoting an insertion (“+1”)
or deletion (“−1”) of element v ∈ [Ui] in the f i, j frequency distribution (i.e.,
a change of ±1 in v’s net frequency in f i, j). All frequency distribution vectors
f i, j in our distributed streaming architecture change dynamically over time—
when necessary, we make this dependence explicit, using f i, j (t) to denote the
state of the vector at time t (assuming a consistent notion of “global time” in our

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:8 • G. Cormode and M. Garofalakis

Table I. Summary of Main Notation

Symbol Description

k Number of distributed monitoring sites

s Number of monitored frequency distributions

f Frequency vector defining a distribution

sites(f) Distributed sites possessing components of f
ki Shorthand for |sites(f i)|
U High-dimensional universe (domain) over which frequency vectors are

defined

t (Current) timestamp

tprev Timestamp of most recent update from a given site

� Shorthand for t − tprev

v, a Velocity and acceleration vectors

sk(f) Compact sketch of a distribution f
skp

(f) Predicted sketch of f which can be computed from simple prediction model

ξ Hash function used to define sketches

ε Fractional error desired

δ Probability of returning a result outside approximation bounds

θ Bound on local deviation of L2 norm from prediction

g (ε, θ) Overall error as a function of ε and θ

distributed system). The unqualified notation f i, j typically refers to the current
state of the frequency vector. Table I summarizes some of the key notational con-
ventions used in this paper; additional notation is introduced when necessary.
Detailed symbol definitions are provided at the appropriate locations in the text.

Note that handling delete operations substantially enriches our distributed
streaming model; for instance, it allows us to effectively handle tracking over
sliding windows of the streams by simply issuing implicit delete operations for
expired stream items no longer in the window of interest at remote sites. We also
discuss the extension of our techniques to more complex distributed-tracking
architecture, where the underlying communication network is structured as a
multilevel tree hierarchy (such as the routing trees typically built over sensornet
deployments [Madden et al. 2003]).

2.2 Problem Formulation

For each i ∈ {1, . . . , s}, we define the global frequency distribution vector f i for
the ith update stream as the summation of the corresponding local, per-site
vectors; that is, f i = ∑k

j=1 f i, j . Note that, in general, the local substreams for
a stream f i may only be observed at a subset of the k remote sites—we use
sites(f i) to denote that subset, and write ki = |sites(f i)| (hence ki ≤ k). Our
focus is on the problem of effectively answering user queries over this collec-
tion of global frequency distributions f1, . . . , f s at the coordinator site. Rather
than one-time query evaluation, we assume a continuous-querying environ-
ment, which implies that the coordinator needs to continuously maintain (or,
track) the approximate answers to user queries as the local update streams f i, j
evolve at individual remote sites. More specifically, we focus on a broad class of
user queries Q = Q(f1, . . . , f s) over the global frequency vectors, including:

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:9

—Inner- and Tensor-Product Queries (i.e., Join and Multi-Join Aggregates).
Given a pair of global frequency vectors f1, f2 over the same data domain
[U], the inner-product query

Q(f1, f2) = f1 · f2 =
U−1∑
v=0

f1[v] · f2[v]

is the result size of an (equi)join query over the corresponding streams (i.e.,
| f1 � f2|). More generally, tensor product queries

Q(f i, f l , fm, . . .) = f i · f l · fm · · ·
over multiple (domain-compatible) frequency vectors f i, f l , fm, . . . capture
the result size of the corresponding multi-join query f i � f l � fm · · · [Dobra
et al. 2002]; here the notion of a “frequency vector” is generalized to capture
a (possibly) multi-dimensional frequency distribution (i.e., a tensor). For in-
stance, in the three-way join query

f1 · f2 · f3 =
∑

u

∑
v

f1[u] · f2[u, v] · f3[v],

the f2 vector captures the joint distribution of the two attributes of stream f2

participating in the join. Without loss of generality, we continue to view such
multi-dimensional frequency tensors as vectors (e.g., assuming some stan-
dard linearization of the tensor entries, such as row-major). In the relational
world, join and multi-join queries are basically the “workhorse” operations
for correlating two or more data sets. Thus, they play a crucial role in any kind
of data analysis over multiple data collections. Our discussion here focuses
primarily on join and multi-join result sizes (i.e., COUNT aggregates), since
our approach and results extend to other aggregate functions in a relatively
straightforward manner (as discussed in Dobra et al. [2002]).

— L2-Norm Queries (i.e., Self-Join Sizes). The self-join size query for a (global)
stream f i is defined as the square of the L2 norm (‖ · ‖) of the corresponding
frequency vector; that is,

Q(f i) = ‖ f i‖2 = f i · f i =
∑

v
(f i[v])2.

The self-join size represents important demographic information about a
data collection; for instance, its value is an indication of the degree of skew
in the data Alon et al. [1996].

—Range Queries, Point Queries, and Heavy Hitters. A range query with
parameters [a, b] over a frequency distribution f i is the sum of the values
of the distribution in the given range; that is,

R(f i, a, b) =
b∑

v=a
f i[v].

A point query is the special case of a range query when a = b. The heavy hit-
ters are those points v ∈ Ui satisfying R(f i, v, v) ≥ φ·R(f i, 0, Ui−1) (i.e., their
frequency exceeds a φ-fraction of the overall number of stream elements) for
a given φ < 1 [Charikar et al. 2002; Cormode and Muthukrishnan 2004].

—Histogram and Wavelet Representations. A histogram query H(f i, B) or
wavelet query W (f i, B) over a frequency distribution f i asks for a B-bucket

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:10 • G. Cormode and M. Garofalakis

histogram representation, or a B-term (Haar) wavelet representation of the
f i vector, respectively. The goal is to minimize the error of the resulting
approximate representation, typically defined as the L2 norm of the differ-
ence between the H(f i, B) or W (f i, B) approximation and either the true
distribution f i, or the best-possible B-term representation of f i [Gilbert
et al. 2001; Thaper et al. 2002].

In general, any problem which requires an accurate estimation of the L2

norm of a vector or vectors, or which requires accurate estimation of vector
inner-products, can be continuously monitored on top of the framework we pro-
pose here. However, this does not include several other queries, such as tracking
count-distinct or clusterings of data, which require other approaches in order
to monitor accurately.

Approximate Query Answering. The distributed nature of the local streams
comprising the global frequency distributions { f i} raises difficult algorithmic
challenges for our approximate query tracking problems. Naı̈ve schemes that
accurately track query answers by forcing remote sites to ship every remote
stream update to the coordinator are clearly impractical, since they not only
impose an inordinate burden on the underlying communication infrastructure
(especially, for high-rate data streams and large numbers of remote sites), but
also drastically limit the battery life of power-constrained remote devices (such
as wireless sensor nodes) [Deshpande et al. 2004; Madden et al. 2003]. A main
part of our approach is to adopt the paradigm of continuous tracking of ap-
proximate query answers at the coordinator site with strong guarantees on
the quality of the approximation. This allows our schemes to effectively trade-
off communication efficiency and query-approximation accuracy in a precise,
quantitative manner; in other words, larger error tolerances for the approxi-
mate answers at the coordinator imply smaller communication overheads to
ensure continuous approximate tracking.

2.3 Randomized Sketching of Streams

Techniques based on small-space pseudo-random sketch summaries of the data
have proved to be very effective tools for dealing with massive, rapid-rate data
streams in a centralized setting [Alon et al. 1996; Alon et al. 1999; Cormode
and Muthukrishnan 2004; Gilbert et al. 2001; Dobra et al. 2002]. The key idea
in such sketching techniques is to represent a streaming frequency vector f
using a much smaller sketch vector (denoted by sk(f)) that can be easily main-
tained as the updates incrementally rendering f are streaming by. Typically,
the entries of the sketch vector sk(f)) are appropriately defined random vari-
ables with some desirable properties that can provide probabilistic guarantees
for the quality of the data approximation.

More specifically, consider the AGMS (or “tug-of-war”) sketches proposed by
Alon, Gibbons, Matias, and Szegedy in their seminal papers [Alon et al. 1996;
Alon et al. 1999]:1 The ith entry in an AGMS sketch sk(f) is defined as the

1Our techniques and results can also be extended to other randomized stream sketching meth-

ods, such as the Count-Min sketches [Cormode and Muthukrishnan 2004]; the details are quite

straightforward, and are omitted in order to simplify the exposition.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:11

random variable
∑U−1

v=0 f[v] · ξi[v], where {ξi[v] : v ∈ [U]} is a family of four-wise
independent binary random variables uniformly distributed in {−1, +1} (with
mutually-independent families used across different entries of the sketch). The
key here is that, using appropriate pseudo-random hash functions, each such
family can be efficiently constructed on-line in small (i.e., O(log U)) space [Alon
et al. 1996]. Note that, by construction, each entry of sk(f) is essentially a
randomized linear projection (i.e., an inner product) of the f vector (using the
corresponding ξ family), that can be easily maintained over the input update
stream: Start with each counter sk(f)[i] = 0 and, for each i, simply set

sk(f)[i] = sk(f)[i] + ξi[v] (respectively, sk(f)[i] = sk(f)[i] − ξi[v])

whenever an insertion (resp., deletion) of v is observed in the stream. Another
critical property is the linearity of such sketch structures: Given two “parallel”
sketches (built using the same ξ families) sk(f1) and sk(f2) and scalars α, β,
then

sk(α f1 + β f2) = αsk(f1) + βsk(f2)

(i.e., the sketch of a linear combination of streams is simply the linear combina-
tion of their individual sketches). The following theorem summarizes some of
the basic estimation properties of AGMS sketches (for centralized streams) that
we employ in our study. (Throughout, the notation x ∈ (y ± z) is equivalent to
|x − y | ≤ |z|.) For these sketches, we use the standard “inner product” operator
over sketch vectors as shorthand for a slightly more complex operator, involving
both averaging and median-selection operations over the sketch-vector compo-
nents [Alon et al. 1999; Alon et al. 1996]—formally, each sketch vector can be
viewed as a two-dimensional n × m array, where n = O(1

ε2), m = O(log(1/δ)),
and the “inner product” in the sketch-vector space for both the join and self-join
case is defined as

sk(f1) · sk(f2) = median
j=1,...,m

{
1

n

n∑
i=1

sk(f1)[i, j] · sk(f2)[i, j]

}
.

THEOREM 2.1 ([ALON ET AL. 1999; ALON ET AL. 1996]). Let sk(f1) and sk(f2)
denote two parallel sketches comprising O(1

ε2 log(1/δ)) counters, built over the
streams f1 and f2, where ε, 1 − δ denote the desired bounds on error and
probabilistic confidence, respectively. Then, with probability at least 1 − δ,
‖sk(f1) − sk(f2)‖2 ∈ (1 ± ε)‖ f1 − f2‖2 and sk(f1)·sk(f2) ∈ (f1 · f2 ± ε‖ f1‖‖ f2‖).
The processing time required to maintain each sketch is O(1

ε2 log(1/δ)) per
update.

Thus, the self-join of the difference of the sketch vectors gives a high-probability,
ε relative-error estimate of the self-join of the difference of the actual streams
(so, naturally, ‖sk(f1)‖2 ∈ (1 ± ε)‖ f1‖2); similarly, the inner product of the
sketch vectors gives a high-probability estimate of the join of the two streams
to within an additive error of ε‖ f1‖‖ f2‖. To provide ε relative-error guaran-
tees for the binary join query f1 · f2, Theorem 2.1 can be applied with error
bound ε′ = ε(f1 · f2)/(‖ f1‖‖ f2‖), giving a total sketching space requirement of

O(
‖f1‖2‖f2‖2

ε2(f1·f2)2 log(1/δ)) counters [Alon et al. 1999].

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:12 • G. Cormode and M. Garofalakis

The results in Theorem 2.1 can be extended in a natural manner to the case
of multi-join aggregate queries [Dobra et al. 2002]: Given an m-way join (i.e.,
tensor-product) query

Q(f1, . . . , fm) = f1 · f2 · · · fm,

and corresponding parallel AGMS sketch vectors sk(f1), . . . , sk(fm) of
size O(1

ε2 log(1/δ)) (built based on the specific join predicates in the query
[Dobra et al. 2002]), the inner product of the sketches
m

i=1sk(f i) (which
is once again defined using median-selection and averaging over terms of
the form
m

i=1sk(f i)[i, j]) can be shown to be within an additive error of

ε(2m−1 − 1)2
m
i=1‖ f i‖ of the true multi-join result size. The full development

can be found in Dobra et al. [2002].

3. OUR QUERY-TRACKING SOLUTION

The goal of our tracking algorithms is to ensure strong error guarantees for
approximate answers to queries over the collection of global streams { f i : i = 1,
. . . , s} at the coordinator, while minimizing the amount of communication with
the remote sites. We can also identify other important design desiderata that
our solution should strive for:

(1) Minimal global information exchanges—schemes in which the coordinator
distributes information on the global streams to remote sites would typi-
cally need to rebroadcast up-to-date global information to sites (either peri-
odically or during some “global resolution” stage [Babcock and Olston 2003;
Das et al. 2004]) to ensure correctness; instead, our solutions are designed
to explicitly avoid such expensive “global synchronization” steps;

(2) Summary-based information exchange—rather than shipping complete up-
date streams f i, j to the coordinator, remote sites only communicate concise
summary information (e.g., sketches) on their locally observed updates; and,

(3) Stability—intuitively, the stability property means that, provided the be-
havior of the local streams at remote sites remains reasonably stable (or,
predictable), there is no need for communication between the remote sites
and the coordinator.

Our solution avoids global information exchange entirely by each individual
remote site j continuously monitoring only the L2 norms of its local up-
date streams { f i, j : i = 1, . . . , s}. When a certain amount of change is ob-
served locally, then a site may send a concise state-update message in order
to update the coordinator with more recent information about its local up-
date stream, and then resumes monitoring its local updates (Figure 1). Such
state-update messages typically comprise a small sketch summary of the of-
fending local stream(s) (along with, possibly, additional summary informa-
tion), to allow the coordinator to continuously maintain a high-probability er-
ror guarantee on the quality of the approximate query answers returned to
users.

Our tracking scheme depends on two parameters ε and θ , where: ε captures
the error of the local sketch summaries communicated to the coordinator; and,

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:13

θ captures (an upper bound on) the deviation of the local-stream L2 norms at
each remote site involved in the query since the last communication with the
coordinator. The overall error guarantee provided at the coordinator is given
by a function g (ε, θ), depending on the specific form of the query being tracked.
It is important to note, however, that the local constraints at each remote site
are essentially identical (i.e., simply tracking L2-norm deviations for individ-
ual streams), regardless of the specific (global) query being tracked; as our
results demonstrate, the combination of small sketch summaries and local con-
straints on the stream L2 norms at individual sites is sufficient to provide
high-probability error guarantees for a broad class of queries over the global
streams { f i : i = 1, . . . , s}.

Intuitively, larger θ values allow for larger local deviations since the last
communication and, so, imply fewer communications to the coordinator. But,
for a given error tolerance, the size of the ε-approximate sketches sent during
each communication is larger (since g (ε, θ) is increasing in both parameters).
We analyze the communication cost of these schemes. This allows us to op-
timally divide the allowed query-error tolerance in simple cases, and provide
empirical guidelines for more complex scenarios based on our experimental
observations.

A local sketch summary sk(f i, j (t)) communicated to the coordinator gives an

(ε-approximate) picture of the snapshot of the f i, j stream at time t.2 To achieve
stability, a crucial component of our solutions are concise sketch-prediction mod-
els that may be communicated from remote sites to the coordinator (along with
the local stream summaries) in an attempt to accurately capture the antici-
pated behavior of local streams. The key idea here is to enable each site j and
the coordinator to share a prediction of how the stream f i, j evolves over time.
The coordinator employs this prediction to answer user queries, while the re-
mote site checks that the prediction is close (within θ bounds) to the actual
observed distribution f i, j . As long as the prediction accurately captures the
local update behavior at the remote site, no communication is needed. Taking
advantage of the linearity properties of sketch summaries allows us to rep-
resent the predicted distribution using a concise predicted sketch; thus, our
predictions are also based solely on concise summary information that can
be efficiently exchanged between remote site and coordinator when the model
is changed. A high-level schematic of our distributed tracking scheme is de-
picted in Figure 2. The key insight from our results is that, as long as local
constraints are satisfied, the predicted sketches at the coordinator are basi-
cally equivalent to g (ε, θ)-approximate sketch summaries of the global data
streams.

In the remainder of this section, we discuss the details of our dis-
tributed query-tracking schemes, and our proposed sketch-prediction models

2To simplify the exposition, we assume that communications with the coordinator are instanta-

neous. In the case of nontrivial delays in the underlying communication network, techniques based

on time-stamping and message serialization can be employed to ensure correctness, as in Olston

et al. [2003]. Thus delays only impact the time to respond to events. Likewise, we do not explic-

itly treat loss of messages, and instead assume that the low-level network communications ensure

acknowledgement of messages.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:14 • G. Cormode and M. Garofalakis

Fig. 2. Schematic of sketch-prediction-based tracking.

for capturing remote-site behavior. In addition, we introduce a very effective,
improvement of the basic AGMS sketching technique that plays a crucial role
in allowing remote sites to track their local constraints over massive, rapid-rate
streams in guaranteed small time per update.

3.1 The Basic Tracking Scheme

We present our tracking scheme focusing primarily on inner-product and
generalized, tensor-product (i.e., multi-join) queries, since our results for the
other query classes discussed in Section 2 follow as corollaries of the inner-
product case (Section 3.4). We focus on a single inner-product (i.e., join) query
Q(f1, f2) = f1 · f2 over our distributed-tracking architecture. Consider a
remote site j participating in the distributed evaluation of Q(f1, f2) (i.e.,
j ∈ sites(f1) ∪ sites(f2))—we assume that each such site maintains AGMS
sketches on its locally observed substreams f1, j and/or f2, j (we often omit
the “AGMS” qualification in what follows). If each participating site sends the
coordinator its up-to-date local-stream sketches sk(f1, j (t)) and/or sk(f2, j (t)),
then, by sketch linearity, the coordinator can compute the up-to-date sketches
of the global streams sk(f i(t)) =∑

j sk(f i, j (t)) (i = 1, 2), and provide an approx-
imate answer to the join query at time t with the error guarantees specified in
Theorem 3.5.3

In our tracking scheme, to minimize the overall communication overhead,
remote sites can also potentially ship a concise sketch-prediction model for their
local updates to f i (in addition to their local-stream sketches) to the coordinator.
The key idea behind a sketch-prediction model is that, in conjunction with the
communicated local-stream sketch, it allows the coordinator to construct a pre-
dicted skp(f i, j (t)) for the up-to-date state of the local-stream sketch sk(f i, j (t)) at
any future time instant t, based on the locally-observed update behavior at the
remote site. The coordinator then employs these collections of predicted sketches

3This also assumes an initial “coordination” step where each remote site obtains the size param-

eters for its local sketches and the corresponding hash functions (same across all sites) from the

coordinator.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:15

Fig. 3. Procedures for (a) sketch maintenance and tracking at remote site j ∈ sites(f i) (i ∈ {1, 2}),
and (b) join-size estimation at the coordinator. (t denotes current time).

skp(f i, j) to continuously track an approximate answer to the distributed-join
query. (We discuss different options for sketch-prediction models in Section 3.2).
Fix a site j ∈ sites(f i) (where i ∈ {1, 2}). After shipping its local sketch sk(f i, j)
and (possibly) a corresponding sketch-prediction model to the coordinator, site
j continuously monitors the L2 norm of the deviation of its local, up-to-date
sketch sk(f i, j (t)) from the corresponding predicted sketch skp(f i, j (t)) employed
for estimation at the coordinator. The site checks the following condition at
every time instant t:

‖sk(f i, j (t)) − skp(f i, j (t))‖ ≤ θ√
ki

‖sk(f i, j (t))‖ (∗)

that is, a communication to the coordinator is triggered only if the relative L2-
norm deviation of the local, up-to-date sketch sk(f i, j (t)) from the corresponding

predicted sketch exceeds θ√
ki

(recall, ki = |sites(f i)|). The pseudo-code for pro-

cessing stream updates and tracking local constraints at remote sites, as well
as providing approximate answers at the coordinator is depicted in Figure 3.
The following theorem demonstrates that, as long as the local L2-norm devia-
tion constraints are met at all participating sites for the distributed f1 · f2 join,
then we can provide strong error guarantees for the approximate query answer
(based on the predicted sketches) at the coordinator.

THEOREM 3.1. Assume local-stream sketches of size O(1
ε2 log(1/δ)), and let

ŝi = ∑
j∈sites(f i)

skp(f i, j) (i ∈ {1, 2}). Also, assume that, for each remote site j ∈
sites(f i) (i ∈ {1, 2}), the condition (*) is satisfied. Then, with probability at least
1 − 2(k1 + k2)δ,

ŝ1 · ŝ2 ∈ f1 · f2 ± (ε + (1 + ε)2((1 + θ)2 − 1))‖ f1‖‖ f2‖.
ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:16 • G. Cormode and M. Garofalakis

PROOF. Consider the inner product of the “global” predicted sketches
ŝ1 · ŝ2—algebraic manipulation gives:

ŝ1 · ŝ2 =
(∑

j

skp(f1, j)

)
·
(∑

j

skp(f2, j)

)

=
(∑

j

((skp(f1, j) − sk(f1, j)) + sk(f1, j)

)

·
(∑

j

((skp(f2, j) − sk(f2, j)) + sk(f2, j)

)

=
∑

j

sk(f1, j) ·
∑

j

sk(f2, j) +
∑

j

(skp(f1, j) − sk(f1, j)) ·
∑

j

sk(f2, j)

+
∑

j

(skp(f2, j) − sk(f2, j)) ·
∑

j

sk(f1, j)

+
∑

j

(skp(f1, j) − sk(f1, j)) ·
∑

j

(skp(f2, j) − sk(f2, j)).

By sketch linearity, the first term in the above sum is the estimate of f1 ·
f2, which can be bounded by Theorem 2.1 (assuming all sketch computations
produce results within their error bounds). Also, by the Cauchy-Schwarz and
triangle inequalities, we know that, for any vectors v1, . . . , vk , |vi ·v j | ≤ ‖vi‖‖v j ‖
and ‖ ∑

i vi‖ ≤ ∑
i ‖vi‖. Combining all these facts, we have:

ŝ1 · ŝ2 ∈ (f1 · f2) ± ε‖ f1‖‖ f2‖

± ‖sk(f2)

∥∥∥∥∥
∑

j

‖skp(f1, j) − sk(f1, j)

∥∥∥∥∥
± ‖sk(f1)

∥∥∥∥∥
∑

j

‖skp(f2, j) − sk(f2, j)

∥∥∥∥∥
±

(∑
j

‖skp(f1, j) − sk(f1, j)‖
)(∑

j

‖skp(f2, j) − sk(f2, j)‖
)

.

Now, using the special case of Theorem 2.1 for the L2 norm, and the local site
constraint (*), we get:

ŝ1 · ŝ2 ∈ (f1 · f2) ± ε‖ f1‖‖ f2‖
± (1 + ε)‖ f2‖

θ√
k1

∑
j

‖sk(f1, j)‖

± (1 + ε)‖ f1‖
θ√
k2

∑
j

‖sk(f2, j)‖

± θ2

√
k1k2

(∑
j

‖sk(f1, j)‖
) (∑

j

‖sk(f2, j)‖
)

∈ (f1 · f2) ± ε‖ f1‖‖ f2‖
ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:17

± (1 + ε)2‖ f2‖
θ√
k1

∑
j

‖ f1, j ‖

± (1 + ε)2‖ f1‖
θ√
k2

∑
j

‖ f2, j ‖

± (1 + ε)2 θ2

√
k1k2

(∑
j

‖ f1, j ‖
) (∑

j

‖ f2, j ‖
)

.

Assuming the components of vectors v1, . . . , vk are nonnegative, an applica-

tion of the Cauchy-Schwartz inequality gives
∑k

i=1 ‖vi‖ ≤ √
k
√∑k

i=1 ‖vi‖2 ≤ √
k

‖ ∑k
i=1 vi‖; combining with the above expression, we have:

ŝ1 · ŝ2 ∈ f1 · f2 ± ε‖ f1‖‖ f2‖ ± 2(1 + ε)2θ‖ f1‖‖ f2‖ ± (1 + ε)2θ2‖ f1‖‖ f2‖
∈ f1 · f2 ± (ε + (1 + ε)2((1 + θ)2 − 1))‖ f1‖‖ f2‖

In total, we rely on the outcome of 2k1 + 2k2 sketch computations. Applying a
union bound [Motwani and Raghavan 1995], the probability that any of these
fails is no more than 2(k1 + k2)δ, giving the required probability bound.

Thus, by Theorem 3.1, using local sketches of size O(1
ε2 log(k1+k2

δ
)), satisfying

the local L2-norm deviation constraints at each participating remote site en-
sures that the approximate answer for the join size f1 · f2 computed using
only the predicted sketches at the coordinator is within an absolute error of
±gQ (ε, θ)‖ f1‖‖ f2‖ of the exact answer. Note that these error guarantees are
very similar to those obtained for the much simpler, centralized case (The-
orem 2.1), with the only difference being the approximation-error bound of
gQ (ε, θ) = ε + (1 + ε)2 ((1 + θ)2 − 1) ≈ ε + 2θ (ignoring quadratic terms in ε,
θ which are typically very small since ε, θ � 1). The following corollary gives
the adaptation of our tracking result for the special case of a self-join query
Q(f1) = ‖ f1‖2 = ∑

v(f1[v])2 (the proof follows from Theorem 3.1 with f1 = f2).

COROLLARY 3.2. Assume local-stream sketches of size O(1
ε2 log(1/δ)), and let

ŝ1 = ∑
j∈sites(f 1) sk

p(f1, j). If each remote site j ∈ sites(f1) satisfies the condition
(*), then with probability at least 1 − 2k1δ, ‖ŝ1‖2 ∈ [1 ± (ε+ (1 + ε)2 ((1 + θ)2 −
1))]‖ f1‖2 ≈ (1 ± (ε+ 2θ))‖ f1‖2.

Extension to Multi-Joins. The analysis and results for our distributed-
tracking scheme can also be extended to the case of distributed multi-join
(i.e., tensor-product) queries. More formally, consider an m-way distributed join
Q(f1, . . . , fm) = f1 · f2 · · · fm and corresponding parallel sketches sk(f i, j) built
locally at participating sites j ∈ ∪m

i=1sites(f i) (based on the specific join predi-
cates in Q , as detailed in Dobra et al. [2002]). As shown in the following theorem,
simply monitoring the L2-norm deviations of local-stream sketches is sufficient
to guarantee error bounds for the predicted-sketch estimates at the coordinator
that are very similar to the corresponding bounds for the simple, centralized
case (see Section 2).

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:18 • G. Cormode and M. Garofalakis

THEOREM 3.3. Assume parallel local-stream sketches of size O(1
ε2 log(1/δ)),

and let ŝi = ∑
j∈sites(f i)

skp(f i, j) (i = 1, . . . , m). If each remote site j ∈ sites(f i)

satisfies the condition (*), then with probability at least 1 − 2
∑m

i=1 kiδ, the
predicted-sketch estimate
m

i=1ŝi at the coordinator lies in the range
m
i=1 f i±

(ε (2m−1 − 1)2+ (1 + ε)m ((1 + θ)m − 1))·
m
i=1‖ f i‖ ≈
m

i=1 f i± (ε (2m−1 − 1)2+ mθ)

m

i=1‖ f i‖.

PROOF. Proceeding along similar lines as in Theorem 3.1, and using the
generalization of Theorem 2.1 to multi-joins (see Section 2.3) as well as an easy
generalization of the Cauchy-Schwarz inequality to tensor products of more
than two vectors, we have:

m
i=1ŝi =
m

i=1

(∑
j

((skp(f i, j) − sk(f i, j)) + sk(f i, j)

)

∈
m
i=1 f i ± ε(2m−1 − 1)2
m

i=1‖ f i‖
± mθ (1 + ε)m
m

i=1‖ f i‖
±

(
m
2

)
θ2(1 + ε)m
m

i=1‖ f i‖
· · ·
± θm(1 + ε)m
m

i=1‖ f i‖
∈
m

i=1 f i ± ε(2m−1 − 1)2
m
i=1‖ f i‖ ± (1 + ε)m((1 + θ)m − 1)
m

i=1‖ f i‖.
The result follows easily from the previous expression and a simple application
of the union bound [Motwani and Raghavan 1995].

3.2 Sketch-Prediction Models

We give different options for the sketch-prediction models employed to describe
local update behaviors at remote sites. Such models are part of the information
exchanged between the remote sites and the coordinator so that both parties
are “in-sync” with respect to predicted query results and local-constraint mon-
itoring. If our prediction models result in predicted sketches skp(f i, j) that are
sufficiently close to the true state of the local sketches at site j , then no com-
munication is required between site j and the coordinator. Thus, it is critical to
keep sketch-prediction models concise and, yet, powerful enough to effectively
capture stability properties in our distributed-tracking environment.4 In each
case, our prediction models consider how the local distribution f i, j changes (as
a function of time) between the time of the last communication to the coordina-
tor tprev and the current time t; then, we show how to translate this model to a
model for predicting the change in the sketch of f i, j over time (Figure 2). Again,
we assume a consistent notion of “global time” in our system, and that the dif-

4A similar notion of prediction models was introduced for the specific problem of tracking one-

dimensional quantiles in Cormode et al. [2005]; instead, we focus on tracking general-purpose

randomized sketch summaries of data distributions. Such notions of models are very different from

those in Deshpande et al. [2004]: there, models are used in a sensor network to optimize the cost

of evaluating one-shot queries by polling specific sensors.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:19

ferences between local “clocks” at sites are sufficiently small to be ignored. As
we will see, the linearity properties of sketches play a crucial role in the design
of space-, time-, and communication-efficient sketch-prediction models.

3.2.1 Static Model. Our simplest prediction model is the static model,
which essentially assumes that the local-stream distribution f i, j remains static
over time; in other words, our prediction for the distribution f i, j at the cur-

rent time instant t (denoted by f p
i, j (t)) does not change over the time interval

t −tprev, or f p
i, j (t) = f i, j (tprev). This implies that the predicted sketch skp(f i, j (t))

employed at both the coordinator and remote site j is exactly the sketch last
shipped from site j ; that is,

skp(f i, j (t)) = skp(f p
i, j (t)

) = sk(f i, j (tprev)).

Such a prediction model is trivial to implement, essentially requiring no addi-
tional information to be exchanged between the coordinator and remote sites
(besides the sites’ local sketches that are sent when dermined by condition (*)).

3.2.2 Linear-Growth Model. Due to its simplistic nature, the static model
can only achieve stability in very “easy” and somewhat unrealistic scenarios,
namely when all frequency counts in the f i, j remain reasonably stable. This is
clearly not the case, for instance, when local frequency counts are growing as
more updates arrive at remote sites. In such cases, a reasonable “strawman”
model is to assume that the future of the local distribution will resemble a
scaled-up version of its past; that is, assume that f i, j (t) has the same shape as
f i, j (tprev) with proportionately more elements. Our second, linear-growth model
is based on this assumption, setting f p

i, j (t) = t
tprev

f i, j (tprev), that is, using a linear

scaling of f i, j (tprev) to predict the current state of the distribution. (Scaling by
time makes sense, e.g., in a synchronous-updates environment, where updates
to remote sites arrive regularly at each time tick.) By sketch linearity, this
easily implies that the corresponding predicted sketch is simply

skp(f i, j (t)) = sk
(

f p
i, j (t)

) = t
tprev

sk(f i, j (tprev)),

a linear scaling of the most recent local sketch of f i, j shipped to the coordina-
tor (and no additional information need be exchanged between sites and the
coordinator).

3.2.3 Velocity/Acceleration Model. Although intuitive, our linear-growth
model suffers from at least two important shortcomings. First, it predicts the
future behavior of the stream as a linear scaling of the entire history of the
distribution, whereas, in many real-life scenarios, only the recent history of
the stream may be relevant for such predictions. Second, it imposes a linear,
uniform rate of change over the entire frequency distribution vector, and, thus,
cannot capture or adapt to shifts and differing rates in the distribution of up-
dates over the vector. Our final, velocity/acceleration model addresses these
shortcomings by explicitly attempting to build a richer prediction model that
uses more parameters to better fit changing data distributions; more specifi-
cally, letting � = t − tprev, our velocity/acceleration model predicts the current

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:20 • G. Cormode and M. Garofalakis

state of the f i, j distribution as

f p
i, j (t) = f i, j (tprev) + �vi, j + �2ai, j ,

where the vectors vi, j and ai, j denote a velocity and acceleration component
(respectively) for the evolution of the f i, j stream. Again, by sketch linearity,
this implies the predicted sketch is

skp(f i, j (t)) = sk(f i, j (tprev)) + �sk(vi, j) + �2sk(ai, j).

Thus, to build a predicted sketch at the coordinator under a velocity/acceleration
model, we need a velocity sketch sk(vi, j) and an acceleration sketch sk(ai, j). A
concrete scheme for computing these two sketches at site j is to maintain a
sketch on a window of the W most recent updates to f i, j ; scaling this sketch
by the time difference between the newest and oldest updates stored in the
window gives an appropriate velocity sketch to be shipped to the coordinator,
whereas the acceleration sketch can be estimated as the difference between the
recent and previous velocity sketches scaled by the time difference. In detail,
when remote site j detects a violation of its local L2-norm constraint for f i, j
at time t, it computes a new velocity sketch sk(vi, j) based on the window of the
W most recent updates to f i, j , and estimates a new acceleration sketch sk(ai, j)
as the difference between sk(vi, j) and the corresponding velocity sketch at time

tprev, scaled by 1
t−tprev

. Note that, the only additional model information that

needs to be communicated to the coordinator from site j is the new velocity
sketch sk(vi, j) (since the coordinator already has a copy of the previous veloc-
ity sketch and so can independently compute the acceleration sketch). Thus,
while our richer velocity/acceleration model can give a better fit for dynamic
distributions, it also effectively doubles the amount of information exchanged
(compared to our simpler prediction models). Furthermore, the effectiveness
of our velocity/acceleration predictions can depend on the size of the update
window W.

Many variations of this scheme are possible. While it is possible to set W
adaptively for different stream distributions, this problem lies beyond the scope
of this paper; instead, we evaluate different settings for W experimentally over
real-life data (Section 5). Likewise, it is possible to explicitly send an acceler-
ation sketch instead of computing it implicitly; or to implicitly compute both
acceleration and velocity sketches from keeping a history of sketches common
to both the coordinator and site j . In our initial experimental evaluation, we
found that both these variants performed less well in terms of total communi-
cation than the instantiation outlined above, so we focus on this version from
now on.

Table II summarizes the key points for each of our three sketch-prediction
models (namely, the model information exchanged between the sites and the
coordinator, and the corresponding predicted sketches).

3.2.4 Analysis. We analyze the worst-case communication cost of our
inner-product tracking scheme as a function of the overall approximation error
at the coordinator under some simplifying assumptions.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:21

Table II. Parameters of Different Prediction Schemes

Model Info. Predicted Sketch

Static ∅ sk(f i, j (tprev))

Linear-Growth ∅ t
tprev

sk(f i, j (tprev))

Velocity/ sk(vi, j) sk(f i, j (tprev)) + �sk(vi, j)

Acceleration + �2sk(ai, j)

THEOREM 3.4. Assume our static prediction model for an inner-product query
Q(f1, f2) = f1 · f2 (with ε, δ, θ , and ki as defined earlier), and let ψ = gQ (ε, θ) ≈
ε + 2θ denote the error tolerance at the coordinator. Then, for appropriate set-
tings of parameters ε and θ (specifically, ε = ψ

2
, θ = ψ

4
), the worst-case commu-

nication cost for a remote site j processing N j local updates to stream f i, j is
O(ki

ψ4 log(ki
δ

) log N j).

PROOF. Firstly, we assume that all updates are insertions, i.e. of the form
〈i, v, +1〉. In the static model, the worst case effect of each such update is to
increase the difference between the predicted (static) distribution and the true
distribution by at most 1. Hence, after N j updates, the L2 norm is at most N j .
A communication is triggered whenever the norm of the difference is at least a

θ√
ki

fraction of the previous norm of the distribution. The ratio of the squared

norm of the new distribution to the old is therefore at least (1+ θ2

ki
), by expanding

‖sk(f i, j (t))‖2 = ‖sk(f i, j (t)) − skp(f i, j (t)) + skp(f i, j (t))‖2

>

(
θ√
ki

‖skp(f i, j (t))‖
)2

+ ‖skp(f i, j (t))‖2
.

Thus, the total number of communications is at most log
1+ θ2

ki

N j = O(ki
θ2 ln N j).

The cost of each communication is O(1
ε2 log 1/δ), proportional to the size of a

sketch. So the overall cost depends on O(ki
ε2θ2). To give an error guarantee of

ψ‖ f1‖‖ f2‖, we must set ψ = gQ (ε, θ) = ε + (1 + ε)2((1 + θ)2 − 1) ≈ ε + 2θ (here
we assume that terms quadratic in ε and θ are small enough to be neglected).
So we maximize ε2 1

4
(ψ − ε)2. Differentiating with respect to ε and setting equal

to zero gives ε(ψ − ε)(ψ − 2ε) = 0. The only feasible solution is ε = 1
2
ψ , and

θ = 1
4
ψ .

Thus, assuming that the “distribution factors” ki of streams in the join query
are reasonably small, the worst-case communication cost even for our simplest
prediction model is comparable to that of a one-shot sketch-based approximate
query computation with the same error bounds (Theorem 2.1). (Note that each
counter in the sketches for site j is of size O(log N j) bits.) This analysis extends
in a natural manner to the case of multi-join aggregates. Providing similar an-
alytical results for our more complex linear-growth and velocity/acceleration
models is more complex; instead, we experimentally evaluate different strate-
gies for setting ε and θ to minimize worst-case communication over real-life
streams in Section 5.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:22 • G. Cormode and M. Garofalakis

3.3 Time-Efficient Tracking: The Fast-AGMS Sketch

A drawback of AGMS randomized sketches (Section 2) is that every stream-
ing update must “touch” every component of the sketch vector (to update the
corresponding randomized linear projection). This requirement, however, could
pose significant practical problems when dealing with massive, rapid-rate data
streams. Since sketch-summary sizes can vary from tens to hundreds of Kilo-
bytes, especially when tight error guarantees are required, for example, for join
or multi-join aggregates [Alon et al. 1999; Dobra et al. 2002], touching every
counter in such sketches is simply infeasible when dealing with large data rates
(e.g., monitoring a high-capacity network link). This problem is further com-
pounded in our distributed-tracking scenario where, for each streaming update,
a remote site needs to track the difference between a sketch of the updates and
an evolving predicted sketch.

Our proposed Fast-AGMS sketch structure solves this problem by guarantee-
ing logarithmic-time (i.e., O(log(1/δ))) sketch update and tracking costs, while
offering essentially the same (in fact, slightly improved) space/accuracy tradeoff
as basic AGMS sketches. That is, we improve the update time from O(1

ε2 log(1/δ))
to O(log(1/δ)). Our discussion is brief since the structure bears similarities to
existing techniques proposed in the context of different (centralized) streaming
problems [Charikar et al. 2002; Ganguly et al. 2004], although its application
over the basic AGMS technique for join/multi-join aggregates is novel and re-
quires a different analysis.

A Fast-AGMS sketch for a stream f over [U] (also denoted by sk(f)) comprises
b × d counters (i.e., linear projections) arranged in d hash tables, each with b
hash buckets. Each hash table l = 1, . . . , d is associated with (1) a pairwise-
independent hash function hl () that maps incoming stream elements uniformly
over the b hash buckets (i.e., hl : [U] → [b]); and, (2) a family {ξl [v] : v ∈ [U]}
of four-wise independent {−1, +1} random variables (as in basic AGMS). To
update sk(f) in response to an addition of u to element v, we use the hl () hash
functions to determine the appropriate buckets in the sketch, setting

sk(f)[hl (v), l] = sk(f)[hl (v), l] + uξl (v),

for each l = 1, . . . , d . Note that the required time per update is only O(d), since
each update touches only one bucket per hash table. The structure of the sketch
is illustrated in Figure 4.

Now, given two parallel Fast-AGMS sketches sk(f1) and sk(f2) (using the
same hash functions and ξ families), we estimate the inner product f1 · f2 by
the sketch “inner product”:

sk(f1) · sk(f2) = median
l=1,...,d

{
b∑

i=1

sk(f1)[i, l] · sk(f2)[i, l]

}
.

In other words, rather than averaging over independent linear projections built
over the entire [U] domain, our Fast-AGMS sketch averages over partitions of
[U] generated randomly (through the hl () hash functions). As the following
theorem shows, this results in essentially identical space/accuracy tradeoffs
as basic AGMS sketching, while requiring only O(d) = O(log(1/δ)) processing

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:23

Fig. 4. Structure of the Fast-AGMS Sketch Summary.

time per update (since an element only touches a single partition, i.e., bucket,
per hash table).

THEOREM 3.5. Let sk(f1) and sk(f2) denote two parallel Fast-AGMS sketches
of streams f1 and f2, with parameters b = 8

ε2 and d = 4log(1/δ), where ε, 1 − δ

denote the desired bounds on error and probabilistic confidence, respectively.
Then, with probability at least 1 − δ, ‖sk(f1) − sk(f2)‖2 ∈ (1 ± ε)‖ f1 − f2‖2 and
sk(f1) · sk(f2) ∈ (f1 · f2 ± ε‖ f1‖‖ f2‖). The processing time required to maintain
each sketch is O(log(1/δ)) per update.

PROOF SKETCH. Consider the estimate X l given from computing the inner
product of the lth row of sk(f1) with the corresponding row of sk(f2). It can be
shown that

E(X l) = f1 · f2 and Var(X l) ≤ 1
b‖ f1‖2‖ f2‖2,

provided that gl is drawn from a family of 4-wise independent hash functions,
and fl is drawn from a family of 2-wise independent hash functions. Applying

the Chebyshev inequality, Pr[|X l − f1 · f2| >

√
8
b‖ f1‖‖ f2‖] < 1

8
. Taking the me-

dian of d such estimators gives an estimate whose probability of being outside
this range of 2−d/4, using standard Chernoff-bound arguments [Motwani and
Raghavan 1995]. Thus,

Pr[|sk(f1) · sk(f2) − f1 · f2| >

√
8

b
‖ f1‖‖ f2‖] < 2−d/4.

Substituting the values for the b and d parameters gives the required
bounds.

Note that the update cost of our Fast-AGMS sketch remains O(log(1/δ)) even
when tight, relative-error guarantees are required for join or multi-join ag-
gregates; in other words, tighter error tolerances only increase the size b of
each hash table, but not the number of hash tables d (which depends only on
the required confidence). This is crucial since providing tight error guarantees
for such complex aggregates can easily imply fairly large sketch summaries
[Dobra et al. 2002]. Finally, it is interesting to note that, for given ε and δ,
our Fast-AGMS sketch actually requires less space than that of basic AGMS;
this is because basic AGMS requires a total of O(1

ε2 log(1/δ)) hash functions

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:24 • G. Cormode and M. Garofalakis

(one for each ξ family), whereas our Fast-AGMS sketch only needs a pair of
hash functions per hash table for a total of only O(log(1/δ)) hash functions.
This difference in space requirements becomes much more pronounced as the
ε approximation-error bounds become tighter.

Time-Efficient Sketch Tracking. In our solution, each update to the local f i, j at
site j requires checking the local sketch-tracking condition on the L2 norm of
the divergence of the site’s true sketch from the corresponding predicted sketch.
Implementing such a sketch-tracking scheme directly over local sketches of
size O(1

ε2 log(1/δ)) would imply a time complexity of O(1
ε2 log(1/δ)) per update

(to recompute the required norms)—this complexity can easily become pro-
hibitive when dealing with rapid-rate update streams and tight error-bound
requirements. Fortunately, as the following theorem demonstrates, we can re-
duce the sketch-tracking overhead in only O(log(1/δ)) per update by computing
the tracking condition in an incremental fashion over the input stream. Our
tracking algorithm makes crucial use of the Fast-AGMS sketch structure, as
well as concise (O(log(1/δ))-size) precomputed data structures to enable incre-
mental sketch tracking. We focus primarily on our most general velocity/accel-
eration model, since both the static and linear-growth models can be thought of
as instances of the velocity/acceleration model with certain parameters fixed.

THEOREM 3.6. Assuming Fast-AGMS sketches of sizeO(1
ε2 log(1/δ)), the com-

putation of the sketch tracking condition (*) at site j can be implemented in
O(log(1/δ)) time per update, where the predicted sketch skp(f i, j (t)) is computed
in the velocity/acceleration model.

PROOF. Our goal is to track ‖skp(f i, j (t))−sk(f i, j (t))‖. We set � = t−tprev and
write this quantity out by substituting in the parameters of the acceleration
model:

‖sk(f i, j (tprev)) + �sk(vi, j) + 1

2
�2sk(ai, j) − sk(f i, j)‖

Recall that the estimate of the norm using sketches is produced by computing
an estimate from each row of the array of counts, then taking the median of
these estimates. We focus on computing the estimate from the lth single row.
For this row, we will write Vl for the vector representing the corresponding
row from the velocity sketch; Al for the vector representing the corresponding
row from the acceleration sketch scaled by 1

2
; and Sl for the difference of rows

coming from sk(f i, j (tprev)) − sk(f i, j). The estimate est can then be written as

est2 =
∑

k

(Sl [k] + �Vl [k] + �2 Al [k])2

=
∑

k

(
Sl [k]2 + 2�Sl [k]Vl [k] + 2�2(Al [k]Sl [k] + Vl [k]2

)
.

+ �32Vl [k]Al [k] + �4 Al [k]2
)

=
∑

k

Sl [k]2 + 2�
∑

k

Sl [k]Vl [k] + 2�2
∑

k

Al [k]Sl [k]

+ �2
∑

k

(Vl [k] + �Al [k])2

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:25

The last term is easy to track: since Vl and Al do not change until the sketch
tracking condition is violated, we can compute the quantities

vvl =
∑

k

Vl [k]2; aal =
∑

k

Al [k]2; val =
∑

k

Al [k]Vl [k]

when the sketches are set. At each timestep we will compute this term in con-
stant time:

�2
∑

k

(Vl [k] + �Al [k])2 = �2(aal + 2�val + �2vvl)

The other three terms are affected by updates, but we can use properties of
the Fast-AGMS sketches to maintain them efficiently based on their previous
values. Define

ssl =
∑

k

Sl [k]2; svl =
∑

k

Sl [k]Vl [k]; sal =
∑

k

Al [k]Sl [k].

The structure of Fast-AGMS sketches means that following an update u ∈
{+1, −1} to f i, j [v] only one entry in Sl is affected:

Sl [hl (v)] ← Sl [hl (v)] − ξl (v) ∗ u.

So ss, sv and sa can all be efficiently maintained in constant time per update:

ssl ← ssl + (Sl [hl (v)] − ξl (v) ∗ u)2 − Sl [hl (v)]2

= ssl + u2 − 2u ∗ ξl (v) ∗ Sl [hl (v)]

svl ← svl − ξl (v) ∗ u ∗ Vl [hl (v)]

sal ← sal − ξl (v) ∗ u ∗ Al [hl (v)]

and Sl [hl (v)] ← Sl [hl (v)] − ξl (v) ∗ u.

Putting all these together, we can rewrite the estimate as

est2
l = ssl + 2�svl + 2�2sal + �2(aal + 2�val + �2vvl).

This allows us to compute the estimate produced by each row in constant time
for every update. The estimate for ‖skp(f i, j) − sk(f i, j)‖ is found by computing
the median of all d estimates in time O(d). The total time cost is O(d) per
update.

If our tracking scheme detects that a θ bound has been violated, we must recom-
pute the parameters of the sketch-prediction model and send sketch informa-
tion to the coordinator. Such communications necessarily require O(1

ε2 log(1/δ))
time, but occur relatively rarely.

We need to compare the computed quantity est2 to θ√
ki

‖sk(f i, j)‖. This can be

tracked using the same method that ss is tracked in the above proof. Since S, A
and V are stored in sk(f i, j), sk(vi, j) and sk(ai, j), this tracking method requires
only constant extra space over the naive scheme that computes the difference
every update. To initialize this method, we must compute initial values of vv,
va and aa when a new velocity and acceleration sketch is chosen. At this time
t = tprev and so sk(f i, j (t)) = sk(f i, j (tprev)). Hence we initialize ss = sa = sv = 0,
and proceed to increase these quantities as updates are received. Pseudocode
for the tracking procedure is presented in Figure 5.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:26 • G. Cormode and M. Garofalakis

Fig. 5. Fast procedure for tracking updates at remote sites.

3.4 Handling Other Query Classes

We outline how our results apply to the other query classes introduced in
Section 2. The basic intuition is that such queries can be viewed as special in-
ner products of the distribution (e.g., with wavelet-basis vectors [Gilbert et al.
2001]), for which sketches can provide guaranteed-quality estimates. The pre-
dicted sketch of f i at the coordinator can be treated as a g (ε, θ)-approximate
sketch of f i, which accounts for both sketching error (ε) and remote-site devi-
ations (θ).

Range Queries, Point Queries, and Heavy Hitters. A given range query
R(f i, a, b) can be reposed as an inner product with a vector e[a,b] where
e[a,b][v] = 1 if a ≤ v ≤ b, and 0 otherwise. This implies the following
theorem.

THEOREM 3.7. Assume local-stream sketches of size O(1
ε2 log(1/δ)) and let

ŝi = ∑
j∈sites(f i)

skp(f i, j). If for each remote site j ∈ sites(f i) satisfies the con-
dition (*), then with probability at least 1 − kiδ, ŝi · sk(e[a,b]) ∈ R(f i, a, b) ± (ε +
(1 + ε)2((1 + θ)2 − 1))(b − a + 1)‖ f i‖.

An immediate corollary is that point queries can be answered with ≈
(ε + 2θ)‖ f i‖ error. Heavy-hitter queries can be answered by asking all Ui point
queries, and returning those v whose estimate exceeds φR(f , a, b) (with guar-
antees similar to the centralized, one-shot case [Charikar et al. 2002]).

Histogram and Wavelet Representations. Gilbert et al. [2001] demonstrate
how to use ε-approximate sketches to find B-term Haar-wavelet transforms
that carry at least 1 − ε of the energy of best B-term representation if this rep-
resentation has large coefficients. In our setting, the sketch at the coordinator is
essentially a g (ε, θ)-approximate sketch; thus, our analysis in conjunction with
Theorem 3 of Gilbert et al. [2001], imply that our schemes can track a 1− g (ε, θ)
approximation to the best B-term wavelet representation at the coordinator.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:27

Similarly, Thaper et al. [2002] show how to use ε-approximate sketches to find
an approximate histogram representation with error at most 1 + Bε times the
error of the best B-bucket multi-dimensional histogram.5 Combining our re-
sults with Theorem 3 of [Thaper et al. 2002], we have a scheme for tracking a
1 + Bg (ε, θ) approximation to the best B-bucket multi-dimensional histogram.

4. EXTENSIONS

We have so far considered the case where queries are to be answered on the
whole history of updates. In many applications, only recent updates are relevant
to queries, and older information should be dropped or weighted so that its con-
tribution is minimal. We consider two standard approaches to keeping results
fresh, and show how to fit them into our tracking scenario. We also discuss the
extension of our techniques to more complex, multilevel distributed monitoring
hierarchies, and analyze the optimal approximation parameter settings under
different communication-cost objectives. Lastly, we consider alternate sketch
prediction models.

4.1 Sliding Windows and Exponential Decay

In the sliding window case, the current distribution f i is limited to only those
updates occurring within the last tw time units, for some fixed value of tw.
We modify the tracking condition: the remote sites build a sketch of the most
recent tw time units, and track whether a predicted sketch for this interval is
within θ error of the interval norm. The role of the coordinator remains the
same: to answer a query, it uses the predicted sketch, as above. In the case that
the site is not space-constrained, the remote site can buffer the updates that
occurred in the window. When the oldest update v in the buffer is more than
tw time units old, it can be treated as an update 〈i, v, −1〉 to f i. The effect of
the original update of v is subtracted from the sketch, and so the sketch only
summarizes those updates within the window of tw. Using the above efficient
tracking method, the asymptotic cost is not altered in the amortized sense,
since each update is added and later subtracted once, giving an amortized cost
of O(log(1/δ)) per update.

In the case that the remote site does not have space to buffer all updates in the
sliding window, techniques such as the exponential histogram approach [Datar
et al. 2002] can be applied to bound the amount of space required. This method
allows the sketch of the window to be approximated by the combination of a
logarithmic number of sketches of nonoverlapping subwindows. However, this
does not directly lead to guaranteed bounds: although the sketch of the sliding
window is well approximated by this method, when the predicted sketch is sub-
tracted, the bounds do not hold. In practice, this approach or similar methods
of dividing the window into nonoverlapping windows and approximating the
window with these pieces is likely to give sufficiently good results. An alternate
sliding window approach is to consider only the most recent SW updates. This
has two variants: when this policy is applied locally at each site, and when

5Although this procedure will typically return more than B buckets [Thaper et al. 2002].

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:28 • G. Cormode and M. Garofalakis

the policy is to be applied globally over all updates. In the first case, the above
discussion applies again, and the same results follow. For the second case, the
problem seems more involved, and can provide an interesting direction for fu-
ture research.

The exponential decay model is a popular alternative to the sliding window
model [Gilbert et al. 2001]. Briefly, the current distribution f i(t) is computed
as f i(t) = λt−tprev f i(tprev) for a positive decay constant λ < 1—for example,
λ = 0.95 or 0.99. Updates are processed as before, so an update v means
f i(t)[v] ← f i(t)[v]+1. As in the sliding window case, the action at the coordina-
tor is unchanged: given a suitable model of how the (exponentially decayed) dis-
tribution changes, the coordinator uses the predicted sketch to answer queries.
At the remote site, the tracking condition is again checked. Since the decay op-
eration is a linear transform of the input, the sketch of the decayed distribution
can be computed by decaying the sketch: sk(f i(t)) = λt−tprevsk(f i(tprev)) (where
tprev denotes the time of the last update). Applying this directly would mean the

tracking operation takes time O(1
ε2 log(1/δ)), but by devoting some extra space

to the problem, we can track the condition in time O(log(1/δ)) again.
We outline the method briefly. For each entry of the array of counts in sk(f1, j),

we additionally keep a tag denoting the time t when it was last updated. To
apply the decay to the sketch for a time t − tprev, we take the estimate at time
tprev and multiply it by λt−tprev . To process an update u to location i at time t,
in each row we identify the entry in S that is affected (Sl [hl (v)]), and look up
the last time this entry was probed as t ′. We can then update our estimate by
setting

est2
l ← est2

l + u2 + 2λt−t ′ ∗ u ∗ ξ (v)S[hl (v)]

(this expression comes from computing the change due to decaying the entry
of S by λt−t ′

, and subtracting the contribution of this; and then adding on the
contribution from the addition of u). We update

Sl [hl (v)] ← λt−t ′
Sl [hl (v)] + u ∗ ξl (v),

and set the time of last modification to t. From this, we have

THEOREM 4.1. The sketch tracking condition (*) can be tracked in time
O(log(1/δ)) per update in both the sliding window and the exponential decay
streaming models.

4.2 Approximate Hierarchical Query Tracking

Consider a more complex distributed-tracking scenario where the communica-
tion network is arranged as a tree-structured hierarchy of nodes (i.e., sites)—
our goal here is for the root node to effectively track an approximate query
answer over the update streams observed at the leaf nodes of the hierarchy.
(To simplify the discussion, we assume that internal nodes in the hierarchy
do not observe any updates; however, such generalizations can be incorporated
into our model by adding dummy leaf-child nodes to internal nodes to accept
their corresponding streams.) This hierarchical-monitoring architecture gener-
alizes the flat, single-level model discussed earlier in this paper (essentially, a

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:29

one-level hierarchy with remote sites as leaves). Such monitoring hierarchies
arise naturally, for instance, in the context of sensor networks, where sensor
nodes are typically organized in a routing tree with a root base-station moni-
toring the sensornet operation [Madden et al. 2003]. In such scenarios, naively
propagating sketch updates from the leaves to the root node is wasteful; dis-
tribution changes at leaf nodes of a subtree may effectively “cancel out” at
a higher node in the hierarchy rendering further communication with nodes
higher in the hierarchy unnecessary. For such multilevel hierarchies, our track-
ing scheme should be able to exploit stability properties at any node of the
hierarchy.

In this section, we demonstrate how our earlier ideas and results can be
used to effectively solve and analyze approximate query-tracking problems in
the case of such general hierarchies. For simplicity, we concentrate on the case
of a self-join query Q(f) = ‖ f‖2 (Corollary 3.2), where the update stream f is
observed across all leaf nodes in the hierarchy; the extensions to handle more
general queries and site subsets are straightforward.

Assume that our tracking hierarchy comprises h + 1 levels, with the root
node at level 0 and the leaf nodes at level h. We can compute an approximate
sketch over the union of streams observed at the leaf nodes by running our
sketch-tracking scheme between each internal node and its children. That is,
each internal node u tracks an (approximate) AGMS sketch over its children,
and then passes up relevant information to its parent when its locally-observed
sketch (which summarizes the data distribution of all streams in its subtree)
violates a specified deviation bound with respect to its corresponding prediction
at u’s parent (i.e., condition (*) with ki equal to the number of siblings of u).

Just as in the flat, single-level case it suffices to allocate the same deviation
tolerance θ to every remote site, we argue that it suffices to allocate the same
θl parameter to every node at level l in the hierarchy—essentially, this implies
that each level-(l − 1) node gives all its children the maximum possible error
tolerance (based on its own error bounds) in order to minimize communication
cost across levels l−1 and l . Now consider a node u at level l in the tree hierarchy
and let Su denote the union of update streams in the subtree rooted at u, and
define (1) αl as the accuracy at which u tracks its local sketch summary (for
the Su stream); and, (2) θl as the bound on the deviation of locally maintained
sketches (with respect to their predictions) at node u. The following corollary
then follows easily from Corollary 3.2.

COROLLARY 4.2. Let αl and θl be as defined above. Then, the compounded
error of the local AGMS sketch summaries for nodes at level l −1 of the hierarchy
is αl−1 = αl+ 2θl .

Corollary 4.2 essentially allows us to “cascade” our basic, single-level track-
ing scheme to the case of multilevel hierarchies. Specifically, assuming a fixed
AGMS sketching error ε at the leaf nodes of the hierarchy, then, by Corollary 4.2,
summing across all levels, the total sketch-tracking error at the root node is
α0 = ε+ 2

∑h
l=1 θl .

Assuming that the sketching error ε at leaf nodes is fixed (e.g., based on site
memory limitations), we now seek to optimize the settings for the θl parameters

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:30 • G. Cormode and M. Garofalakis

for minimizing communication costs. We consider the worst-case bounds for our
static-prediction model, and two possible optimization objectives: (1) the maxi-
mum transmission cost for any node in the hierarchy (or, equivalently, the max-
imum load on any communication link), and (2) the aggregate communication
cost over the entire communication hierarchy. Both of the above objectives are
important in the sensornet context (e.g., for maximizing the lifetime of a sensor
network) as well as more traditional distributed network-monitoring scenar-
ios. To simplify the analysis that follows, we assume a regular hierarchical-
monitoring topology, where both (a) the branching factor (i.e., number of sib-
lings), and (b) the number of observed updates for a node at level l are fixed at
kl and Nl , respectively. (Our analysis can also provide some guidance for effec-
tive heuristics for setting the deviation parameters in more general scenarios.)
From the analysis in Section 3.2.4, the (worst-case) transmission cost for a node

at level l is O(
√

kl

θ3
l

log(kl
δ

) log Nl).

Maximum Transmission Cost Minimization Problem. Determine θl ’s that

minimize maxl {
√

kl

θ3
l

log(kl
δ

) log Nl } subject to the total-error constraint∑
l θl = θ .

For this minimization problem, it is not difficult to see that the optimal point
occurs when the per-node transmission costs at all levels are equal, giving the
optimal per-level θl settings

θl = θ
(√

kl log
(kl

δ

)
log Nl

)1/3

∑
j

(√
k j log

(k j

δ

)
log N j

)1/3
.

In the case of minimizing total communication, the per-node transmission
cost at level l is multiplied by the total number of nodes at that level Kl =

l

j=1k j , and we have a sum objective function. This is a more complicated

minimization problem, but we show a closed-form solution for the optimal θl
settings.

Aggregate Communication Cost Minimization Problem. Determine θl ’s that

minimize the sum
∑

l
Kl

√
kl

θ3
l

log(kl
δ

) log Nl subject to the total-error constraint∑
l θl = θ .

THEOREM 4.3. The optimal θl values for minimizing the (worst-case) aggre-
gate communication cost over a (regular) multi-level tracking hierarchy are given
by

θl = θ
(
Kl

√
kl log

(kl
δ

)
log Nl

)1/4

∑
j

(
K j

√
k j log

(k j

δ

)
log N j

)1/3
.

PROOF. Let cl = Kl
√

kl log(kl
δ

) log Nl , for all levels l . Our proof uses Hölder’s
inequality [Hardy et al. 1988], which states that, for any xl , yl ≥ 0, and p, q > 1

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:31

such that 1
p+ 1

q = 1:

(∑
l

x p
l

)1/p

·
(∑

l

yq
l

)1/q

≥
∑

l

xl yl ,

with equality holding only if yl = λ · x p−1
l for all l .

Substituting p = 4, q = 4/3, xl = (cl

θ3
l
)1/4, and yl = θ

3/4
l in Hölder’s Inequality,

we get (∑
l

cl

θ3
l

)1/4

·
(∑

l

θl

)3/4

≥
∑

l

c1/4
l ,

or, equivalently (since
∑

l θl = θ),
∑

l
cl

θ3
l

≥ 1
θ3

(∑
l c1/4

l

)4
.

Note that the left-hand side of this inequality is precisely our optimization
objective, whereas the right-hand side is constant. Thus, the optimal (i.e., min-
imum) value for our objective occurs when equality holds in this instance of

Hölder’s inequality, or, equivalently, if θ
3/4
l = λ(cl

θ3
l
)3/4, which after some simpli-

fication, gives θl = λ′c1/4
l (where the new proportionality constant is λ′ = λ1/3).

Coupled with the total error constraint
∑

l θl = θ , this directly implies that the

optimal θl values are given by θl = θc1/4
l /

∑
j c1/4

j . The result follows.

4.3 Alternate Sketch-Prediction Models

We outlined three distinct approaches to sketch prediction, each building pro-
gressively richer models to attempt to capture the behavior of local stream dis-
tributions over time. Our most sophisticated model explicitly tries to model both
first-order (i.e., “velocity”) and second-order (i.e., “acceleration”) effects in the
local update-stream rates while increasing the amount of sketching information
communicated to the coordinator by a factor of only two. Our main focus has
been on defining the framework which guarantees correctness, and we show in
our experimental simulations that even simple models achieve significant sav-
ings. The choice of model is orthogonal to the framework, and naturally given
more knowledge of the application area, one can select any model which can
predict the distribution well. Note though that there is tradeoff here: the more
complex the model, the more parameters that must be communicated between
the site and the coordinator, which can lead to higher communication cost; thus,
better prediction does not necessarily immediately translate into lower overall
communication cost.

One can easily envisage other models of evolving local distributions beyond
those discussed here, and translating these into predicted sketches by applying
the linearity properties of the sketch transformation. In particular, the lin-
ear predictions can be seen as simple instances of the more general class of
ARMA models [Box and Jenkins 1970]. Direct implementation of these mod-
els requires some adjustment, though: these models typically forecast ahead
only a small number of timesteps, whereas to ensure limited communication,
we need to forecast over many thousands or even millions of timesteps. A

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:32 • G. Cormode and M. Garofalakis

second consideration is that whereas such models typically use least-squares
regression to minimize the error in prediction, we have a distinct objective: to
minimize the frequency with which the prediction error exceeds a given thresh-
old. Nevertheless, such models have been successfully used in similar settings
such as sensor networks [Tulone and Madden 2006], and so could be applied
here.

Other variations are also possible. Thus far, our models operate on whole
sketches at a time; it is possible, however, to design “finer-grained” models that
consider different parts of the distribution separately. For instance, individual
data elements with high counts in the f i, j distribution carry the highest impact
on the norm of the distribution. Thus, we can separate such “heavy-hitter” ele-
ments from the rest of the distribution and model their movements separately
(e.g., tracking an acceleration model), while using a sketch only for tracking the
remainder of the distribution. Once a local constraint is violated, then it may be
possible to restore the constraint by shipping only information on some of the
heavy-hitter items, instead of an entire sketch—clearly, this may drastically
reduce the amount of communication required. At a high level, this approach is
similar to the idea of “skimmed sketches” of Ganguly et al. [2004], but for the
purpose of decreasing communication rather than increasing accuracy. Explor-
ing the applicability and potential benefits of such sketch-skimming approaches
for our distributed query-tracking problem is an interesting direction for future
work in this area.

5. EXPERIMENTAL STUDY

We conducted an experimental study on the proposed tracking algorithms, to
understand the effect of setting various parameters (ε, θ , and window W for the
velocity/acceleration model), to evaluate the communication savings from our
method, and to measure the accuracy and time cost of our methods compared
to the baseline solution of each remote site communicating every update to
the coordinator site. We also tested the overall accuracy of our approximate
methods by comparing to the exact answer for various queries, and looked at
the time benefits of using the fast update techniques we have introduced.

5.1 Testbed and Methodology

We implemented a test system that simulated running our protocols in C.6

Throughout, we set the probability of failure, δ = 1%. Experiments were run
on a single machine, simulating the actions of each of k sites and the coordina-
tor. For each experimental simulation, all remote sites used the same class of
prediction model (static, linear-growth or velocity/acceleration) with the same
tracking parameters ε, θ . We implemented various natural optimizations of our
methods. When each site has to communicate to the coordinator, it computes
whether it is more efficient to send a sketch or to send the updates since the
last communication, and sends the cheaper message. Since the coordinator has

6Our implementation of Fast-AGMS sketches was modified from our implementations available

at http://www.cs.rutgers.edu/~muthu/massdal-code-index.html.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:33

the previous sketch, it can compute the new sketch by adding on the recent
updates, so both remote site and coordinator stay in lockstep. This ensures that
the cost is never worse than the trivial solution of sending every update to the
coordinator, and is important in the early stages in the protocol, when the site
is still learning the nature of its streams, and so must update the coordinator
often.

We report the results of experiments run on two data sets. The first was
drawn from the Internet Traffic Archive (http://ita.ee.lbl.gov/), represent-
ing HTTP requests sent to servers hosting the World Cup 1998 Web Site. Servers
were hosted in four geographic locations: Plano, Texas; Herndon, Virginia;
Santa Clara, California; and Paris, France. Therefore, we modeled this sys-
tem with four remote sites, one handling requests to each location. We tracked
the relations defined by this sequence of requests, using the “objectID” attribute
as the attribute of interest. This seems a good approximation of many typical
data sets, taking on a large number of possible values with a nonuniform dis-
tribution. The second data set consisted of SNMP network usage data obtained
from CRAWDAD (the Community Resource for Archiving Wireless Data at
Dartmouth, http://cmc.cs.dartmouth.edu/data/dartmouth.html). It consists
of measurements of total network communication every five minutes over a
four month period at a large number of different access points (approximately
200). We divided these access points into eight groups to create a data set with
eight sites and 6.4 million total requests. Here, we used the “size” attribute as
the one to index the data on, since this takes a very large number of values, and
will be challenging to predict the distribution accurately. We obtained similar
results to those reported here when using different data sets and settings.

Throughout, we measure the communication cost, as the ratio between the
total communication used by a protocol (in bytes) divided by the total cost to
send every update in full (in bytes). For example, if our protocol sent 3 sketches,
each of which was 10KB in size, to summarize a set of 50,000 updates, each of
which can be represented as a 32-bit integer, then we compute the commu-
nication cost as 15%. Our goal is to drive this cost as low as possible. When
measuring the accuracy of our methods, we compute an estimated result est,
and (for testing) compute the exact answer, true. The error is then given by
|true−est|

true , which gives a fraction, 0% being perfect accuracy; again, our goal is to
see this error as low as possible.

5.2 Experimental Results

Setting Parameters and Tradeoffs. First, we investigated the tradeoff between
parameters ε and θ in order to guarantee a given global error bound, and the
setting of the parameter W for the velocity/acceleration model. We took one
day of HTTP requests from the World Cup data set, which yielded a total of
14 million requests, and the complete SNMP data. Figure 6 shows the effect
of varying ε and θ subject to ε + 2θ = ψ , for ψ = 10%, 4%, and 2% error
rate. In each case, we verified that the total error was indeed less than ψ . The
communication cost is minimized for ε roughly equal to 0.55–0.6ψ . Our analysis
in Section 3.2 showed that for a worst case distribution under the static model, ε

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:34 • G. Cormode and M. Garofalakis

Fig. 6. Tradeoff between the parameters ε and θ .

Fig. 7. Effect of varying the window size used to estimate the “velocity” sketch.

should be around ψ/2. In practice, it seems that a slightly different balance gives
the lowest cost, although the trade-off curve is very flat-bottomed, and setting ε

between 0.3ψ and 0.7ψ gives similar bounds. We have shown the curves for the
velocity/acceleration model with W = 20000 on the HTTP data and W = 1000
on the SNMP data; curves for the different models and different settings of
W look similar. For the remainder of our experiments, we set ε = 0.5ψ and
θ = 0.25ψ , giving g (ε, θ) ≈ ψ .

In Figure 7, we show the effect of varying the window size W for the veloc-
ity/acceleration model on the communication cost for three values of ψ = ε +2θ

on both data sets. In order to show all three models on the same graph, we have
shown the static model cost as the leftmost point (plotted with a cross), since
this can be thought of as the velocity/acceleration model with no history used
to predict velocity, hence velocity and acceleration components are set to zero.
Similarly, we plot the cost of the linear growth model as the rightmost point on
each curve (marked with an asterisk), since this can be thought of as using the
whole history to predict velocity. On the HTTP World Cup data (Figure 7(a)),
we see that for the best setting of the window size the velocity/acceleration
model outperforms both the other models by at least a third, but it is sensitive
to the setting of W : too small or too large, and the overall communication cost is
noticeably worse than the best value. For each curve, the least cost is between
half and a third of the greatest cost for that curve. The static model gets close
to the worst cost, while the linear growth model does quite well, but still about

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:35

Fig. 8. Communication cost as the number of updates increases.

a third more than the best velocity/acceleration model. For the HTTP data set,
we see that irrespective of the g (ε, θ) value the best setting of W is in the range
10000–100000. We observe similar behavior on the SNMP data, although the
benefits of using a window over the linear growth model decrease as ε decreases.
For the remainder of our experiments, we focus on the velocity/acceleration
model with W = 20000 for the HTTP data, and W = 1000 for the SNMP
data.

Communication Cost. We look at how the communication cost evolves with
time in Figure 8, using the velocity/acceleration model. This experiment was
performed on a larger data set from a week of HTTP requests to the World Cup
data sets, totaling over 50 million updates (with k = 4 as before), and on the
same Dartmouth SNMP data set treated as updates to a single site (so k = 1).
For both data sets, the behavior is fairly similar. The cost is initially high, as
the remote site adapts to the stream, but as the number of updates increases,
then the requirement for communications drops. For the higher error bounds,
there are long periods of stability, that is, where no communication is necessary.
This implies that in the long term our methods reach a “steady state,” where no
communication is necessary, and large savings result over shipping up every
update to the coordinator.

Accuracy of Approximate Query Answers. Our first set of experiments focused
on the communication cost of our proposed protocols. We now consider the ac-
curacy they provide for answering queries at the coordinator, and the time cost
at the remote sites. In Figure 9(a), we plot the error in answering queries at the
coordinator based on processing the one day of data from the World Cup data
set. Here, we have fixed θ , and plotted the observed accuracy for computing
the size of a self-join as ε varies when we have processed all updates. We show
with a heavy line the worst case error bound ε + 2θ ≈ g (ε, θ): all the results
fall well within this bound. Both static and velocity/acceleration models give
similar errors at the coordinator. Note that there some variability in the error
with different values of ε, which arises from two sources: (1) variation due to
the sketch error bound ε. (2) variation from the tracking bound θ . Depending
on when the query is posed, the remote site may be using little of the “slack”
that this bound gives, or it may be using almost all of it. Therefore, we should

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:36 • G. Cormode and M. Garofalakis

Fig. 9. Experiments evaluating the quality of the returned results.

Fig. 10. Timing cost, comparing fast tracking methods to performing sketch estimation every step,

for static and acceleration models.

not expect to see any overall trend as ε varies, beyond that the total error is
within the global guarantee.

In Figure 9(b), we attempt to separate the sketch error from the tracking
error, by computing the approximation we would get if the remote site sent the
sketch of its current distribution to the coordinator when the self-join query was
posed. In this figure, we have subtracted this error from the total error to give an
indication of how much error is due to tracking as θ varies. The negative values
seen in the results for the velocity/acceleration model indicate that the answer
given by using this prediction model at the coordinator is actually more accurate
than if the coordinator requested each site to send it a sketch at query time.
This shows an unexpected benefit. Our worst-case bounds must assume that
the errors from sketching and tracking are additive, but, in some cases, these
errors can partially cancel out. For the static case, we more clearly see the trend
for the tracking error to decrease as θ decreases to zero, thus guaranteeing that
it meets the error bound.

Timing Results. Lastly, we consider the time cost of our tracking methods.
We compared the implementation of our methods using Fast-AGMS sketches
and our fast sketch-tracking scheme against the same prediction models imple-
mented with a naive tracking method with time complexity linear in the sketch
size (Figure 10). The communication cost and accuracy of both versions was

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:37

the same in all cases: our fast tracking techniques compute the same functions,
but are designed to work more quickly. The time cost is composed of the time
required to update each sketch, and the time to recompute the sketch model
when the error bounds are exceeded. For the “slow” implementation, the for-
mer requires time linear in the size of the sketch, which is in turn quadratic
in 1/ε; for the “fast” version, the cost is independent of ε. As can be seen in
the diagram, the direct implementations of the tracking methods rise sharply
as ε approaches zero, while the fast implementations hardly vary. For small ε,
the fast velocity/acceleration method becomes more expensive since, while up-
date operations are still fast, recomputing the sketches when tracking bounds
are broken begins to contribute more significantly to the overall cost. For ε ≥ 3%
on the World Cup HTTP data (Figure 10(a)) the cost was 36 seconds in the static
case, and 50 seconds for the more complex velocity/acceleration model to process
all 14 million updates. This gives an effective processing rate of around 300–
400 thousand updates per second per site; equivalently, an average overhead of
3 microseconds per update on our experimental setup (2.4 GHz Pentium desk-
top). A similar rate was observed on the Dartmouth SNMP data (Figure 10(b)).

Experimental Conclusions. Our experiments show that significant communi-
cation savings are possible for the variety of tracking problems based on the key
sketch tracking problem that we address. With an approximation factor of 10%,
the communication cost can be less than 3% of sending every update directly
to the coordinator, and this saving increases as more updates are processed.
Time overhead is minimal, a few microseconds to update the necessary tracking
structures, and typically a few kilobytes per sketch, plus space to store a recent
history of updates. Our more detailed sketch prediction models seem to offer sig-
nificant improvements over the simplest model. The velocity/acceleration model
gives best performance, if enough information about the streams is known to
choose a good setting of the window parameter W (one could imagine a more
involved algorithm that tries several values of W in parallel and eventually
settles on the one that minimizes communication). Failing this, linear growth
provides adequate results, and requires no extra parameters to be set.

6. CONCLUSIONS

We have presented novel algorithms for tracking complex queries over multiple
streams in a general distributed setting. Our schemes are optimized for tracking
high-speed streams, and result in very low processing and communication costs,
and significant savings over naive updating schemes. Our key results show
that any query that can be answered using sketches in the centralized model
can be tracked efficiently in the distributed model, with low space, time, and
communication.

The main results show that join, multi-join and self-join size queries can be
answered with guaranteed error bounds provided remote sites track conditions
that depend only on individual streams observed locally. With appropriate mod-
els predicting future behavior based on a collected history, little communication
is needed between the remote sites and the coordinator site. A wide range of
queries can be answered by the coordinator: essentially, any query that can be

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

9:38 • G. Cormode and M. Garofalakis

approximated using ε-approximate sketches can now be answered with g (ε, θ)
error, including heavy hitters, wavelets, and multidimensional histograms.

REFERENCES

ALON, N., GIBBONS, P. B., MATIAS, Y., AND SZEGEDY, M. 1999. Tracking join and self-join sizes in lim-

ited storage. In Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems. Philadeplphia, PA.

ALON, N., MATIAS, Y., AND SZEGEDY, M. 1996. The space complexity of approximating the frequency

moments. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing.

Philadelphia, PA, 20–29.

BABCOCK, B. AND OLSTON, C. 2003. Distributed top-K monitoring. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data. San Diego, CA.

BOX, G. AND JENKINS, G. 1970. Time Series Analaysis: Forecasting and Control. Holden-Day.

CHARIKAR, M., CHEN, K., AND FARACH-COLTON, M. 2002. Finding frequent items in data streams.

In Proceedings of the International Colloquium on Automata, Languages, and Programming.

Malaga, Spain.

CHU, D., DESHPANDE, A., HELLERSTEIN, J. M., AND HONG, W. 2006. Approximate data collection in

sensor networks using probabilistic models. In Proceedings of the 22nd International Conference
on Data Engineering. Atlanta, GA.

CORMODE, G. AND GAROFALAKIS, M. 2005. Sketching streams through the net: Distributed approx-

imate query tracking. In Proceedings of the 31st International Conference on Very Large Data
Bases. Trondheim, Norway.

CORMODE, G., GAROFALAKIS, M., MUTHUKRISHNAN, S., AND RASTOGI, R. 2005. Holistic aggregates in

a networked world: Distributed tracking of approximate quantiles. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. Baltimore, MD.

CORMODE, G. AND MUTHUKRISHNAN, S. 2003. What’s hot and what’s not: Tracking most frequent

items dynamically. In Proceedings of the 22nd ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems. San Diego, CA, 296–306.

CORMODE, G. AND MUTHUKRISHNAN, S. 2004. An improved data stream summary: The count-min

sketch and its applications. Latin American Informatics. 29–38.

CRANOR, C., JOHNSON, T., SPATSCHECK, O., AND SHKAPENYUK, V. 2003. Gigascope: A stream database

for network applications. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data. San Diego, CA.

DAS, A., GANGULY, S., GAROFALAKIS, M., AND RASTOGI, R. 2004. Distributed set-expression cardinal-

ity estimation. In Proceedings of the 30th International Conference on Very Large Data Bases.

Toronto, Canada.

DATAR, M., GIONIS, A., INDYK, P., AND MOTWANI, R. 2002. Maintaining stream statistics over sliding

windows. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. San

Francisco, CA, 635–644.

DESHPANDE, A., GUESTRIN, C., MADDEN, S. R., HELLERSTEIN, J. M., AND HONG, W. 2004. Model-driven

data acquisition in sensor networks. In Proceedings of the 30th International Conference on Very
Large Data Bases. Toronto, Canada.

DOBRA, A., GAROFALAKIS, M., GEHRKE, J., AND RASTOGI, R. 2002. Processing complex aggregate

queries over data streams. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. Madison, WI, 61–72.

GANGULY, S., GAROFALAKIS, M., AND RASTOGI, R. 2003. Processing set expressions over continuous

update streams. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. San Diego, CA.

GANGULY, S., GAROFALAKIS, M., AND RASTOGI, R. 2004. Processing data-stream join aggregates using

skimmed sketches. In Proceedings of the 9th International Conference on Extending Database
Technology (EDBT’04). Heraklion-Crete, Greece.

GIBBONS, P. B. 2001. Distinct sampling for highly accurate answers to distinct values queries

and event reports. In Proceedings of the 27th International Conference on Very Large Data Bases.

Roma, Italy.

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

Approximate Continuous Querying over Distributed Streams • 9:39

GILBERT, A. C., KOTIDIS, Y., MUTHUKRISHNAN, S., AND STRAUSS, M. J. 2001. Surfing wavelets on

streams: One-pass summaries for approximate aggregate queries. In Proceedings of the 27th
International Conference on Very Large Data Bases. Roma, Italy.

GREENWALD, M. B. AND KHANNA, S. 2001. Space-efficient online computation of quantile sum-

maries. In Proceedings of the ACM SIGMOD International Conference on Management of Data.

Santa Barbara, CA.

GREENWALD, M. B. AND KHANNA, S. 2004. Power-conserving computation of order-statistics over

sensor networks. In Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems. Paris, France.

HARDY, G., LITTLEWOOD, J., AND PÓLYA, G. 1988. Inequalities, 2nd Ed. Cambridge University Press.

HUANG, L., GAROFALAKIS, M., JOSEPH, A. D., AND TAFT, N. 2007a. Communication-efficient tracking

of distributed cumulative triggers. In Proceedings of the 27th IEEE International Conference on
Distributed Computing Systems (ICDCS’07). Toronto, Canada.

HUANG, L., NGUYEN, X., GAROFALAKIS, M., HELLERSTEIN, J. M., JORDAN, M. I., JOSEPH, A. D., AND TAFT, N.

2007b. Communication-efficient online detection of network-wide anomalies. In Proceedings of
IEEE INFOCOM. Anchorage, AK.

JAIN, A., CHANG, E. Y., AND WANG, Y.-F. 2004. Adaptive stream resource management using

Kalman filters. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. Paris, France.

KERALAPURA, R., CORMODE, G., AND RAMAMIRTHAM, J. 2006. Communication-efficient distributed

monitoring of thresholded counts. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. Chicago, IL, 289–300.

MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. 2003. The design of an acqui-

sitional query processor for sensor networks. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. San Diego, CA.

MANJHI, A., SHKAPENYUK, V., DHAMDHERE, K., AND OLSTON, C. 2005. Finding (recently) frequent

items in distributed data streams. In Proceedings of the 21st International Conference on Data
Engineering. Tokyo, Japan.

MANKU, G. S. AND MOTWANI, R. 2002. Approximate frequency counts over data streams. In Pro-
ceedings of the 28th International Conference on Very Large Data Bases. Hong Kong, China,

346–357.

MOTWANI, R. AND RAGHAVAN, P. 1995. Randomized Algorithms. Cambridge University Press.

OLSTON, C., JIANG, J., AND WIDOM, J. 2003. Adaptive filters for continuous queries over distributed

data streams. In Proceedings of the ACM SIGMOD International Conference on Management of
Data. San Diego, CA.

SHARFMAN, I., SCHUSTER, A., AND KEREN, D. 2006. A geometric approach to monitoring thresh-

old functions over distributed data streams. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. Chicago, IL, 301–312.

THAPER, N., GUHA, S., INDYK, P., AND KOUDAS, N. 2002. Dynamic multidimensional histograms. In

Proceedings of the ACM SIGMOD International Conference on Management of Data. Madison,

WI, 428–439.

TULONE, D. AND MADDEN, S. 2006. Paq: Time series forecasting for approximate query answering

in sensor networks. In the European Conference on Wireless Sensor Networks (EWSN).

Received January 2007; revised August 2007; accepted January 2008

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 9, Publication date: June 2008.

